缺项幂级数收敛域的求法

缺项幂级数收敛域的求法
缺项幂级数收敛域的求法

缺项幂级数收敛域的求法

作者:杨继明, YANG Ji-ming

作者单位:湖南工程学院理学院,湘潭,411104

刊名:

湖南工程学院学报(自然科学版)

英文刊名:JOURNAL OF HUNAN INSTITUTE OF ENGINEERING(NATURAL SCIENCE EDITION)

年,卷(期):2009,19(2)

被引用次数:0次

参考文献(3条)

1.同济大学应用数学系高等数学 2007

2.华东师范大学数学系数学分析 2008

3.华中科技大学数学系复变函数与积分变换 2003

相似文献(1条)

1.期刊论文刘毓琦关于解析函数在定点展开成幂级数的研究-牡丹江师范学院学报(自然科学版)2002,""(4)

讨论了解析函数在定点展开成幂级数的方法,与实分析的展式进行了类比并举出实例.

本文链接:https://www.360docs.net/doc/234345694.html,/Periodical_hngcxyxb-zr200902016.aspx

授权使用:中共汕尾市委党校(zgsw),授权号:1554ef03-b52d-40a6-b69d-9dcf00a39588

下载时间:2010年8月11日

正项数收敛判别方法

数学与统计学院应用数学系 综合课程设计成绩评定书设计题目:正项级数收敛的判别方法

摘要: 各项都由正数组成的级数称为正项级数,它是数项级数的特例。本文主要考虑正项级数的收敛问题,通过介绍比较原则、比式判别法、根式判别法以及积分判别法等常用的判别方法,并结合相关实例,判断所给级数的敛散性。 关键字:正项级数 收敛 比较原则 比式判别法 根式判别法 积分判别法 1基本概念 1.1 数项级数及其敛散性 在介绍正项级数之前先引入数项级数的相关概念及收敛级数的基本性质,下面介绍数项级数以及级数敛散的定义。 定义1:给定一个数列{}n u ,对它的各项依次用“+”号连接起来的表达式 12n u u u ++++ (1) 称为数项级数或无穷级数(简称级数),其中n u 称为数项级数的通项。 数项级数(1)的前n 项之和,记为1 n n k k S u == ∑,称为(1)的前n 项部分和。 定义2:若(1)的部分和数列{}n S 收敛于S (即lim n n S S →∞ =),则称数项级数(1)收 敛,并称S 为(1)的和,记为1 n n S u ∞ == ∑,若{}n S 为发散数列,则称数列(1)发散。 根据级数(1)的收敛性,可以得到收敛级数的一些性质: (i) 收敛级数的柯西收敛准则 级数(1)收敛的充要条件是:0ε?>,0N ?>,n N ?>,p Z + ?>,有 12||.n n n p u u u ε++++++< (ii) 级数收敛的必要条件:若级数 1 n n u ∞ =∑收敛,则lim 0n n u →∞ =. (iii)去掉、改变或增加级数的有限项并不改变级数的敛散性。 (iv) 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和(正项级数也满足)。 (v) 运算性质: 若级数 1 n n u ∞ =∑与 1 n n v ∞ =∑都收敛,c d 是常数,则 1 ()n n n cu dv ∞ =+∑收敛,且满足

正项级数敛散性地判别方法

正项级数敛散性的判别方法 摘要:正项级数是级数容中的一种重要级数,它的敛散性是其基本性质。正项级数敛散性的判别方法虽然较多,但是用起来仍有一定的技巧,归纳总结正项级数敛散性判别的一些典型方法,比较这些方法的不同特点,总结出一些典型判别法的特点及其适用的正项级数的特征。根据不同级数的特点分析、判断选择适宜的方法进行判别,才能事半功倍。 关键词:正项级数;收敛;方法;比较;应用 1引言 数项级数是伴随着无穷级数的和而产生的一个问题,最初的问题可以追溯到公元前五世纪,而到了公元前五世纪,而到了公元17、18世纪才有了真正的无穷级数的理论。英国教学家Gregory J (1638—1675)给出了级数收敛和发散两个术语从而引发了数项级数敛散性广泛而深入的研究,得到了一系列数项级数的判别法。因而,判断级数的敛散性问题常常被看作级数的首要问题。我们在书上已经学了很多种正项级数敛散性的判定定理,但书上没有做过多的分析。我们在实际做题目时,常会有这些感觉:有时不知该选用哪种方法比较好;有时用这种或那种方法时,根本做不出来,也就是说,定理它本身存在着一些局限性。因此,我们便会去想,我们常用的这些定理到底有哪些局限呢?定理与定理之间会有些什么联系和区别呢?做题目时如何才能更好得去运用这些定理呢?这就是本文所要讨论的。 2正项级数敛散性判别法 2.1判别敛散性的简单方法 由级数收敛的基本判别定理——柯西收敛准则:级数 1 n n u ∞ =∑收敛 ?0,,,,N N n N p N ε+?>?∈?>?∈有12n n n p u u u ε+++++ +<。取特殊的1p =,可 得推论:若级数 1 n n u ∞ =∑收敛,则lim 0n n u →∞ =。 2.2比较判别法 定理一(比较判别法的极限形式): 设 1 n n u ∞=∑和1 n n v ∞ =∑为两个正项级数,且有lim n n n u l v →∞=,于是 (1)若0l <<+∞,则 1 n n u ∞ =∑与 1 n n v ∞ =∑同时收敛或同时发散。 (2)若0l =,则当 1 n n v ∞ =∑收敛时,可得 1 n n u ∞ =∑收敛。

幂级数的收敛域是(

幂级数 1、幂级数()∑ ∞ =-?+112425n n n n x 的收敛域是( C ) (A )()2,2-(B )[)3,7--(C )()3,7--(D )()1,9-- 因4=R ,于是()452<+x ,所以3725-<<-?<+x x ,而幂级数()∑∞=-?+1 1 2425n n n n x 在7-=x 、 3-=x 处均发散,所以选(C )。 2、幂级数∑ ∞ =1ln n n x n n 的收敛域是( C ) (A )()1,1-(B )(]1,1-(C )[)1,1-(D )[]1,1- 因1=R ,所以1,所以级数发散;在1-=x 处,n n u n ln =单调递 减且趋近于零,所以级数收敛,故选(C ) 3、已知级数()∑∞ =-13n n n x a 在4=x 处发散,则在0=x 处( C ) (A ) 绝对收敛(B )条件收敛(C )发散(D )无法判断其敛散性 解:由阿贝尔定理得,级数()∑∞ =-13n n n x a 在区间()4,2以外都发散,所以它在0=x 处也发散 4、设级数∑∞=0n n n x a 、∑∞=0n n n x b 的收敛半径都是R ,级数()∑∞ =+0n n n n x b a 的收敛半径为1R ,则( C ) (A )R R =1(B )R R <1(C )R R ≤1(D )R R ≥1 5、幂级数()∑ ∞ =?+02425n n n n x 的收敛区间为( B ) (A )()2,2-(B )()3,7--(C )()2,8--(D )()1,9-- 解:因()44221421 lim 1 =+?+∞→n n n n n ,故24==R ,则当252<+<-x ,即37-<<-x 时级数收敛。 6、设,则() (A )(B )(C )(D ) 7、设,则()

几种特殊的幂级数的收敛半径

总18卷 第4期 宝鸡文理学院学报(自然科学版) V o l .18 N o .41998年12月 Journal of Bao ji Co llege A rts and Science (N atural Science ) D ec .1998 几种特殊的幂级数的收敛半径 Ξ 黄德隆 (宝鸡文理学院数学系 陕西宝鸡 721007) 阿贝尔(A bel )定理为幂级数收敛半径的存在确立了理论依据,“比值法”等为确定幂级 数收敛半径提供了具体的方法,本文依据这个理论证明了几种特殊幂级数收敛半径的确定结果。 命题1 设级数6∞ n=0 c n 收敛, 6 ∞n=0 c n 发散,则幂级数6∞ n=0 c n z n 的收敛半径为1证明:设级数6∞ n=0c n 收敛,即幂级数6∞ n=0c n z n 在z =1收敛,由阿贝尔定理知,幂级数6∞ n=0 c n z n 在 z <1内收敛。任取z 1使 z 1 >1,若6∞ n=0 c n z n 1收敛,则对于满足 z < z 1 的z ,6 ∞ n=0 c n z n 收敛, 特别地,当z =1时6∞ n=0 c n 收敛,矛盾,所以,幂级数6∞ n=0 c n z n 的收敛半径R =1。命题2 如果幂级数6∞ n=0c n z n 的收敛半径为R ,则6∞ n=0 (R ec n )z n 的收敛半径≥R 。 证明:因为6∞ n=0c n z n 的收敛半径为R ,所以,对于任意的z 。( z 0

比较几种判定正项级数收敛性的方法

比较几种判定正项级数收敛性的方法 【摘要】通过对:1:比较判别法;2:根植判别法3:达朗伯耳判别法的应用范围的比较,加以对其分析, 找出若干类型题加以分类,确定哪类适合这两种判定法,归纳其特点,以便以后做题能够快速入手,遇到题目以后具体运用哪种方法更便捷提供了途径. 【关键词】比较判别法 根植判别法 达朗贝尔 例题 一:比较判别法. 1:定义 若从某一项起11n n n n n n a b a kb a b ++≤≤(或者) (k >0),则由1 n n b ∞ =∑的收敛性可推出1 n n a ∞ =∑收敛,若从某一项起n n a kb ≥11()n n n n a b a b ++≥ 或者 (k >0),则由1 n n b ∞ =∑发散可推出1 n n a ∞ =∑发散. 2:比较判别法的极限形势 设lim n n n a b →∞ =λ(+λ∞为有限数或)则: (i ):0λ<<+∞时,n n a b 则和收敛性相同. (ii ):1 1 =0b n n n n a λ∞ ∞ ==∑∑时,由收敛可推出收敛. (iii ):1 1 b n n n n a λ∞ ∞ ===+∞∑∑时,由发散课推出发散. 3:例题 (1):证明:若级数1 n n a ∞ =∑收敛,则把该级数的项通过组合而不改变其先后顺序所得的级 数1 n n A ∞ =∑其中 1 1 n n p n i i p A a -+==∑ (11p =,12p p <<…)也收敛且具有相同的和,反之不真,举 出例子. 证 设级数1 n n A ∞ =∑的部分和序列为1,2l l ,…,n l ,…,则

幂级数概念

§ 11. 3 幂 级 数 一、函数项级数的概念 函数项级数: 给定一个定义在区间I 上的函数列{u n (x )}, 由这函数列构成的表达式 u 1(x )+u 2(x )+u 3(x )+ ? ? ? +u n (x )+ ? ? ? 称为定义在区间I 上的(函数项)级数, 记为∑∞ =1)(n n x u . 收敛点与发散点: 对于区间I 内的一定点x 0, 若常数项级数∑∞ =1 0)(n n x u 收敛, 则称 点x 0是级数∑∞ =1)(n n x u 的收敛点. 若常数项级数∑∞ =1 0)(n n x u 发散, 则称 点x 0是级数∑∞ =1 )(n n x u 的发散点. 收敛域与发散域: 函数项级数∑∞ =1)(n n x u 的所有收敛点的全体称为它的收敛域, 所 有发散点的全体称为它的发散域. 和函数: 在收敛域上, 函数项级数∑∞ =1)(n n x u 的和是x 的函数s (x ), s (x )称为函数项级数∑∞=1 )(n n x u 的和函数, 并写成∑∞ ==1 )()(n n x u x s . ∑u n (x )是∑∞ =1 )(n n x u 的简便记法, 以下不再重述. 在收敛域上, 函数项级数∑u n (x )的和是x 的函数s (x ), s (x )称为函数项级数∑u n (x )的和函数, 并写成s (x )=∑u n (x ). 这函数的定义就是级数的收敛域, 部分和: 函数项级数∑∞ =1)(n n x u 的前n 项的部分和记作s n (x ), 函数项级数∑u n (x )的前n 项的部分和记作s n (x ), 即 s n (x )= u 1(x )+u 2(x )+u 3(x )+ ? ? ? +u n (x ).

正项级数收敛及其应用公式版

公式为正常公式,不是图片版 正项级数收敛性判别法的比较及其应用 一、引言 数学分析作为数学专业的重要基础课程。级数理论是数学分析的重要组成部分,在实际生活中的运用也较为广泛,如经济问题等。而正项级数又是级数理论中重要的组成部分,级数的收敛性更是级数理论的核心问题,要想解决正项级数的求和问题必须先解决正项级数收敛性判断。正项级数收敛性判断的方法虽然较多,但使用起来仍有一定的技巧,根据不同的题目特点分析、判断选择适宜的方法进行判断,能够最大限度的节约时间,提高效率,特别是一些典型问题,运用典型方法,才能事半功倍。 二、预备知识 1、正项级数收敛的充要条件 部分和数列{}n S有界,即存在某正数M,对0>n?,有n SN都有 n n v u≤, 那么 (1)若级数∑∞ =1 n n v收敛,则级数∑∞ =1 n n u也收敛; (2)若级数∑∞ =1 n n u发散,则级数∑∞ =1 n n v也发散; 即∑∞ =1 n n u和∑∞ =1 n n v同时收敛或同时发散。 比较判别法的极限形式: 设∑∞ =1 n n u和∑∞ =1 n n v是两个正项级数。若l v u n n n = +∞ → lim,则 (1)当时,∑∞ =1 n n u与∑∞ =1 n n v同时收敛或同时发散;

(2)当0=l 且级数∑∞ =1 n n v 收敛时,∑∞ =1 n n u 也收敛; (3)当∞→l 且∑∞=1 n n v 发散时,∑∞ =1 n n u 也发散。 2.2 比值判别法 设∑∞ =1n n u 为正项级数,若从某一项起成立着 11 ,成立不等式q u u n n ≤+1 ,则级数∑∞ =1i n u 收敛; (2)若对一切0N n >,成立不等式11 ≥+n n u u ,则级数∑∞=1 i n u 发散。 比值判别法的极限形式: 若∑∞ =1 n n u 为正项级数,则 (1) 当1lim ,成立不等式1,成立不等式1≥n n u ,则级数∑∞ =1 i n u 收敛 根式判别法的极限形式: 设∑∞ =1 n n u 是正项级数,且l u n n n =+∞ →lim ,则 (1)当1l 时,级数∑∞ =1 n n u 发散; (3)当1=l 时,级数的敛散性进一步判断。

漫谈正项级数的收敛性及收敛速度

漫谈正项级数的收敛性及收敛速度 ++++=∑∞ =n n n a a a a 211 称为无穷级数。当0≥n a 时,此级数称为正项级数。记 n n a a a S +++= 21, ,2,1=n ,则}{n S 为部分和数列。级数∑∞ =1 n n a 的敛散性是通过数列}{n S 的敛 散性来定义。显然,级数∑∞=1 n n a 时,有0lim =∞ →n n a 。因此,0lim ≠→∞ n n a 时,必有级数∑∞ =1 n n a 发散。但是 0lim =∞ →n n a 未必有∑∞=1n n a 收敛。只有当无穷小n a 的阶高到一定的程度时,∑∞ =1 n n a 才收敛。可以证明: 几何级数∑∞ =1 n n q ,当1||p 时收敛;当1≤p 时发散。 由p -级数∑ ∞ =1 1 n p n 的敛散性及比较判别法,可以看出,当n a 趋于0的速度快于n 1时,级数∑∞ =1n n a 收敛;而当n a 趋于0的速度不快于n 1时,级数∑∞=1n n a 发散。因而,无穷小n 1 是衡量级数∑∞ =1 n n a 敛散性的一把“尺子”。可是,这把“尺子”有点粗糙了。事实上,尽管无穷小 n n ln 1 趋于0的速度远远快于n 1,但是级数∑∞=1ln 1n n n 仍然发散。可以证明,级数∑∞ =1ln 1 n p n n ,当1>p 时收敛;当1≤p 时发散。于是,无穷小 n n ln 1 是衡量级数敛散性的一把精度较高的一把新“尺子”:当n a 趋于0的速度快于n n ln 1时,级数∑∞=1n n a 收敛;而当n a 趋于0的速度不快于n n ln 1 时,级数∑∞ =1n n a 发散。可是,马 上又面临新问题:无穷小n n n ln ln ln 1趋于0的速度远远快于n n ln 1,但是∑∞ =1ln ln ln 1 n n n n 仍然发散级 数。于是需要更为精细的判断级数敛散的“尺子”。这样,我们会得到一系列判断级数敛散的“尺 子”:n 1 ,n n ln 1, n n n ln ln ln 1。这些 “尺子”可以无限的精细,一直进行下去。实际上,按这种方式,只能够找到越来越精细的“尺子”,但是永远找不到最为精细的“尺子”——“没有最好,只有更好”。 由几何级数的∑∞ =-11n n q 的敛散性,可以看出,粗略的讲,当n 充分大时,正项级数的后一 项小于前一项时,该级数就收敛,否则就发散。在此基础上,有了判断正项级数敛散性的比值(达

级数敛散性判别方法的归纳

级数敛散性判别方法的归纳 (西北师大) 摘 要:无穷级数是《数学分析》中的一个重要组成部分,它是研究函数、进行数值运算及数据分析的一种工具,目前,无穷级数已经渗透到科学技术的很多领域,因而级数收敛的判别在级数的研究中亦显得尤为重要,然而判定级数敛散性的方法太多,学者们一时很难把握,本文对级数的敛散性的判别方法作了全面的归纳,以期对学者们有所帮助。 关键词:级数 ;收敛;判别 ;发散 一. 级数收敛的概念和基本性质 给定一个数列{n u },形如 n u u u +++21 ① 称为无穷级数(常简称级数),用∑∞ =1 n n u 表示。无穷级数①的前n 项之和,记为 ∑==n n n n u s 1 =n u u u +++ 21 ② 称它为无穷级数的第n 个部分和,也简称部分和。若无穷级数②的部分和数列{n s }收敛于s.则称无穷级数∑∞ =1n n u 收敛,若级数的部分和发散则称级数∑n v 发 散。 研究无穷级数的收敛问题,首先给出大家熟悉的收敛级数的一些基本定理: 定理1 若级数∑n u 和∑n v 都收敛,则对任意的常数c 和d ,级数)(n n dv cu ∑+亦收敛,且)(n n du cu ∑+=c ∑n u +d ∑n v 定理2 去掉、增加或改变级数的有限个项并不改变级数的敛散性 定理 3 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和。 定理4 级数①收敛的充要条件是:任给ε>0,总存在自然数N ,使得当m >N 和任意的自然数p ,都有p m m m u u u ++++++ 21<ε 以上是收敛级数的判别所需的一些最基本定理,但是,在处理实际问题中,仅靠这些是远远不够的,所以在级数的理论中必须建立一系列的判别法,这就是本文的主要任务。 由于级数的复杂性,以下只研究正项级数的收敛判别。

关于数项级数敛散性的判定

关于数项级数敛散性的判定 1、问题的提出 数项级数敛散性的判别问题,是数学分析的一个重要部分.数项级数,从形式上看,就是无穷多个项的代数和,它是有限项代数和的延伸,因而级数的敛散性直接与数列极限联系在一起,其判别方法多样,技巧性也强,有时也需要多种方法结合使用,同时,无穷级数已经渗透到科学技术的很多领域,成为数学理论和应用中不可缺少的工具,所以研究数项级数的判定问题是很重要的. 2、熟练掌握并准确应用级数的概念、性质和判定定理 2.1数项级数收敛的定义 数项级数 ∑∞ =1 n n u 收敛?数项级数 ∑∞ =1 n n u 的部分和数列{}n S 收敛于S . 这样数项级数的敛散性问题就可以转化为部分和数列{} n S 的极限是否存在的问题的讨论,但由于求数列前n 项和的问题比较困难,甚至可能不可求,因此,在实际问题中,应用定义判别的情况较少. 2.2数项级数的性质 (1)若级数 ∑∞ =1n n u 与 ∑∞ =1 n n v 都收敛,则对任意常数c,d, 级数 ∑∞ =+1 )(n n n dv cu 亦收敛,且 ∑∑∑∞ =∞ =∞ =+=+1 1 1)(n n n n n n n v d u c dv cu ;相反的,若级数∑∞ =+1 )(n n n dv cu 收敛,则不能够推出级数∑∞ =1 n n u 与 ∑∞ =1 n n v 都收敛. 注:特殊的,对于级数 ∑∞ =1n n u 与 ∑∞ =1 n n v ,当两个级数都收敛时, ∑∞ =±1 )(n n n v u 必收敛;当其中一个 收敛,另一个发散时, ∑∞ =±1 )(n n n v u 一定发散;当两个都发散时,∑∞ =±1 )(n n n v u 可能收敛也可能发散. 例1 判定级数∑∞ =+1)5131(n n n 与级数∑∞ =+1)21 1(n n n 的敛散性. 解:因为级数∑∞ =131n n 与级数∑∞=15 1n n 收敛,故级数∑∞ =+1)51 31(n n n 收敛.

任意项级数收敛性判别法

十五. 任意项级数收敛性判别法 判断∑a n 收敛性的线索: 1°a n 是否→0; 2°是否绝对收敛; 3°是否条件收敛. 绝对收敛判别方法: 对∑| a n | 用正项级数判别法. 注意∑|a n |发散时一般不能得到 ∑a n 发散, 但|n n a a 1+|或n n a ||≥1时∑| a n |和∑a n 都发散. a n 为连乘积时用检比法,和Raabe 法, a n 为n 次幂时考虑检根法和检比法, a n 单调时考虑积分法. 以上方法困难时考虑比较法(找a n 的阶或比较级数)、级数运算、收敛原理、定义、Cauchy 准则. Leibniz 判别法 若a n ↓0, 则交错级数∑(-1)n +1a n 收敛, 其和s < a 1, 余项| R n | < a n +1. 证 s 2n = (a 1 - a 2 ) + (a 3 - a 4 ) + … + (a 2n -1 - a 2n ), s 2n +1 = a 1 - (a 2 - a 3 ) - … - (a 2n - a 2n +1) = s 2n + a 2n +1, 故s 2n ↑, s 2n +1↓, 且0 < s 2n < s 2n +1< a 1 , lim s 2n 与lim s 2n +1存在, lim (s 2n +1- s 2n ) = 0. 因此?s = lim s n , 且s < a 1. 又, | R n | = | (-1) n (a n +1 - a n +2 + a n +3 - … ) = a n +1 - a n +2 + a n +3 - … < a n +1. Abel 变换 a 1 b 1 + a 2 b 2 + … + a n b n = s 1 b 1 + (s 2 - s 1 ) b 2 + … + (s n - s n -1)b n = s 1 (b 1 - b 2 ) + … + s n -1 (b n -1 - b n ) + s n b n =∑-=+-1 11)(n k k k k b b s + s n b n , 其中s n = a 1 + a 2 +…+ a n . 利用Abel 变换, 把∑a n b n 的收敛问题化为∑s n (b n - b n +1)与{s n b n }的收敛问题. Di 法 {s n }有界, b n ↓0 (或↑0)?∑a n b n 收敛. (对积分:?t a f 有界,g ↓0??b a fg 收敛.) A 法 ∑a n 收敛, {b n }单调有界?∑a n a n 收敛. (积分:?b a f 收敛, g 单调有界??b a fg 收 敛.) 证 D 法: 设 | s n |≤M , 则s n b n ↓0,∑-=+-111|)(|n k k k k b b s ≤M ∑=n k 1(b k - b k +1) = M (b 1 - b n )≤ Mb 1, 故∑s n (b n - b n +1)绝对收敛. A 法: 设s n →s , | s n |≤M , b n ↓b , 则s n b n →sb ,∑-=+-111|)(|n k k k k b b s ≤M (b 1 - b n )≤M (b 1 - b ). 注1. 用这三个判别法(L 法是D 法的特例)不能判断发散性. 当然, 如果已经用前面的方法得到∑| a n |发散, 用这三个方法就能判断∑a n 的条件收敛性, 但不能由此而误认为它们是条件收敛判别法 注2. 用D 法证A 法: ∑a n 收敛?{s n }有界; {b n }减、有界??b 使b n ↓b ? b n - b ↓0. 由D 法, ∑a n (b n -b )收敛, 而∑ba n 收敛, 故∑a n b n 收敛. 类似地可证上册p.276.10. *级数与广义积分 给定∑a n , 定义阶梯函数f :[1,∞)为f (x ) = a n (n ≤x 0时?t a f 关于t 增,?b a f =b t →lim ?t a f = I ?? b n ?[a , b ), b n →b : lim ?n b a f = I . 特别地, 有

级数敛散性判别方法的归纳

级数敛散性判别方法的归纳-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

级数敛散性判别方法的归纳 (西北师大) 摘 要:无穷级数是《数学分析》中的一个重要组成部分,它是研究函数、进行数值运算及数据分析的一种工具,目前,无穷级数已经渗透到科学技术的很多领域,因而级数收敛的判别在级数的研究中亦显得尤为重要,然而判定级数敛散性的方法太多,学者们一时很难把握,本文对级数的敛散性的判别方法作了全面的归纳,以期对学者们有所帮助。 关键词:级数 ;收敛;判别 ;发散 一. 级数收敛的概念和基本性质 给定一个数列{n u },形如 n u u u +++21 ① 称为无穷级数(常简称级数),用∑∞ =1 n n u 表示。无穷级数①的前n 项之和,记为 ∑==n n n n u s 1 =n u u u +++ 21 ② 称它为无穷级数的第n 个部分和,也简称部分和。若无穷级数②的部分和数列{n s }收敛于s.则称无穷级数∑∞ =1n n u 收敛,若级数的部分和发散则称级数∑n v 发散。 研究无穷级数的收敛问题,首先给出大家熟悉的收敛级数的一些基本定理: 定理1 若级数∑n u 和∑n v 都收敛,则对任意的常数c 和d ,级数 )(n n dv cu ∑+亦收敛,且)(n n du cu ∑+=c ∑n u +d ∑n v 定理2 去掉、增加或改变级数的有限个项并不改变级数的敛散性

定理3 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和。 定理4 级数①收敛的充要条件是:任给ε>0,总存在自然数N ,使得当m >N 和任意的自然数p ,都有p m m m u u u ++++++ 21<ε 以上是收敛级数的判别所需的一些最基本定理,但是,在处理实际问题中,仅靠这些是远远不够的,所以在级数的理论中必须建立一系列的判别法,这就是本文的主要任务。 由于级数的复杂性,以下只研究正项级数的收敛判别。 二 正项级数的收敛判别 各项都是由正数组成的级数称为正项级数,正项级数收敛的充要条件是:部分和数列{n s }有界,即存在某正整数M ,对一切正整数 n 有n s <M 。从基本定理出发,我们可以由此建立一系列基本的判别法 1 比较判别法 设∑n u 和∑n v 是两个正项级数,如果存在某正数N ,对一切n >N 都有 n n v u ≤,则 (i )级数∑n v 收敛,则级数∑n u 也收敛; (ii )若级数∑n u 发散,则级数∑n v 也发散。 例 1 . 设∑∞ =1 2 n n a 收敛,证明:∑ ∞ =2 ln n n n n a 收敛(n a >0). 证明:因为 0<∑∞ =1 2 n n a <)ln 1(212 2n n a n +

2016考研数学:无穷级数敛散性判断方法

2016考研数学:无穷级数的敛散性判断方法无穷级数是高等数学的重要章节,是考研数学一和数学三的必考内容,其主要考点包括两个方面,一个是关于无穷级数的收敛或发散的判断,另一个是无穷级数的求和。关于级数的敛散性(即收敛或发散)判断,由于其方法较多,很多同学在学习和复习中感到有些困惑,为了帮助大家掌握好这些方法,文都网校的蔡老师对其做些分析总结,供各位参考,下面首先对用无穷级数的部分和来判断级数的敛散性方法做些分析。 一、通过部分和来判断级数的敛散性 通过无穷级数的部分和来判断级数的敛散性,是判断敛散性的最基本方法之一,因为按照级数收敛性的定义,收敛就是指其部分和的极限存在;对于正项级数而言,由于其部分和是单调增加的数列,所以只要其部分和是有界的,则部分和数列就是收敛的,因此级数就是收敛的. 无穷级数中有一类常见的级数,就是正负项相间的级数,即交错级数,交错级数的敛散性判断有多种方法,包括:莱布尼茨判别法、绝对值判别法以及部分和判别法,下面我们对这些方面及其典型题型做些分析总结,供各位同学参考。 一、交错级数的敛散性判别法 对于交错级数的敛散性判别,使用得较多的是莱布尼茨判别法。 从上面的例题我们看到,并非所有的交错级数都是收敛的,即使级数的通项趋于零也不一定收敛,但如果通项趋于零且通项是单调的,则级数是收敛的;有些级数表面上看不是交错级数,但经过恒等变形后却是交错级数,这时就可以利用上面方法进行判断;

如果一个交错级数不满足莱布尼茨条件,但每项取绝对值后的级数是收敛的,即绝对收敛,则原交错级数是收敛的。 正项级数是无穷级数的一种基本类型,其敛散性的判断方法有多种,包括:比较判别法、比值判别法、根值判别法(数一要求)等,在不同的条件下,需要根据具体情况使用不同的判别法,下面我们来分析一下比较判别法及其典型题型,供广大考生参考。 一、正项级数的比较判别法 正项级数的比较判别法是一种基本的、常用的判别法,其基本用法如下: 从上面的典型题型分析看到,有些级数虽然不是正项级数,但却可以借助正项级数的敛散性判别法来分析或证明其是否收敛,如上面例2的情况;在具体正项级数中,p级数是一个十分有用的比较工具,我们常用它与需要判断敛散性的级数进行比较;对于需要判断是否绝对收敛的级数,也需要利用正项级数的判别法,如比较判别法。以上分析希望对大家有所帮助,最后预祝各位考研取得成功,金榜题名!

正项级数收敛性的一般判别原则

正项级数收敛性的一般判别原则 若级数各项的符号都相同,则称为同号级数。而对于同号级数,只须研究各项都由正数组成的级数——正项级数。因负项级数同正项级数仅相差一个负号,而这并不影响其收敛性。 定理12.2.1 正项级数 ∑∞ =1 n n u 收敛?部分和数列{}n S 有界。 证明:由于对n ?,0>n u ,故{}n S 是递增的,因此,有 ∑∞ =1 n n u 收敛?{}n S 收敛?{}n S 有界。 定理12-2-2(比较原则) 设∑∞ =1 n n u 和 ∑∞ =1 n n v 均为正项级数,如果存在某个正数N ,使 得对 N n >?都有 n n v u ≤, 则 (1)若级数 ∑∞ =1n n v 收敛,则级数 ∑∞ =1n n u 也收敛; (2)若级数 ∑∞ =1 n n u 发散,则级数 ∑∞ =1 n n v 也发散。 证明:由定义及定理12-2-1即可得。 例1、考察 ∑∞ =+-1 2 11 n n n 的收敛性。 解:由于当2≥n 时,有 2 22)1(1)1(1111-≤-=-≤+-n n n n n n n , 因正项级数∑∞ =-22)1(1n n 收敛,故∑∞ =+-1 2 11 n n n 收敛。 推论(比较判别法的极限形式) 设 ∑∞ =1 n n u 和 ∑∞ =1 n n v 是两个正项级数,若

l v u n n n =∞→lim , 则 (1) 当+∞<

正项级数收敛性判别法的比较及其应用论文

本科毕业论文 题目正项级数收敛性判别法的比较及其应用学生姓名__宋婕 学号120050901008 系别数学系 年级2005 级 专业数学与应用数学 指导教师_ _赵利彬 职称教授 完成日期2009年2月15日

正项级数收敛性判别法的比较及其应用 宋婕 摘要:级数理论是数学分析的重要组成部分,而正项级数又是级数理论中重要的组成部分,级数的收敛性更是级数理论的核心问题,要想解决正项级数的求和问题必须先解决正项级数收敛性判断.正项级数收敛性判断的方法虽然较多,但使用起来仍有一定的技巧,归纳总结正项级数收敛性判断的一些典型方法,比较这些方法的不同特点,总结出一些典型的正项级数,根据不同的题目特点分析、判断选择适宜的方法进行判断,能够最大限度的节约时间,提高效率,特别是一些典型问题,运用典型方法,才能事半功倍. 关键词:正项级数;收敛;典型;方法;比较 Positive series convergence criterion of comparison and its application Song Jie Abstract:Series of mathematical analysis theory is an important part of the positive series is a series of important theoretical component of the progression of convergence is the core issue of series theory, in order to resolve the positive series Summation of the problem must be resolved positive series convergence judge. Positive series convergence solution may be judged more, but still have to use the skills, summarized convergence of positive series to determine some of the typical method to compare the different characteristics of these methods, summed up the typical positive series, according to the characteristics of different subject analysis to determine to choose suitable methods to judge, to maximize savings in time and increase efficiency, especially some typical problems, using the typical method to a multiplier. Key words: positive series ; convergence; typical ; methods; compare 一、引言 数学分析作为数学系的重要专业基础课程,对学习好其他科目具有重要作用。级数理论是数学分析的重要组成部分,在实际生活中的运用也较为广泛,如经济问题等。而正项级数又是级数理论中重要的组成部分,级数的收敛性更是级数理论的核心问题,要想解决正项级数的求和问题必须先解决正项级数收敛性判断。正项级数收敛性判断的方法虽然较多,但使用起来仍有一定的技巧,根据不同的题目特点分析、判断选择适宜的方法进行判断,能够最大限度的节约时间,提高效率,特别是一些典型问题,运用典型方法,才能事半功倍。 二、预备知识 (一)正项级数收敛的充要条件 部分和数列有界,即存在某正数M,对,有N都有,

级数收敛的判别方法

万方数据

万方数据

级数收敛的判别方法 作者:李春江 作者单位:河北大学 刊名: 中小企业管理与科技 英文刊名:MANAGEMENT & TECHNOLOGY OF SME 年,卷(期):2010,""(10) 被引用次数:0次 参考文献(7条) 1.华东师范大学数学系数学分析 1991 2.陈传璋数学分析 1983 3.邓东皋.尹小玲数学分析简明教程下册 1999 4.杨钟玄双比值判别法与对数判别法的比较 2004(1) 5.宿小迪正项级数收敛性判别法研究 1999(2) 6.任建娅判断正项级数敛散性的一个方法 1994(1) 7.杨丽有关级数敛散性的几个问题 2003(2) 相似文献(10条) 1.期刊论文尤秀英双侧二重随机Dirichlet级数的相关收敛公式-广东工业大学学报2002,19(3) 在双侧二重Dirichlet级数的相关一致有界收敛定理及Valiron公式基础上,通过引进一个随机变量序列,在概率空间(Ω,A,P)上定义了下侧二重随机Dirichlet级数,建立了该级数的收敛性理论,并建立了双侧随机Dirichlet级数相关收敛横坐标的Valiron推广公式. 2.期刊论文唐荣荣渐近级数与收敛级数的比较-大学数学2009,25(3) 函数的渐近级数展开式与收敛级数展开式是解决非线性问题的有力工具.本文剖析了这两类展开式的特性、分析了它们的区别等,在此基础上对如何准确有效地使用这两类展开式进行了探讨. 3.学位论文杨云燕最强Orlicz-Pettis拓扑及最一般的Orlicz-Pettis型定理2005 本文主要在一个具有普遍意义的对偶系统(E,F)中研究了Orlicz-Pettis定理和Orlicz-Pettis拓扑,得到了最强的Orlicz-Pettis拓扑和一个最一般的Orlicz-Pettis型定理.这个结论的产生具有非常重大的理论与实际意义:首先,它是几十年来Orlicz-Pettis型定理的一个终极性结果,我们不但得到了最强的Orlicz-Pettis拓扑OP(E,F),而且还找到了生成拓扑OP(E,F)的F的最大子集族FOP(E,F),而使得余下的研究只能围绕着F的哪一类特殊的子集族包含在最大子集族FOP(E,F)中来进行;其次,我们的研究框架具有空前的普遍性,致使历史上的各种Orlicz-Pettis型定理都成为了这个结论的特殊情形,而且许多其它著名的定理也成为它的推论,例如Vitali-Hahn-Saks-Nikodym定理、Graves-Ruess定理和Thomas定理等;另外,同我们所得的最强Orlicz-Pettis拓扑OP(E,F)相比,Tweddle得到的Orlicz-Pettis拓扑τ(E,G”)和Dierolf得到的Orlicz-Pettis拓扑D只是拓扑OP(E,F)在特殊框架下的两个特殊情形,而且τ(E,G”)与D虽然都是局部凸空间中的Orlicz-Pettis拓扑,但是Tweddle和Dierolf都仅仅给出了其拓扑在各自意义下的最强性,而没能够指出E’或G”中的何种子集M使得当∞∑j=1xj子级数弱收敛时,级数∞∑j=1f(xj)关于f∈M一致收敛.事实上,生成Tweddle拓扑和 Dierolf拓扑的子集族都包含在我们的最大子集族FOP(E,F)中.而弄清楚这个最大的子集族不仅有着明显的理论意义,而且还有重要的实际意义,例如在测度系统(∑,ca(∑,G))中,一致地可列可加测度族的全体就相当于是M的全体.这也充分说明了在比线性对偶更加一般的框架下讨论子级数收敛问题的必要性. 其次,在局部凸空间中建立了级数绝对收敛的定义,将原本只在赋范空间中有定义的级数的绝对收敛这一简单概念进行了推广.这使得对级数绝对收敛的研究突破了范数的限制,对级数收敛理论来说具有重大意义.由于在有限维空间中,级数的绝对收敛、无条件收敛、子级数收敛和有界乘数收敛都是等价的,因而只有在无限维空间中去研究它们的关系才是必要的,而且这样的研究也具有十分重要的理论和实际意义,例如,著名的Orlicz定理、Dvoretzky-Rogers定理和Rolewicz-Ryll-Nardzewski定理等就是对这几种级数收敛关系的研究.本文将在局部凸空间中,对级数的绝对收敛与有界乘数收敛的性质及其关系进行深入地探讨与研究,进而得到以下结果:在任意对偶(X,X’)中,存在一个可容许拓扑η(X,X’)使得,在(X,η(X,X’))上,有界乘数收敛级数都是绝对收敛的,但是当可容许拓扑τ严格强于η(X,X’)时,在(X,τ)中,一定存在级数有界乘数收敛,但不是绝对收敛的.这个结果的建立主要借助于李容录的一致收敛引理和Antosik-Mikusinski基本矩阵定理. 另外,在已经对级数的绝对收敛概念进行了推广的基础之上,我们通过对绝对收敛级数的研究,并且借助于李容录的一致收敛引理和Antosik-Mikusinski基本矩阵定理,得到了对偶中的一个关于绝对收敛级数的不变性定理,即当局部凸空间X序列弱完备时,在对偶(X,X’)中,存在一个X上的可容许极拓扑F(C)使得,F(C)与弱拓扑σ(X,X’)具有相同的绝对收敛级数.这个结论在级数收敛理论中具有重要意义.因为作为对偶中的不变性质,子级数收敛、无条件收敛和有界乘数收敛都曾经被人们研究过,但把绝对收敛作为不变性来研究却是首次出现,因而它使得本文具有重要的开创性意义.同时,通过对局部凸空间中的绝对收敛级数与子级数收敛级数的研究,我们在任意对偶中找到了一个可容许极拓扑使得在该拓扑中,子级数收敛级数都是绝对收敛的. 4.期刊论文尤秀英.YIU Xiu-ying在左半平面收敛的Dirichlet级数与随机Dirichlet级数的下级与准确下级-哈尔滨工业大学学报2000,32(1) 对于在左半平面σ<0内收敛的下侧Dirichlet级数所定义的解析函数f1(s)定义了下级;通过引入一个较弱的指数条件,建立了f1(s)的下级存在的充分必要条件;定义了在概率空间(Ω,(A,P))上的下侧随机 Dirichlet级数(σ<0),研究了该级数所定义的随机解析函数f1(s,ω)的下级存在的条件;建立了 f1(s)或 f1(s,ω)在σ<0内的准确下级和下型概念及其与f1(s)或f1(s,ω)的系数及指数之间的关系式. 5.期刊论文尤秀英.YOU Xiu-ying下侧或双侧二重Dirichiet级数收敛性-广东工业大学学报2000,17(4) 定义了双侧与下侧二重的Dirichlet级数;讨论了它们的几对相关收敛横坐标;建立了下侧二重Dirichlet级数的相关一致有界收敛定理;建立了该两类级数的Valiron推广公式及Knopp-Kojima推广公式.拓广了关于单复变数的Dirichlet级数相应结论. 6.学位论文程财生Walsh-Fourier级数收敛性的研究2007

相关文档
最新文档