《高考物理1.5轮》连接体+传送带

《高考物理1.5轮》连接体+传送带
《高考物理1.5轮》连接体+传送带

《高考1.5轮》—《力学篇》—《专题一力与运动》—《第三节牛顿运动定律》29页、例1.12

大家再思考一下这道题,当成填空题做,有多个答案,也就是多个正确的速度—时间图像

这道题,选自《高考物理1.5轮》——《力学篇》——《专题一力与运动》——《第三节牛顿运动定律》29页、例1.12 (考点:传送带+连接体,因为没有给出任何数量关系,所以分类讨论情况较多,若改为填空题,约有5个答案)

下面我们一起来看一下:《高考物理1.5轮》29页的这道多选题

题目中,没有给出两个速度的大小关系,3种情况都有可能:你大、我大、一般大!也没有给出滑块P所受的滑动摩擦力(或最大静摩擦力)与Q的重力之间的关系,也是3种可能:你大、我大、一般大!(要透过现象看本质,你可以说没有给出两个物块的质量关系,但不该说没有告诉2个物块质量谁大谁小,比较的不是2个物块的质量或重力,而是比较P滑块的滑动摩擦力和Q的重力)

同样也没有指出传动带的长度是比较短?还是比较长?也就是说物块P离开传送带的情景,从离开的位置可以分为2种:一种是从左边缘离开,另一种就是从右边缘离开

既然是当做填空题做,想找出全部的情况,你可以参考选项中的正确选项,你也可以不考虑选项(也就是不看选项),直接从最特殊、最简单、临界情况、中间情况来考虑!最特殊的就是:两个速度大小相等,但P所受的绳子拉力一定是水平向左的,所以速度相等的时候,P相对于传动带的运动趋势(或方向)就是向左的,所以摩擦力水平向右,继续假设最特殊的,也就是此时摩擦力大小和绳子拉力相等!

则传送带上的物块P,在运动方向上,受到水平向右的静摩擦(这个动力)和水平向左的绳子拉力这个阻力,动力=阻力,合力为0,平衡,物块匀速,直到从传送带的右侧离开!(连接体模型,P匀速,Q也匀速,则绳子拉力也等于Q的重力)

一条水平横线,没有比这更简单的图像了(速度不随时间改变),没有比这更简单的运动了(匀速直线运动),没有比这更特殊的条件和关系了!(物块初速度和传动带速度相等,物块P所受的静摩擦力大小等于Q的重力),这就是最特殊的,也就是临界中的临界,几个临界都撞到了一起,也必然是最简单的,也是解题时候,首先考虑到的!由特殊到一般,也就是由易到难,这才符合高效探索事物的规律!

接下来,逐渐变为一般的不能再一般的情况!(1)假设物块的初速度比传动带的速度大,那么物块所受摩擦力将水平向左,和绳子拉力的方向一样,都与初速度方向相反,都是阻力,在这里没有动力,物块将做匀减速直线运动。还是先考虑特殊的、简单的,假设传动带长度比较短,或物块初速度比较大,也就是物块一直到从传动带右端掉下去,都没有减到传送带那么小的速度!则全程就是一段匀减速直线,加速度始终不变!图像如下所示:

1、刚才的第一个图像,标号是(1),漏写了,为了更加清楚,每个图像给标记一个序号。

2、为了清晰地表示出运动的过程,也就是速度的变化,在同一个速度—时间坐标图中,还补画了传送带的速度—时间图像,做以对比。(3)思考一下:这里的加速度大小是怎样来的?为何是这个力,除以这个质量?寒假广州集训的时候,讲到了:系统的合力除以系统的总质量!合力就是总动力减去总阻力!

该着第(3)个图像了,在第(2)个的基础上,进行变动!物块的初速度还是比传动带的初速度大,也就是一开始,还是要匀减速直线的!但是半路某个位置或某个时刻,速度减到和传动带的速度相等了!老师多次提醒,共速时刻,摩擦力要突变,要格外注意!那么接下来,物块不可能加速,再超过传送带速度的!(除非是倾斜传动带,而这里是水平传送带),那么物块的速度要么和传送带一样、要么比传送带的速度小(也就是继续减速)!显然,共速之后,与传送带速度一直一样,一直共速到最后从右端离开,要简单一些,这就需要二者的最大静摩擦力大于或等于物块Q的重力,图像如下所示:

继续第(4)个图像,还是按照没有选项,不参考选项,不看选项,完全当做填空题或大题,从最特殊到最普通,一步一步来思考!物块初速度大于传送带速度,物块先匀减速直线运动,某一时刻或经过某一位置,物块速度减到和传动带速度一样大了,接下来物块的速度又小于传动带速度了!(也就是说最大静摩擦力小于Q的重力,导致没有达到一直共速的愿望),则物块继续减速,但这时候要注意:物块继续减速的加速度和之前减速的加速度大小不一样了,图像如下图所示:

刚画的是第(4)种情况,1、我这里的2个加速度都表示大小 2、思考一下:第二个加速度,为何是这个分式? 3、我画的是物块的速度没减到0,就从传送带右侧掉下去了,也许是刚好减到0,就从传动带右侧掉下去了,也就是速度时间图像的第二段和时间横轴刚好相交、连在了一起,在这里,我就合二为一,视为一种情况了!

我们先考虑最特殊的,是为了简单,有个最好的切入点!(也就是第1个图),接下来,我们的(2)(3)(4)图,都是按照一定的逻辑顺序,来画的,不能东一榔头、西一棒子,想到一个,跳过去画一个,没有挨着来,这样很容易重复了或者漏掉情况,或者为了避免漏掉,检查了好几遍,浪费了很多时间!

(1)图:匀速(2)图:一直匀减速直线(3)图:先匀减速直线、后匀速(4)图:先匀减速直线、再继续匀减速直线(2个加速度不一样)

(1)(2)(3)图,是肯定在右端离开传送带!(4)图,先匀减直,再换一个加速度匀减直,最后减到0之前(或刚好减到0),如果滑到了最右端,就从右端掉下去了,也就是(4)图。但是,反过来,如果速度减到0的时候,还没滑到最右端,还在半路某个位置呢?那接下来,该怎么运动呢?

肯定有学生会回答:这时候摩擦力就是动力了,也许靠着摩擦动力的拉动,继续向右匀加速直线,速度从0开始向右加速,然后还是从右端离开,然后在草稿纸上画了一个下面这样的速度时间图像:

但,这是绝对不可能发生的情况或情景!为啥呢?如果物块P能够在摩擦动力的拉动下,速度从0开始,还能继续向右加速,则说明:滑动摩擦力(或最大静摩擦力)是大于Q物块的重力的!那么P在减速的时候,减到和传送带速度一样,就可以匀速了,不必继续减速了!当初没有保持共速,就是因为Q的重力比较大,静摩擦力的最大值或滑动摩擦力比较小,所以物块继续减速,那么减到0的时候,就要反向加速(也就是向左加速),最终必然是从左端离开,速度—时间坐标图如下图(5)所示:

那么:物块的初速度大于传送带的速度,我们检查一下,这一大类情况所包含的各种情况,以上4个图(2—5)是否都已囊括了?(类的范畴比种大)

一、一直匀减速(始终比传送带速度大)二、匀减速到传送带速度之后:1、与传送带共速(最大静摩擦力大于Q重力)2、没法共速、继续减速(最大静摩擦<Q重力)(1)能够滑到最右端,从最右端离开(2)滑不到最右端,就减速为0,然后反向加速!

物块初速度>传送带速度,分析全面了:(2)、(3)、(4)、(5)!物块初速度=传送带速度,且最大静摩擦力>Q重力,物块一直匀速,最后从右端离开!(就是第1个图),那么物块初速度=传送带速度,最大静摩擦力<Q重力呢??物块怎样运动??

物块想和传送带共速,想保持相对静止,想一起匀速,但必须满足的条件是:静摩擦力=绳子拉力=Q重力!如果满足不了,则物块开始匀减速直线运动,也许速度没减到0,就从右端离开了,也许减到0的时候,还没滑到最右端,则开始反向加速,最终从最左端离开!速度—时间坐标图,如下所示!

从图像形状(也就是运动性质)来看,左图和(2)图是一样的,都是全程匀减速直线,只不过2个加速度不一样大,初速度也不一样大。我们不妨把刚才的分别标记为(6)和(7),当然,原题的选项,是没有斜率具体值的,如果画一个和(2)(6)一样的图像,也没标注初速度是大于传送带还是小于,你是无法区分是(2)还是(6)

那么,如果物块初速度<传送带速度呢?物块接下来:匀速?加速?减速?当然是由受力来决定的!既然初速度比传送带小,那么一开始的时候(也就是第一阶段):摩擦力肯定水平向左!且已经有相对速度了,就是滑动摩擦力,如果滑动摩擦力大于Q重力,加速!等于:匀速!小于:减速!

匀速最简单,就一直匀速下去,直到从另一端(也就是右端离开)!如果加速或减速,要略微麻烦一些,也就是需要进一步分类讨论!现在已经是晚上11点了,最后没讲完的,就当做课下作业了!同学们画完之后,可以发到群里!总之,这道题的图像,当做填空题,把斜率和初始速度都标注上,情况有10种左右,大概还没见过分类讨论,有10种的题目呢!所以这道四川高考题,也算是匠心独运了,当然也是一个老的模型了,所以被收录在《高考物理1.5轮》这本书中了,没讲完的部分,明天继续,小伙们晚安!任何问题,随时群里留言或私聊!QQ、微信都可以!同时想一下,这道:连接体+传送带,是如何与倾斜传送带等效的?

从排列组合的角度来看,物块初速度和传送带速度有3种关系,最大静摩擦力和Q重力有2种情况,传送带长度有足够长和比较短2种情况,最后就是12种情况!当然,从性质上来说,这12种有一类的,有需要合并的,但传送带的长度有时候又需要分3种情况进行讨论,最后画出来之后,不考虑斜率(加速度大小)的具体值,大约也是10种左右的图像,小伙伴们可以画一画!

这个题,完全等效于在倾斜的传送带底端,给物块一个斜向上的初速度,传送带的速度与物块初速度方向相同,2个速度大小关系,没说!摩擦系数和倾斜角正切值的大小关系,也没说!传送带是不是足够长,也没说!条件足够开放,尽情地分类讨论,情况足够多!在平时练习的时候,如果学生或老师注重总结归纳,这个经典的老模型(传送带,实在太老了),肯定做过!如果老师想真正锻炼学生,就应该给的已知条件越少越好,让学生进行各种假设和讨论!如果想锻炼学生的很好的过程分析能力,应该让学生再画出所有情况的速度时间图像,而不仅仅是去计算出其中的一两道题,如果学生的思维灵活,注重等效思维,喜欢抓住问题的本质,就能看穿连接体放在传送带上,看上去很新鲜,实际就是倾斜传送带的变形而已!所以这道题,高考之前,必然有很少一部分学生,确实做过!

每当遇到一个经典的问题的时候,有心的学生,就想把它变一变,有的学生说:这道题如何往简单了改编呢?还有学生说:这道题如何往复杂了改编呢?先说复杂:有的学生说,既然等效为倾斜传送带,那么小物块一开始放的位置由最底端改为中间某个位置呢?也有学生说,干脆在倾斜的传送带上来个连接体吧,滑块可以安在下端或上端,另一个物块也是竖直方向运动,也就是绳子给传送带上的物块拉力方向,或者一直沿着斜面向上,或者一直沿着斜面向下!

1、首先,物块的初始位置,改为倾斜传送带的中间某个位置,是没啥意义的,所以这种变式是几乎无效的,我们需要舍去、不必讨论!

2、如果给倾斜传送带上的物块连接一个平行于传送带的轻绳,轻绳跨过定滑轮,另一端也连接一个物块,那么这个物块通过绳子给传送带上的物块的拉力沿传送带斜向下,倒不如斜向上更值得命题!这时候,也可以让传送带最底端释放的物块的初速度变为0,开始讨论其运动情况,明天把题目画给同学们!

3、如果往简单了改编,或者说想掌握好传送带这一大类题目,就可以通过穷举法(或排列组合方式)把所有情景罗列出来,且给的已知条件越少越好,这样分类讨论的情况就越多,画出每种情况,物块的速度时间图像!传送带可倾斜、可水平!物块可以有初速度、无初速度,物块初速度方向与传送带可以同向或反向,若同向,可比传送带速度大或小。若传送带倾斜,物块可以放在底端或顶端!摩擦系数可能>倾斜角正切值,也可能<,需要把各种速度时间图像画出来,并标注好斜率及截距与特殊点的坐标!还可以再给出一些物理量,计算相对位移,计算划痕长度,计算脱离传送带的时间,计算脱离传送带的速度,计算摩擦生热,计算物块动能变化、机械能变化等

0:26:43

Sophie加入本群

王晓物理(274606193)

0:46:28

最后,同学们,会问,传送带这一经典的力学模型,不论是小题,还是大题,除了这些,通常还有哪些问题呢?我们归为以下几类:1、传送带匀速的常规问题(运动问题、能量问题)(也就是刚刚所说的那些)2、传送带匀变速(《模型题组》中有一道粉笔头划痕的问题,寒假集训中也提到了)3、传送带速度方向与物块初速度方向不共线(一般考的是相互垂直这种特殊的不共线,皮带比较宽,经过一段时间之后,二者共速)4、传送带传送的是粉末状的物体(面粉或煤灰等),不是一个物体,不是一个质点(在竞赛或自招的书中会见到此类问题)

连接体问题

【典型例题】 【针对训练】 例1.两个物体A 和B ,质量分别为 m 1和m 2,互相接触放在光滑水平面上,如图所示, A B 对物体A 施以水平的推力 F ,则物体A 对物体 B 的作用力等于( m 1 F ---- ? m 1 m 2 A. —F m 1 m 2 m 2 B. —F m 1 m 2 D.巴F m 2 2.如图A 、B 、C 为三个完全相同的物体,当水平力 于B 上,三物体可一起匀速运动。撤去力 F 后, F 作用 三物体仍 用力为f 2,贝U f l 和f 2的大小为( A.f i = f 2 = 0 B.f i = 0, f 2= F F C.f1 =— 3 3.如图所示,在前进的车厢的竖直后壁上放一个物体,物体与壁间 的静摩擦因数卩=0.8,要使物体不致下滑,车厢至少应以多大的 加速度前进? ( g = 10m/s 2 ) 4.如图所示,箱子的质量 M = 5.0kg ,与水平地面的动摩擦因 数卩=0.22。在箱子顶板处系一细线,悬挂一个质量 m = 1.0kg 的小球,箱子受到水平恒力 F 的作用,使小球的悬线偏离竖直 方向0= 30°角,贝U F 应为多少? ( g = 10m/s 2 ) 【能力训练】 1.如图所示,质量分别为 M 、m 的滑块A 、B 叠放在固定的、 倾角为0的斜面上, A 与斜面间、A 与B 之间的动摩擦因数 分别为卩1,卩2,当A 、B 从静止开始以相同的加速度下滑时, B 受到摩擦力( A.等于零 B.方向平行于斜面向上 C.大小为卩1mgcos 0 D.大小为卩2mgcos0 ^TTTTTTTTTTTJTTl C.F TTTTTTTTTTiil

高中物理连接体动力学完美训练版(四大连接体)

高中物理连接体动力学完美训练版(四大连接 体) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高中物理连接体动力学完美训练版 查看答案方法:在word 中按Ctrl + Shift + 8 四大连接体、内力口诀 接触体 1. (2015·课标卷Ⅱ,20)【多选】在一东西向的水平直铁轨上,停放着一列已用挂钩连接好的车厢.当机车在东边拉着这列车厢以大小为a 的加速度向东行驶时,连接某两相邻车厢的挂钩P 和 Q 间的拉力大小为F ;当机车在西边拉着车厢以大小为23a 的加速度向西行驶时,P 和Q 间的拉力大小仍为F .不计车厢与铁轨间的摩擦,每节车厢质量相同,则这列车厢的节数可能为( ) A .8 B .10 C.15 D .18 2. 如图所示,质量为M 的圆槽内有质量为m 的光滑小球,在水平恒力F 作用下两者保持相对静止,地面光滑.则( ) A .小球对圆槽的压力为MF M +m B .小球对圆槽的压力为mF M +m C .F 变大后,如果小球仍相对圆槽静止,小球在槽内位置升高 D .F 变大后,如果小球仍相对圆槽静止,小球在槽内位置降低 3. 如图所示,两相互接触的物块放在光滑的水平面上,质量分别为m 1和m 2,且m 1

连接体问题专题详细讲解

连接体问题 一、连接体与隔离体 两个或两个以上物体相连接组成的物体系统,称为连接体。如果把其中某个物体隔离出来,该物体即为隔离体。二、外力和内力如果以物体系为研究对象,受到系统之外的作用力,这些力是系统受到的外力,而系统 内各物体间的相互作用力为内力。应用牛顿第二定律列方程不考虑内力。如果把物体隔离出来作为研究对象,则这些内力将转换为隔离体的外力。 三、连接体问题的分析方法 1.整体法连接体中的各物体如果加速度相同,求加速度时可以把连接体作为一个整体。运用牛顿第二定律列方程求解。 2?隔离法如果要求连接体间的相互作用力,必须隔离其中一个物体,对该物体应用牛顿第二定律求解,此法称为隔离法。 3.整体法与隔离法是相对统一,相辅相成的。本来单用隔离法就可以解决的连接体问题,但如果这两种方法交叉使用,则处理问题就更加方便。如当系统中各物体有相同的加速度,求系统中某两物体间的相互作用力时,往往是先用整体法法求出加速度,再用隔离法法求物体受力。 简单连接体问题的分析方法 1?连接体:两个(或两个以上)有相互作用的物体组成的具有相同大小加速度的整体。 2?“整体法”:把整个系统作为一个研究对象来分析(即当做一个质点来考虑)。 注意:此方法适用于系统中各部分物体的加速度大小方向相同情况。 3?“隔离法”:把系统中各个部分(或某一部分)隔离作为一个单独的研究对象来分析。 注意:此方法对于系统中各部分物体的加速度大小、方向相同或不相同情况均适用。 4.“整体法”和“隔离法”的选择 求各部分加速度相同的连结体的加速度或合外力时,优选考虑整体法”;如果还要求物体之间的作用力,再用隔离法”,且一定是从要求作用力的那个作用面将物体进行隔离;如果连结体中各部分加速度不同,一般都是选用隔离法”。 5?若题中给出的物体运动状态(或过程)有多个,应对不同状态(或过程)用整体法”或隔离法”进行受力分析,再列方程求解。 针对训练. 1?如图用轻质杆连接的物体 AB沿斜面下滑,试分析在下列条件下,杆受到的力是拉力还是压力。

力学中的连接体问题

力学中的连接体问题 1.如图所示,质量为m2的物体2放在正沿平直轨道向右行驶的车厢底板上,并用竖直细绳通过光滑定滑轮连接质量为m1的物体1,与物体1相连接的绳与竖直方向成θ角. 求: (1)车厢的加速度a; (2)绳的拉力T; (3)物体2受到的支持力F N; (4)物体2受到的摩擦力F f. 2.如图所示,在光滑水平面上,有两个相互接触的物体,若M>m,第一次用水平力F由左向右推M,两物体间的作用力为N1,第二次用同样大小的水平力F由右向左推m, 两物体间的作用力为N2,则() A.N1>N2 B.N1=N2 C.N1<N2 D.无法确定 3.如图所示,用相同材料做成的质量分别为m1、m2的两个物体中间用一轻弹簧连接.在下列四种情况下,相同的拉力F均作用在m1上,使m1、m2作加速运动:①拉力水平,m1、m2在光滑的水平面上加速运动;②拉力水平,m1、m2在粗糙的水平面上加速运动;③拉力平行于倾角为θ的斜面,m1、m2沿光滑的斜面向上加速运动;④拉力平行于倾角为θ的斜面,m1、m2沿粗糙的斜面向上加速运动.以△l1、△l2、△l3、△l4依次表示弹簧在四种情况下的伸长量,则有() A.△l2>△l1 B.△l4>△l3 C.△l1>△l3 D.△l2=△l4 4.粗糙水平面上放置质量分别为m和2m的四个木块,其中两个质量为m的木块间用一不可伸长的轻绳相连.木块间的动摩擦因数均为μ,木块与水平面间的动摩擦因数相同,可认为最大静摩擦力等于滑动摩擦力.现用水平拉力F拉其中一个质量为2m的木块,使四个木块一起匀速前进.则需要满足的条件是( ) μ A.木块与水平面间的动摩擦因数最大为 3 2μ B.木块与水平面间的动摩擦因数最大为 3 C.水平拉力F最大为2μmg D.水平拉力F最大为6μmg

《动力学中的连接体模型》进阶练习(一)

《动力学中的连接体模型》进阶练习(一) 一、单选题 1.如图所示,光滑水平面上放置质量分别为m和2m的四 个木块,其中两个质量为m的木块间用一不可伸长的轻绳 相连,木块间的最大静摩擦力是μmg.现用水平拉力F拉其中一个质量为2m的木块,使四个木块以同一加速度运动,则轻绳对m的最大拉力为() A. B. C. D.3μmg 2.物体A放在物体B上,物体B放在光滑的水平面上,已知m A=6kg, m B=2kg,A、B间动摩擦因数μ=0.2,如图所示,现用一水平向右的 拉力F作用于物体A上,则下列说法中正确的是(g=10m/s2)() A.当拉力F<12N时,A静止不动 B.当拉力F=16N时,A对B的摩擦力等于4N C.当拉力F>16N时,A一定相对B滑动 D.无论拉力F多大,A相对B始终静止 3.如图所示,三个质量不等的木块M、N、Q间用两根水平 细线a、b相连,放在光滑水平面上.用水平向右的恒力 F向右拉Q,使它们共同向右运动.这时细线a、b上的拉力大小分别为T a、T b.若在第2个木块N上再放一个小木块P,仍用水平向右的恒力F拉Q,使四个木块共同向右运动(P、N间无相对滑动),这时细线a、b上的拉力大小分别为T a′、T b′.下列说法中正确的是() A.T a<T a′,T b>T b′ B.T a>T a′,T b<T b′ C.T a<T a′,T b<T b′ D.T a>T a′,T b>T b′ 二、多选题 4.如图所示,顶端装有定滑轮的斜面体放在粗糙水平面上, A、B两物体通过细绳相连,并处于静止状态(不计绳的 质量和绳与滑轮间的摩擦).现用水平向右的力F作用于 物体B上,将物体B缓慢拉高一定的距离,此过程中斜面体与物体A仍然保持静止.在此过程中() A.水平力F一定变大 B.斜面体所受地面的支持力一定变大

高一物理第四章专题强化动力学连接体问题和临界问题-------教师版

专题强化动力学连接体问题和临界问题--教师版 [学科素养与目标要求 ] 科学思维: 1.会用整体法和隔离法分析动力学的连接体问题.2.掌握动力学临界问题的分析方 法,会分析几种典型临界问题的临界条件. 一、动力学的连接体问题 1.连接体:两个或两个以上相互作用的物体组成的具有相同加速度的整体叫连接体.如几个物体叠放在一起,或并排挤放在一起,或用绳子、细杆等连在一起,在求解连接体问题时常用的方法为整体法与隔离法. 2.整体法:把整个连接体系统看做一个研究对象,分析整体所受的外力,运用牛顿第二定律列方程求解.其优点在于它不涉及系统内各物体之间的相互作用力. 3.隔离法:把系统中某一物体(或一部分)隔离出来作为一个单独的研究对象,进行受力分析,列方程求解.其优点在于将系统内物体间相互作用的内力转化为研究对象所受的外力,容易看清单个物体(或一部分)的受力情况或单个过程的运动情形. 4.整体法与隔离法的选用求解各部分加速度都相同的连接体问题时,要优先考虑整体法;如果还需要求物体之间的作用力,再用隔离法.求解连接体问题时,随着研究对象的转移,往往两种方法交替运用.一般的思路是先用其中一种方法求加速度,再用另一种方法求物体间的作用力或系统所受合力.无论运用整体法还是隔离法,解题的关键还是在于对研究对象进行正确的受力分析. 例 1 如图 1所示,物体 A、B用不可伸长的轻绳连接,在竖直向上的恒力 F 作用下一 起向 上做匀加速运动,已知 m A=10 kg,m B=20 kg,F=600 N ,求此时轻绳对物体 B的拉力大小(g 取 10 m/s2).

图1 答案 400 N 解析对 A、B 整体受力分析和单独对 B 受力分析,分别如图甲、乙所示:

连接体问题专题详细讲解

连接体问题一、连接体与隔离体 两个或两个以上物体相连接组成的物体系统,称为连接体。如果把其中某个物体隔离出来,该物体即为隔离体。 二、外力和内力如果以物体系为研究对象,受到系统之外的作用力,这些力是系统受到的外力,而系统内各物体间的相互作用力为内力。应用牛顿第二定律列方程不考虑内力。如果把物体隔离出来作为研究对象,则这些内力将转换为隔离体的外力。 三、连接体问题的分析方法 1.整体法连接体中的各物体如果加速度相同,求加速度时可以把连接体作为一个整体。运用牛顿第二定律列方程求解。 2.隔离法如果要求连接体间的相互作用力,必须隔离其中一个物体,对该物体应用牛顿第二定律求解,此法称为隔离法。 3.整体法与隔离法是相对统一,相辅相成的。本来单用隔离法就可以解决的连接体问题,但如果这两种方法交叉使用,则处理问题就更加方便。如当系统中各物体有相同的加速度,求系统中某两物体间的相互作用力时,往往是先用整体法法求出加速度,再用隔离法法求物体受力。 简单连接体问题的分析方法 1.连接体:两个(或两个以上)有相互作用的物体组成的具有相同大小加速度的整体。 2.“整体法”:把整个系统作为一个研究对象来分析(即当做一个质点来考虑)。 注意:此方法适用于系统中各部分物体的加速度大小方向相同情况。 3.“隔离法”:把系统中各个部分(或某一部分)隔离作为一个单独的研究对象来分析。 注意:此方法对于系统中各部分物体的加速度大小、方向相同或不相同情况均适用。 4.“整体法”和“隔离法”的选择 求各部分加速度相同的连结体的加速度或合外力时,优选考虑“整体法”;如果还要求物体之间的作用力,再用“隔离法”,且一定是从要求作用力的那个作用面将物体进行隔离;如果连结体中各部分加速度不同,一般都是选用“隔离法”。 5.若题中给出的物体运动状态(或过程)有多个,应对不同状态(或过程)用“整体法”或“隔离法”进行受力分析,再列方程求解。 针对训练 1.如图用轻质杆连接的物体AB沿斜面下滑,试分析在下列条件下,杆受到的力是拉力还是压力。 (1)斜面光滑; (2)斜面粗糙。 〖解析〗解决这个问题的最好方法是假设法。即假定A、B间的杆不存在,此时同时释放A、B,若斜面光滑,A、B运动的加速度均为a=g sinθ,则以后的运动中A、B间的距离始终不变,此时若将杆再搭上,显然杆既不受拉力,也不受压力。若斜面粗糙,A、B单独运动时的加速度都可表示为:a=g sinθ-μg cosθ,显然,若a、b两物体与斜面间的动摩擦因数μA=μB,则有a A=a B,杆仍然不受力,若μA>μB,则a A<a B,A、B间的距离会缩短,搭上杆后,杆会受到压力,若μA<μB,则a A>a B杆便受到拉力。 〖答案〗 (1)斜面光滑杆既不受拉力,也不受压力 (2)斜面粗糙μA>μB杆不受拉力,受压力 斜面粗糙μA<μB杆受拉力,不受压力 类型二、“假设法”分析物体受力 【例题2】在一正方形的小盒内装一圆球,盒与球一起沿倾角为θ的斜面下滑,如图所示,若不存在摩擦,当θ角增大时,下滑过程中圆球对方盒前壁压力T及对方盒底面的压力N将如何变化?(提示:令T不为零,用整体法和隔离法分析)()

连接体问题含答案

牛顿第二定律的应用――― 连接体问题 【自主学习】 一、连接体与隔离体 两个或两个以上物体相连接组成的物体系统,称为 。如果把其中某个物体隔离出来,该物体即为 。 二、外力和内力 如果以物体系为研究对象,受到系统之外的作用力,这些力是系统受到的 力,而系统内各物体间的相互作用力为 。 应用牛顿第二定律列方程不考虑 力。如果把物体隔离出来作为研究对象,则这些内力将转换为隔离体的 力。 三、连接体问题的分析方法 1.整体法:连接体中的各物体如果 ,求加速度时可以把连接体作为 一个整体。运用 列方程求解。 2.隔离法:如果要求连接体间的相互作用力,必须隔离其中一个物体,对该物体应用 求解,此法称为隔离法。 3.整体法与隔离法是相对统一,相辅相成的。本来单用隔离法就可以解决的连接体问 题,但如果这两种方法交叉使用,则处理问题就更加方便。如当系统中各物体有相同的加速度,求系统中某两物体间的相互作用力时,往往是先用 法求出 ,再用 法求 。 【典型例题】 例1.两个物体A 和B ,质量分别为m 1和m 2,互相接触放在光滑水平面上,如图所示, 对物体A 施以水平的推力F ,则物体A 对物体 B 的作用力等于( ) A. F m m m 211+ B.F m m m 2 12 + C.F D. F m 2 1 扩展:1.若m 1与m 2与水平面间有摩擦力且摩擦因数均为μ则对B 作用力等于 。 2.如图所示,倾角为α的斜面上放两物体m 1和m 2,用与斜面 平行的力F 推m 1,使两物加速上滑,不管斜面是否光滑,两物体 之间的作用力总为 。 例2.如图所示,质量为M 的木板可沿倾角为θ的光滑斜面下滑, 木板上站着一个质量为m 的人,问(1)为了保持木板与斜面相 班级 姓名

高考物理一轮题复习 第三章 牛顿运动定律 微专题21 动力学中的连接体(叠体)问题

动力学中的连接体(叠体)问题 1.考点及要求:(1)受力分析(Ⅱ);(2)牛顿运动定律(Ⅱ).2.方法与技巧:整体法、隔离法交替运用的原则:若连接体内各物体具有相同的加速度,且要求物体之间的作用力,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力.即“先整体求加速度,后隔离求内力”. 1.(物块的叠体问题)如图1所示,在光滑水平面上,一个小物块放在静止的小车上,物块和小车间的动摩擦因数μ=0.2,重力加速度g=10 m/s2.现用水平恒力F拉动小车,关于物块的加速度a m和小车的加速度a M的大小,下列选项可能正确的是( ) 图1 A.a m=2 m/s2,a M=1 m/s2 B.a m=1 m/s2,a M=2 m/s2 C.a m=2 m/s2,a M=4 m/s2 D.a m=3 m/s2,a M=5 m/s2 2. (绳牵连的连接体问题)如图2所示,质量均为m的小物块A、B,在水平恒力F的作用下沿倾角为37°固定的光滑斜面加速向上运动.A、B之间用与斜面平行的形变可忽略不计的轻绳相连,此时轻绳张力为F T=0.8mg.已知sin 37°=0.6,下列说法错误的是( ) 图2 A.小物块A的加速度大小为0.2g B.F的大小为2mg C.撤掉F的瞬间,小物块A的加速度方向仍不变 D.撤掉F的瞬间,绳子上的拉力为0 3. (绳、杆及弹簧牵连的连接体问题)(多选)如图3所示,A、B、C三球的质量均为m,轻质

弹簧一端固定在斜面顶端、另一端与A球相连,A、B间由一轻质细线连接,B、C间由一轻杆相连.倾角为θ的光滑斜面固定在地面上,弹簧、细线与轻杆均平行于斜面,初始系统处于静止状态,细线被烧断的瞬间,下列说法正确的是( ) 图3 A.A球的加速度沿斜面向上,大小为g sin θ B.C球的受力情况未变,加速度为0 C.B、C两球的加速度均沿斜面向下,大小均为g sin θ D.B、C之间杆的弹力大小为0 4.(多选)如图4所示,物块A、B质量相等,在恒力F作用下,在水平面上做匀加速直线运动,若水平面光滑,物块A的加速度大小为a1,物块A、B间的相互作用力大小为F N1;若水平面粗糙,且物块A、B与水平面间的动摩擦因数相同,物块B的加速度大小为a2,物块A、B间的相互作用力大小为F N2,则以下判断正确的是( ) 图4 A.a1=a2B.a1>a2 C.F N1=F N2D.F N1

连接体问题的解题思路

连接体问题的求解思路 【例题精选】 【例1】在光滑的水平面上放置着紧靠在一起的两个物体A和B(如图),它们的质量分别为m A、m B。当用水平恒力F推物体A时,问:⑴A、B两物体的加速度多大?⑵A物体对B物体的作用力多大? 分析:两个物体在推力的作用下在水平面上一定做匀加速直线运动。对整体来说符合牛顿第二定律;对于两个孤立的物体分别用牛顿第二定律也是正确的。因此,这一道连接体的问题可以有解。 解:设物体运动的加速度为a,两物体间的作用力为T,把A、B两个物体隔离出来画在右侧。因为物体组只在水平面上运动在竖直方向上是平衡的,所以分析每个物体受力时可以只讨论水平方向的受力。A物体受水平向右的推力F和水平向左的作用力T,B物体只受一个水平向右的作用力T。对两个物体分别列牛顿第二定律的方程:对m A满足 F-T= m A a ⑴ 对m B满足 T = m B a ⑵ ⑴+⑵得 F =(m A+m B)a ⑶ 经解得: a = F/(m A+m B)⑷ 将⑷式代入⑵式可得 T= Fm B/(m A+m B) 小结:①解题时首先明确研究对象是其中的一个物体还是两个物体组成的物体组。如果本题只求运动的加速度,因为这时A、B两物体间的作用力是物体组的力和加速度无关,那么我们就可以物体组为研究对象直接列出⑶式动力学方程求解。若要求两物体间的作用力就要用隔离法列两个物体的动力学方程了。 ②对每个物体列动力学方程,通过解联立方程来求解是解决连接体问题最规的解法,也是最保险的方法,同学们必须掌握。 【例2】如图所示,5个质量相同的木块并排放在光滑的水平桌面上,当用水平向右推力F推木块1,使它们共同向右加速运动时,求第2与第3块木块之间弹力及第4与第 5块木块之间的弹力。

动力学的图象问题和连接体问题

重难强化训练(三) 动力学的图象问题和 连接体问题 (45分钟100分) 一、选择题(本题共10小题,每小题6分,共60分.1~6题为单选,7~10题为多选) 1.一物块静止在粗糙的水平桌面上,从某时刻开始,物块受到一方向不变的水平拉力作用.假设物块与桌面间的最大静摩擦力等于滑动摩擦力,以a表示物块的加速度大小,F表示水平拉力的大小.能正确描述F与a之间关系的图象是() A B C D C[设物块所受滑动摩擦力为f,在水平拉力F作用下,物块做匀加速直线运动,由牛顿第二定律,F-f=ma,F=ma+f,所以能正确描述F与a之间关系的图象是C.] 2.如图1所示,质量为m2的物体2放在正沿平直轨道向右行驶的车厢底板上,并用竖直细绳通过光滑定滑轮连接质量为m1的物体,跟物体1相连接的绳与竖直方向成θ角不变,下列说法中正确的是() 【导学号:84082159】 图1 A.车厢的加速度大小为g tan θ B.绳对物体1的拉力为m1g cos θ C.底板对物体2的支持力为(m2-m1)g

D .物体2所受底板的摩擦力为0 A [以物体1为研究对象进行受力分析,如图甲所示, 物体1受到重力m 1g 和拉力T 作用,根据牛顿第二定律得 m 1g tan θ=m 1a ,解得a =g tan θ,则车厢的加速度也为g tan θ, 将T 分解,在竖直方向根据二力平衡得T =m 1g cos θ,故A 正确,B 错误;对物体2 进行受力分析如图乙所示,根据牛顿第二定律得N =m 2g -T =m 2g - m 1g cos θ ,f =m 2a =m 2g tan θ,故C 、D 错误.] 3.质量为2 kg 的物体在水平推力F 的作用下沿水平面做直线运动,一段时间后撤去F ,其运动的v -t 图象如图2所示.则物体与水平面间的动摩擦因数μ和水平推力F 的大小分别为(g 取10 m/s 2)( ) 图2 A .0.2 6 N B .0.1 6 N C .0.2 8 N D .0.1 8 N A [本题的易错之处是忽略撤去F 前后摩擦力不变.由v -t 图象可知,物体 在6~10 s 内做匀减速直线运动,加速度大小a 2=|Δv Δt |=|0-84| m/s 2=2 m/s 2.设物 体的质量为m ,所受的摩擦力为f ,根据牛顿第二定律有f =ma 2,又因为f =μmg ,解得μ=0.2.由v -t 图象可知,物体在0~6 s 内做匀加速直线运动,加速度大小 a 1=Δv Δt =8-26 m/s 2=1 m/s 2,根据牛顿第二定律有F -f =ma 1,解得F =6 N ,故只有A 正确.] 4.滑块A 的质量为2 kg ,斜面体B 的质量为10 kg ,斜面倾角θ=30°,已知A 、B 间和B 与地面之间的动摩擦因数均为μ=0.27,将滑块A 放在斜面B 上

高中物理连接体动力学完美训练版(四大连接体)

高中物理连接体动力学完美训练版 查看答案方法:在word 中按Ctrl + Shift + 8 四大连接体、内力口诀 接触体 1. (2015·课标卷Ⅱ,20)【多选】在一东西向的水平直铁轨上,停放着一列已用挂钩连接好的车厢.当机车在东边拉着这列车厢以大小为a 的加速度向东行驶时,连接某两相邻车厢的挂钩P 和Q 间的拉 力大小为F ;当机车在西边拉着车厢以大小为23 a 的加速度向西行驶时,P 和Q 间的拉力大小仍为F .不计车厢与铁轨间的摩擦,每节车厢质量相同,则这列车厢的节数可能为() A .8 B .10 C.15 D .18 2. 如图所示,质量为M 的圆槽内有质量为m 的光滑小球,在水平恒力F 作用下两者保持相对静止,地面光滑.则() A .小球对圆槽的压力为MF M +m B .小球对圆槽的压力为mF M +m C .F 变大后,如果小球仍相对圆槽静止,小球在槽内位置升高 D .F 变大后,如果小球仍相对圆槽静止,小球在槽内位置降低 3. 如图所示,两相互接触的物块放在光滑的水平面上,质量分别为m 1和m 2,且m 1

高中物理常见连接体问题总结

(一)“死结”“活结” 1.如图甲所示,轻绳AD跨过固定在水平横梁BC右端的定滑轮挂住一个质量为10 kg 的物体,∠ACB=30°;图乙中轻杆HG一端用铰链固定在竖直墙上,另一端G通过细绳EG拉住,EG与水平方向也成30°,轻杆的G点用细绳GF拉住一个质量也为10 kg的物体.g取10 m/s2,求 (1)细绳AC段的张力FAC与细绳EG的张力FEG之比; (2)轻杆BC对C端的支持力; (3)轻杆HG对G端的支持力. (二)突变问题 2。在动摩擦因数μ=的水平 质量为m=1kg的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,如图所示,此时小球处于静止 平衡状态,且水平面对小球的弹力恰好为零,当剪断轻绳的瞬间,取g=10m/s2,求: (1)此时轻弹簧的弹力大小 (2)小球的加速度大小和方向.(三)力的合成与分解 3.如图所示,用一根细线系住重力为、半径 为的球,其与倾角为的光滑斜面劈接触, 处于静止状态,球与斜面的接触面非常小, 当细线悬点固定不动,斜面劈缓慢水平向左 移动直至绳子与斜面平行的过程中,下述正确的是( ). A.细绳对球的拉力先减小后增大 B.细绳对球的拉力先增大后减小 C.细绳对球的拉力一直减小 D.细绳对球的拉力最小值等于G (四)整体法 4.如图所示,质量分别为m1、m2的两个物体通过轻弹簧连接。在力F的作用下一起沿水平方向做匀速直线运动(m1在地面,m2在空中),力F与水平方向成θ角,则m1所受支持力N 和摩擦力f正确的是() A.N=m1g+m2g-Fsinθ B.N=m1g+m2g-Fcosθ C.f=Fcosθ D.f=Fsinθ (五)隔离法 5.如图所示,水平放置的木板上面放置木块,

连接体问题 专题训练

连接体问题 1. 连接体:两个或两个以上相互联系的物体组成连接体。 2. 整体法:当两个或两个以上有相互联系的物体相对同一参考系具有相同加速度时,可选整体为研究对象。 3. 隔离法:把题目中每一物体隔离出来分别进行受力分析、列方程 4. 选取研究对象的原则有两点: (1)受力情况简单,与已知量、未知量关系密切。 (2)先整体后隔离。 构成连接体的各部分之间的重要的联系纽带之一就是加速度,当两个或两个以上的物体相对同一参考系具有相同加速度时,有些题目也可采用整体与隔离相结合的方法,一般步骤用整体法或隔离法求出加速度,然后用隔离法或整体法求出未知力。 【典型例题】 例1. 光滑水平面上A、B两物体m A =2kg、m B =3kg,在水平外力F=20N作用下向右加速运 动。求 (1)A、B两物体的加速度多大? (2)A对B的作用力多大? 解:设两物体加速度大小为a,A对B作用力为F 1 ,由牛顿第三定律得B对A的作用力 F 2=F 1 。 对A受力如图 由牛顿第二定律F 合A =m A a 得: F-F 2 =m A a 20-F 2 =2a ① 对B受力如图 由牛顿第二定律F 合B =m B a 得: F 1 =m B a F 1 =3a ② 由①、②联立得:a=4m/s2 F 1 =12N F=20N 而F 1 =12N ,所以不能说力F通过物体A传递给物体B。分析:(1) (2)①+②得 F=(m A +m B )a 即:因为A、B具有相同加速度,所以可把A、B看作一个整体应用牛顿第二定律

思考:本题应怎样解更简单? 对AB 整体受力如图 竖直方向平衡,故F N =(m A +m B )g 由牛顿第二定律F 合=(m A +m B )a 得: a=2 204/32A B F m s m m ==++ 对B 受力如图 由牛顿第二定律F 合B =m B a 得:F 1= m B a=3?4=12N 例2. 如图所示,质量为m 的物块放在倾角为θ的斜面上,斜面体的质量为M ,斜面与物块无摩擦,地面光滑,现对斜面施一个水平推力F ,要使物块相对斜面静止,力F 应多大 ? 解析:两物体无相对滑动,说明两物体加速度相同,方向水平。对于物块m ,受两个力作用,其合力水平向左。先选取物块m 为研究对象,求出它的加速度,它的加速度就是整体加速度,再根据F =(M+m )a 求出推力F ,步骤如下: 先选择物块为研究对象,受两个力,重力mg 、支持力F N ,且两力合力方向水平,如图 所示,由图可得: tan mg ma θ=,tan a g θ=? 再选整体为研究对象,根据牛顿第二定律()()tan F M m a M m g θ=+=+。 答案:()tan M m g θ+

动力学中的连接体问题

动力学中的连接体问题 1.连接体问题的类型 物物连接体、轻杆连接体、弹簧连接体、轻绳连接体. 2.整体法的选取原则 若连接体内各物体具有相同的加速度,且不需要求物体之间的作用力,可以把它们看成一个整体,分析整体受到的合外力,应用牛顿第二定律求出加速度(或其他未知量). 3.隔离法的选取原则 若连接体内各物体的加速度不相同,或者要求出系统内各物体之间的作用力时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解. 4.整体法、隔离法的交替运用 若连接体内各物体具有相同的加速度,且要求出物体之间的作用力时,一般采用“先整体求加速度,后隔离求内力”. 例1

(多选)我国高铁技术处于世界领先水平.如图1所示,和谐号动车组是由动车和拖车编组而成,提供动力的车厢叫动车,不提供动力的车厢叫拖车.假设动车组各车厢质量均相等,动车的额定功率都相同,动车组在水平直轨道上运行过程中阻力与车重成正比.某列车组由8节车厢组成,其中第1、5节车厢为动车,其余为拖车,则该动车组() 图1 A.启动时乘客受到车厢作用力的方向与车运动的方向相反 B.做匀加速运动时,第5、6节与第6、7节车厢间的作用力之比为3∶2 C.进站时从关闭发动机到停下来滑行的距离与关闭发动机时的速度成正比 D.与改为4节动车带4节拖车的动车组最大速度之比为1∶2 答案BD

解析 列车启动时,乘客随车厢加速运动,加速度方向与车的运动方向相同,故乘客受到车厢的作用力方向与车运动方向相同,选项A 错误;动车组运动的加速度a =2F -8kmg 8m =F 4m - kg ,则对6、7、8节车厢的整体有F 56=3ma +3kmg =3 4F ,对7、8节车厢的整体有F 67=2ma +2kmg =1 2F ,故5、6节车厢与6、7节车厢间的作用力之比为F 56∶F 67=3∶2,选项B 正 确;关闭发动机后,根据动能定理得12·8m v 2 =8kmgx ,解得x =v 22kg ,可见滑行的距离与关闭 发动机时速度的平方成正比,选项C 错误;8节车厢有2节动车时的最大速度为v m1=2P 8kmg ; 8节车厢有4节动车时最大速度为v m2= 4P 8kmg ,则v m1v m2=12 ,选项D 正确. 例2 如图2所示,粗糙水平面上放置B 、C 两 物体,A 叠放在C 上,A 、B 、C 的质量分别为m 、2m 、3m ,物体B 、C 与水平面间的动摩

高三物理《弹簧连接体问题专题训练题》精选习题

高三物理《弹簧连接体问题专题训练题》 教材中并未专题讲述弹簧。主要原因是弹簧的弹力是一个变力。不能应用动力学和运动学的知识来详细研究。但是,在高考中仍然有少量的弹簧问题出现(可能会考到,但不一定会考到)。即使试题中出现弹簧,其目的不是为了考查弹簧,弹簧不是问题的难点所在。而是这道题需要弹簧来形成一定的情景,在这里弹簧起辅助作用。所以我们只需了解一些关于弹簧的基本知识即可。具体地说,要了解下列关于弹簧的基本知识: 1、 认识弹簧弹力的特点。 2、 了解弹簧的三个特殊位置:原长位置、平衡位置、极端位置。特别要理解“平衡位置”的含义 3、 物体的平衡中的弹簧 4、 牛顿第二定律中的弹簧 5、 用功和能量的观点分析弹簧连接体 6、 弹簧与动量守恒定律 经典习题: 1、如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①中弹 簧的左端固定在墙上,②中弹簧的左端受大小也为F 的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动。若认为弹簧的质量都为零,以l 1、l 2、l 3、l 4依次表示四个弹簧的伸长量,则有 ( ) A .l 2>l 1 B .l 4>l 3 C .l 1>l 3 D .l 2=l 4 2、(双选)用一根轻质弹簧竖直悬挂一小球,小球和弹簧的受力如右图所示,下列说法正确的是( ) A .F 1的施力者是弹簧 B .F 2的反作用力是F 3 C .F 3的施力者是小球 D .F 4的反作用力是F 1 3、如图,两个小球A 、B ,中间用弹簧连接,并用细绳悬于天花板下,下面四对力中,属于平衡力的是( ) A 、绳对A 的拉力和弹簧对A 的拉力 B 、弹簧对A 的拉力和弹簧对B 的拉力 C 、弹簧对B 的拉力和B 对弹簧的拉力 D 、B 的重力和弹簧对B 的拉力 4、如图所示,质量为1m 的木块一端被一轻质弹簧系着,木块放在质量为2m 的木板上,地面光滑,木块与木板之间的动摩擦 因素为μ,弹簧的劲度系数为k ,现在用力F 将木板拉出来,木块始终保持静止,则弹簧的伸长量为( ) A .k g m 1μ B .k g m 2μ C . k F D .k g m F 1μ- 5、如图所示,劲度系数为k 的轻质弹簧两端连接着质量分别为1m 和2m 的两木块, 开始时整个系统处于静止状态。现缓慢向上拉木块2m ,直到木块1m 将要离开地面, 在这过程中木块2m 移动的距离为___________。 6、如图所示,U 型槽放在水平桌面上,M=0.5kg 的物体放在槽内,弹簧撑于物体和槽壁 之间并对物体施加压力为3N , 物体与槽底之间无摩擦力。 当槽与物体M 一起以6 m/s 2 的加速度向左运动时,槽壁对物体M 的压力为_____N.

(整理)连接体问题复习教学设计

连接体问题――― 牛二律应用的复习课 【复习目标】 1.知道什么是连接体与隔离体。 2.知道什么是内力和外力。 3.学会连接体问题的分析方法,并用来解决简单问题。 学案 【典型例题】 例题1.如图,用力F 拉A 、B 、C 三个物体在光滑水平面上运动,现在中间的B 物体上加一个小物体,它和中间的物体一起运动,且原拉力F 不变,那么加上物体以后,两段绳中的拉力F a 和F b 的变化情况是( ) A.T a 增大 B.T b 增大 C.T a 变小 D.T b 不变 【知识链接】 一、连接体与隔离体 两个或两个以上物体相连接组成的物体系统,称为 。如果把其中某个物体

隔离出来,该物体即为 。 二、外力和内力 如果以物体系为研究对象,受到系统之外的作用力,这些力是系统受到的 力,而系统内各物体间的相互作用力为 。 应用牛顿第二定律列方程不考虑 力。如果把物体隔离出来作为研究对象,则这些内力将转换为隔离体的 力。 三、连接体问题的分析方法 1.整体法:连接体中的各物体如果 ,求加速度时可以把连接体作为一 个整体。运用 列方程求解。 2.隔离法:如果要求连接体间的相互作用力,必须隔离其中一个物体,对该物体应用 求解,此法称为隔离法。 3.整体法与隔离法是相对统一,相辅相成的。本来单用隔离法就可以解决的连接体问题,但如果这两种方法交叉使用,则处理问题就更加方便。如当系统中各物体有相同的加速度,求系统中某两物体间的相互作用力时,往往是先用 法求出 ,再用 法求 。 【典型例题】 例2.两个物体A 和B ,质量分别为m 1和m 2,互相接触放在光滑水平面上,如图所示,对 物体A 施以水平的推力F ,则物体A 对物体 B 的作用力等于( ) A.F m m m 211+ B.F m m m 2 12 + C.F D. F m 2 1 扩展:1.若m 1与m 2与水平面间有摩擦力且摩擦因数均为μ则对B 作用力等于 。 2.如图所示,倾角为α的斜面上放两物体 m 1和m 2,用与斜面 平行的力F 推m 1,使两物加速上滑,不管斜面是否光滑,两物体 之间的作用力总为 。 【能力训练】 1.如图A 、B 、C 为三个完全相同的物体,当水平力F 作用 于B 上,三物体可一起匀速运动。撤去力F 后,三物体仍 可一起向前运动,设此时A 、B 间作用力为f 1,B 、C 间作 用力为f 2,则f 1和f 2的大小为( ) A.f 1=f 2=0 B.f 1=0,f 2=F C.f 1= 3F ,f 2=F 3 2 D.f 1=F ,f 2=0 2.如图所示,质量分别为M 、m 的滑块A 、B 叠放在固定的、 倾角为θ的斜面上,A 与斜面间、A 与B 之间的动摩擦因数 分别为μ1,μ2,当A 、B 从静止开始以相同的加速度下滑时, a

牛顿第二定律应用及连接体问题

牛顿定律的应用 一 两类常用的动力学问题 1. 已知物体的受力情况,求解物体的运动情况; 2. 已知物体的运动情况,求解物体的受力情况 上述两种问题中,进行正确的受力分析和运动分析是关键,加速度的求解是解决此类问题的纽带,思维过程可以参照如下: 解决两类动力学问题的一般步骤 根据问题的需要和解题的方便,选出被研究的物体,研究对象可以是单个物体, 也可以是几个物体构成的系统 画好受力分析图,必要时可以画出详细的运动情景示意图,明确物体的运动性 质和运动过程 通常以加速度的方向为正方向 或者以加速度的方向为某一坐标的正方向 若物体只受两个共点力作用,通常用合成法,若物体受到三个或是三个以上不 在一条直线上的力的作用,一般要用正交分解法 根据牛顿第二定律=ma F 合或者x x F ma = ;y y F ma = 列方向求解,必要时对结论进行讨论 解决两类动力学问题的关键是确定好研究对象分别进行运动分析跟受力分析,求出加速度 例1(新课标全国一2014 24 12分) 公路上行驶的两汽车之间应保持一定的安全距离。当前车突然停止时,后车司机以采取刹车措施,使汽车在安全距离内停下而不会与前车相碰。通常情况下,人的反应时间和汽车系统的反应时间之和为1s 。当汽车在晴天干燥沥青路面上以108km/h 的速度匀速行驶时,安全距离为120m 。设雨天时汽车轮胎与沥青路面间的动摩擦因数为晴天时的2/5,若要求安全距离仍为120m ,求汽车在雨天安全行驶的最大速度。 解:设路面干燥时,汽车与路面的摩擦因数为μ0,刹车加速度大小为a 0,安全距离为s ,反应时间为t 0,由 牛顿第二定律和运动学公式得:ma mg =0μ ①0 20002a v t v s += ②式中,m 和v 0分别为汽车的质量和刹车钱的速度。 明确研究对象 受力分析和运动 状态分析 选取正方向或建 立坐标系 确定合外力F 合 列方程求解

新教材高中物理必修一第四章 专题强化 动力学连接体问题和临界问题

[学习目标]掌握动力学连接体问题和临界问题的分析方法,会分析几种典型临界问题的临界条件. 一、动力学的连接体问题 1.连接体:两个或两个以上相互作用的物体组成的具有相同运动状态的整体叫连接体.如几个物体叠放在一起,或并排挤放在一起,或用绳子、细杆等连在一起,如图1所示,在求解连接体问题时常用的方法为整体法与隔离法.

图1 2.整体法:把整个连接体系统看作一个研究对象,分析整体所受的外力,运用牛顿第二定律列方程求解.其优点在于它不涉及系统内各物体之间的相互作用力. 3.隔离法:把系统中某一物体(或一部分)隔离出来作为一个单独的研究对象,进行受力分析,列方程求解.其优点在于将系统内物体间相互作用的内力转化为研究对象所受的外力,容易看清单个物体(或一部分)的受力情况或单个过程的运动情形. 4.整体法与隔离法的选用 (1)求解各部分加速度都相同的连接体问题时,要优先考虑整体法;如果还需要求物体之间的作用力,再用隔离法. (2)求解连接体问题时,随着研究对象的转移,往往两种方法交替运用.一般的思路是先用其中一种方法求加速度,再用另一种方法求物体间的作用力或系统所受合力.

如图2甲所示,A、B两木块的质量分别为m A、m B,在水平推力F作用下沿水平面向右加速运动,重力加速度为g. (1)若地面光滑,则A、B间的弹力为多大? (2)若两木块与水平面间的动摩擦因数均为μ,则A、B间的弹力为多大? (3)如图乙所示,若把两木块放在固定斜面上,两木块与斜面间的动摩擦因数均为μ,在方向平行于斜面的推力F作用下沿斜面向上加速,A、B间的弹力为多大?

图2 答案(1) m B m A+m B F(2) m B m A+m B F(3) m B m A+m B F 解析(1)若地面光滑,以A、B整体为研究对象,有F=(m A+m B)a, 然后隔离出B为研究对象,有F N=m B a, 联立解得F N=m B m A+m B F. (2)若动摩擦因数均为μ,以A、B整体为研究对象,有F-μ(m A+m B)g=(m A+m B)a1,然后隔 离出B为研究对象,有F N′-μm B g=m B a1,联立解得F N′=m B m A+m B F. (3)以A、B整体为研究对象,设斜面的倾角为θ, F-(m A+m B)g sin θ-μ(m A+m B)g cos θ=(m A+m B)a2 以B为研究对象 F N″-m B g sin θ-μm B g cos θ=m B a2 联立解得F N″=m B m A+m B F. 连接体的动力分配原理:两个物体(系统的两部分)在外力(总动力)的作用下以共同的加速度运动时,单个物体分得的动力与自身的质量成正比,与系统的总质量成反比.相关性:两物体间的内力与接触面是否光滑无关,与物体所在接触面倾角无关.

相关文档
最新文档