人脸识别实验报告解读

人脸识别实验报告解读
人脸识别实验报告解读

人脸识别——特征脸方法

贾东亚12346046

一、实验目的

1、学会使用PCA主成分分析法。

2、初步了解人脸识别的特征法。

3、更熟练地掌握matlab的使用。

二、原理介绍

1、PCA(主成分分析法介绍)

引用一个网上的例子。假设有一份对遥控直升机操作员的调查,用表示飞行员i的

飞行技能,表示飞行员i喜欢飞行的程度。通常遥控直升飞机是很难操作的,只有那些

非常坚持而且真正喜欢驾驶的人才能熟练操作。所以这两个属性和相关性是非常强的。我们可以假设两者的关系是按正比关系变化的。如下图里的任意找的向量u1所示,数据散布在u1两侧,有少许噪声。

现在我们有两项数据,是二维的。那么如何将这两项变量转变为一个来描述飞行员呢?由图中的点的分布可知,如果我们找到一个方向的U,所有的数据点在U的方向上的投影之和最大,那么该U就能表示数据的大致走向。而在垂直于U的方向,各个数据点在该方向

的投影相对于在U上的投影如果足够小,那么我们可以忽略掉各数据在该方向的投影,这

样我们就把二维的数据转化成了在U方向上的一维数据。

为了将u选出来,我们先对数据进行预处理。先求出所有数据的平均值,然后用数据与平均值的偏差代替数据本身。然后对数据归一化以后,再代替数据本身。

而我们求最大的投影和,其实就是求各个数据点在U上的投影距离的方差最大。而X T u 就是投影的距离。故我们要求下式的最大值:

按照u是单位向量来最大化上式,就是求的特征向量。而此式是数据集的协方差矩阵。

在实际应用中,我们不止面临二维的数据。因此不能使用几何的形式呈现,但原理也是一样。就是找到一组相互正交的单位向量,然后根据贡献率考虑选择其中的部分作为考量的维数,这也就实现了数据的降维。

三、实验步骤

1、将库里的400张照片分成两组。一组作为训练,一组作为库。每个人的前五张照片作为

训练,后五张作为库。训练的照片按照顺序的数字重命名。库的照片名字不变。

2、库照片处理。

①将每一张库的照片转化成N维的向量。(库里的照片是112*92,故将转化成的矩阵按列或行展开,就是个10304维的向量)我们稍后要对如此多维的向量用PCA进行降维。然后把这些向量存入一个矩阵里。而我是将这200个向量以列的形式存在了矩阵里。

,,,

②将这200个向量的每个元素相加起来求出平均值。再用Z里的每一个向量减去这个平均值得到每个的偏差。

平均值,每个向量的偏差

即最后

,,,

③接下来我们就要针对这些预处理后的数据进行降维。我们要求的N个相互正交的向量就是协方差矩阵的特征向量,而对应的特征值就是各个向量所占的比重。但是Z是个10304*200的矩阵,那么就是个10304*10304的矩阵。使用matlab直接求其特征值与特征向量不太实际。

所以我们考虑一个简单的运算方法:

协方差矩阵的秩受到训练图像的限制:如果有N个训练样本,则最多有N? 1 个对应非零特征值的特征向量,其他的特征向量对应的特征值都是0。如果训练样本的数目比图像的维数低,则可以通过如下方法简化主成份的计算。

设 Z是预处理图像的矩阵,每一列对应一个减去均值图像之后的图像。则,协方差矩阵为,并且对S的特征值分解为

然而,是一个非常大的矩阵。因此,如果转而使用如下的特征值分解。

此时,我们发现如果在等式两边乘以T,可得到

这就意味着,如果u i是T T T的一个特征向量,则是S 的一个特征向量。我们的库

里有200张112 * 92像素的图像,则 T T T是一个200*200的矩阵,这就比原先的10304 * 10304 的协方差矩阵要容易处理许多。

需要注意的是,上面的特征向量没有进行归一化,如果需要,应该在后面在进行处理。

④降维处理。上面的步骤已经求到了所有的特征向量与特征值。而特征值就是各数据点在该特

征向量上的方差。跟据PCA,我们要选出占主要比重的特征向量即可,而判定标准就是特征值。

先把方差(特征值)降序排列,并把对应的特征向量也排列好。依次选择方差,使选出的方差和占所有方差和大约95%左右。然后选择对应的特征向量。其余的特征向量与特征值可以抛

弃不用了。这就完成了降维。(③中一共有200个不为零的方差(特征值))

⑤归一化处理。数据归一化处理是数据挖掘的一项基础工作,不同评价指标往往具有不同的量

纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数据指标之间的可比性。原始数据经过数据标准化处理后,各指标处于同一数量级,适合进行综合对比评价。

我使用的是Z-score法。经过处理得数据符合标准正态分布,即均值为0,标准差为1,转化函数为

其中为所有数据的均值,为所有样本数据的标准差。

在③里求得的特征值就是方差。所以我们要用乘上每一个对应的特征向量。

本来这个归一化处理应该放在第一步的数据预处理那里。但由于那里的计算还没有涉及到协方差矩阵,而我们需要的方差在后面才出现,故把归一化处理放在这里。

即③中,

这些特征向量都是10304*1的大小,跟我们一开始处理后的照片向量的大小一样。这些就

是特征脸。特征脸可以线性组合成所有库里的脸。

⑥用特征脸对库里的脸进行标示,也就是将库里的每张脸图数据转化成各个特征脸所占的比重。即

,n是最后选出的方差数量

⑦人脸识别。先对训练的脸图进行预处理。预处理即①②中所说的求偏差。求到训练图的偏差向量后,如⑥那样用特征脸对训练图进行标示。

即求得

然后求与的欧式距离,此距离表明两图的接近度。即

该距离越小,则这两张图越接近,则越有可能是同一个人。

四、编程实现

代码:

函数:[zz,y,tzl]=circ(),对库图像的处理,并求出处理训练图像需要的特征脸和数据平均值。

函数:[ws]=ld(zz,y,tzl) 这三个自变量都是上面的函数的输出变量。Ws是200张训练人脸识别的正确性。

200张训练图片的识别率为91.5%

加了显示代码后显示的图片结果:

五、实验总结

收获:

这次实验让我更加熟练地应用了matlab。对矩阵的运算也理解地更加的透彻。学习了PCA主成分分析法,这个方法在分析较多的数据时是非常有用的。在如今的大数据时代,PCA 是个非常实用的分析手段。

这次在做实验的过程中,上网查阅了许多关于人脸识别的资料,发觉虽然自己完成了初步的人脸识别的功能,但远远没有达到现实生活的需求。我们做实验的orl库的像素不仅非常低,而且每张人脸的位置与大小也非常接近,这都大大降低了难度。这个方向还有着许多可学习的东西。

实验中遇到的难题:

一开始最难理解的莫过于特征脸法的原理。原理中涉及到许多的线性代数知识,需要花时间去回忆,并用已经掌握的初步的知识去理解更深刻的知识。在咨询过程与上网查阅资料的过程中才慢慢解决了问题。

后来代码完成后,识别率一直非常低。与完成了的同学对照时,发现代码的原理几乎一样,当时一直不知道怎么办。后来经过旁人的提醒,发现协方差矩阵的特征向量没有按照特征值排序后的顺序重新排列。这个小问题困扰了我很久。细节很重要。

读书的好处

1、行万里路,读万卷书。

2、书山有路勤为径,学海无涯苦作舟。

3、读书破万卷,下笔如有神。

4、我所学到的任何有价值的知识都是由自学中得来的。——达尔文

5、少壮不努力,老大徒悲伤。

6、黑发不知勤学早,白首方悔读书迟。——颜真卿

7、宝剑锋从磨砺出,梅花香自苦寒来。

8、读书要三到:心到、眼到、口到

9、玉不琢、不成器,人不学、不知义。

10、一日无书,百事荒废。——陈寿

11、书是人类进步的阶梯。

12、一日不读口生,一日不写手生。

13、我扑在书上,就像饥饿的人扑在面包上。——高尔基

14、书到用时方恨少、事非经过不知难。——陆游

15、读一本好书,就如同和一个高尚的人在交谈——歌德

16、读一切好书,就是和许多高尚的人谈话。——笛卡儿

17、学习永远不晚。——高尔基

18、少而好学,如日出之阳;壮而好学,如日中之光;志而好学,如炳烛之光。——刘向

19、学而不思则惘,思而不学则殆。——孔子

人脸识别实验报告

人脸识别——特征脸方法 贾东亚12346046 一、实验目的 1、学会使用PCA主成分分析法。 2、初步了解人脸识别的特征法。 3、更熟练地掌握matlab的使用。 二、原理介绍 1、PCA(主成分分析法介绍) 引用一个网上的例子。假设有一份对遥控直升机操作员的调查,用x1(i)表示飞行员i的 飞行技能,x2(i)表示飞行员i喜欢飞行的程度。通常遥控直升飞机是很难操作的,只有那些 非常坚持而且真正喜欢驾驶的人才能熟练操作。所以这两个属性x1(i)和x2(i)相关性是非常强的。我们可以假设两者的关系是按正比关系变化的。如下图里的任意找的向量u1所示,数据散布在u1两侧,有少许噪声。 现在我们有两项数据,是二维的。那么如何将这两项变量转变为一个来描述飞行员呢?由图中的点的分布可知,如果我们找到一个方向的U,所有的数据点在U的方向上的投影之 和最大,那么该U就能表示数据的大致走向。而在垂直于U的方向,各个数据点在该方向的投影相对于在U上的投影如果足够小,那么我们可以忽略掉各数据在该方向的投影,这样我们就把二维的数据转化成了在U方向上的一维数据。 为了将u选出来,我们先对数据进行预处理。先求出所有数据的平均值,然后用数据与平均值的偏差代替数据本身。然后对数据归一化以后,再代替数据本身。 而我们求最大的投影和,其实就是求各个数据点在U上的投影距离的方差最大。而XT u 就是投影的距离。故我们要求下式的最大值: 1 m ∑(x(i)T u)2=u T( 1 m ∑x(i)x(i)T m i=1 ) m i=1 u 按照u是单位向量来最大化上式,就是求1 m ∑x(i)x(i)T m i=1的特征向量。而此式是数据集的 协方差矩阵。

2021人脸识别行业市场调研报告

2021年人脸识别行业市 场调研报告

目录 1.人脸识别行业现状 (5) 1.1人脸识别行业定义及产业链分析 (5) 1.2人脸识别市场规模分析 (7) 2.人脸识别行业前景趋势 (8) 2.1应用范围逐渐扩大 (8) 2.2由2D向3D转变 (8) 2.3大数据与人脸识别技术的融合趋势分析 (9) 2.42D人脸识别技术产品市场展趋势分析 (9) 2.53D人脸识别技术产品市场展趋势分析 (9) 2.6智慧城市建设对人脸识别技术的需求趋势 (10) 2.7政策频发,助推产业发展 (10) 2.8中国人脸识别市场规模逐步扩大 (10) 2.9延伸产业链 (11) 2.10行业协同整合成为趋势 (11) 2.11服务模式多元化 (11) 2.12呈现集群化分布 (12) 2.13需求开拓 (13) 2.14行业发展需突破创新瓶颈 (13) 3.人脸识别行业存在的问题 (15) 3.1识别技术应用尚未成熟 (15)

3.2网络安全防护能力不足 (15) 3.3个人影像数据疏于管理 (15) 3.4行业服务无序化 (16) 3.5供应链整合度低 (16) 3.6基础工作薄弱 (16) 3.7产业结构调整进展缓慢 (16) 3.8供给不足,产业化程度较低 (17) 4.人脸识别行业政策环境分析 (18) 4.1人脸识别行业政策环境分析 (18) 4.2人脸识别行业经济环境分析 (18) 4.3人脸识别行业社会环境分析 (18) 4.4人脸识别行业技术环境分析 (19) 5.人脸识别行业竞争分析 (20) 5.1人脸识别行业竞争分析 (20) 5.1.1对上游议价能力分析 (20) 5.1.2对下游议价能力分析 (20) 5.1.3潜在进入者分析 (21) 5.1.4替代品或替代服务分析 (21) 5.2中国人脸识别行业品牌竞争格局分析 (22) 5.3中国人脸识别行业竞争强度分析 (22) 6.人脸识别产业投资分析 (23)

模式识别第二次上机实验报告

北京科技大学计算机与通信工程学院 模式分类第二次上机实验报告 姓名:XXXXXX 学号:00000000 班级:电信11 时间:2014-04-16

一、实验目的 1.掌握支持向量机(SVM)的原理、核函数类型选择以及核参数选择原则等; 二、实验内容 2.准备好数据,首先要把数据转换成Libsvm软件包要求的数据格式为: label index1:value1 index2:value2 ... 其中对于分类来说label为类标识,指定数据的种类;对于回归来说label为目标值。(我主要要用到回归) Index是从1开始的自然数,value是每一维的特征值。 该过程可以自己使用excel或者编写程序来完成,也可以使用网络上的FormatDataLibsvm.xls来完成。FormatDataLibsvm.xls使用说明: 先将数据按照下列格式存放(注意label放最后面): value1 value2 label value1 value2 label 然后将以上数据粘贴到FormatDataLibsvm.xls中的最左上角单元格,接着工具->宏执行行FormatDataToLibsvm宏。就可以得到libsvm要求的数据格式。将该数据存放到文本文件中进行下一步的处理。 3.对数据进行归一化。 该过程要用到libsvm软件包中的svm-scale.exe Svm-scale用法: 用法:svmscale [-l lower] [-u upper] [-y y_lower y_upper] [-s save_filename] [-r restore_filename] filename (缺省值:lower = -1,upper = 1,没有对y进行缩放)其中,-l:数据下限标记;lower:缩放后数据下限;-u:数据上限标记;upper:缩放后数据上限;-y:是否对目标值同时进行缩放;y_lower为下限值,y_upper为上限值;(回归需要对目标进行缩放,因此该参数可以设定为–y -1 1 )-s save_filename:表示将缩放的规则保存为文件save_filename;-r restore_filename:表示将缩放规则文件restore_filename载入后按此缩放;filename:待缩放的数据文件(要求满足前面所述的格式)。缩放规则文件可以用文本浏览器打开,看到其格式为: y lower upper min max x lower upper index1 min1 max1 index2 min2 max2 其中的lower 与upper 与使用时所设置的lower 与upper 含义相同;index 表示特征序号;min 转换前该特征的最小值;max 转换前该特征的最大值。数据集的缩放结果在此情况下通过DOS窗口输出,当然也可以通过DOS的文件重定向符号“>”将结果另存为指定的文件。该文件中的参数可用于最后面对目标值的反归一化。反归一化的公式为: (Value-lower)*(max-min)/(upper - lower)+lower 其中value为归一化后的值,其他参数与前面介绍的相同。 建议将训练数据集与测试数据集放在同一个文本文件中一起归一化,然后再将归一化结果分成训练集和测试集。 4.训练数据,生成模型。 用法:svmtrain [options] training_set_file [model_file] 其中,options(操作参数):可用的选项即表示的涵义如下所示-s svm类型:设置SVM 类型,默

2019年我国人脸识别技术发展情况及发展趋势综合分析

2019年我国人脸识别技术发展情况 及发展趋势综合分析 2019年2月14日 一、全球生物识别细行业市场占比情况分析 生物识别指的是通过计算机与光学、声学、生物传感器和生物统计学原理等高科技手段相结合,利用人体固有的生理特性来进行个人身份鉴定技术。按不同的识别方式,生物识别可分为指纹识别、虹膜识别、语音识别、静脉识别和人脸识别。 伴随着生物识别产品逐渐从单一的PC处理转变为分布式计算。 用独立的前端独立设备来完成生物特征的采集、预处理、特征提取和比对,通过中心PC或服务器完成与业务相关的处理。随着生物特征 识别技术的不断发展和提高,生物特征识别技术的应用场景不断拓展,预计2015-2020年全球生物识别细分行业复合增长率分别为:人脸识别复合增长率为167%;语音识别为100%;虹膜识别为100%;指纹识别复合增长率为73%。

全球生物识别细行业市场占比情况 二、中国人脸识别技术发展情况分析 1、中国人脸识别行业发展历程 人脸识别技术在中国的发展起步于上世纪九十年代末,经历了技术引进-专业市场导入-技术完善-技术应用-各行业领域使用等五个阶段。其中,2014年是深度学习应用于人脸识别的关键一年,该年FaceBook发表一篇名为“DeepFace系统:达到肉眼级别的人脸识别系统”(翻译名),之后Face++创始人印奇团队以及香港中文大学汤晓鸥团队均在深度学习结合人脸识别领域取得优异效果,两者在LFW数据集上识别准确度均超过了99%,而肉眼在该数据集上的识别准确度仅为97.52%,可以说深度学习技术让计算机人脸识别能力超越人类的识别程度。

人脸识别与其他生物识别方式相比,优势在于自然性、不被察觉性等特点。自然性即该识别方式同人类进行个体识别时所利用的生物特征相同。指纹识别、虹膜识别等均不具有自然性。不被察觉的特点使该识别方法不易使人抵触,而指纹识别或虹膜识别需利用电子压力传感器或红外线采集指纹、虹膜图像,在采集过程中体验感不佳。目前人脸识别需要解决的难题是在不同场景、脸部遮挡等应用时如何保证识别率。此外,隐私性和安全性也是值得考虑的问题。 2、3D人脸识别与2D人脸识别数据对比 目前,国内的人脸识别技术已经相对发展成熟,该技术越来越多的被推广到安防领域,延伸出考勤机、门禁机等多种产品,产品系列达20多种类型,可以全面覆盖煤矿、楼宇、银行、军队、社会福利 保障、电子商务及安全防务等领域,人脸识别的全面应用时代已经到来。 中游人脸识别技术的进步,是推动下游场景应用拓展的关键所在。目前,人脸识别市场的解决方案主要包括2D识别、3D识别技术。市场上主流的识别方案是采用摄像头的2D方案,但由于人的脸部并非 平坦,因此2D识别在将3D人脸信息平面化投影的过程中存在特征信息损失。3D识别使用三维人脸立体建模方法,可最大程度保留有效 信息,因此3D人脸识别技术的算法比2D算法更合理并拥有更高精度。

人工智能YOLO V2 图像识别实验报告材料

第一章前言部分 1.1课程项目背景与意义 1.1.1课程项目背景 视觉是各个应用领域,如制造业、检验、文档分析、医疗诊断,和军事等领域中各种智能/自主系统中不可分割的一部分。由于它的重要性,一些先进国家,例如美国把对计算机视觉的研究列为对经济和科学有广泛影响的科学和工程中的重大基本问题,即所谓的重大挑战。计算机视觉的挑战是要为计算机和机器人开发具有与人类水平相当的视觉能力。机器视觉需要图象信号,纹理和颜色建模,几何处理和推理,以及物体建模。一个有能力的视觉系统应该把所有这些处理都紧密地集成在一起。作为一门学科,计算机视觉开始于60年代初,但在计算机视觉的基本研究中的许多重要进展是在80年代取得的。计算机视觉与人类视觉密切相关,对人类视觉有一个正确的认识将对计算机视觉的研究非常有益。 计算机视觉是一门研究如何使机器“看”的科学,更进一步的说,就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。作为一个科学学科,计算机视觉研究相关的理论和技术,试图建立能够从图像或者多维数据中获取‘信息’的人工智能系统。这里所指的信息指Shannon定义的,可以用来帮助做一个“决定”的信息。因为感知可以看作是从感官信号中提取信息,所以计算机视觉也可以看作是研究如何使人工系统从图像或多维数据中“感知”的科学。 科学技术的发展是推动人类社会进步的主要原因之一,未来社会进一步地朝着科技化、信息化、智能化的方向前进。在信息大爆炸的今天,充分利用这些信息将有助于社会的现代化建设,这其中图像信息是目前人们生活中最常见的信息。利用这些图像信息的一种重要方法就是图像目标定位识别技术。不管是视频监控领域还是虚拟现实技术等都对图像的识别有着极大的需求。一般的图像目标定位识别系统包括图像分割、目标关键特征提取、目标类别分类三个步骤。 深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。深度学习的概念由Hinton等人于2006年提出。基于深度置信网络提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。此外Lecun等人提出的卷积神经网络是第一个真正多层结构学习算法,它利用空间相对关系减少参数数目以提高训练性能。

2017年光学行业分析报告

2017年光学行业分析报告

目录 1、千亿级市场的升级,双摄及3D 承载创新周期.......................................... - 4 - 2、双摄:打开摄像头产业链新空间.............................................................. - 5 - 2.1、国产品牌迅速崛起,产品差异化推动双摄......................................... - 5 - 2.2、双摄的核心在于算法,方案与工艺呈现多样化.................................. - 8 - 2.3、双摄的渗透如火如荼,镜头和芯片龙头优势最大..............................- 11 - 3、3D Sensing 掀起下一波风潮................................................................... - 15 - 3.1、3D 感知方案成熟成本可控,东风已至............................................. - 15 - 3.2、发射端是光学模组主要增量,海外厂商优势大................................ - 19 - 3.3、人脸识别:新一代人机交互方式..................................................... - 24 - 3.4、模组生产壁垒有限,布局方案提升竞争力....................................... - 27 - 4、AR:移动端下一波光学创新................................................................. - 28 - 4.1、光学价值将在AR 发展的中长期持续发力........................................ - 28 - 4.2、利用现存的硬件,打开AR 体验的大门........................................... - 29 - 5、汽车市场快速爆发,智能硬件培育新空间.............................................. - 30 - 6、投资建议............................................................................................... - 32 - 图1、手机摄像头的五轮创新....................................................................... - 4 - 图2、未来10 年的光学创新之路.................................................................. - 4 - 图3、全球智能手机出货量按品牌分(亿台)............................................... - 6 - 图4、智能手机销售均价(美元)................................................................ - 6 - 图5、智能手机出货量(亿台).................................................................... - 6 - 图6、国内手机销售Top 5 市占率格局.......................................................... - 6 - 图 7、高端机型并没有一味追求像素升级...................................................... - 6 - 图 8、手持设备CIS 出货量按像素分布(亿个)........................................... - 6 - 图 9、摄像头占iPhone 比重.......................................................................... - 7 - 图10、摄像头占Galaxy S 比重..................................................................... - 7 - 图11、双摄方案设计和制造流程.................................................................. - 8 - 图12、彩色CIS 成像说明............................................................................ - 9 - 图13、数码相机光学变焦通过镜片组的移动................................................ - 9 - 图14、双摄模组支架与基板....................................................................... - 10 - 图15、Oppo 潜望式双摄方案..................................................................... - 10 - 图16、2017Q1 国内后臵双摄手机保有率Top15 .......................................... - 12 - 图17、2017Q1 国内主流后臵双摄手机销量(万台).................................. - 12 - 图18、结构光方案描述.............................................................................. - 16 - 图19、TOF 方案描述................................................................................. - 16 - 图20、结构光方案产业链分析................................................................... - 16 - 图21、PS1080 景深算法芯片介绍............................................................... - 17 - 图22、发射端和接收端结构示意图............................................................ - 17 - 图23、指纹识别导入智能手机价格与出货量分析....................................... - 17 - 图24、人脸识别方案成本构成................................................................... - 18 - 图25、3D 感知接收端模组结构示意图....................................................... - 19 - 图26、VCSEL 结构示意图......................................................................... - 20 - 图27、三种激光源光形对比....................................................................... - 20 - 图28、VCSEL 产业链................................................................................ - 20 -

模式识别实验报告

模式识别实验报告

————————————————————————————————作者:————————————————————————————————日期:

实验报告 实验课程名称:模式识别 姓名:王宇班级: 20110813 学号: 2011081325 实验名称规范程度原理叙述实验过程实验结果实验成绩 图像的贝叶斯分类 K均值聚类算法 神经网络模式识别 平均成绩 折合成绩 注:1、每个实验中各项成绩按照5分制评定,实验成绩为各项总和 2、平均成绩取各项实验平均成绩 3、折合成绩按照教学大纲要求的百分比进行折合 2014年 6月

实验一、 图像的贝叶斯分类 一、实验目的 将模式识别方法与图像处理技术相结合,掌握利用最小错分概率贝叶斯分类器进行图像分类的基本方法,通过实验加深对基本概念的理解。 二、实验仪器设备及软件 HP D538、MATLAB 三、实验原理 概念: 阈值化分割算法是计算机视觉中的常用算法,对灰度图象的阈值分割就是先确定一个处于图像灰度取值范围内的灰度阈值,然后将图像中每个像素的灰度值与这个阈值相比较。并根据比较的结果将对应的像素划分为两类,灰度值大于阈值的像素划分为一类,小于阈值的划分为另一类,等于阈值的可任意划分到两类中的任何一类。 最常用的模型可描述如下:假设图像由具有单峰灰度分布的目标和背景组成,处于目标和背景内部相邻像素间的灰度值是高度相关的,但处于目标和背景交界处两边的像素灰度值有较大差别,此时,图像的灰度直方图基本上可看作是由分别对应于目标和背景的两个单峰直方图混合构成。而且这两个分布应大小接近,且均值足够远,方差足够小,这种情况下直方图呈现较明显的双峰。类似地,如果图像中包含多个单峰灰度目标,则直方图可能呈现较明显的多峰。 上述图像模型只是理想情况,有时图像中目标和背景的灰度值有部分交错。这时如用全局阈值进行分割必然会产生一定的误差。分割误差包括将目标分为背景和将背景分为目标两大类。实际应用中应尽量减小错误分割的概率,常用的一种方法为选取最优阈值。这里所谓的最优阈值,就是指能使误分割概率最小的分割阈值。图像的直方图可以看成是对灰度值概率分布密度函数的一种近似。如一幅图像中只包含目标和背景两类灰度区域,那么直方图所代表的灰度值概率密度函数可以表示为目标和背景两类灰度值概率密度函数的加权和。如果概率密度函数形式已知,就有可能计算出使目标和背景两类误分割概率最小的最优阈值。 假设目标与背景两类像素值均服从正态分布且混有加性高斯噪声,上述分类问题可以使用模式识别中的最小错分概率贝叶斯分类器来解决。以1p 与2p 分别表示目标与背景的灰度分布概率密度函数,1P 与2P 分别表示两类的先验概率,则图像的混合概率密度函数可用下式表示为

人脸识别实验报告解读

人脸识别——特征脸方法 贾东亚12346046 一、实验目的 1、学会使用PCA主成分分析法。 2、初步了解人脸识别的特征法。 3、更熟练地掌握matlab的使用。 二、原理介绍 1、PCA(主成分分析法介绍) 引用一个网上的例子。假设有一份对遥控直升机操作员的调查,用表示飞行员i的 飞行技能,表示飞行员i喜欢飞行的程度。通常遥控直升飞机是很难操作的,只有那些 非常坚持而且真正喜欢驾驶的人才能熟练操作。所以这两个属性和相关性是非常强的。我们可以假设两者的关系是按正比关系变化的。如下图里的任意找的向量u1所示,数据散布在u1两侧,有少许噪声。 现在我们有两项数据,是二维的。那么如何将这两项变量转变为一个来描述飞行员呢?由图中的点的分布可知,如果我们找到一个方向的U,所有的数据点在U的方向上的投影之和最大,那么该U就能表示数据的大致走向。而在垂直于U的方向,各个数据点在该方向 的投影相对于在U上的投影如果足够小,那么我们可以忽略掉各数据在该方向的投影,这 样我们就把二维的数据转化成了在U方向上的一维数据。 为了将u选出来,我们先对数据进行预处理。先求出所有数据的平均值,然后用数据与平均值的偏差代替数据本身。然后对数据归一化以后,再代替数据本身。 而我们求最大的投影和,其实就是求各个数据点在U上的投影距离的方差最大。而X T u 就是投影的距离。故我们要求下式的最大值: 按照u是单位向量来最大化上式,就是求的特征向量。而此式是数据集的协方差矩阵。

在实际应用中,我们不止面临二维的数据。因此不能使用几何的形式呈现,但原理也是一样。就是找到一组相互正交的单位向量,然后根据贡献率考虑选择其中的部分作为考量的维数,这也就实现了数据的降维。 三、实验步骤 1、将库里的400张照片分成两组。一组作为训练,一组作为库。每个人的前五张照片作为 训练,后五张作为库。训练的照片按照顺序的数字重命名。库的照片名字不变。 2、库照片处理。 ①将每一张库的照片转化成N维的向量。(库里的照片是112*92,故将转化成的矩阵按列或行展开,就是个10304维的向量)我们稍后要对如此多维的向量用PCA进行降维。然后把这些向量存入一个矩阵里。而我是将这200个向量以列的形式存在了矩阵里。 即 ,,, ②将这200个向量的每个元素相加起来求出平均值。再用Z里的每一个向量减去这个平均值得到每个的偏差。 平均值,每个向量的偏差 即最后 ,,, ③接下来我们就要针对这些预处理后的数据进行降维。我们要求的N个相互正交的向量就是协方差矩阵的特征向量,而对应的特征值就是各个向量所占的比重。但是Z是个10304*200的矩阵,那么就是个10304*10304的矩阵。使用matlab直接求其特征值与特征向量不太实际。 所以我们考虑一个简单的运算方法: 协方差矩阵的秩受到训练图像的限制:如果有N个训练样本,则最多有N? 1 个对应非零特征值的特征向量,其他的特征向量对应的特征值都是0。如果训练样本的数目比图像的维数低,则可以通过如下方法简化主成份的计算。 设 Z是预处理图像的矩阵,每一列对应一个减去均值图像之后的图像。则,协方差矩阵为,并且对S的特征值分解为

河南关于成立人脸识别设备生产制造公司可行性报告

河南关于成立人脸识别设备生产制造公司 可行性报告 规划设计/投资方案/产业运营

报告摘要说明 视觉人工智能是中国人工智能市场上最大的组成部分。根据中国信通 院数据,2017年中国人工智能市场中视觉人工智能的占比超过37%。在视 觉人工智能领域,安防影像分析是最大的应用场景,2017年占比约67.9%。其他主要应用包括广告、互联网、云服务、手机等。 xxx公司由xxx实业发展公司(以下简称“A公司”)与xxx公司(以下简称“B公司”)共同出资成立,其中:A公司出资770.0万元,占公司股份71%;B公司出资310.0万元,占公司股份29%。 xxx公司以人脸识别设备产业为核心,依托A公司的渠道资源和B 公司的行业经验,xxx公司将快速形成行业竞争力,通过3-5年的发展,成为区域内行业龙头,带动并促进全行业的发展。 xxx公司计划总投资20453.59万元,其中:固定资产投资 14226.37万元,占总投资的69.55%;流动资金6227.22万元,占总投 资的30.45%。 根据规划,xxx公司正常经营年份可实现营业收入46410.00万元,总成本费用36589.70万元,税金及附加378.25万元,利润总额 9820.30万元,利税总额11553.07万元,税后净利润7365.22万元, 纳税总额4187.84万元,投资利润率48.01%,投资利税率56.48%,投 资回报率36.01%,全部投资回收期4.28年,提供就业职位938个。

人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。通常采用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸。人脸识别系统主要包括四个组成部分,分别为人脸图像采集及检测、人脸识别预处理、人脸图像特征提取以及匹配与识别。

人脸识别实验报告

人脸识别——特征脸方法 贾东亚 一、 实验目的 1、学会使用PCA 主成分分析法。 2、初步了解人脸识别的特征法。 3、更熟练地掌握matlab 的使用。 二、 原理介绍 1、 PCA (主成分分析法介绍) 引用一个网上的例子。假设有一份对遥控直升机操作员的调查,用x 1(i ) 表示飞行员i 的 飞行技能,x 2(i )表示飞行员i 喜欢飞行的程度。通常遥控直升飞机是很难操作的,只有那些非常坚持而且真正喜欢驾驶的人才能熟练操作。所以这两个属性x 1(i )和x 2(i )相关性是非常强的。我们可以假设两者的关系是按正比关系变化的。如下图里的任意找的向量u1所示,数据散布在u1两侧,有少许噪声。 现在我们有两项数据,是二维的。那么如何将这两项变量转变为一个来描述飞行员呢由图中的点的分布可知,如果我们找到一个方向的U ,所有的数据点在U 的方向上的投影之和最大,那么该U 就能表示数据的大致走向。而在垂直于U 的方向,各个数据点在该方向的投影相对于在U 上的投影如果足够小,那么我们可以忽略掉各数据在该方向的投影,这样我们就把二维的数据转化成了在U 方向上的一维数据。

为了将u选出来,我们先对数据进行预处理。先求出所有数据的平均值,然后用数据与平均值的偏差代替数据本身。然后对数据归一化以后,再代替数据本身。 而我们求最大的投影和,其实就是求各个数据点在U上的投影距离的方差最大。而X T u 就是投影的距离。故我们要求下式的最大值: 1 m ∑(x(i)T u)2=u T( 1 m ∑x(i)x(i)T m i=1 ) m i=1 u 按照u是单位向量来最大化上式,就是求1 m ∑x(i)x(i)T m i=1 的特征向量。而此式是数据集 的协方差矩阵。 在实际应用中,我们不止面临二维的数据。因此不能使用几何的形式呈现,但原理也是一样。就是找到一组相互正交的单位向量u k,然后根据贡献率考虑选择其中的部分作为考量的维数,这也就实现了数据的降维。 三、实验步骤 1、将库里的400张照片分成两组。一组作为训练,一组作为库。每个人的前五张照片作为 训练,后五张作为库。训练的照片按照顺序的数字重命名。库的照片名字不变。 2、库照片处理。 ①将每一张库的照片转化成N维的向量。(库里的照片是112*92,故将转化成的矩阵按列或行展开,就是个10304维的向量)我们稍后要对如此多维的向量用PCA进行降维。然后把这些向量存入一个矩阵里。而我是将这200个向量以列的形式存在了矩阵里。 即 Z={Γ1,Γ2,Γ3,Γ4 (200)

KL变换应用于人脸识别

基于K-L 变换的人脸识别 一、基本要求 从网上下载人脸图像,构建人脸训练数据库和测试数据库,采用K-L 变换进行特征脸提取,并实现人脸识别。通过K-L 变换在人脸识别中的应用,加深对所学内容的理解和感性认识。 1、或者从网上下载其它数据库,编程实现K-L 变换。 2、课堂报告、并提交实验报告及相应程序。 二、实验原理 1、K-L 变换:就是以样本特征向量在特征空间分布为原始数据,通过变换,找 到维数较少的组合特征,达到降维的目的。 K-L 变换是一种正交变换,即将一个向量X ,在某一种坐标系统中的描述,转换成用另一种基向量组成的坐标系表示。这组基向量是正交的,其中每个坐标 基向量用j u 表示,∞=,2,1 , j ,因此,一个向量X 可表示成 ∑∞ == 1 j j j u c X 如果我们将由上式表示的无限多维基向量坐标系统改成有限维坐 标系近似,即 ∑=∧ =d j j j u c X 1 表示X 的近似值或估计量,我们希望在同样维数条件下,使向量X 的估计量误差最小。确切地说是使所引起的均方误差: )]?()?[(X X X X E T --=ξ 为最小。K-L 变换可以实现这个目的。 因为 ?? ?≠==i j i j u u i T j 0 1

将 ∑∞ +=∧ = -1 d j j j u c X X 带入到)]?()?[(X X X X E T --=ξ中可得到 ][ 1 2 ∑∞ ==j j c E ξ 容易看到 X u c T j j = 因此 ][ 1 ∑∞ +=d j T T j u XX u E ξ 由于j u 是确定性向量,因此上式可改写为 [] ∑∞ +== 1 d j j T T j u XX E u ξ 令 [] T XX E =ψ 则 ∑∞ +== 1 d j j T j u u ψξ 用拉格朗日乘子法,可以求出在满足正交条件下,ξ取极值的坐标系统,即用函数 ∑∑∞ +=∞ +=-- =1 1 ]1[d j j T j j d j j T j j u u u u u g λψ) ( 对j u ,∞+=,,1 d j 求导数,因此有 ∞+==,,1,0- d j u I j j )(λψ 我们令0=d ,从而可得到以下的结论: 以矩阵ψ的本征向量座位坐标轴来展开X 时,其截断均方误差具有极值性质,且当取d 个d j u j ,,2,1 =,来逼近X 时,其均方误差 ∑∞ +== 1 d j j λ ξ 式中j λ是矩阵ψ的相应本征值。 可以证明,当取d 个与矩阵ψ的d 个最大本征值对应的本征向量来展开X

人工智能行业人脸识别报告:“刷脸”时代到来,看好掌握核心技术与应用场景深耕的企业--广证恒生

人脸识别报告:“刷脸”时代到来,看好掌握核心技术与应用场景深耕的企业 ?【人脸识别,生物识别的翘楚】 人脸识别以其非侵扰性、便捷性、友好性、非接触性、可扩展性等优点成为生物生物识别的翘楚。 ?【应用广泛,刷脸时代到来】 从供给角度看,三大因素推动人脸识别落地应用。中国人脸识别算法精确率居全球领先水平、人脸识别相关专利的逐年递增以及人脸识别相关的人才储备居世界第三对人脸识别产业形成技术面支撑;从2015年支持银行业的远程开户到2017年12月明确提出到“2020年,复杂动态场景下人脸识别有效检出率超过97%,正确识别率超过90%”对人脸识别产业形成政策支撑;中国对人脸识别初创公司的资金支持突破十亿美元形成资金面支撑。 从需求角度看,人脸识别主要应用领域金融和安防对人脸识别需求广阔,我国有望成为全球最大人脸识别市场。2018年我国人脸识别技术72%应用在安防领域,20%应用在金融领域,未来两大市场对人脸识别技术需求旺盛。我国人脸识别市场规模将在2021年达到53.16亿元,成全球最大的人脸识别市场。 ?【上中游技术是关键竞争力,下游关键在于应用场景深耕】 上游芯片和中游技术是短期产业核心驱动,技术是投资上游芯片及中游的关键考量要素。影响人脸识别产业链上游发展的三大要素是芯片、算法和数据集,目前上游芯片领域亟待突破,数据集需扩大以加强算法在实际的正确率;中游 3D人脸识别技术成未来发展趋势,但仍有成本难关和技术难关;我国基本缺席上游芯片的开发,部分在中游有所布局;目前产业仍处于方兴未艾阶段,新技术驱动行业螺旋上升发展,因此技术是上游芯片及中游企业的关键竞争要素。 下游场景应用决定未来人脸识别行业竞争格局,市场能力是关键所在。目前我国下游市场,云从科技占据银行领域的第一供应商位置,海康威视在安防领域的龙头位置仍未动摇,以海康威视为例可以看出渠道优势是率先占据细分市场的关键因素。 ?【从人脸识别设备商领头羊——云从科技验证人脸识别企业优质因素】 云从科技是人脸识别设备行业的领头羊,也是一家覆盖产业链上下游的优质人工智能企业,Gen Market Insights数据显示云从科技在全球人脸识别设备市场占据12.88%的份额,处于行业领先地位。分析领军企业云从科技,我们认为作为覆盖产业链上下游的企业,云从科技在技术及下游场景应用深耕上的优势是企业脱颖而出的关键所在。 ?【投资策略】 考虑技术和渠道两大维度,建议关注佳都科技(600728.SH)、大华股份(002236.SZ)、川大智胜(002253.SZ)、像素数据(832682.OC)等人脸识别相关企业。 ?【风险提示】 人脸识别尚处于起步阶段,上游有待突破,B端市场有望国家大力推进,政策落地可能不达预期;C端市场参与对技术要求较高,行业发展可能不达预期。

锐目AMS人脸识别精准广告及大数据分析系统方案

AMS人脸识别精准广告及大数据分析 解决方案 锐目科技

目录第1章连锁商超行业现状3第2章系统核心价值4 第3章系统优势5 第4章系统功能8 第5章系统涉及11

第1章连锁商超行业现状 目前,我国的零售行业发展呈现出规模大型化、组织集团化、经营多元化和向新业态延伸的特点。从市场形势看,大型百货商场表现为如下现状: 1.1连锁商超行业销售额增长速度放缓 近年来,由于网络B2C(Business To Customer,商业机构对消费者的电子商务模式,以京东商城为代表),C2C(Customer To Customer,个人向个人销售的经营模式,以Taobao为代表)等销售模式的出现,传统的零售业面临新的挑战。同时,目前经济呈现的高通货膨胀事态抑制了消费意愿;国家对零售业监管不断加强,类似限制购物卡发售,清理整顿大型零售企业向供应商违规收费等政策不断出台。以上因素造成了零售业发展趋于放缓。 1.2运营成本增加 在销售额增速放缓的同时,企业运行成本却在不断攀升。2016年连锁零售企业人工费用上涨26%,租金成本上升10%,员工工资都占到成本的40%以上。 1.3同质化程度高、顾客忠诚度差 目前,国内百货店普遍采取联营方式,导致千店一面、同质化程度高、顾客忠诚度差等问题明显。百货店未来要想形成差异化经营,寻找更大的利润空间,培养更多忠诚顾客,自营是发展的必然趋势。眼下,国内一些百货企业已经开始扩大了自营比例,但联营转自营还需要一个比较漫长的过程。 1.4同业过度扩张竞争 从近年的发展情况看,多数城市的百货零售企业建设速度远远超过了居民实际购买力增长水平。为了扩大销售、提高市场份额,各商家把利润降到最低限度。大量对利润率预期较低的商超使行业的收益水平进一步恶化。

2018年人脸识别行业市场调研分析报告

2018年人脸识别行业市场调研分析报告

目录 1、市场规模不断提升,政策支持力度加强 (5) 1.1、市场规模不断提升 (5) 1.2、政策支持力度不断加强 (7) 1.3、一级市场火热,国内专利不断攀升 (7) 2、 CNN 算法解决识别精度,人脸识别优势明显 (9) 2.1、发展历史悠久, CNN 算法助力识别率大幅提升 (9) 2.2、 2D 人脸识别为主, 3D 人脸识别还未成熟 (11) 2.3、生物识别技术中人脸识别优势明显 (12) 3、行业发展迅速, B 端百亿市场有望率先爆发 (13) 3.1、 B 端增量市场核心动力在于构建大安防体系 (14) 3.2、 C 端市场还未充分打开 (16) 4、多方逐鹿,综合能力至关重要 (18) 4.1、创业公司:基于技术优势切入市场 (19) 4.2、上市公司:技术+资金+渠道、综合实力强劲 (20) 4.3、互联网巨头:C 端影响力强大,探索 B 端落地 (22) 5、行业评级 (23) 6、企业分析 (24) 7、风险提示 (26)

图 1:生物识别领域未来五年复合增长率 (5) 图 2:全球生物识别市场规模(亿美元) (6) 图 3:2007-2015年人脸识别新增专利主要国家分布 (8) 图 4:人脸识别专利总量主要国家分布 (9) 图 5:人脸识别发展阶段 (9) 图 6:人脸识别算法流程 (11) 图 7:移动人脸识别系统 (15) 图 8:How-old-do-i-look (17) 图 9:ibaby婴儿监视器 (18) 图 10:云从科技部分金融案例 (20)

表 1:人脸识别相关政策 (7) 表 2:人脸识别部分企业融资情况 (8) 表 3:2D、3D人脸识别对比实验结果 (12) 表 4:模式识别对比 (13) 表 5:典型应用场景 (13) 表 6:人脸识别相关创业公司 (19) 表 7:人脸识别相关上市公司 (21) 表 8:互联网巨头人脸识别相关布局 (22)

智能分析动态人脸识别系统专业技术需求书

智能分析(动态人脸识别)系统技术需求书一、概述 动态人脸识别智能分析系统是以数字化、网络化视频监控为基础,是一种更高端的视频监控应用。视频智能分析(动态人脸识别)系统能够自动识别不同的物体,发现监控画面中的异常情况,并能够及时发出警报和提供有用信息,从而能够更加有效的协助管理人员处理危机,并最大限度的降低误报和漏报现象。视频智能分析(动态人脸识别)系统是视频监控技术发展的方向,是未来视频监控的趋势。 随着人脸识别技术的进一步发展,将人脸识别技术与数字监控系统的进一步融合,同时人脸识别与监控技术的结合在安防领域中得到了重用。一方面在人脸识别技术已经找很多的行业领域上已经实践的证明,这项技术为安防管理业务创新提供了很大的技术支持,也为日常安保管理效率有了很大的提高和成本的节省。以《全国监狱信息化建设规划》提出的“科技兴监”的思想为指导,随着人像技术不断的创新和发展,成熟的人像识别技术完全可以结合现在监狱管理业务,特别针对监狱人员进出管理业务,现在成熟的人像识别技术能在当中发挥巨大的作用,为监狱的相关管理做出更多有效可行的创新和改变,可以对行业内的原有业务管理流程进行优化和简化,同时也提高相关业务管理效率和质量。 二、总体要求 1.功能需求 ★本次项目建设的人脸识别智能分析系统需要无缝接入监狱视频监控平台、监狱综合安防管理平台以及省局综合安防管理平台。本次投标费用包括完成本次建设的新系统与原平台及系统的对接开发工作,中标方不得再向建设方申请开发费用(投

标时提供纸质承诺)。 1.1罪犯人脸识别布控需求 在监狱B门内警戒区域,精确捕捉在布控区域内出现人员的面部特征及场所内场景,对所有出现在布控区域内的人员实施“近”距离监控。自动抓拍出现在布控区域内人员的人脸图象,将所有的在押人员设置成布控对象,并与布控库中的对象实时比对,一旦在押人员到达该布控区域,系统会自动识别并报警。 1.2 AB门车辆识别需求 当前监狱系统AB门车辆识别采用人工检测方式,通过人工对比车牌号、车辆型号、车辆驾驶员进行管理,管理人员工作量大,容易出错,需要一套自动识别系统来减轻管理人员的工作量。 项目计划采用视频智能分析(动态人脸识别)系统,针对监狱构建了高度可靠的AB门通道出入车辆及人员身份识别,通过动态人脸识别技术对关押犯人实时监控管理等,构建一套集动态人脸识别与分析应用于一体、统一数据标准和接口规范的监狱人脸识别应用系统。提供人脸动态识别、视频监控智能分析、监测设备运行、基于大数据技术构建一个服务管理系统,实现视频图像资源的融合汇聚、集中管控、交互整合,为构建监狱系统的“智慧大脑“奠定基础。 2.兼容性需求 ★建设的设备,必须具有开放性,中标方须承诺项目所涉及的软硬件需要全部免费提供开放接口及底层SDK开发包接口完全免费开放,可提供给第三方进行系统集成开发(投标时提供纸质承诺)。 3.建设要求 1、设备选型时各系统应整体考虑各子系统之间的接口问题,特别是所提供设备

相关文档
最新文档