第五章 定子磁场定向矢量控制

第五章 定子磁场定向矢量控制
第五章 定子磁场定向矢量控制

第五章 定子磁场定向矢量控制

5.1 转子电流控制

在双馈电机定子磁场定向的矢量控制策略中,通常将同步旋转坐标系的d 轴与双馈电机定子磁场相重合,逆时针旋转90度的方向作为q 轴方向,即在同步旋转dq 坐标系中定子磁链可表述为: ??

?ψ=ψ=ψs sd

sq 0 (5-1)

其中,s ψ为定子磁链的幅值。

由此,在定子磁链定向的情况下,重写双馈电机在同步旋转坐标系中的定转

子电压方程、磁链方程:

?????

??????+

+=+-=+-=+

-=qr

dr s qr r qr dr

qr

s dr r dr ds

qs s qs ds

ds s ds dt

d i r u dt d i r u i r u dt

d i r u ψ

ψ

ωψψωψωψ

1

(5-2)

?????

?

?+-=ψ+-=ψ+-=+-=ψqr r qs m qr

dr r ds m dr

qr

m qs s dr m ds s s i

L i L i L i L i L i L i L i L 0 (5-3)

求解后,得:

qr s

m qs i L L i =

、()ms dr s

m ds i i L L i -=

(5-4)

其中:m

s ms L i ψ=

,称为通用励磁电流

计算转子磁链如下:

?

?

?

???????? ??+-=ψ???

? ??+-+=ψqr r s m qr dr r s m

ms s

m

dr i L L L i L L L i L L 2

22

(5-5)

设???

? ??-=s

m

r s L L L L 2σ为漏磁系数,则5-5式又可表示为:

?????=ψ+=ψqr r qr

dr r ms s

m

dr i

L i L i L L σσ2 (5-6)

利用式5-2计算转子电压如下:

???

?

??

?

+???? ??++=+-=qr

r dr r ms s m s qr r qr dr

r qr r s dr r dr

i dt d L i L i L L i r u i dt d L i L i r u σσωσσω2 (5-7)

式5-7便是采用电压源变流器对双馈电机转子电流控制的理论依据,式中

ms

s

m s

i L L 2

ω为双馈电机反电势所引起的扰动项,dr r s i L σω与qr r s i L σω-为旋转电势所

引起的交叉耦合扰动项,扰动项和耦合项给调节器的设计造成一定的困难。

为此可采用前馈补偿控制策略,把反电动势引起的扰动项和旋转电动势引起的交叉耦合项等扰动项前馈解耦后,双馈电机转子d 轴电流直接由转子侧d 轴端电压dr u 控制,转子q 轴电流直接由转子侧q 轴端电压qr u 控制。此时,当双馈电机转子电流采用PI 调节器,并以PI 调节器的输出来控制式5-7中的转子电流动态项时,则转子电压dr u 和qr u 的控制方程如下:

()(

)

???

?

??

????

? ??++-???

??+=--??

? ??+=dr r ms s

m

s qr qr irI

irP qr qr r s dr dr irI irP dr

i L i L L i i s K K u i L i i s K K u σωσω2

*

*

(5-8)

其中,irP K 、irI K 为转子电流内环比例系数和积分系数,*

dr i 、*qr i 分别为转子

电流d 轴、q 轴分量的指令值。

5.2转子电流指令

根据电磁转矩方程4-6,以及式5-4、式5-6可得在定子磁场定向同步旋转坐

标系下双馈电机电磁转矩表达式为:

()qr

ms s

m p

qs ms m p qs ds p ds qs qs ds p e i i L L n i i L n i n i i n T 2

==ψ=ψ-ψ= (5-9)

上式表明,双馈电机在定子磁场不变,即ms i 恒定的情况下,双馈电机的电磁转矩的大小与双馈电机转子电流的q 轴分量成正比。 根据式4-7、式5-4,并在忽略定子电阻的情况下,可得:

????

?-=+=qs

ds ds qs qs

qs ds ds i u i u Q i u i u P 11 =〉()

???

???

?

-==ms

dr

s

m qs qr

s m qs i i L L u Q i L L u P 11 (5-10)

上式表明,在利用转子电流q 轴分量qr i 控制双馈电机电磁转矩的同时,也控

制了其定子侧有功功率,而定子侧无功功率的调节可通过转子电流的d 轴分量dr i 进行控制,而相应的dr i 的指令值*

dr i 取决于具体的控制要求,如无功功率控制、

定子电压控制、功率因数控制等。

当双馈电机采用速度全控型控制策略时,双馈电机控制的外环为速度环,而转子q 轴电流的指令值由速度环决定。由双馈电机的运动方程可知,若速度外环采用PI 调节器,则双馈电机的电磁转矩的控制方程可表述为:

))((*

*

n n s

K K T nI nP e -+

=

(5-11(a))

其中,nP K 、nI K 分别为速度外环的比例系数和积分系数;*n 为双馈电机的

转速指令值。 或将其表述为电流指令的形式,即:

))((*

2

*

n n s

K K i

L n L i nI nP ms

m p s qr -+

=

(5-11(b))

5.3 定子磁链检测

由于双馈电机的特殊结构,使其定子电气量和转子电气量均可以被直接检测,所以双馈电机定子磁链有几种不同的检测方法。其中较为典型的有定子电压模型与定转子电流模型两种。

5.3.1 定子电压模型

对于定子电压模型法,即将检测到的定子电压、定子电流经三相静止到两相静止的Clark 变换,再运用双馈电机两相静止坐标系下定子电压方程,即可求出两相静止αβ坐标系中定子磁链的α分量和β分量,如式5-12所示

????

?+=ψ+=ψ??dt

i r u dt i r u

s s s

s sa s sa

s )()(ββ

β

α (5-12)

在实际控制中,上式中的积分运算通常采用0.5Hz 到1Hz 的带通滤波器获得,

以克服其直流偏置的影响。

5.3.2 定转子电流模型

对于定转子电流模型,即将检测出的定子电流、转子电流经三相静止到两相

静止的Clark 变换,再运用双馈电机的磁链方程求的两相静止αβ坐标系中定子磁链的α分量和β分量,如式5-13所示

??

?+-=ψ+-=ψβ

ββαααr m s s s r m s s s i L i L i L i L (5-13)

于是,有

2

2

β

αs s s ψ+ψ=

ψ、???

?

??ψψ

=-βαθs s s 1tan (5-14)

相对于定子电压模型而言,定转子电流模型法可以避免积分或准积分运算,

但定转子电流模型也有其自身的缺陷;一方面观测的准确性受双馈电机参数的影响,而双馈电机的参数在运行过程中因磁化曲线的非线性(如磁饱和作用)使得这些参数较易发生改变,从而影响观测精度;另一方面,由于不能直接与电网同

步,不利于软并网策略的实施。因此定子磁场的观测通常可以采用准积分电压模型进行观测,其准积分模型的表达式为:

2

2

23)(π

π++=

s s s

s G bp (5-15)

上式所表达的准积分环节与纯积分环节的特性相比,如图5-1所示:

图5-1 准积分环节与纯积分环节性能对比(a:频域对比;b:时域对比)

由图5-1不难看出,准积分环节对高频交流部分具有与纯积分环节相同的特性,而对于低频部分,尤其是直流环节,准积分滤波器具有滤除直流偏置的作用。图5-1(b)同时给出了纯积分环节和准积分环节对一个初相为0的正弦信号的积分作用,由该图不难看出纯积分环节含有较大的直流分量,而准积分环节在稳态后没有明显的直流偏置。

5.4 控制结构图

图5-2 定子磁链矢量定向控制结构图

变频器矢量控制的基本原理分析

变频器矢量控制的基本原理分析 矢量控制的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。基于转差频率控制的矢量控制方式同样是在进行U/f=恒定控制的基础上,通过检测异步电动机的实际速度n,并得到对应的控制频率f,然后根据希望得到的转矩,分别控制定子电流矢量及两个分量间的相位,对通用变频器的输出频率f进行控制的。基于转差频率控制的矢量控制方式的最大特点是,可以消除动态过程中转矩电流的波动,从而提高了通用变频器的动态性能。早期的矢量控制通用变频器基本上都是采用的基于转差频率控制的矢量控制方式。 无速度传感器的矢量控制方式是基于磁场定向控制理论发展而来的。实现精确的磁场定向矢量控制需要在异步电动机内安装磁通检测装置,要在异步电动机内安装磁通检测装置是很困难的,但人们发现,即使不在异步电动机中直接安装磁通检测装置,也可以在通用变频器内部得到与磁通相应的量,并由此得到了所谓的无速度传感器的矢量控制方式。它的基本控制思想是根据输入的电动机的铭牌参数,按照一定的关系式分别对作为基本控制量的励磁电流(或者磁通)和转矩电流进行检测,并通过控制电动机定子绕组上的电压的频率使励磁电流(或者磁通)和转矩电流的指令值和检测值达到一致,并输出转矩,从而实现矢量控制。

矢量控制系统(FOC)基本原理

矢量控制(FOC)基本原理 2014.05.15 duquqiubai1234163. 一、基本概念 1.1模型等效原则 交流电机三相对称的静止绕组 A 、B 、C ,通以三相平衡的正弦电流时,所产生的合成磁动势是旋转磁动势F ,它在空间呈正弦分布,以同步转速ω1(即电流的角频率)顺着 A-B-C 的相序旋转。这样的物理模型如图1-1a 所示。然而,旋转磁动势并不一定非要三相不可,单相除外,二相、三相、四相…… 等任意对称的多相绕组,通以平衡的多相电流,都能产生旋转磁动势,当然以两相最为简单。 图1 图1-1b 中绘出了两相静止绕组α 和 β ,它们在空间互差90°,通以时间上互差90°的两相平衡交流电流,也产生旋转磁动势F 。再看图1-1c 中的两个互相垂直的绕组M 和 T ,通以直流电流M i 和T i ,产生合成磁动势F ,如果让包含两个绕组在的整个铁心以同步转速旋转,则磁动势F 自然也随之旋转起来,成为旋转磁动势。把这个旋转磁动势的大小和转速也控制成与图 1-1a 一样,那么这三套绕组就等效了。

三相--两相变换(3S/2S 变换) 在三相静止绕组A 、B 、C 和两相静止绕组α、β之间的变换,简称3S/2S 变换。其电流关系为 111221022A B C i i i i i αβ????-- ???????=?????????-????? () 两相—两相旋转变换(2S/2R 变换) 同步旋转坐标系中(M 、T 坐标系中)轴向电流分量与α、β坐标系中轴向电流分量的转换关系为 cos sin 2sin cos M T i i i i αβ??????????=??????-???? ?? () 1.2矢量控制简介 矢量控制是指“定子三相电流矢量控制”。 矢量控制理论最早为解决三相异步电机的调速问题而提出。交流矢量的直流标量化可以使三相异步电机获得和直流电机一样优越的调速性能。将交流矢量变换为两相直流标量的过程见图2。

定子磁场定向控制方法报告

异步电机定子磁场定向控制方法 目前应用广泛的高动态性能的交流调速系统控制方法有矢量控制和直接转矩控制,这两种控制方法各有所长,但也存在着一些缺点。 矢量控制采用转子磁场定向的方法,实现定子电流的励磁分量与转矩分量的动态解耦,采用PI连续调节方式,实现转矩与转子磁场的控制。但是其解耦性能取决于转子磁场的精确定向,由于转子磁链的观测或计算是在电机模型的基础上进行的,因而转子磁场的定向受到电机参数特别是易于变化的转子电阻的影响。 直接转矩控制是根据转矩及定子磁链的偏差,分别采用砰砰控制的方法,根据定子磁链所在的扇区,直接产生PWM驱动信号,系统结构简单,对转子参数不敏感,但砰砰控制决定了转矩脉动不可避免,虽然增加电压综合矢量个数可以降低转矩脉动,但不能消除,本报告中的定子磁场定向控制方法是在两种系统的基础上,取长补短的一种新方法。 异步电机定子磁场定向控制方法有两个特点: 1、定子磁链用电压模型计算,采用连续的闭环控制,在补偿定子电阻压降的基础上直接控制定子磁链的变化率; 2、转速控制采用与矢量控制相仿的三环结构,内环为定子电流转矩分量控制,实现了转矩电流的快速跟随,第二环是转矩闭环控制,用以抑制定子磁链对转矩的扰动,最外环为转速闭环。 这种控制方法克服了矢量控制对转子电阻的直接依赖性,同时采用连续的控制方法克服了砰砰控制带来的转矩脉动。 为了研究异步电机定子磁场定向控制方法,我们要建立异步电机按定子磁场定向的动态模型。 根据定子磁场定向的定义可知,在d-q坐标系中,规定d轴与定子磁链矢量ψ的方向重合,q轴与ψ的方向垂直。因此,在d-q坐标系中,A相的电流、电压、磁链可以表示为:

基于MATLAB的异步电机转子磁场定向矢量控制系统仿真

科技论坛基于MATLAB 的异步电机转子磁场定向矢量控制系统仿真 常伟 (华北电力大学电气学院,北京100043) 1概述 异步电机是一个高阶、非线性、强藕合的多变量系统,数学模型比较 复杂。本文利用M ATLAB /Simulink 软件对异步电动机转子磁场定向控 制系统动态过程建立仿真模型,并对控制方案进行仿真研究。按转子磁 场定向的矢量控制系统是已经获得实际应用的高性能调速系统,控制思 想是在转子磁场定向的基础上,经过一系列的坐标变换,实现将三相异步 电机像直流电机一样对磁场和转矩的解耦控制,注重转矩与转子磁链的 解耦,实行连续控制,可获得较宽的调速范围,使异步电机的动静态性能 有很大提高,所以,异步电机矢量控制技术已被广泛应用于高性能异步 电机调速系统中。 2异步电机的数学模型 对于笼型异步电机,转子侧电压为零,根据文献[1]可以建立异步电 机在α-β静止坐标系下的数学模型以同步角速度旋转的两相直流旋 转坐标d 、q 之间的变换,可以推导出异步电机在d 、q 坐标系上的数学模 型的电压方程: 式中U sd ,U sq 为定子电压在同步坐标系上分量,R s ,R r 为定子电阻和 转子电阻,,为定子磁链在同步坐标系上的分量,,为转子 磁链在同步坐标系上的分量,,分别为同步角速度和转差角速度, P 为微分算子。 磁链方程: 式中,L s ,L r ,L m 分别为定子电感,转子电感和互感。,为定 子电流在同步坐标系上的分量,为转子电流在同步坐标系上 的分量。 转矩方程: T e 表示为电机的电磁转矩,p 为电机极对数。 根据上面公式,可以得到下列关系式 异步电机矢量控制系统的模型: 图1为矢量控制系统的原理图。图中转速调节器ASR 的输出是转 矩调节器的给定转矩。磁链调节器用于控制电机转子磁链,并设置 了电流变换和磁链观测环节,转矩调节器ATR 和磁链调节器的输 出分别是定子电流的转矩分量和励磁分量。和,电流滞环控制PWM 逆变器控制电机定子三相电流。图2是在M atlab/Simulink 环境下建立的异步电机转子磁场定向矢量控制系统仿真模型[3]。3仿真结果根据建立的异步电机矢量控制模型做仿真分析,实验参数为:极对数p=2,定子电阻r 1=0.075,定子绕组漏电感=0.72mH ,转子电阻r2=0.231,转子绕组漏电感=0.72mH ,互感L m =36mH ,恒负载转矩为T m =30Nm ,结果如下:从图3可以看出转速上升的速度比较快,且超调量比较小,输出转速出与转速给定指令基本相同,电机的跟随性好,说明建立矢量控制方法是正确的。4结论本文采用M atlab/Simulink 系统仿真工具,对异步电机转子磁场定向的矢量控制系统进行了建模仿真。按转子磁链定向,实现了定子电流 励磁分量和转矩分量的解耦,使系统具有良好的调速性能。仿真试验证明该矢量控制系统可以大范围地调速,具有很好的跟随性能,动态性能良好。因此,该系统在工业应用领域中具有很好的应用前景。参考文献: [1]陈伯时.电力拖动自动控制系统[M].北京:机械工业出版社,2003.[2]尔桂花.运动控制系统[M].北京:清华大学出版社,2004.[3]洪乃刚.电力电子和电力拖动系统的MATLAB 仿真[M].北京:机械工业出版社。 摘要:异步电动机的模型特点是一多变量、强耦合的非线性系统。本文根据异步电机理论,建立了异步电动机的数学模型,给出了异步电动机转子磁场矢量控制系统基本结构和矢量控制系统仿真模型,仿真结果证明了所建电机模型的正确性。 关键词:异步电机;矢量控制;磁场定向;磁链 作者简介:常伟(1980-),男,工程师,华北电力大学在职研究生,首钢动力厂供电技术员。 ááL áá L 88··

第五章-定子磁场定向矢量控制

第五章 定子磁场定向矢量控制 5.1 转子电流控制 在双馈电机定子磁场定向的矢量控制策略中,通常将同步旋转坐标系的d 轴与双馈电机定子磁场相重合,逆时针旋转90度的方向作为q 轴方向,即在同步旋转dq 坐标系中定子磁链可表述为: ???ψ=ψ=ψs sd sq 0 (5-1) 其中,s ψ为定子磁链的幅值。 由此,在定子磁链定向的情况下,重写双馈电机在同步旋转坐标系中的定转子电压方程、磁链方程: ????? ??????++=+-=+-=+-=qr dr s qr r qr dr qr s dr r dr ds qs s qs ds ds s ds dt d i r u dt d i r u i r u dt d i r u ψψωψψωψωψ1 (5-2) ??? ????+-=ψ+-=ψ+-=+-=ψqr r qs m qr dr r ds m dr qr m qs s dr m ds s s i L i L i L i L i L i L i L i L 0 (5-3) 求解后,得: qr s m qs i L L i =、()ms dr s m ds i i L L i -= (5-4) 其中:m s ms L i ψ=,称为通用励磁电流 计算转子磁链如下: ??????????? ??+-=ψ???? ??+-+=ψqr r s m qr dr r s m ms s m dr i L L L i L L L i L L 222 (5-5) 设??? ? ??-=s m r s L L L L 2σ为漏磁系数,则5-5式又可表示为: ?????=ψ+=ψqr r qr dr r ms s m dr i L i L i L L σσ2 (5-6) 利用式5-2计算转子电压如下:

六相永磁同步电动机磁场定向控制实例

六相永磁同步电动机磁场定向控制方案实例: 本文在分析了六相永磁同步电动机(PMSM)的数学模型的基础上,建立了六相PMSM 矢量控制系统的仿真模型。同时,利用数字信号处理器TMS320LF2407的强大资源来实现矢量控制算法。最后,仿真分析和实验结果相符合,而且使得系统能够获得很好的性能。 在满足一定的假设条件下,我们建立p 对极N 相正弦波永磁同步电动机在abc 坐标下和dq 坐标下的状态数学模型: fs ss sr s s f r rs rr r r L L i L L i ψψψψ????????=+????????????????,s s s r r u i p R u i ψψr ?????=+? ???????????? 式中 () kd kq R diag r r r r r =" 定转子绕组之间的互感矩阵 rs L ? 232 3kd1 kd kd kdn rs sr kq1 kq kq kqn L L L L L L L L L L ?? ==? ??? "" 转子绕组的电感系数矩阵 rr L ? 00 kd rr kq L L L ??=? ??? ss L -定子绕组电感系数矩阵 fs ψ-永磁体产生的磁通链过定子绕组的磁链 rs ψ-永磁体产生的磁通链过定子绕组的磁链 -定子绕组,直轴阻尼绕组和交轴阻尼绕组 ,,kd kq r r r p -对时间的求导算子d p dt = dq系统的磁链方程 假设气隙磁场按正弦分布,忽略磁场的高次谐波分量,通过合适的变换矩阵

得到: 220 00 00 skd d kd kd d d fsd dq q q skq q kq kq pL L r pL i i pL L r pL ψψψψ?? ? ??+?????? ? ?==+??? ?????????????? +??? ? fsd ψ-定子相绕组轴线与直轴一致时,永磁体产生的基波磁通链过该相绕组的磁链 fr d ψ-永磁体产生的基波磁通链过转子绕组的直轴磁链 建立了p 对极N 相正弦波永磁同步电动机的数学模型后,有助于我们从控制的角度出发对其进行分析,进而实现各种先进的控制策略,只是基本而重要的步骤。 为建立六相PMSM的dq轴数学模型,假设: (1) 电机定子绕组产生的磁动势波和磁场在空间上都按正弦分布; (2) 忽略电机铁心剩磁,磁路线性; (3) 不计定子表面齿、槽的影响。 在上述前提下,由图1所示的变换可得到dq 坐标系下六相PMSM 的磁链方程、电压方程和电磁转矩方程分别为: d d d s q s q q q s d 00 u i R p u i R ψψωψψ??????????=++?????????????????? ? ?? (1) d d d f q q q 000L i L i ψψψ???????? =+?????????? ?????? (2) em p f q d q d q ())T n i L L i i =+? (3) em l ?d T T R J dt Ω ??Ω= (4)

三种磁场定向矢量控制技术的比较知识讲解

磁场定向矢量控制技术按照获得磁链的不同方式大致可分为两种:直接和间接方式。直接方式的实现依赖于直接测量或对转子,定子,气隙磁链矢量的幅值和位置的估算。传统的直接矢量控制策略使用检测线圈,具有抽头的定子绕组或霍尔效应传感器对磁通进行检测,但由于电机结构或散热的需要就会产生一定的限制,但随着目前高速DSP的不断面世,在一个PWM周期内,实现负载的控制及磁链估算应成为可能,所以近年来基于磁链观测器的直接方式由重新得到了人们的重视。而间接方式则使用电动机模型,例如对于转子磁通定向控制,它利用了固有的转差关系。与直接的方法相比,间接方式对电机参数有较高的依赖性。多数场合使用间接策略,因为这会使硬件电路相对简单并且在低频下也具有较好的总体性能,但是由于包含了会随着温度,饱和度和频率变化而变化的电机参数,所以需要研究不同的参数自适应策略。 如果从选择的磁链矢量分类的话,磁场定向矢量控制技术一般可分为三种,即气隙磁场定向控制,定子磁场定向控制,转子磁场定向控制。 1. 气隙磁场定向控制方案。气隙磁场的定向控制是将旋转坐标系的M轴定向于气隙磁场的方向,此时气隙磁场的T轴分量为零。如果保持气隙磁通M轴分量恒定,转矩直接和T轴电流成正比。因此,通过控制T轴电流,可以实现转矩的瞬时控制,从而达到控制电机的目的。 2. 定子磁场定向控制方案。定子磁场定向的控制方法,是将旋转坐标的M 轴放在定子磁场方向上,此时,定子磁通的T轴分量为零。如果保持定子磁通恒定,转矩直接和T轴电流成正比,从而控制电机。定子磁场定向控制使定子方程大大简化,从而有利于定子磁通观测器的实现。然而此方案在进行磁通控制时,不论采用直接磁通闭环控制,还是采用间接磁通闭环控制,均须消除耦合项的影响。因此,需要设计一个解耦器,对电流进行解耦。 3. 转子磁场定向控制方案。转子磁场定向的控制方法是在磁场定向矢量控制方法中,将M,T坐标系放在同步旋转磁场上,将电机转子磁通作为旋转坐标系的M坐标轴。若忽略由反电动势引起的交叉祸合,只需检测出定子电流的M轴分量,就可以观测转子磁通幅值。当转子磁通恒定时,电磁转矩与定子电流的T 轴分量成正比,通过控制定子电流的T轴分量就可以控制电磁转矩。因此称定子电流的M轴分量为励磁分量,定子电流的T轴分量为转矩分量。可由电压方程M 轴分量控制转子磁通,T轴分量控制转矩,从而实现磁通和转矩的解耦控制。 下面对它们进行简要的总结和比较: 气隙磁场定向系统中磁通关系和转差关系中存在耦合,需要增加解耦器这使得它比转子磁通的控制方式要复杂,但具有一些状态能直接测量的优点,比如气隙磁通。同时电机磁通的饱和程度与气隙磁通一致,故基于气隙磁通的控制方式更适合于处理饱和效应。 定子磁场定向的矢量控制方案,在一般的调速范围内可利用定子方程作磁通观测器,非常易于实现,且不包括对温度变化敏感的转子参数,可达到相当好的动静态性能,同时控制系统结构也相对简单,然而在低速时,由定子电阻压降占

电机磁场定向控制系统概述

电机磁场定向控制系统概述 永磁同步电机(PMSM)是近年来发展较快的一种电机,由于其转子采用永磁钢,属于无刷电机的一种,具有一般无刷电机结构简单,体积小,寿命长等优点。 本文讨论空间矢量控制的永磁同步电机,采用磁场定向算法借助DSP高速度实现对转速的实时控制。由于控制算法必须获取转子位置信息,所以传统的控制系统都需要以光电编码器等作为转子位置传感器。为了最大限度减少传感器,本文从改变相电流检测方法,建立采用砰-砰控制的滑模观测器,介绍一个可以实现的模型。 2磁场定向原理 磁场定向控制,简称FOC。两直角坐标系:αβ坐标系为定子静止坐标系,α轴与定子绕组a相轴重合;dq为转子旋转坐标系,d轴与转子磁链方向重合,并以同步速ωr逆时针旋转。两坐标系之间的夹角为θe。可以把定子电流综合矢量is,在旋转坐标系dq轴上如下式分解 is=isd+isq (1) 在交流永磁同步电机中,转子为永磁钢,可认为转子电流综合矢量的模大小不变,常用常数值IF代表。根据交流电机电磁转矩T与定、转子电流综合矢量的普遍关系式 式中p———极对数 L12———定、转子互感 i1———定子电流综合矢量 i2———转子电流综合矢量 δ———定、转子综合矢量间夹角 这样电磁转矩只随|i1|和角δ变化。为了获得简单可控的转矩特性,可以给定定子电流综合矢量指令使其始终在q轴上,即δ=90°,从而得 式中Is———定子电流综合矢量的模 按上式可以实现用定子电流综合矢量的模来直接控制电动机电磁转矩,从而使永磁同步电动机获得类似直流电动机的伺服性能,并可得到快速无静差的调节特性。 该速度控制系统由速度、电流双闭环实现,采用的算法由相应的模块实现,包括:Park变换模块,Clark变换模块,反Park变换模块,转子位置角估计模块,转速计算模块,弱磁控制模块,PI调节模块,空间矢量PWM生成模块等。整个控制系统,以DSP芯片为核心再配以简单的外围电路,其复杂的控制算法及功能全部由软件来实现。其中每一个控制模块,对应一C调用函数,主函数流程用C语言编制。与有位置传感器的控制系统相比,无位置传感器系统仅在对反馈量的处理中采用了转角观测器模块函数,而对其他控制模块,而系统可以以完全相同的方法实现,这更显示了软件构成系统的灵活性。 3无传感器算法 3.1减少一路电流传感器方法 在逆变器控制中都需要相电流信息,传统采用的方法是直接用传感器获得需要的相电流,这种方法依赖负载的布置,并且至少需要两个传感器直接应用于电机组绕组。本文介绍的方法是仅通过采集直流侧母线电流信息,来估计交流侧三相电流值。因为逆变器开关状态是我们直接控制的,所以已知输入电流的路径,即输入线电流和电机相电流间的关系。这样在通常八个开关状态(Sa,Sb,Sc)中除(0,0,0)和(1,1,1),在其他六个开关状态下,直流侧线电流信息总对应a,b,c中某一路相电流值。 开关状态(Sa,Sb,Sc)=(0,0,1)下,相电流ic等于直流线电流,另外两相电流ia,ib则等于直流线电流的一半。这样线电流信号经一路AD通道,送给DSP,再经过适当计算即可获三相电流信息。

第七章磁场定向矢量控制系统

第七章磁场定向矢量控制系统 判断题 1.不同电机模型彼此等效的的原则是在不同的坐标系下所产生的磁动势完全一致。√ 2.矢量控制系统可以分为电压型和电流型,现代牵引传动系统中,电流型矢量控制系 统应用最为普遍。? 3.低速情况下,采用电压模型法观测转子磁链性能比采用电流模型法好。? 4.转子磁链准确的检测与计算是进行矢量变换控制的前提。√ 5.直接矢量控制系统是转速和磁链闭环控制的矢量控制系统。√ 6.CRH2型动车组在低速时采用异步调制,高速时采用分段同步调制,弱磁控制采用 单脉冲控制。√ 7.间接矢量控制系统是转速闭环、磁链开环控制的矢量控制系统。√ 8.转子磁链观测模型中电流模型比较适用于微机数字控制。? 9.在电传动系统中,电机是实现机电能量转换的主体。√ 10.转子系统与静止系统之间的变换是一种旋转变换,而不是静止的三相/两相变换。√ 11.矢量控制是以定子磁链的矢量来定向的。? 12.电机转子时间常数会随着转子绕组温度而变化。√ 13.德国的BR152电力机车采用的是间接矢量控制方式。? 14.一般情况下,我们希望电动机工作在额定满磁场的状态。√ 15.直接转矩控制方式比矢量控制方式具有更优良的动、静态性能。√选择题 1.我国CRH2型动车组采用的控制策略是______ (B) A. 恒压频比控制策略 B. 转子磁场定向间接矢量控制策略 C. 转子磁场定向直接矢量控制策略 D. 直接转矩控制策略 2.下面几种异步电机控制方式中,属于智能控制的是______ (C) A. 恒压频比控制 B. 直接转矩控制

C. 人工神经网络控制 D. 矢量控制 3.下面几种转子磁链观测的方法中,哪一种是在两相旋转坐标系上实现的 (D) A. 电压模型法 B. 电流模型法 C. 电压—电流模型法 D. 根据指令电流和转速检测值计算磁链法 4.在电压—电流转子磁链观测模型中,没有用到的信号是______ (B) A. 定子电流信号 B. 转子电流信号 C. 定子电压信号 D. 转速信号 5.下列车型中,采用间接矢量控制的是______ (A) A. CRH2型动车组 B. 德国BR152电力机车 C. 奥地利1012电力机车 D. CRH3型动车组 6.在电力牵引交流传动电力机车和高速动车组上,异步牵引电动机控制方法经历了几 个发展过程。(B) A.2个 B.3个 C.4个 D.5个 7.影响电机转子时间参数的因素为______ (D) A.磁路饱和 B.温度变化 C.频率变化 D.以上三项都是 8.在矢量控制系统中,用于两个正交量求取模及幅角的运算的坐标变换是______ (D) A.3/2变换 B.2/3变换 C.VR变换 D.K/P变换 9.下面哪项不是人工神经网络的优点______ (B) A.具备快速并行计算能力 B.控制电路简单 C.容错能力强 D.对参数变化的影响较小 10.数字信号处理器(DSP)的优点有______ (D) A.硬件简单、控制算法灵活 B.抗干扰性强 C.无漂移、兼容性好 D.上述三项都是

§3.6--磁场定向控制原理

§3.6 异步电动机的矢量控制 异步电动机的磁场定向控制是从70年代发展起来的一种新的控制技术。 定义:异步电动机的磁场定向控制是把定子电流做为具有垂直分量的空间分量来处理的,因此又称为矢量控制。 目的:通过这种控制技术能使异步电动机得到和直流电动机相同的调速特性 一. 磁场定向控制的基本思想 基本思想;把交流电动机的转矩控制模拟成直流电动机的转矩控制 在任何电力拖动的控制系统,电动机产生的电磁转矩 e T 作用在电动机轴上的负载转矩(包括电动机的空载转矩0M )L T 以及惯性转矩dt J m /ω? 三者之间的关系都由转矩平衡方程式决定,即: dt J T T m L e /ω?=- 设L T 及 J 均为常数,那么在动态过程中电动机速度 m ω 的变化规律完全取决于对电动机的电磁转矩e T 的控制。举例如下: 起动和制动的过程中,如果控制电动机的电磁转矩 e T 使其保持在最大允许值,就能使电动机以最大的恒加速度或恒减速度运行,从而缩短了起、制动的时间。 在突加负载时,只要能迅速地使电动机的电磁转矩 e T 增加,就可以使动态速降减小,缩短速度的恢复时间。由此可见调速系统动态性能的好坏完全取决于在动态过程中电动机的转矩 是否能

很方便、很准确地被调节和控制。 由于结构上的特点,他励直流电动机的电磁转矩 T很容易控 e 制。其工作原理可用下图来表示。 在励磁绕组f中通以励磁电流 i则通过电刷及换相器流入 f 电枢绕组。由于电刷和换相器的作用,使得电枢绕组虽然在转动但它产生的电枢磁场在空间是固定不动的。因此可用一个等效的静止绕组来代替实际的电枢绕组。这个等效静止绕组的轴线与励磁绕组轴线垂直,绕组中通过电枢电流 i,产生的磁场与实际电枢绕组产 a 生的磁场相同,并且由于实际电枢绕组在旋转,因此等效静止绕组中有一感应电势 e,这样,就可以用下图的等效模型来代替实际 a 的他励直流电动机。 励磁绕组中通入的励磁电流产生主极磁通φ,电枢绕组电流 i与φ a 作用产生电磁转矩 T。无论电机处于稳态或动态,它产生的电磁转 e

转子磁场定向矢量控制与气隙磁场定向矢量控制的区别

1. 气隙磁场定向控制方案。气隙磁场的定向控制是将旋转坐标系的M轴定向于气隙磁场的方向,此时气隙磁场的T轴分量为零。如果保持气隙磁通M轴分量恒定,转矩直接和T轴电流成正比。因此,通过控制T轴电流,可以实现转矩的瞬时控制,从而达到控制电机的目的。 2. 定子磁场定向控制方案。定子磁场定向的控制方法,是将旋转坐标的M轴放在定子磁场方向上,此时,定子磁通的T轴分量为零。如果保持定子磁通恒定,转矩直接和T轴电流成正比,从而控制电机。定子磁场定向控制使定子方程大大简化,从而有利于定子磁通观测器的实现。然而此方案在进行磁通控制时,不论采用直接磁通闭环控制,还是采用间接磁通闭环控制,均须消除耦合项的影响。因此,需要设计一个解耦器,对电流进行解耦。 3. 转子磁场定向控制方案。转子磁场定向的控制方法是在磁场定向矢量控制方法中,将M,T坐标系放在同步旋转磁场上,将电机转子磁通作为旋转坐标系的M坐标轴。若忽略由反电动势引起的交叉祸合,只需检测出定子电流的M轴分量,就可以观测转子磁通幅值。当转子磁通恒定时,电磁转矩与定子电流的T轴分量成正比,通过控制定子电流的T轴分量就可以控制电磁转矩。因此称定子电流的M轴分量为励磁分量,定子电流的T轴分量为转矩分量。可由电压方程M轴分量控制转子磁通,T轴分量控制转矩,从而实现磁通和转矩的解耦控制。 下面对它们进行简要的总结和比较: 气隙磁场定向系统中磁通关系和转差关系中存在耦合,需要增加解耦器这使得它比转子磁通的控制方式要复杂,但具有一些状态能直接测量的优点,比如气隙磁通。同时电机磁通的饱和程度与气隙磁通一致,故基于气隙磁通的控制方式更适合于处理饱和效应。 定子磁场定向的矢量控制方案,在一般的调速范围内可利用定子方程作磁通观测器,非常易于实现,且不包括对温度变化敏感的转子参数,可达到相当好的动静态性能,同时控制系统结构也相对简单,然而在低速时,由定子电阻压降占端电压的大部分,致使反电动势测量误差较大,导致定子磁通观测不准,影响系统性能。定子磁场定向的矢量控制系统适用于大范围弱磁运行的情况。 转子磁场定向的控制方案,缺点是磁链闭环控制系统中转子磁通的检测精度受转子时问常数的影响较大,降低了系统性能。但它达到了完全的解耦控制,无需增加解耦器,并且不存在静态稳定性限制的条件,控制方式简单,具有较好动态性能和控制精度,故应用最为广泛。

基于转子磁场定向的异步电机矢量控制仿真研究解读

研究与开发 2008年第 3期 43 基于转子磁场定向的异步电机矢量控制仿真研究 陈世浩冯晓云李官军王利军 (西南交通大学电气工程学院,成都 610031 摘要文章根据转子磁场定向控制理论,建立了三电平逆变器异步电机矢量控制系统。通过 Matlab/Simulink仿真验证了本文的控制系统在动态响应过程中,电流稳定性好转速无波动,转矩响应快等优点。 关键词:转子磁场定向;异步电机;矢量控制 Research and Simulation on Rotor Field Oriented Control System of Inductive Motor Chen Shihao Feng Xiaoyun Li Guanjun Wang Lijun (School of Electrical Engineering Southwest Jiaotong University, Chengdu 610031 Abstract On the basis of the rotor flux oriented control theory, establish a conteol system on three-level inverter and inductive motor. It is proved by simulation using the Simulink of Matlab. The results prove that the control system has many advantages such as good stability of current and no wave ,fast response of torque. Key words:rotor flux-orientation; inductive motor; vector control 1 引言 异步电机是一个十分复杂的非线性控制对象, 对其进行转矩控制比较困难。基于转子磁链定向的矢量控制在磁链和转矩解耦上有较容易实现的形式。

Field-Oriented-Control 磁场定向控制

What is ‘Field Oriented Control’ and what good is it? Using brushless servo motors and drives in your next new product? You have probably seen the buzzwords: 'Trapezoidal', 'Sinusoidal', and 'Field Oriented Control'. You will need to understand what they mean so that you can make the right choice for your design. During the last decade or two, servomotors have evolved from largely brush types to brushless. This has been driven by lower maintenance and higher reliability of brushless motors. As brushless motors have become more prevalent during this period, the circuit and system techniques used to drive them have evolved as well. The variety of control schemes has lead to a similar variety of buzzwords that describe them. Most high performance servo systems employ an inner control loop that regulates torque. This inner torque loop will then be enclosed in outer velocity and position loops to attain the desired type of control. While the designs of the outer loops are largely independent of motor type, the design of the torque loop is inherently specific to the motor being controlled. Torque produced by a brush motor is fairly easy to control because the motor commutates itself. Torque is proportional to the dc current into the two terminals of the motor, irrespective of speed. Torque control can therefore be implemented by a P-I feedback loop which adjusts the voltage applied to the motor in order to minimize the error between requested and measured motor currents. Because brushless motors are not self-commutating, they are more complicated to control. Brushless motors have three windings, rather than two. The currents and voltages applied to the motor windings must be controlled independently and correctly as a function of rotor position in order to produce useful torque. The electronics required to drive brushless motors is therefore substantially more complex than that for brush motors.

感应电动机按定子磁场定向控制

感应电动机按定子磁场定向控制 Stator Flux Orientated Control of Induction Motors 阮 毅 张晓华 徐 静 朱 峰 陈伯时(上海大学机械工程与自动化学院 200072) Ruan Yi Zhang Xiaohua Xu Jing Zhu Feng Chen Boshi (Shanghai University 200072 China ) 摘要 在矢量控制和直接转矩控制的基础上,取长补短,提出一种新型的感应电动机按定子磁场定向控制的方法,采用定子电阻压降补偿和电流转矩分量的闭环控制,实现了定子磁链和电磁转矩的协调控制。实验结果表明,该方案完全可行,系统具有良好的静、动态性能。 关键词:感应电动机 定子磁场定向 转矩控制中图分类号:TM921151Abstract A new control strategy of induction motors with stator flux orientation that combines the advantages of both Vector Control and Direct Torque Control is presented.According to the dy 2namic model of induction motors ,stator flux and electromagnetic torque are controlled respectively.The main contribution is to control differential of stator flux by compensating voltage drop of stator re 2sistance.The conclusions of theoretical analysis and experimental research can be summarized as fol 2lows :①Rotor parameters are not appeared in the control law ,which enhances robustness of the sys 2tem ;②Continuous control is used to avoid torque ripple which is inevitable in bang 2bang control. K eyw ords Induction motor ,stator flux orientation ,torque control 国家自然科学基金资助项目(59877013)。 阮 毅 男,1955年生,工学博士,现为上海大学副教授,中国电工技术学会理事,主要从事电力电子及电力传动自动化、计算机控制等方面的研究工作。 张晓华 女,1977年生,上海大学硕士研究生,从事电力电子及电力传动自动化方面的研究工作。 1 引言 矢量控制和直接转矩控制是当今应用最为广泛 的两类高动态性能的交流调速系统,两类系统各有所长,但也同时存在不足之处。 矢量控制采用转子磁场定向的方法,实现定子电流的励磁分量与转矩分量的动态解耦,采用PI 连续调节方式,实现转矩与转子磁场的控制[1]。但其解耦性能取决于转子磁场的精确定向。由于转子磁链的观测或计算是在电动机模型的基础上进行的,因而转子磁场的定向受到电动机参数特别是易于变化的转子电阻的影响。 直接转矩控制根据转矩及定子磁链的偏差,分别采用砰砰控制的方法,根据定子磁链所在的扇区,直接产生PWM 驱动信号[2],系统结构简单, 对转子参数不敏感。但砰砰控制决定了转矩脉动不可避免,虽然增加电压综合矢量个数可以降低转矩脉动,但不能消除。 本文在两种系统的基础上,取长补短,提出一种新型的感应电动机按定子磁场定向的控制方法: (1)定子磁链采用连续的闭环控制,在补偿定子电阻压降的基础上直接控制定子磁链的变化率。  (2)转速控制采用与矢量控制相仿的三环结构,内环为定子电流转矩分量控制,实现了转矩电流的快速跟随,第二环是转矩闭环控制,用以抑制定子磁链对转矩的扰动,最外环为转速闭环。 这种控制方法的优点在于:按定子磁场定向克服了矢量控制对转子电阻的直接依赖性;采用了连续的控制方法克服了砰砰控制带来的转矩脉动。 第18卷第2期 电工技术学报 2003年4月

转子电阻未知时感应电动机间接磁场定向控制

2004年3月电工技术学报Vol.19 No.3 第19卷第3期TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY Mar. 2004 转子电阻未知时感应电动机 间接磁场定向控制  吴忠 摘要转子电阻准确已知是感应电动机间接磁场定向控制获得良好性能的关键 转子电阻却是时变的本文从转子磁链调节的稳态过程出发 电磁转矩之间的关系该估计器形式简单能极大改善感应电动机间接磁场定向控制对转子电阻变化的鲁棒性 上述估计算法是有效的 感应电动机间接磁场定向控制参数估计 中图分类号 Beijing University of Aeronautics and Astronautics Beijing 100083 China Induction motor, indirect field-orientated control, parameter estimation 1引言 为避免由转子磁链观测带来的诸多问题 不需转子磁链的状态信息 调试方便在感应电动机驱动与控制领域引起了广泛的关注[1~12] ???úμ??D ?????à 自文献[1]证明了感应电动机基于无源性的控制器(PBC)可以不需转子磁链观测以后 文献[3, 4]利用PBC方法实现了电磁转矩和转子磁链的跟踪控制 文献[10]还把PBC方法推广到感应电动机转子位置的跟踪控制中 从而可使电动机转速和转子磁链跟踪误差全局指数收敛 并与基于转子磁链观测的自适应控制方案作了对比分析 仔细观察现有的间接磁场定向控制方案即在设计中假设转子电阻等参数是准确已知的这种假设在电动机实际运行过程中是不成立的 并认为即便在转子电阻估 收稿日期 2003-06-03 改稿日期 2003-10-13 万方数据

基于磁场定向控制的全范围电压输出SVPWM策略

基于磁场定向控制的全范围电压输出SVPWM 策略 赵云,李叶松 (华中科技大学控制科学与工程系,湖北武汉430074) 摘要:提出一种基于磁场定向控制的SVP WM 过调制策略,实现了全范围电压的连续平滑输出。由于一般过调制方法改变了参考电压矢量的轨迹,影响磁场定向的准确性,使得输出转矩发生脉动,以输出电压最大化和转矩脉动最小化为目标,研究了改进的全范围电压输出SVP WM 策略。实验结果表明,提出的方法可有效提高电压利用率,拓宽电机的转速运行范围,加快动态响应速度。 关键词:空间电压矢量PWM ;磁场定向控制;过调制策略;最大电压利用率中图分类号:T P273 文献标识码:A Study on SVPWM Strategies for Full Range Operation Based on Field oriented Control ZH A O Y un,LI Y e song (D ep ar tment o f Co ntr ol Science and Eng ineer ing ,H uaz hong Univer sity of Science and T echnology ,W uhan 430074,H ubei,China) Abstract:A no vel o vermo dulation technique fo r SV PW M based o n field or iented contro l w as presented,by which co nt inuo us and smo oth transitio n can be realized in the full vo ltag e range.Due to the mo dificatio n of the reference voltage vector in t he g ener al ov ermodulation metho d,the field or ientat ion can t be guar anteed and tor que ripple is also intr oduced int o the field or iented co ntro l system.In or der to maximize the ut ilization ratio of the vo ltag e and minimize the tor que r ipple,an impr ov ed PWM modulation strat eg y for full range vo ltag e out put was proposed.Ex per iment r esults verify the feasibilit y of the proposed met ho d w hich enhances the o utput voltage o f the inv erter to ex pand the o per ating speed r ang e of the moto r and achieve faster dy namic r espo nse. Key words:space vector pulse w idt h modulation(SV PW M );field o riented contro l;o ver modulation strate g ies;max imum vo ltag e ut ilization 基金项目:科技重大专项(2009ZX04010-011) 作者简介:赵云(1985-),男,博士研究生,Email:guangyunzh ao@https://www.360docs.net/doc/2411091485.html, 1 引言 空间电压矢量PWM ,着眼于使电机获得圆形旋转磁链,将逆变器和电动机视为一个整体,通 过组合使用8种基本电压矢量,实现变压变频控制,由于其更高的直流母线电压利用率和较小的谐波输出,在高性能的磁场定向控制系统中得到广泛应用。 采用SVPWM 控制的电压型逆变器输出电压矢量基波幅值在线性调制区最大为U dc /3,而运用过调制技术最大可达2U dc / ,输出电压比线性调制时提高了10%,对于提高电机的带载能力、加快动态响应速度,特别是弱磁运行具有重要 意义。为实现全范围电压的连续输出,文献[1]将全电压范围分为3个区间:线性调制区、过调制区 、过调制区!,分别给出了各区间的电压矢量调制算法,文献[2]对此算法进行了详细推导,由于实现算法十分繁琐,为避免复杂的在线运算,预先将大量数据表格存储在EEPROM 中,采用在线查表方法实现了该算法,虽然输出电压最高达到6拍阶梯波,但算法精度不高,且没有考虑各调制区间的平滑切换问题。文献[3]将过调制区统一为一种控制模式,简化了算法实现,文献[4]综合了文献[2 3]过调制算法的优点,在过调制区 采用文献[2]的算法,在过调制区!采用文献[3]的算法,由于对电压矢量相位的修改不连续,文献 22 电气传动 2010年 第40卷 第10期EL ECT RIC DRI VE 2010 V ol.40 N o.10

相关文档
最新文档