重磅-八种经典线性规划例题最全总结(经典)

重磅-八种经典线性规划例题最全总结(经典)
重磅-八种经典线性规划例题最全总结(经典)

线性规划常见题型及解法

由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。

一、求线性目标函数的取值范围

例1、若G、P满足约束条件,则z=G+2P的取值范围是()

A、[2,6]

B、[2,5]

C、[3,6]

D、(3,5]

解:如图,作出可行域,作直线l:G+2P=0,将

l向右上方平移,过点A(2,0)时,有最小值

2,过点B(2,2)时,有最大值6,故选A

二、求可行域的面积

例2、不等式组表示的平面区域的面积为()

A、4

B、1

C、5

D、无穷大

解:如图,作出可行域,△ABC的面积即为所求,由梯形OMBC的面积减去梯形OMAC的面积即可,选B

三、求可行域中整点个数

例3、满足|G|+|P|≤2的点(G,P)中整点(横纵坐标都是整数)有()

A、9个

B、10个

C、13个

D、14个

解:|G|+|P|≤2等价于

作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选D

四、求线性目标函数中参数的取值范围

取得最小值的最优解有无数个,则a的值为

()

A 、-3

B 、3

C 、-1

D 、1

解:如图,作出可行域,作直线l :G+aP =0,要使目标函数z=G+aP(a>0)取得最小值的最优解有无数个,则将l 向右上方平移后与直线G+P =5重合,故a=1,选D

五、求非线性目标函数的最值

例5、已知G 、P 满足以下约束条件 ,则z=G 2+P 2的最大值和最小值分别是( )

A 、13,1

B 、13,2

C 、13,

D 、,

解:如图,作出可行域,G 2+P 2是点(G ,P )到原点

的距离的平方,故最大值为点A (2,3)到原点的距

离的平方,即|AO|2=13,最小值为原点到直线2G +P -2=0的距离的平方,即为,选C

六、求约束条件中参数的取值范围

例6、已知|2G -P +m|<3表示的平面区域包含点(0,0)和(-1,1),则m 的取值范围是 ( )

A 、(-3,6)

B 、(0,6)

C 、(0,3)

D 、(-3,3) 解:|2G -P +m|<3等价于

由右图可知,故0<m <3,选C

七、比值问题

当目标函数形如时,可把z 看作是动点与定点连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。 例已知变量G ,P 满足约束条件?????x -y +2≤0,x ≥1,x +y -7≤0,则y x 的取值范围是(). (A )[95,6](B )(-∞,95

]∪[6,+∞) (C )(-∞,3]∪[6,+∞)(D )[3,6]

解析y x

是可行域内的点M (G ,P )与原点O

(0,0)连线的斜率,当直线OM 过点(52,92

)时,y x 取得 最小值95;当直线OM 过点(1,6)时,y x

取得最大值6.答案A 八、线性规划应用

例1、某工厂利用两种燃料生产三种不同的产品、、,每消耗一吨燃料与产品、、有下列关系:

现知每吨燃料甲与燃料乙的价格之比为,现需要三种产品、、各50吨、63吨、65吨.问如何使用两种燃料,才能使该厂成本最低?

分析:由于该厂成本与两种燃料使用量有关,而产品、、又与这两种燃料有关,且这三种产品的产量也有限制,因此这是一道求线性目标函数在线性约束条件下的最小值问题,这类简单的线性规划问题一般都可以利用二元一次不等式求在可行域上的最优解.

解:设该厂使用燃料甲吨,燃料乙吨,甲每吨元,

则成本为.因此只须求的最小值即可.

又由题意可得、满足条件

作出不等式组所表示的平面区域(如图)

由得

由得

作直线,把直线向右上方平移至可行域中的点时,

∴最小成本为.

答:应用燃料甲吨,燃料乙吨,才能使成本最低.

说明:本题中燃料的使用不需要是整数吨,若有些实际应用问题中的解是整数解,又该如何来考虑呢?

例2、咖啡馆配制两种饮料,甲种饮料每杯含奶粉9克、咖啡4克、糖3克,乙种饮料每杯含奶粉4克、咖啡5克、糖10克.已知每天原料的使用限额为奶粉3600克、咖啡20GG 克、糖3000克.如果甲种饮料每杯能获利0.7

元,乙种饮料每杯能获利1.2元,每天在原料的使用限额内饮料能全部售出,每天应配制两种饮料各多少杯能获利最大?

分析:这是一道线性规划的应用题,求解的困难在于从实际问题中抽象出不等式组.只要能正确地抽象出不等式组,即可得到正确的答案.

解:设每天配制甲各饮料杯、乙种饮料杯可获得最大利润,利润总额为元.由条件知:.变量、满足

作出不等式组所表示的可行域(如图)

作直线,把直线向右上方平移至经过点的位置时,取最大值.

由方程组:

得点坐标.

答:应每天配制甲种饮料200杯,乙种饮料240杯方可获利最大.

高考真题练习

1.(20GG年浙江理7)若实数,满足不等式组且的最大值为9,则实数(A)(B)(C)1(D)2

解析:将最大值转化为P轴上的截距,将m等价为斜率的倒数,数形结合可知答案选C,本题主要考察了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题

2.(20GG年陕西理11)若G,P满足约束条件,目标函数仅在点(1,0)处取得最小值,则a的取值范围是w.w.w.k.s.5.u.c.o.mw.w.w.k.s.5.u.c.o.m

(A)(,2)(B)(,2)(C)(D)

答案:B解析:根据图像判断,目标函数需要和,平行,

由图像知函数a的取值范围是(,2)

3.(20GG年山东理12)设G,P满足约束条件,

若目标函数z=aG+bP(a>0,b>0)的值是最大值为12,

则的最小值为().

A.B.C.D.4

【解析】:不等式表示的平面区域如图所示阴影部分,当直线aG+bP=z(a>0,b>0)

过直线G-P+2=0与直线3G-P-6=0的交点(4,6)时,

目标函数z=aG+bP(a>0,b>0)取得最大12,

即4a+6b=12,即2a+3b=6,而=,故选A.

【命题立意】:本题综合地考查了线性规划问题和由基本不等式求函数的最值问题.要求能准确地画出不等式表示的平面区域,并且能够求得目标函数的最值,对于形如已知2a+3b=6,求的最小值常用乘积进而用基本不等式解答

4.(20GG年安徽理7)若不等式组所表示的平面区域被直线分为面积相等的两

部分,则的值是

(A)(B)(C)(D)高.考.资.源.网

[解析]:不等式表示的平面区域如图所示阴影部分△ABC

由得A(1,1),又B(0,4),C(0,)

∴△ABC=,设与的

交点为D,则由知,∴

∴选A。

5.(20GG年山东理12)设二元一次不等式组所表示的平面区域为,

使函数的图象过区域的的取

值范围是()

A.B.C.D.

解:C,区域是三条直线相交构成的三角形(如图)

显然,只需研究过、两种情形,且即

6.(20GG年安徽理13)设满足约束条件,若目标函数的最大值为8,

则的最小值为________。

【答案】4【解析】不等式表示的区域是一个四边形,4个顶点是

,易见目标函数在取最大值8,

所以,所以,在时是等号成立。所以的最小值为

4.

【规律总结】线性规划问题首先作出可行域,若为封闭区域(即几条直线围成的区域)则区域端点的值是目标函数取得最大或最小值,求出直线交点坐标代入得,要想求的最小值,显然要利用基本不等式.

7.(20GG年陕西理14)铁矿石和的含铁率,冶炼每万吨铁矿石的的排放量及每万

某冶炼厂至少要生产1.9(万吨)铁,若要求的排放量不超过(万吨),则购买铁矿石的最少费用为(百万元).

【解析】设铁矿石购买了万吨,铁矿石购买了万吨,购买铁矿石的费用为百万元,则由题设知,本题即求实数满足约束条件,即(G)时,的最小值.作不等式组(G)对应的平面区域,如图阴影部分所示.现让直线,即平移分析即知,当直线经过点时,取得最小值.又解方程组得点坐标为.故.

集合-基础知识点汇总与练习-复习版

集合知识点总结 一、集合的概念 教学目标:理解集合、子集的概念,能利用集合中元素的性质解决问 题,掌握集合问题的常规处理方法. 教学重点:集合中元素的3个性质,集合的3种表示方法,集合语言、集合思想的运用.: 一)主要知识: 1.集合、子集、空集的概念; 2.集合中元素的3个性质,集合的3 种表示方法; 3. 若有限集A有n个元素,则A的子集有2n个,真子集有2n 1,非空子集有2n 1个,非空真子集有2n 2个. 二、集合的运算 教学目标:理解交集、并集、全集、补集的概念,掌握集合的运算性 质,能利用数轴或文氏图进行集合的运算,进一步掌握 集合问题的常规处理方法. 教学重点:交集、并集、补集的求法,集合语言、集合思想的运用. 一)主要知识: 1. 交集、并集、全集、补集的概念; 2. AI B A A B,AUB A A B; 3. C U AI C U B C U (AUB),C U AUC U B C U(AI B). 二)主要方法: 1. 求交集、并集、补集,要充分发挥数轴或文氏图的作用;

2.含参数的问题,要有讨论的意识,分类讨论时要防止在空集上出 问题; 3.集合的化简是实施运算的前提,等价转化常是顺利解题的关键. 考点要点总结与归纳 一、集合有关概念 1. 集合的概念:能够确切指定的一些对象的全体。 2. 集合是由元素组成的 集合通常用大写字母A、B、C,…表示,元素常用小写字母a b、c, …表示。 3. 集合中元素的性质:确定性,互异性,无序性。 (1)确定性:一个元素要么属于这个集合,要么不属于这个集 合,绝无模棱两可的情况。如:世界上最高的山 (2)互异性:集合中的元素是互不相同的个体,相同的元素只能 出现一次。如:由HAPPY 的字母组成的集合{H,A,P,Y} ( 3)无 序性:集合中的元素在描述时没有固定的先后顺序。 女口:{a,b,c}和{a,c,b}是表示同一个集合 4. 元素与集合的关系 (1)元素a是集合A中的元素,记做a€ A,读作“ a属于集合A”; (2)元素a不是集合A中的元素,记做a?A,读作“a不属于集合A”。 5. 集合的表示方法:自然语言法, 列举法,描述法,图示法。 ( 1)自然语言法:用文字叙述的形式描述集合。如大于等于2 且小于等于8 的偶数

线性规划经典例题及详细解析

一、 已知线性约束条件,探求线性目标关系最值问题 1. 设变量x 、y 满足约束条件?? ???≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 。 二、 已知线性约束条件,探求非线性目标关系最值问题 2. 已知1,10,220x x y x y ≥??-+≤??--≤? 则22x y +的最小值就是 。 3. 已知变量x,y 满足约束条件+201-70x y x x y -≤??≥??+≤? ,则 y x 的取值范围就是( )、 A 、 [95,6] B 、(-∞,95 ]∪[6,+∞) C 、(-∞,3]∪[6,+∞) D 、 [3,6] 三、 研究线性规划中的整点最优解问题 4. 某公司招收男职员x 名,女职员y 名,x 与y 须满足约束条件?? ???≤≥+-≥-.112,932,22115x y x y x 则1010z x y =+的最大值 就是 。 四、 已知最优解成立条件,探求目标函数参数范围问题 5. 已知变量x ,y 满足约束条件1422x y x y ≤+≤??-≤-≤? 。若目标函数z ax y =+(其中0a >)仅在点(3,1)处取得最大值,则a 的取值范围为 。 6. 已知x 、y 满足以下约束条件5503x y x y x +≥??-+≤??≤? ,使z=x+a y (a >0) 取得最小值的最优解有无数个,则a 的值为( ) A. -3 B 、 3 C 、 -1 D 、 1 五、 求可行域的面积 7. 不等式组260302x y x y y +-≥??+-≤??≤? 表示的平面区域的面积为 ( ) A. 4 B 、 1 C 、 5 D 、 无穷大

线性规划典型例题

例1:生产计划问题 某工厂明年根据合同,每个季度末向销售公司提供产品,有关信息如下表。若当季生产的产品过多,季末有积余,则一个季度每积压一吨产品需支付存贮费O.2万元。现该厂考虑明年的最佳生产方案,使该厂在完成合同的情况下,全年的生产费用最低。试建立模型。 解: 法1 设每个季度分别生产x1,x2,x3,x4 则要满足每个季度的需求x4≥26 x1+ x2≥40 x1+ x2+ x3≥70 x1+ x2+ x3+ x4=80 考虑到每个季度的生产能力 0≤x1≤30 0≤x2≤40 0≤x3≤20 0≤x4≤10 每个季度的费用为:此季度生产费用+上季度储存费用 第一季度15.0x1 第二季度14 x2 0.2(x1-20) 第三季度15.3x3+0.2(x1+ x2-40) 第四季度14.8x4+0.2(x1+ x2+ x3-70)

工厂一年的费用即为这四个季度费用之和, 得目标函数;minf=15.6 x1+14.4 x2+15.5 x3+14.8 x4-26 s.t.x1+ x2≥40 x1+ x2+ x3≥70 x1+ x2+ x3+ x4=80 20≤x1≤30 0≤x2≤40 0≤x3≤20 0≤x4≤10。 法2:设第i季度生产而用于第j季度末交货的产品数量为xij吨 根据合同要求有: xll=20 x12+x22=20 x13+x23+x33=30 x14+x24+x34+x44=10 又根据每季度的生产能力有: xll+x12+x13+x14≤30 x22+x23+x24≤40 x33+x34≤20 x44≤10 第i季度生产的用于第j季度交货的每吨产品的费用cij=dj+0.2(j-i),于是,有线性规划模型。 minf=15.Oxll+15.2x12+15.4xl3+15.6xl4+14x22+14.2x23+14.4x24+15.3 x33+15.5x34+14.8x44 s.t. xll=20, x12+x22=20, x13+x23+x13=30, x14+x24+x34+x44=10, x1l+x12+x13+x14≤30, x22+x23+x24≤40, x33+x34≤20,

线性规划常见题型全集

绝密★启用前 2014-2015学年度???学校8月月考卷 试卷副标题 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、选择题(题型注释) 1.已知实数x ,y 满足002x y x y ≥?? ≥??+≤? ,则z =4x +y 的最大值为( ) A 、10 B 、8 C 、2 D 、0 【答案】B 【解析】 试题分析:画出可行域,根据图形可知,当目标函数经过A(2,0)点时,z =4x +y 取得最大值为8 考点:线性规划. 2.若不等式组0220x y x y y x y a -≥??+≤? ?≥??+≤?,表示的平面区域是一个三角形区域,则a 的取值范围是 ( ) A.43a ≥ B.01a <≤ C.413 a ≤≤ D.01a <≤或43a ≥ 【答案】D

【解析】根据 22 x y x y y -≥ ? ?+≤ ? ? ≥ ? ?? 画出平面区域(如图1所示),由于直线x y a +=斜率为1-,纵截距为a, 自直线x y a +=经过原点起,向上平移,当01 a <≤时, 22 x y x y y x y a -≥ ? ?+≤ ? ? ≥ ? ?+≤ ? 表示的平面区域是一个三角形区域(如图2所示);当 4 1 3 a <<时, 22 x y x y y x y a -≥ ? ?+≤ ? ? ≥ ? ?+≤ ? 表示的平面区域是一个四边形区域(如图3所示),当 4 3 a≥时, 22 x y x y y x y a -≥ ? ?+≤ ? ? ≥ ? ?+≤ ? 表示的平面区域是一个三角形区域(如图1所示),故选D. 图1 图2 图3 考点:平面区域与简单线性规划. 3.已知变量x,y满足约束条件 20 1 70 x y x x y -+≤, ? ? ≥, ? ?+-≤, ? 则 y x的取值范围是( ) A. 9[6] 5 ,B.9 (][6) 5 -∞,?,+∞C.(3][6) -∞,?,+∞D.(3,6]

集合经典例题总结

集合经典例题讲解 集合元素的“三性”及其应用 集合的特征是学好集合的基础,是解集合题的关键,它主要指集合元素的确定性、互异性和无序性,这些性质为我们提供了解题的依据,特别是元素的互异性,稍有不慎,就易出错. 例1 已知集合A={a ,a +b ,a +2b },B={a ,a q ,a 2q },其中a 0≠,A=B,求q 的值. 例2 设A={x∣2x +(b+2)x+b+1=0,b∈R },求A中所有元素之和. 例3 已知集合=A {2,3,2a +4a +2},B ={0,7,2a +4a -2,2-a },且A I B={3,7},求a 值. 分析: 集合易错题分析 1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解. 2.你会用补集的思想解决有关问题吗? 3.求不等式(方程)的解集,或求定义域(值域)时,你按要求写成集合的形式了吗? 1、忽略φ的存在: 例题1、已知A={x|121m x m +≤≤-},B={x|25x -≤≤},若A ?B ,求实数m 的取值范围. 2、分不清四种集合:{}()x y f x =、{}()y y f x =、{},)()x y y f x =(、{}()()x g x f x ≥的区别. 例题2、已知函数()x f y =,[]b a x ,∈,那么集合 ()()[]{}(){}2,,,,=∈=x y x b a x x f y y x I 中元素的个数为…………………………………………………………………………() (A )1(B )0(C )1或0(D )1或2 3、搞不清楚是否能取得边界值: 例题3、A={x|x<-2或x>10},B={x|x<1-m 或x>1+m}且B ?A ,求m 的范围. 例4、已知集合{}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P I 等于() A.(0,2),(1,1)B.{(0,2),(1,1)}C.{1,2}D. {}2≤y y 集合与方程 例1、已知{}φ=∈=+++=+R A R x x p x x A I ,,01)2(2,求实数p 的取值范围。 例2、已知集合(){}(){}20,01,02,2≤≤=+-==+-+=x y x y x B y mx x y x A 和,如果φ≠B A I ,求 实数a 的取值范围。 例3、已知集合()(){} 30)1()1(,,123,2=-+-=??????+=--=y a x a y x B a x y y x A ,若φ=B A I ,求实数a 的值。 集合学习中的错误种种 数学是一门严谨的学科,在集合学习中,由于对概念理解不清或考虑问题不全面等,稍不留心就会不知不觉地产生错误,本文归纳集合学习中的种种错误,认期帮助同学们避免此类错误的再次发生. 一、混淆集合中元素的形成 例 集合{}()|0A x y x y =+=,,{}()|2B x y x y =-=,,则A B =I 忽视空集的特殊性 例 已知{}|(1)10A x m x =-+=,{}2|230B x x x =--=,若A B ?,则m 的值为 没有弄清全集的含义

六种经典线性规划例题

线性规划常见题型及解法 求线性目标函数的取值范围 2 2 2 x y A D y 2 O x x=2 求可行域的面积 y y M 5 2 x y 2 y x y 2 x y 2 x y x (3,5] y =2 ( 13 例1 x+2y 时 6 的点 C 、 x , 个 y 6 y 3 2 x + y —3 = 0 C 、 5 A 、 4 B 、 1 D 、无穷大 () 0,将 有 最小值 故选A .B A --- 作出可行域如右图 点个数为13个,选D x + y =2 则z=x+2y 的取值范围是 () 旦y =2 0 0表示的平面区域的面积为 三、求可行域中整点个数 解:|x| + |y| <2等价于 解:如图,作出可行域,作直线I : I 向右上方平移,过点A ( 2,0 ) 2,过点B ( 2,2 )时,有最大值 [2,6] B 、[2 ,5] C 、[3,6] 解:如图,作出可行域,△ ABC 的面积即为所求,由梯形OMBC 的面积减去梯形OMAC 的 面积即可,选B 例 3、满足 |x| + |y| <2 A 、9 个 B 、10 个 由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性 目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。 (x 0,y 0) (x 0,y p 0) (xp 0,y 0) (xp 0,y p 0) 是正方形内部(包括边界),容易得到整 y)中整点(横纵坐标都是整数)有() D 、 14 个 2x 例2、不等式组x x 若x 、y 满足约束条件 y O C V —? x 2x + y —6= 0

线性规划经典例题

线性规划常见题型及解法 由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。 一、求线性目标函数的取值范围 例1、 若x 、y 满足约束条件222x y x y ≤?? ≤??+≥? ,则z=x+2y 的取值范围是 ( ) A 、[2,6] B 、[2,5] C 、[3,6] D 、(3,5] 解:如图,作出可行域,作直线l :x+2y =0,将 l 向右上方平移,过点A (2,0)时,有最小值 2,过点B (2,2)时,有最大值6,故选A 二、求可行域的面积 例2、不等式组260302x y x y y +-≥?? +-≤??≤? 表示的平面区域的面积为 ( ) A 、4 B 、1 C 、5 D 、无穷大 解:如图,作出可行域,△ABC 的面积即为所求,由梯形OMBC 的面积减去梯形OMAC 的面积即可,选B 三、求可行域中整点个数 例3、满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数)有( ) A 、9个 B 、10个 C 、13个 D 、14个 x y O 2 2 x=2 y =2 x + y =2 B A 2x + y – 6= 0 = 5 x +y – 3 = 0 O y x A B C M y =2

解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0) 2 (0,0)x y x y x y x y x y x y x y x y +≤≥≥??-≤≥? ? -+≤≥??--≤? 作出可行域如右图,是正方形内部(包括边界),容易得到整 点个数为13个,选D 四、求线性目标函数中参数的取值范围 例4、已知x 、y 满足以下约束条件5503x y x y x +≥?? -+≤??≤? ,使z=x+ay(a>0) 取得最小值的最优解有无数个,则a 的值为 ( ) A 、-3 B 、3 C 、-1 D 、1 解:如图,作出可行域,作直线l :x+ay =0,要使目标函数z=x+ay(a>0)取得最小值的最优解 有无数个,则将l 向右上方平移后与直线x+y =5重合,故a=1,选D 五、求非线性目标函数的最值 例5、已知x 、y 满足以下约束条件220240330x y x y x y +-≥?? -+≥??--≤? ,则z=x 2+y 2的最大值和最小值分别是( ) A 、13,1 B 、13,2 C 、13,4 5 D 、 5 解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x +y -2=0的距离的平方,即为 4 5 ,选C 六、求约束条件中参数的取值范围 例6、已知|2x -y +m|<3表示的平面区域包含点 (0,0)和(- 1,1),则m 的取值范围是 ( ) A 、(-3,6) B 、(0,6) C 、(0,3) D 、(-3,3)

线性规划知识复习、题型总结

线性规划 基础知识: 一. 1.点P(x 0,y 0)在直线Ax+By+C=0上,则点P 坐标适合方程,即Ax 0+By 0+C=0 2. 点P(x 0,y 0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax 0+By 0+C>0;当B<0时,Ax 0+By 0+C<0 3. 点P(x 0,y 0)在直线Ax+By+C=0下方(左下或右下),当B>0时,Ax 0+By 0+C<0;当B<0时,Ax 0+By 0+C>0 注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同, (2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反, 即:1.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的同侧,则有(Ax 1+By 1+C )( Ax 2+By 2+C)>0 2.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的两侧,则有(Ax 1+By 1+C )( Ax 2+By 2+C)<0 二.二元一次不等式表示平面区域: ①二元一次不等式Ax+By+C>0(或<0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域. 不. 包括边界; ②二元一次不等式Ax+By+C ≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界; 注意:作图时,不包括边界画成虚线;包括边界画成实线. 三、判断二元一次不等式表示哪一侧平面区域的方法: 方法一:取特殊点检验; “直线定界、特殊点定域 原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断 Ax+By+C>0表示直线哪一侧的平面区域.特殊地, 当C ≠0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。 方法二:利用规律: 1.Ax+By+C>0,当B>0时表示直线Ax+By+C=0上方(左上或右上), 当B<0时表示直线Ax+By+C=0下方(左下或右下); 2.Ax+By+C<0,当B>0时表示直线Ax+By+C=0下方(左下或右下) 当B<0时表示直线Ax+By+C=0上方(左上或右上)。 四、线性规划的有关概念: ①线性约束条件: ②线性目标函数: ③线性规划问题: ④可行解、可行域和最优解: 典型例题一--------画区域 1. 用不等式表示以)4,1(A ,)0,3(-B ,)2,2(--C 为顶点的三角形内部的平面区域. 分析:首先要将三点中的任意两点所确定的直线方程写出,然后结合图形考虑三角形内部区域应怎样表示。 解:直线AB 的斜率为:1) 3(104=---=AB k ,其方程为3+=x y . 可求得直线BC 的方程为62--=x y .直线AC 的方程为22+=x y . ABC ?的内部在不等式03>+-y x 所表示平面区域内,同时在不等式062>++y x 所表示的平面区域内,同时又在不等式022<+-y x 所表示的平面区域内(如图). 所以已知三角形内部的平面区域可由不等式组?? ???<+->++>+-022, 062,03y x y x y x 表示. 说明:用不等式组可以用来平面内的一定区域,注意三角形区域内部不包括边界线. 2 画出332≤<-y x 表示的区域,并求所有的正整数解),(y x . 解:原不等式等价于???≤->.3,32y x y 而求正整数解则意味着x ,y 还有限制条件,即求??? ??? ?≤->∈∈>>.3, 32, ,,0,0y x y z y z x y x .

集合典型题总结和方法分析

集合类型题 一、有关参数类集合关系问题 1、已知集合{x A =|}0232=+-x ax 至多有一个元素,则a 的取值范围 ;若至少有一个元素,则a 的取值范围 。 2、(2013山西运城模拟题) (1)已知A={x |-30,R x ∈},B={x|02=+-p x x },且A B ?,求实数p 的范围。 7、已知集合A={x|0232≤+-x x },B={x|1≤x ≤a },且≠B ?。 (1)若B A ?,求a 的取值范围; (2)若A B ?,求a 的取值范围。 8、集合A={x|-2≤x ≤5},B={x|m+1≤x ≤2m-1}. (1)若A B ?,求实数m 的取值范围; (2)当Z x ∈时,求A 的非空真子集个数; (3)当R x ∈时,不存在元素x 使A x ∈,且B x ∈同时成立,求实数m 的取值范围。 9、已知{}33,)1(,222++++=a a a a A ,若A ∈1,求实数a 的值. 10、已知集合{}{} 012,082222=-++==--=a ax x x B x x x A ,当A B ?时,求实数a 的取值范围. 二、有关参数类集合基本运算问题 1、(2013年浙江温州统考)已知集合A={x|-2≤x ≤5},集合B={x|m+1≤x ≤2m-1},

八种 经典线性规划例题(超实用)

线性规划常见题型及解法 由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。 一、求线性目标函数的取值范围 例1、若x、y满足约束条件 2 2 2 x y x y ≤ ? ? ≤ ? ?+≥ ? ,则z=x+2y的取值范围是() A、[2,6] B、[2,5] C、[3,6] D、(3,5] 解:如图,作出可行域,作直线l:x+2y=0,将l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选 A 二、求可行域的面积 例2、不等式组 260 30 2 x y x y y +-≥ ? ? +-≤ ? ?≤ ? 表示的平面区域的面积为() A、4 B、1 C、5 D、无穷大 解:如图,作出可行域,△ABC的面积即为所求,由梯形OMBC 的面积减去梯形OMAC的面积即可,选 B 三、求可行域中整点个数 例3、满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有() A、9个 B、10个 C、13个 D、14个 解:|x|+|y|≤2等价于 2(0,0) 2(0,0) 2(0,0) 2(0,0) x y x y x y x y x y x y x y x y +≤≥≥ ? ?-≤≥ ? ? -+≤≥? ?--≤ ? 作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D

四、求线性目标函数中参数的取值范围 例4、已知x、y满足以下约束条件 5 50 3 x y x y x +≥ ? ? -+≤ ? ?≤ ? ,使z=x+ay(a>0) 取得最小值的最优解有无数个,则a的值为() A、-3 B、3 C、-1 D、1 解:如图,作出可行域,作直线l:x+ay=0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l向右上方平移后与直线x+y=5重合,故a=1,选 D 五、求非线性目标函数的最值 例5、已知x、y满足以下约束条件 220 240 330 x y x y x y +-≥ ? ? -+≥ ? ?--≤ ? ,则z=x2+y2的最大值和最小值分别是() A、13,1 B、13,2 C、13,4 5 D 、 解:如图,作出可行域,x2+y2是点(x,y)到原点的距离的平方,故最大值为点A(2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x+y-2=0的距离的平方, 即为4 5 ,选 C 六、求约束条件中参数的取值范围 例6、已知|2x-y+m|<3表示的平面区域包含点(0,0)和(-1,1),则m的取值范围是() A、(-3,6) B、(0,6) C、(0,3) D、(-3,3) 解:|2x-y+m|<3等价于 230 230 x y m x y m -++>? ? -+- ? ? -< ? ,故0<m<3,选 C

线性规划题型总结

线性规划题型总结 1. “截距”型考题 在线性约束条件下,求形如(,) =+∈的线性目标函数的最值问题,通常转 z ax by a b R 化为求直线在y轴上的截距的取值. 结合图形易知,目标函数的最值一般在可行 域的顶点处取得.掌握此规律可以有效避免因画图太草而造成的视觉误差. 1.(2017天津)设变量x,y满足约束条件,则目标函数z=x+y的最大值为()A.B.1 C.D.3 答案:D 解:变量x,y满足约束条件的可行域如图: 目标函数z=x+y结果可行域的A点时,目标函数取得最大值,由可得A(0,3),目标函数z=x+y的最大值为:3. 2.(2017新课标Ⅲ)若x,y满足约束条件,则 z=3x﹣4y的最小值为. 答案:﹣1. 解:由z=3x﹣4y,得y=x﹣,作出不等式对应的可行域(阴影部分), 平移直线y=x﹣,由平移可知当直线y=x﹣, 经过点B(1,1)时,直线y=x﹣的截距最大,此时z取得最小值, 将B的坐标代入z=3x﹣4y=3﹣4=﹣1,

即目标函数z=3x﹣4y的最小值为﹣1. 3.(2017浙江)若x、y满足约束条件,则z=x+2y的取值范围是()A.[0,6] B.[0,4] C.[6,+∞)D.[4,+∞) 答案:D. 解:x、y满足约束条件,表示的可行域如图: 目标函数z=x+2y经过C点时,函数取得最小值, 由解得C(2,1), 目标函数的最小值为:4 目标函数的范围是[4,+∞). 4.(2016河南二模)已知x,y∈R,且满足,则z=|x+2y|的最大值为() A.10 B.8 C.6 D.3 答案:C. 解:作出不等式组,对应的平面区域如图: (阴影部分) 由z=|x+2y|, 平移直线y=﹣x+z, 由图象可知当直线y=﹣x﹣z经过点A时,z取得最大 值,

高中数学必修一集合经典题型总结(高分必备)

慧诚教育2017年秋季高中数学讲义 必修一第一章复习 知识点一集合的概念 1.集合 一般地,把一些能够________________对象看成一个整体,就说这个整体是由这些对象________构成的集合(或集),通常用大写拉丁字母A,B,C,…来表示. 2.元素 构成集合的____________叫做这个集合的元素,通常用小写拉丁字母a,b,c,…来表示. 3.空集 不含任何元素的集合叫做空集,记为?. 知识点二集合与元素的关系 1.属于 如果a是集合A的元素,就说a________集合A,记作a________A. 2.不属于 如果a不是集合A中的元素,就说a________集合A,记作a________A. 知识点三集合的特性及分类 1.集合元素的特性 ________、________、________. 2.集合的分类 (1)有限集:含有________元素的集合. (2)无限集:含有________元素的集合. 3.常用数集及符号表示 名称非负整数集(自然数集)整数集实数集 符号N N*或N+Z Q R 知识点四集合的表示方法 1.列举法 把集合的元素________________,并用花括号“{}”括起来表示集合的方法叫做列举法.

2.描述法 用集合所含元素的________表示集合的方法称为描述法.知识点五集合与集合的关系 1.子集与真子集 定义符号语言图形语言(Venn图) 子集如果集合A中的________元素 都是集合B中的元素,我们就 说这两个集合有包含关系,称 集合A为集合B的子集 ________(或 ________) 真子集如果集合A?B,但存在元素 ________,且________,我们 称集合A是集合B的真子集 ________(或 ________) 2.子集的性质 (1)规定:空集是____________的子集,也就是说,对任意集合A,都有________. (2)任何一个集合A都是它本身的子集,即________. (3)如果A?B,B?C,则________. (4)如果A?B,B?C,则________. 3.集合相等 定义符号语言图形图言(Venn图) 集合相等如果集合A是集合B的子集 (A?B),且 ________________,此时, 集合A与集合B中的元素是 一样的,因此,集合A与集 合B相等 A=B 4.集合相等的性质 如果A?B,B?A,则A=B;反之,________________________.

高中数学线性规划经典题型

高考线性规划归类解析 一、平面区域和约束条件对应关系。 例1、已知双曲线224x y -=的两条渐近线与直线3x =围成一个三角形区域,表示该区域的不等式组是() (A)0003x y x y x -≥??+≥??≤≤? (B)0003x y x y x -≥?? +≤??≤≤? (C) 003x y x y x -≤?? +≤??≤≤? (D) 0003x y x y x -≤?? +≥??≤≤? 解析:双曲线224x y -=的两条渐近线方程为y x =±,与直线3x =围 成一个三角形区域(如图4所示)时有0 003x y x y x -≥?? +≥??≤≤? 。 点评:本题考查双曲线的渐近线方程以及线性规划问题。验证法或排除法是最效的方法。 例2:在平面直角坐标系中,不等式组20 200x y x y y +-≤??-+≥??≥? 表示的平面区域的面积是() (A)42 (B)4 (C) 22 (D)2 解析:如图6,作出可行域,易知不等式组20 200x y x y y +-≤??-+≥??≥? 表示的平面区域是一个三角形。容 易求三角形的三个顶点坐标为A(0,2),B(2,0),C(-2,0).于是三角形的面积为: 11 ||||42 4.22 S BC AO =?=??=从而选B。 点评:有关平面区域的面积问题,首先作出可行域,探求平面区域图形的性质;其次利用面积公式整体或部分求解是关键。 二、已知线性约束条件,探求线性截距——加减的形式(非线性距离——平方的形式,斜率——商的形式)目标关系最值问题(重点) 例3、设变量x 、y 满足约束条件?? ? ??≥+-≥-≤-1122y x y x y x ,则 ①y x 32+的最大值为 。(截距) 解析:如图1,画出可行域,得在直线 2x-y=2与直线x-y=-1 的交点A(3,4)处,目标函数z 最大值为18 点评:本题主要考查线性规划问题,由线性约束条件画出可行域,然后求出目标函数的最大值.,是一道较为简单的送分题。数形结合是数学思想的重要手段之一。 ②则2 2 x y +的最小值是 . ③1y x =+的取值范围是 . 图1

线性规划常见题型大全

绝密★启用前 2014-2015学年度学校8月月考卷 试卷副标题 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、选择题(题型注释) 1.已知实数x ,y 满足002x y x y ≥?? ≥??+≤? ,则z =4x +y 的最大值为( ) A 、10 B 、8 C 、2 D 、0 【答案】B 【解析】 试题分析:画出可行域,根据图形可知,当目标函数经过A(2,0)点时,z =4x +y 取得最大值为8 考点:线性规划. 2.若不等式组 0220x y x y y x y a -≥??+≤? ?≥??+≤?,表示的平面区域是一个三角形区域,则a 的取值范围 是( ) A.43a ≥ B.01a <≤ C.413a ≤≤ D.01a <≤或4 3 a ≥

【解析】根据 22 x y x y y -≥ ? ?+≤ ? ? ≥ ? ?? 画出平面区域(如图1所示),由于直线x y a +=斜率为1 -,纵截距为a, 自直线x y a +=经过原点起,向上平移,当01 a <≤时, 22 x y x y y x y a -≥ ? ?+≤ ? ? ≥ ? ?+≤ ? 表示的平面区域是一个三角形区域(如图2所示);当 4 1 3 a <<时, 22 x y x y y x y a -≥ ? ?+≤ ? ? ≥ ? ?+≤ ? 表示的平面区域是一个四边形区域(如图3所示),当 4 3 a≥时, 22 x y x y y x y a -≥ ? ?+≤ ? ? ≥ ? ?+≤ ? 表示的平面区域是一个三角形区域(如图1所示),故选D. 图1 图2 图3 考点:平面区域与简单线性规划. 3.已知变量x,y满足约束条件 20 1 70 x y x x y -+≤, ? ? ≥, ? ?+-≤, ? 则 y x的取值范围是( ) A. 9[6] 5 , B.9 (][6) 5 -∞,?,+∞ C.(3][6) -∞,?,+∞ D.(3,6]

线性规划经典例题及详细解析

1 / 6 一、 已知线性约束条件,探求线性目标关系最值问题 1. 设变量x 、y 满足约束条件?? ? ??≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 。 二、 已知线性约束条件,探求非线性目标关系最值问题 2. 已知1,10,220x x y x y ≥??-+≤??--≤? 则22 x y +的最小值是 。 3. 已知变量x ,y 满足约束条件+201-70x y x x y -≤?? ≥??+≤? ,则 错误! 的取值范围是( )。 A 。 [错误!,6] B.(-∞,错误!]∪[6,+∞) C.(-∞,3]∪[6,+∞) D 。 [3,6] 三、 研究线性规划中的整点最优解问题 4. 某公司招收男职员x 名,女职员y 名,x 和y 须满足约束条件?? ? ??≤≥+-≥-.112,932,22115x y x y x 则1010z x y =+的最大 值是 。 四、 已知最优解成立条件,探求目标函数参数范围问题 5. 已知变量x ,y 满足约束条件14 22x y x y ≤+≤?? -≤-≤? 。若目标函数z ax y =+(其中0a >)仅在点(3,1)处 取得最大值,则a 的取值范围为 。 6. 已知x 、y 满足以下约束条件5503x y x y x +≥?? -+≤??≤? ,使z=x+a y (a >0) 取得最小值的最优解有无数个,则a 的 值为( ) A. -3 B. 3 C 。 -1 D. 1 五、 求可行域的面积 7. 不等式组260302x y x y y +-≥?? +-≤??≤? 表示的平面区域的面积为 ( ) A. 4 B. 1 C. 5 D 。 无穷大

高考数学线性规划题型总结

2010年高考线性规划归类解析 线性规划问题是解析几何的重点,每年高考必有一道小题。 一、已知线性约束条件,探求线性目标关系最值问题 例1、设变量x 、y 满足约束条件?? ???≥+-≥-≤-112 2y x y x y x ,则y x z 32+=的最大值为 。 解析:如图1,画出可行域,得在直线2x-y=2与直线x-y=-1 的交点A(3,4)处,目标函数z 最大值为18 点评:本题主要考查线性规划问题,由线性约束条件画出可 行域,然后求出目标函数的最大值.,是一道较为简单的送分 题。数形结合是数学思想的重要手段之一。 二、已知线性约束条件,探求非线性目标关系最值问题 例2、已知1, 10,220x x y x y ≥??-+≤??--≤?则22x y +的最小值是 . 解析:如图2,只要画出满足约束条件的可行域,而22x y +表示 可行域内一点到原点的距离的平方。由图易知A (1,2)是满足条 件的最优解。22x y +的最小值是为5。 点评:本题属非线性规划最优解问题。求解关键是在挖掘目标关 系几何意义的前提下,作出可行域,寻求最优解。 三、约束条件设计参数形式,考查目标函数最值范围问题。 例3、在约束条件00 24x y y x s y x ≥??≥?? +≤??+≤?下,当35s ≤≤时,目标函数 32z x y =+的最大值的变化范围是() A.[6,15] B. [7,15] C. [6,8] D. [7,8] 解析:画出可行域如图3所示,当34s ≤<时, 目标函数 32z x y =+在(4,24)B s s --处取得最大值, 即 max 3(4)2(24)4[7,8)z s s s =-+-=+∈;当45s ≤≤时, 目标函数 32z x y =+在点(0,4)E 处取得最大值,即max 30248z =?+?=,故[7,8]z ∈,从而选D; 点评:本题设计有新意,作出可行域,寻求最优解条件,然后转化为目标函数Z 关于S 的函数关系是求解的关键。 四、已知平面区域,逆向考查约束条件。 例4、已知双曲线224x y -=的两条渐近线与直线3x =围成一个三角形 区域,表示该区域的不等式组是() (A)0003x y x y x -≥??+≥??≤≤? (B)0003x y x y x -≥??+≤??≤≤? (C) 0 003x y x y x -≤??+≤??≤≤? (D) 0003x y x y x -≤??+≥??≤≤? 解析:双曲线224x y -=的两条渐近线方程为y x =±,与直线3x = 围 图 2 图1 C

高一数学集合经典题型归纳总结

高一数学必修1各章知识点总结 第一章集合与函数概念 一、集合有关概念 1.集合的含义 2.集合的中元素的三个特性: (1)元素的确定性如:世界上最高的山 (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y} (3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合 总结:元素的互异性是参考点,常常在求出值的时候必须代回集合察看是否满足该集合中元素是否有重复现象,从而决定值的取舍。 元素与集合之间的关系:属于-- 不属于-- 常有集合N Z R Q 加星号或者+号表示对应集合的正的集合 3.集合的表示:{ …} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰 洋} (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 注意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集N*或N+ 整数集Z 有理数集Q 实数集R 1)列举法:{a,b,c……} 2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x∈R| x-3>2} ,{x| x-3>2} 3)语言描述法:例:{不是直角三角形的三角形} 4)Venn图:通常元素是很具体的值的时候,或者在考察抽象集合之间的关系的时候,我们常常考虑用venn图来表示。 4、集合的分类: (1)有限集含有有限个元素的集合 (2)无限集含有无限个元素的集合 (3)空集不含任何元素的集合,空集在集合这个章节中非常重要,特别 是在集合之间的关系的题中经常出现,很容易考虑掉空集。例:{x|x2= -5} 二、集合间的基本关系 1.“包含”关系—子集 A?有两种可能(1)A是B的一部分,;(2)A与B是同一集合。注意:B 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A?/B或B?/A 2.“相等”关系:A=B (5≥5,且5≤5,则5=5)

线性规划的常见题型及其解法(教师版,题型全,归纳好)

线性规划问题是高考的重点,而线性规划问题具有代数和几何的双重形式,多与函数、平面向量、数列、三角、概率、解析几何等问题交叉渗透,自然地融合在一起,使数学问题的解答变得更加新颖别致. 归纳起来常见的命题探究角度有: 1.求线性目标函数的最值. 2.求非线性目标函数的最值. 3.求线性规划中的参数. 4.线性规划的实际应用. 本节主要讲解线性规划的常见基础类题型. 【母题一】已知变量x ,y 满足约束条件???? ? x +y ≥3,x -y ≥-1, 2x -y ≤3,则目标函数z =2x +3y 的取值范围为( ) A .[7,23] B .[8,23] C .[7,8] D .[7,25] 求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求 直线的截距z b 的最值,间接求出z 的最值. 【解析】画出不等式组???? ? x +y ≥3,x -y ≥-1, 2x -y ≤3, 表示的平面区域如图中阴影部分所示, 由目标函数z =2x +3y 得y =-23x +z 3,平移直线y =-2 3 x 知在点B 处目标函数取到最小值,解方程组 ????? x +y =3,2x -y =3,得????? x =2, y =1,所以B (2,1),z min =2×2+3×1=7,在点A 处目标函数取到最大值,解方程组????? x -y =-1,2x -y =3,得????? x =4,y =5, 所以A (4,5),z max =2×4+3×5=23. 【答案】A

【母题二】变量x ,y 满足???? ? x -4y +3≤0,3x +5y -25≤0, x ≥1, (1)设z =y 2x -1,求z 的最小值; (2)设z =x 2+y 2,求z 的取值范围; (3)设z =x 2+y 2+6x -4y +13,求z 的取值范围. 点(x ,y )在不等式组表示的平面区域内,y 2x -1=12·y -0 ??? ? x -12表示点(x ,y )和????12,0连线的斜率;x 2+y 2表示点(x ,y )和原点距离的平方;x 2+y 2+6x -4y +13=(x +3)2+(y -2)2表示点(x ,y )和点(-3,2)的距离的平方. 【解析】(1)由约束条件???? ? x -4y +3≤0,3x +5y -25≤0, x ≥1, 作出(x ,y )的可行域如图所示. 由 ????? x =1,3x +5y -25=0,解得A ????1,22 5. 由????? x =1, x -4y +3=0,解得C (1,1). 由? ???? x -4y +3=0,3x +5y -25=0,解得B (5,2). ∵z = y 2x -1 =y -0x -12 ×12 ∴z 的值即是可行域中的点与????12,0连线的斜率,观察图形可知z min =2-05- 12×12=29 . (2)z =x 2+y 2的几何意义是可行域上的点到原点O 的距离的平方. 结合图形可知,可行域上的点到原点的距离中, d min =|OC |=2,d max =|OB |=29. ∴2≤z ≤29. (3)z =x 2+y 2+6x -4y +13=(x +3)2+(y -2)2的几何意义是: 可行域上的点到点(-3,2)的距离的平方. 结合图形可知,可行域上的点到(-3,2)的距离中, d min =1-(-3)=4, d max =(-3-5)2+(2-2)2=8 ∴16≤z ≤64.

相关文档
最新文档