地面粗糙度等级及其对风速的影响

地面粗糙度等级及其对风速的影响
地面粗糙度等级及其对风速的影响

地面粗糙度等级及其对风速的影响

空气在流动的过程中不仅受到气压梯度力和地转偏向力的作用,而且在离地面公里的近地面大气层里,它还受到地面障碍物的影响,气象学上将公里以下的气层称为摩擦层。

在摩擦层里,空气经过粗糙不平的地表面,受到摩擦力的作用,空气流动的速度,也就是风速会越来越小。由于地表粗糙程度不一,作用于空气的摩擦力的大小也就不同,风速减小的程度也就不同,地面粗糙度越大,作用于空气的摩擦力也就越大,相应的风速减小的也就越多。

在风力发电机以及建筑学等领域对地面粗糙度进行了分类,总共分为A、B、C、D四类,各类对应的地表状况如下:

A类指近海海面、海岛、海岸、湖岸及沙漠地区;

B类指田野、乡村、丛林、丘陵以及房屋比较稀疏的中小城市郊区;

C类指有密集建筑群的中等城市市区;

D类指有密集建筑群但房屋较高的大城市市区。

图1 A类图2 B类

图3 C类图4 D类

为了能对地面粗糙度进行量化分析,通常使用粗糙度长度(表征完全湍流中表面粗糙程度所用的特征长度参数,单位为:m)Z0对地面粗糙度进行度

量,其值分布于0-2m之间。表1中列出了地面粗糙度等级值对应的粗糙度长度值,以及能源指数和地表特征。

表1:地面粗糙度等级及粗糙度长度(来源于德国风能协会)

在确定某地区的地面粗糙度类别时,若无实测资料,建筑学上可按下述原则近似,该原则同样适用于风力发电机领域。

1. 以拟建房屋为中心、2km为半径的迎风半圆影响范围内的房屋高度和密集度来区分粗糙度类别,风向原则上应以该地区最大风的风向为准,但也可取其主导风向;

2. 以半圆影响范围内建筑物的平均高度来划分地面粗糙类别。当平均高度不大于9m时为B类;当平均高度大于9m但不大于18m时为C类;当平均高度大于18m时为D类;

3. 影响范围内不同高度的面域可按下述原则确定,即每座建筑物向外延伸距离等于其高度的面域内均为该高度,当不同高度的面域相交时,交叠部分的高度取大者;

4. 平均高度取各面域面积为权数计算。

地面粗糙度对风速的影响范围如下图所示。

图5 地面粗糙度对风速的影响范围

图片版权声明:图片来源于互联网,版权归原作者所有。

参考文献:

50009—2001。

地表粗糙度的常用计算方法及其在风蚀研究中的应用

地表粗糙度的常用计算方法及其在风蚀研究中的应用 2.1 粗糙度概念的推导 牛顿摩擦定律描述流体层流运动,粘性应力τ与垂直速度梯度成正比,即: dy du μτ= (2.1) 式中μ为动力黏性系数。流动方式为湍流时,包括粘性力以及由于界面粗糙元的阻碍作用而产生的切应力,称为湍流剪应力;湍流剪应力通常比粘性应力大几个量级,因而对于湍流常忽略粘性应力而只考虑占主导的湍流应力的作用,湍流应力为: 2*u ρτ= (2.2) 对于固体表面的流体流动,Prandtl 通过量纲分析原理,给出另一种表达式,(2.1)式积分可得c y/u +=μτ。代入(2.2)并利用边界条件 0=y 、0=u 得 0=c ,于是有: ??? ??=v yu f u u ** (2.3) 其中,v 由v ρμ=定义,表示运动粘性系数;f 为v yu /*的普适函数。在流体运动的粘性底层(11/*≤v yu )上式满足νν/yu =)/yu (f **即层流运动的式(2.3);在距界面较远或摩阻速度较大处(80) /v yu (f *>),流体为充分发展的湍流时运动决定于摩阻速度*u 和高度y ,于是可得: y u C dy du *= (2.4) C 写作κ/1,并积分上式得到: c y u u +=ln 1*κ (2.5) 自然对数符号里的数值应是无量纲的,从量纲分析原理认为y 可由无量纲量或雷诺数来替代,例如用湍流雷诺数v yu /*代替,就成为满足层流运动的对数速度分布关系式:

1**ln 1c v yu u u +=νκ (2.6) 对于湍流,用粗糙元高度0y 、附面层厚度δ或管半径R 与高度y 之比来表示,就可得到如下关系式: 4*3*20 *ln 1ln 1ln 1c R y u u c y u u c y y u u +=+=+=κδ κκ (2.7) 基于这些发展了应用到各种植被覆盖地表和草方格等防沙工程及城市地表等粗糙面的关系式: )(,ln 1u u 50*H y c y d y ≥+-=κ (2.8) H 为植株或建筑群冠层高度。 粗糙度概念由Nikuradse J.(1932)的粗糙管流实验进行了验证:均匀沙粒按直径分级粘于管子内壁,然后通水测定内部流体的流速随高度的分布。实验结果显示,在湍流时(雷诺数e R 从40/*≈νyu 时开始)满足对数分布律。根据曲线分布和公式(6)可得4.0=κ或5.51=c 。从而可得常见的普适速度分布公式: )5.5lg 75.5(**+=u y u u (2.9) 2.2 空气动力学粗糙度主要的几种计算方法 在空气动力学粗糙度的计算方法有很多种,针对不同的条件选择适合的计算方法是十分重要的,常用的计算方法中有对数廓线法、质量守恒法、无因次化风速法、阻力法等等。 2.2.1 对数廓线拟合法 在计算空气动力学粗糙度的诸多方法中,尤其是在许多实际应用的计算中,最常用的是实测风速对数廓线的最小二乘拟合法,简称为对数廓线法,风速廓线方程为式(1.1),通过测得3个或3个以上高度的风速后,用最小二乘回归的拟合方式处理所测得风速数据,可得: z b a U z ln += (2.10)

各国表面粗糙度对照表

时代涂层测厚仪使用介绍 一、原理 磁性测厚原理:当测头与覆层接触时,测头和磁性金属基体构成一闭合磁路,由于非磁性覆盖层的存在,使磁路磁阻变化,通过测量其变化可计算覆盖层的厚度。 涡流测厚原理:利用高频交电流在线圈中产生一个电磁场,当测头与覆盖层接触时,金属基体上产生电涡流,并对测头中的线圈产生反馈作用,通过测量反馈作用的大小可导出覆盖层的厚度。 二、适用行业 1、电镀、喷涂:这个行业是使用我们仪器最多的,占每年销量相当大的比例,是我们主要用户群体,需要花大的精力去不断挖掘。 2、管道防腐:主要以石化方面的用户比较多,一般防腐层比较厚,TT260配F10探头的用户比较多。 3、铝型材:今年以来受国家实施强制标准,型材企业换发许可证的影响,该行业出现前所未有的好势头,主要测型材上面的氧化膜,据了解生产企业每少镀一微米,一吨型材“节约”150元,非常可观,因此国家强制要求配备包括涂层测厚仪在内的相关检测设备。此举也给我们带来了非常好的机会。这个机会也同样受到竞争对手的关注,他们最大限度的调低了价格,而且采取铺货等多种方式迅速在此行业展开攻势,针对于此唐总、石总也多次指示密切关注对手动向时世采取相应策略,宗旨是让利不让市场。希望分公司同仁也能切实利用好这次机会,充分发挥区域优势,使我们的产品更多进入该行业,也为今后在此行业的销售打下基础。另外,也可以扩大我们的产品在整个市场的影响。 4、钢结构:对于我们的产品这类企业也可以单独划为一个行业。涂层测厚仪在此行业也确实有很大的应用,包括铁塔等厂家最近购买信息也比较多。 5、印刷线路版、及丝网印刷等行业,这类企业相对来讲数特殊行业,购买量目前来看只是来自零星一些厂家, 8月份我们就有两家印刷企业购买。可以看出还是有需求的,需要我们不断做工作,挖掘信息资源,多发现一些新的销售机会。 三、各型号产品介绍: TT220:测量磁性金属上非磁性覆盖层的厚度。如钢、铁、非奥氏不锈钢上基体上的铝、铬、铜、珐琅、橡胶、油漆层的厚度。 TT230:测量非磁性基体上非导电层的厚度。如铜、铝、锌、锡基体上的珐琅、橡胶、油漆、铬、搪瓷、铝阳极氧化层的厚度。 TT240:测量非磁性基体上非导电层的厚度。如铜、铝、锌、锡基体上的珐琅、橡胶、油漆、铬、搪瓷、铝阳极氧化层的厚度。蹶 主要特点: 1、外型美观,且带有橡胶护套便于携带与现场操作; 2、存储数据多达300个测量值; 3、探头与主机的分离使操作稳定性增强,适用范围更广,特别是对于管道内壁,空间狭窄 的工件; 4、可以设定上下限,对界外测量值能自动报警,更大限度满足了用户需求; 5、可以配备通讯软件与PC机接口,便于用户对数据进行进一步的处理,仪器本身档次也 得到提高;

光洁度对照表

光洁度▽,▽▽,▽▽▽,▽▽▽▽是现在日本和台湾用的。 ▽▽▽▽对应Ra<0.2; ▽▽▽对应Ra=0.2~0.8; ▽▽对应Ra=1.6~6.3; ▽对应Ra=12.5~50。 要求达到▽▽▽▽的表面有:工作时承受较大交变应力作用的重要零件的表面;保证精确定心的锥体表面;液压传动用的孔表面;汽缸套的内表面;活塞销的外表面;仪器导轨面;阀的工作面。 什么加工机械能达到▽▽▽▽,要到达▽▽▽▽至少要研磨,精度更高的话要超级加工。研磨加工是应用较广的一种光整加工。加工后精度可达IT5级,表面粗糙度可达Ra0.1~0.00 6μm。既可加工金属材料,也可以加工非金属材料。研磨加工时,在研具和工件表面间存在分散的细粒度砂粒(磨料和研磨剂)在两者之间施加一定的压力,并使其产生复杂的相对运动,这样经过砂粒的磨削和研磨剂的化学、物理作用,在工件表面上去掉极薄的一层,获得很高的精度和较小的表面粗糙度。 研磨的方法按研磨剂的使用条件分以下三类: 1.干研磨研磨时只需在研具表面涂以少量的润滑附加剂。砂粒在研磨过程中基本固定在研具上,它的磨削作用以滑动磨削为主。这种方法生产率不高,但可达到很高的加工精度和较小的表面粗糙度值(Ra0.02~0.01μm)。 2.湿研磨在研磨过程中将研磨剂涂在研具上,用分散的砂粒进行研磨。研磨剂中除砂粒外还有煤油、机油、油酸、硬脂酸等物质。在研磨过程中,部分砂粒存在于研具与工件之间。此时砂粒以滚动磨削为主,生产率高,表面粗糙度Ra0.04~0.02μm,一般作粗加工用,但加工表面一般无光泽。 3.软磨粒研磨在研磨过程中,用氧化铬作磨料的研磨剂涂在研具的工作表面,由于磨料比研具和工件软,因此研磨过程中磨料悬浮于工件与研具之间,主要利用研磨剂与工件表面的化学作用,产生很软的一层氧化膜,凸点处的薄膜很容易被磨料磨去。此种方法能得到极细的表面粗糙度(Ra0.02~0.01μm)。 我们国家以前也用▽后面加数字表示光洁度(GB1031-1968)有14个等级▽14,▽13,▽12,▽11,▽10,▽9,▽8,▽7,▽6,▽5,▽4,▽3,▽2,▽1,与现在大家用的粗糙度对应(GB1031-1983),*.*,0.012,0.025,0.05,0.10,0.2,0.4,0.8,1.6,3. 2,6.3,12.5,25,50,最后一个没有,请不要将此与日本标准混淆。

表面粗糙度和光洁度对照表

光洁度和粗糙度都是一回事,只不过一个老标准,一个是新标准。 零件加工后的表面粗糙度。过去称为表面光洁度。 在原有的国家标准中,表面光洁度分为14级,其代号为1、2……14。后的数字越大,表面光洁度就越高,即表面粗糙度数值越小。 表面粗糙度基本概念 经过机械加工的零件表面,总会出现一些宏观和微观上几何形状误差,零件表面上的微观几何形状误差,是由零件表面上一系列微小间距的峰谷所形成的,这些微小峰谷高低起伏的程度就叫零件的表面粗糙度。 表面粗糙度是衡量零件表面加工精度的一项重要指标,零件表面粗糙度的高低将影响到两配合零件有接触表面的摩擦、运动面的磨损、贴合面的密封、配面的工作精度、旋转件的疲劳强度、零件的美观等等,甚至对零件表面的抗腐蚀性都有影响。 1级 Ra值不大于\μm=100 表面状况=明显可见的刀痕 加工方法=粗车、镗、刨、钻 应用举例=粗加工的表面,如粗车、粗刨、切断等表面,用粗镗刀和粗砂轮等加工的表面,一般很少采用 2级 Ra值不大于\μm=25、50 表面状况=明显可见的刀痕 加工方法=粗车、镗、刨、钻 应用举例=粗加工后的表面,焊接前的焊缝、粗钻孔壁等 3级

Ra值不大于\μm=12.5 表面状况=可见刀痕 加工方法=粗车、刨、铣、钻 应用举例=一般非结合表面,如轴的端面、倒角、齿轮及皮带轮的侧面、键槽的非工作表面,减重孔眼表面 4级 Ra值不大于\μm=6.3 表面状况=可见加工痕迹 加工方法=车、镗、刨、钻、铣、锉、磨、粗铰、铣齿 应用举例=不重要零件的配合表面,如支柱、支架、外壳、衬套、轴、盖等的端面。紧固件的自由表面,紧固件通孔的表面,内、外花键的非定心表面,不作为计量基准的齿轮顶圈圆表面等 5级 Ra值不大于\μm=3.2 表面状况=微见加工痕迹 加工方法=车、镗、刨、铣、刮1~2点/cm^2、拉、磨、锉、滚压、铣齿 应用举例=和其他零件连接不形成配合的表面,如箱体、外壳、端盖等零件的端面。要求有定心及配合特性的固定支承面如定心的轴间,键和键槽的工作表面。不重要的紧固螺纹的表面。需要滚花或氧化处理的表面 6级 Ra值不大于\μm=1.6 表面状况=看不清加工痕迹 加工方法=车、镗、刨、铣、铰、拉、磨、滚压、刮1~2点/cm^2铣齿

各国粗糙度对照表

中美表面粗糙度对照表 中旧标 ( 光洁度 )中新标 ( 粗糙度)Ra美标(微米 ),Ra美国标准 ( 微英寸 ),Ra ▽4 6.3 8.00 3206.30 250 ▽ 5 3.2 5.00 200 4.00 1603.20125 ▽61.62.50 100 2.00 80 1.60 63 ▽ 70.81.25 50 1.00 40 0.8032 ▽ 80.40.63250.50 200.40 16

Ra: 轮廓算术平均偏差在取样长度内轮廓偏距绝对值的算术平均值?Rz:微观不平度十点高度在取样长度内五个最大的轮廓峰高的平均值与五个最大的轮廓谷深的平均值之和。 在设计零件时,表面粗糙度数值的选择,是根据零件在机器中的作用决定的。总的原则是: 在保证满足技术要求的前提下,选用较大的表面粗糙度数值。具体选择时,可以参考下述原则: (1)工作表面比非工作表面的粗糙度数值小。?(2)摩擦表面比不摩擦表面的粗糙度数值小。摩擦表面的摩擦速度愈高,所受的单位压力愈大,则应愈高;滚动磨擦表面比滑动磨擦表面要求粗糙度数值小。 (3)对间隙配合,配合间隙愈小,粗糙度数值应愈小;对过盈配合,为保证连接强度的牢固可靠,?载荷愈大,要求粗糙度数值愈小。一般情况间隙配合比过盈酝合粗糙度数值要小。?(4)配合表面的粗糙度应与其尺寸精度要求相当。配合性质相同时,零件尺寸愈小,则应粗糙度数值愈小;同一精度等级,小尺寸比大尺寸要粗糙度数值小,轴比孔要粗糙度数值小(特别是IT8~IT5的精度)。 (5)受周期性载荷的表面及可能会发生应力集中的内圆角、凹稽处粗糙度数值应较小。 一般零件只要标注Ra(轮廓算术平均偏差)就可以了,对于有密封要求的零件部位,通常须同时标注Ra(轮廓算术平均偏差)和Rz(微观不平度十点高度) 个人认为,通过切削加工的表面标注用Ra,通过抛光等加工方法得到的表面用Rz表示 两者的作用相近, 可相互转化.根据不同国家其使用情况不同. 国内和北美目前采用Ra, 而欧洲国家一般采用R z.? 示意图如下

工程名称结构型式层数总高度

附表 多层、高层钢筋砼结构计算一览表(试用) 工程名称结构型式层数总高度 抗震设防分类抗震设防烈度场地类别 设计基本地震加速度设计地震分组特征周期 水平地震影响系数最大值 修正后基本风压KN/㎡,地面粗糙度 框架抗震等级级,抗震墙抗震等级 结构重要性系数 上部结构计算软件三维空间分析法:SATWE□ TAT□ TBSA□平面结构空间协同法名称: 楼梯参与整体计算是□否□ 结构规则性信息平面规则□;不规则□竖向规则□不规则□ 所有楼层采用刚性楼板假定是□否□弹性假定是□否□ 柱配筋计算按单偏压计算□;按双偏压计算□ 考虑偶然偏心是□,否□;考虑双向地震作用是□,否□ 周期折减系数结构阻尼比活荷质量折减系数楼层 基础 多遇地震影响系数最大值罕遇地震影响系数最大值 斜交抗侧力构件角度,是否须进行斜交抗侧力构件方向抗震验算 是□否□ 梁端负弯矩调幅系数连梁刚度折减系数 梁扭矩折减系数中梁刚度放大系数 计算振型数,振型参与质量与总质量比值 结构扭转为主的第一自振周期Tt= 结构平动为主的第一自振周期T1= 周期比Tt/T1= X方向最大值层间位移角 Y方向最大值层间位移角 弹性层间位移角限值 柱计算最大轴压比,柱最大轴压比限值 抗震墙计算最大轴压比,抗震墙最大轴压比限值 框架柱地震倾复弯矩总和占比 墙地震倾复弯矩总和占比 楼层计算最小地震剪力系数值λ= ,规范规定值λ= 结构是否须进行在罕遇地震作用下薄弱层的弹塑性变形验算是□否□ 薄弱层所在楼层为层 薄弱层抗侧力结构的受剪承载力为 薄弱层相邻上一楼层抗侧力结构受剪承载力为 结构薄弱层(部位)弹塑性层间位移角△ue= ,规范规定限值[Q]= 基础设计等级基础类型抗浮水位

表面粗糙度等级对照表

表面粗糙度级别对照及应用国际标注Rz N12 N11 N10 N9 N8 N7 N6 N5 N4 N3 N2 N1200 100 25Ra 50 25 6.3粗糙面表面形状特征 明显可见刀痕 可见刀痕

微见刀痕 可见加工痕迹 微见加工痕迹 看不见加工痕迹 可辨加工痕迹的方向 光面微辨加工痕迹的方向 不可辨加工痕迹的方向 暗光泽面 亮光泽面 镜状光泽面 雾状镜面 镜面精磨、研磨、抛光、超精磨、 镜面磨削等研磨、金刚石车刀的精车、精绞、冷拉、拉刀加工、抛光等加工方法举例锯断、粗车、粗铣、粗刨、钻孔以及用粗纹锉刀、粗砂 轮等加工冷拉、精车、精绞、粗绞、粗磨、刮削、粗拉刀加 工等5012.5 12.53.2半光面 6.31.6 6.30.8 3.20.4 1.60.2

0.80.1 0.40.05 0.20.025最光面 0.10.012 0.05 表面特征 明显可见刀痕 微见刀痕 看不见加工痕迹,微辩加工方向暗光泽面 雾状镜面0.012 镜状光泽面0.025 亮光泽面0.05 暗光泽面0.1 不可见加工痕迹的方向0.2 可见加工痕迹方向0.8 微见加工痕迹方向0.4 看不清加工痕迹方向1.6 微见加工痕迹方向3.2 可见加工痕迹方向6.3 微见刀痕12.5

可见刀痕25 明显可见刀痕50表面粗糙度(Ra)数值 Ra100、Ra50、Ra25、 Ra12.5、Ra6.3、Ra3.2、 Ra1.6、Ra0.8、Ra0.4、 Ra0.2、Ra0.1、Ra0.05、加工方法举例 粗车、粗刨、粗铣、钻孔精车、精刨、精铣、粗铰、粗磨精车、精磨、精铰、研磨研磨、珩磨、超精磨、抛光镜面0.006微米

地面粗糙度等级及其对风速的影响

地面粗糙度等级及其对风速的影响 空气在流动的过程中不仅受到气压梯度力和地转偏向力的作用,而且在离地面公里的近地面大气层里,它还受到地面障碍物的影响,气象学上将公里以下的气层称为摩擦层。 在摩擦层里,空气经过粗糙不平的地表面,受到摩擦力的作用,空气流动的速度,也就是风速会越来越小。由于地表粗糙程度不一,作用于空气的摩擦力的大小也就不同,风速减小的程度也就不同,地面粗糙度越大,作用于空气的摩擦力也就越大,相应的风速减小的也就越多。 在风力发电机以及建筑学等领域对地面粗糙度进行了分类,总共分为A、B、C、D四类,各类对应的地表状况如下: A类指近海海面、海岛、海岸、湖岸及沙漠地区; B类指田野、乡村、丛林、丘陵以及房屋比较稀疏的中小城市郊区; C类指有密集建筑群的中等城市市区; D类指有密集建筑群但房屋较高的大城市市区。 图1 A类图2 B类 图3 C类图4 D类 为了能对地面粗糙度进行量化分析,通常使用粗糙度长度(表征完全湍流中表面粗糙程度所用的特征长度参数,单位为:m)Z0对地面粗糙度进行度

量,其值分布于0-2m之间。表1中列出了地面粗糙度等级值对应的粗糙度长度值,以及能源指数和地表特征。 表1:地面粗糙度等级及粗糙度长度(来源于德国风能协会) 在确定某地区的地面粗糙度类别时,若无实测资料,建筑学上可按下述原则近似,该原则同样适用于风力发电机领域。 1. 以拟建房屋为中心、2km为半径的迎风半圆影响范围内的房屋高度和密集度来区分粗糙度类别,风向原则上应以该地区最大风的风向为准,但也可取其主导风向;

2. 以半圆影响范围内建筑物的平均高度来划分地面粗糙类别。当平均高度不大于9m时为B类;当平均高度大于9m但不大于18m时为C类;当平均高度大于18m时为D类; 3. 影响范围内不同高度的面域可按下述原则确定,即每座建筑物向外延伸距离等于其高度的面域内均为该高度,当不同高度的面域相交时,交叠部分的高度取大者; 4. 平均高度取各面域面积为权数计算。 地面粗糙度对风速的影响范围如下图所示。 图5 地面粗糙度对风速的影响范围 图片版权声明:图片来源于互联网,版权归原作者所有。 参考文献: ; ; 50009—2001。

山东省抗震设防烈度建筑场地类型 地面粗糙度

山东省抗震设防烈度 1 抗震设防烈度为8度,设计基本地震加速度值为0.20g: 第一组:郯城,临沐,莒南,莒县,沂水,安丘,阳谷,临沂(河东)。 2 抗震设防烈度为7度,设计基本地震加速度值为0.15g: 第一组:临沂(兰山、罗庄),青州,临朐,菏泽,东明,聊城,莘县,鄄城; 第二组:潍坊(奎文、潍城、寒亭、坊子),苍山,沂南,昌邑,昌乐,诸城,五莲,长岛,蓬莱,龙口,枣庄(台儿庄),淄博(临淄),寿光。 3 抗震设防烈度为7度,设计基本地震加速度值为0.10g: 第一组:烟台(莱山、芝罘、牟平),威海,文登,高唐,茌平,定陶,成武; 第二组:烟台(福山),枣庄(薛城、市中、峄城、山亭),淄博(张店、淄川、周村),平原,东阿,平阴,梁山,郓城,巨野,曹县,广饶,博兴,高青,桓台,蒙阴,费县,微山,禹城,冠县,单县,夏津,莱芜<莱城、钢城); 第三组:东营(东营、河口),日照(东港、岚山),沂源,招远,新泰,栖霞,莱州,平度,高密,垦利,淄博(博山),滨州,平邑。 4 抗震设防烈度为6度,设计基本地震加速度值为0.05g: 第一组:荣成; 第二组:德州,宁阳,曲阜,邹城,鱼台,乳山,兖州; 第三组:济南(市中、历下、槐荫、天桥、历城、长清),青岛(市南、市北、四方、黄岛、崂山、城阳、李沧),泰安(泰山、岱岳),济宁(市中、任城),乐陵,庆云,

无棣,阳信,宁津,沾化,利津,武城,惠民,商河,临邑,济阳,齐河,章丘,泗水,莱阳,海阳,金乡,滕州,莱西,即墨,胶南,胶州,东平,汶上,嘉祥,临清,肥城,陵县,邹平。 建筑场地类别 Ⅰ类场地土:岩石,紧密的碎石土。 Ⅱ类场地土:中密、松散的碎石土,密实、中密的砾、粗、中砂;地基土容许承载力[σ0]〉250kPa的粘性土。 Ⅲ类场地土:松散的砾、粗、中砂,密实、中密的细、粉砂,地基土容许承载力[σ0] ≤250kPa的粘性土和[σ0]≥130kPa的填土。 Ⅳ类场地土:淤泥质土,松散的细、粉砂,新近沉积的粘性土;地基土容许承载力[σ0]<130kPa的填土。 地面粗糙度可分为A、B、C、D四类: 一A类指近海海面和海岛、海岸、湖岸及沙漠地区; 一B类指田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇和城市郊区; 一C类指有密集建筑群的城市市区; —D类指有密集建筑群且房屋较高的城市市区

各国表面粗糙度对照表

時代塗層測厚儀使用介紹 一?原理 磁性測厚原理:當測頭與覆層接觸時,測頭和磁性金屬基體構成一閉合磁路,由於非磁性覆蓋層的存在,使磁路磁阻變化,通過測量其變化可計算覆蓋層的厚度? 渦流測厚原理:利用高頻交電流在線圈中產生一個電磁場,當測頭與覆蓋層接觸時,金屬基體上產生電渦流,並對測頭中的線圈產生回饋作用,通過測量回饋作用的大小可匯出覆蓋層的厚度? 二、適用行業 1?電鍍?噴塗:這個行業是使用我們儀器最多的,占每年銷量相當大的比例,是我們主要使用者群體,需要花大的精力去不斷挖掘? 2?管道防腐:主要以石化方面的用戶比較多,一般防腐層比較厚,TT260配F10探頭的用戶比較多? 3?鋁型材:今年以來受國家實施強制標準,型材企業換發許可證的影響,該行業出現前所未有的好勢頭,主要測型材上面的氧化膜,據瞭解生產企業每少鍍一微米,一噸型材“節約”150元,非常可觀,因此國家強制要求配備包括塗層測厚儀在內的相關檢測設備?此舉也給我們帶來了非常好的機會?這個機會也同樣受到競爭對手的關注,他們最大限度的調低了價格,而且採取鋪貨等多種方式迅速在此行業展開攻勢,針對于此唐總?石總也多次指示密切關注對手動向時世採取相應策略,宗旨是讓利不讓市場?希望分公司同仁也能切實利用好這次機會,充分發揮區域優勢,使我們的產品更多進入該行業,也為今後在此行業的銷售打下基礎?另外,也可以擴大我們的產品在整個市場的影響? 4?鋼結構:對於我們的產品這類企業也可以單獨劃為一個行業?塗層測厚儀在此行業也確實有很大的應用,包括鐵塔等廠家最近購買資訊也比較多? 5?印刷線路版?及絲網印刷等行業,這類企業相對來講數特殊行業,購買量目前來看只是來自零星一些廠家, 8月份我們就有兩家印刷企業購買?可以看出還是有需求的,需要我們不斷做工作,挖掘資訊資源,多發現一些新的銷售機會? 三?各型號產品介紹: TT220:測量磁性金屬上非磁性覆蓋層的厚度?如鋼?鐵?非奧氏不銹鋼上基體上的鋁?鉻?銅?琺瑯?橡膠?油漆層的厚度? TT230:測量非磁性基體上非導電層的厚度?如銅?鋁?鋅?錫基體上的琺瑯?橡膠?油漆?鉻?搪瓷?鋁陽極氧化層的厚度? TT240:測量非磁性基體上非導電層的厚度?如銅?鋁?鋅?錫基體上的琺瑯?橡膠?油漆?鉻?搪瓷?鋁陽極氧化層的厚度?蹶 主要特點: 1、外型美觀,且帶有橡膠護套便於攜帶與現場操作; 2、存儲資料多達300個測量值; 3、探頭與主機的分離使操作穩定性增強,適用範圍更廣,特別是對於管道內壁,空間狹窄的工 件; 4、可以設定上下限,對界外測量值能自動報警,更大限度滿足了用戶需求; 5、可以配備通訊軟體與PC機介面,便於使用者對資料進行進一步的處理,儀器本身檔次也 得到提高; 6、兩節AA型鹼性電池,在使用過程中突然斷電時可以隨時更換無需等待? 7、顯示解析度達到0.1um,尤其對於測量鋁型材氧化膜更有優勢?

表面粗糙度对照表

国内表面光洁度与表面粗糙度Ra、Rz数值换算表(单位:μm)

另附:粗糙度仪新旧标准参数变化对照表现将TR200粗糙度仪依据新标准更改参数的情况列表如下,如有问题,由时代公司负责解释。本表还适用于公司TR1系列粗糙度仪。修改后可测量参数的总数没有变化,仍为13个参数,只是显示在不同的标准中,也就是说:时代粗糙度仪产品参数:涵盖新旧标准参数!(详见表)

另附:表面粗糙度国际标准加工方法 表面粗糙度参数及其数值(Surface Roughness Parameters and their Values)常用的3个分别是:轮廓算数平均偏差(Ra)--arithmetical mean deviation of the profile; 微观不平度十点高度(Rz)--the point height of irregularities; 轮廓最大高度(Ry)--maximum height of the profile。

Ra--在取样长度L内轮廓偏距绝对值的算术平均值。 Rz--在取样长度内5个最大的轮廓峰高的平均值与5个最大的轮廓谷深的平均值之和。 Ry--在取样长度L内轮廓峰顶线和轮廓谷底线之间的距离。 如果图面没标注粗糙度选用Ra /Rz /Ry 的情况下默认为Ra。 表面粗糙度是指加工表面具有的较小间距和微小峰谷不平度。其两波峰或两波谷之间的距离(波距)很小(在

1mm以下),用肉眼是难以区别的,因此它属于微观几何形状误差。表面粗糙度越小,则表面越光滑。表面粗糙度的大小,对机械零件的使用性能有很大的影响,主要表现在以下几个方面: ①表面粗糙度影响零件的耐磨性。表面越粗糙,配合表面间的有效接触面积越小,压强越大,磨损就越快。 ②表面粗糙度影响配合性质的稳定性。对间隙配合来说,表面越粗糙,就越易磨损,使工作过程中间隙逐渐增大;对过盈配合来说,由于装配时将微观凸峰挤平,减小了实际有效过盈,降低了联结强度。 ③表面粗糙度影响零件的疲劳强度。粗糙零件的表面存在较大的波谷,它们像尖角缺口和裂纹一样,对应力集中很敏感,从而影响零件的疲劳强度。 ④表面粗糙度影响零件的抗腐蚀性。粗糙的表面,易使腐蚀性气体或液体通过表面的微观凹谷渗入到金属内层,造成表面腐蚀。 ⑤表面粗糙度影响零件的密封性。粗糙的表面之间无法严密地贴合,气体或液体通过接触面间的缝隙渗漏。 此外,表面粗糙度对零件的外观、测量精度也有影响。 粗糙度:0.012、0.025、0.050、0.100、0.20、0.40、0.80、1.6、3.2、6.3、12.5、25、50、100 6.3:半精加工表面。用于不生要的零件的非配合表面,如支柱、轴、、支架、外壳、衬套、盖等的端面;螺钉、螺栓各螺母的自由表面;不要求定心和配合特性的表面,如螺栓孔、螺钉通孔、铆钉孔等;飞轮、带轮、离合器、联轴节、凸轮、偏心轮的侧面;平键及键槽上下面、花键非定心表面、齿顶圆表面;所有轴和孔的退刀槽;不重要的连接配合表面;犁铧、犁侧板、深耕铲等零件的摩擦工作面;插秧爪面等。1、外观的光滑与摩擦是一个矛盾问题,总的来说,既要光滑美观,又要有相当的摩擦, 以方便安装,以下是常见的一些粗糙度数值: 2、粗糙度0.8以下:抛光 3、粗糙度0.8:用磨床加工的面 4、粗糙度1.6—3.2:车床、铣床加工面 5、粗糙度3.2—12.5:一般性的常规加工 6、一般而言,既要光滑美观,又要有相当的摩擦,以方便安装的话,粗糙度0.8可以,既显得美观高档,手感也可以的 7、如果手拧部分需要减低等级的话也可以的,建议选择粗糙度1.6—3.2,但是,好看吗?会不会影响外观的美感呢? 8、如果需要重视手拧的功能,最好是做滚花处理,滚花有“直纹”和“网纹”两种,图纸上的标注:网纹0.8(用箭头指明需要滚花的部位,再写上文字) 如有侵权请联系告知删除,感谢你们的配合!

中山基本风压及粗糙度

中山市基本风压及地面粗糙度 主送:结构总工及专业主要负责人 抄送:建筑总工及专业主要负责人 事由:确定中山市基本风压及确定地面粗糙度的方法 一.依据广东省标准《建筑结构荷载规定》DBJ15-2-90,中山市30年一遇基本风压变换为50年一遇基本风压: 1.依据广东省标准《建筑结构荷载规定》DBJ15-2-90,中山市30年 一遇基本风压为W0=0.60KN/㎡; 2.参考比对国家标准《建筑结构荷载规范》GB50009-2001(2006年 版),两套规范比较,同时有列出的城市50年一遇基本风压比30 年一遇基本风压增加0.05 KN/㎡(如广州市由0.45KN/㎡增加到 0.50KN/㎡、深圳市由0.70KN/㎡增加到0.75KN/㎡、汕头市由 0.75KN/㎡增加到0.80KN/㎡、阳江市由0.65KN/㎡增加到 0.70KN/㎡等等); 3.依据张相庭著《结构风工程》介绍:中山市大部分地区50年一遇 基本风压按陆地很少出现的11级暴风最大风速117km/h(32.5m/s)换算W0=v2/1630=32.5x32.5/1630=0.648KN/㎡(取0.648KN/ ㎡)。 4.建议参考上述依据中山市大部分地区50年一遇基本风压取 W0=0.65KN/㎡,南部及沿海镇区(如坦洲镇、神湾镇、板芙镇、三乡镇、南朗镇、中山港区)50年一遇基本风压取W0=0.70KN/ ㎡.

二、国家标准《建筑结构荷载规范》GB50009-2001(2006年版)规定:风荷载地面粗糙度可分为A、B、C、D四类: ——A 类指近海海面和海岛、海岸、湖岸及沙漠地区; ——B 类指田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇和城市郊区;(周围房屋平均高度h≤9m) ——C 类指有密集建筑群的城市市区;(9m<h≤18m) ——D 类指有密集建筑群且房屋较高的城市市区(h>18m)。 平均高度具体意义详见规范条文说明 中山市建筑设计院有限公司 2009年3月

地表粗糙度简述

地表粗糙度简述 地表粗糙度通常有两种理解,一种是从空气动力学角度出发,因地表起伏不平或地物本身几何形状的影响,风速廓线上风速为零的位置并不在地表(高度为零处),而在离地表一定高度处,这一高度则被定义为地表粗糙度,也称为空气动力学粗糙度。另一种主要是从地形学角度出发,将地面凹凸不平的程度定义为粗糙度,也称地表微地形。本文所要讨论的是前一理解的粗糙度,即地表以上风速减小到零的某一高度,它表征地表的空气动力学特征,反应地表对风速的减弱作用。空气动力学粗糙度并非像机械加工上仅指物体表面的粗糙程度,而主要是从多相流体力学上,指出物体表面对流经流体的流型、流态及阻滞力影响的一个综合力学参数。空气动力学意义上的地表粗糙度表征地表与大气的相互作用,反映地表对风速的消减作用以及对风沙活动的影响,已被广泛应用于表征各种地表类型(如沙地,植被、冰雪面,海洋)的空气动力学性质。 光滑地表空气动力学粗糙度Z0的确定,通常是以风速对数分布规律为依据,从风速廓线理论推算得到,风速廓线随高度的分布函数为: 其中,U*为摩阻速度(或剪切速度);U为高度Z处的风速;K

为卡曼常数,Z0为光滑地表的空气动力学粗糙度。 由上式可知,在同一地点,Z0可以由两个不同高度处风速值求出,结果如下公式: 当地表有植被覆盖时,近地表流场发生变化,气流受植被的影响被抬升,此时呈对数分布的风速廓线发生相应的位移,把原来在光裸地表的空气动力学粗糙度Z0向上抬升一个位移量(Z0’或者d),这个位移量称作零风速平面位移高度(Z0’或者d),因此风廓线方程相应的调整为: 该式为植被冠层以上风速分布方程,Z0为植被覆盖表面空气动力学粗糙度。

表面粗糙度对照表

表面粗糙度对照表: 高度特征参数 轮廓算术平均偏差Ra:在取样长度(lr)内轮廓偏距绝对值的算术平均值。在实际测量中,测量点的数目越多,Ra越准确。 轮廓最大高度Rz:轮廓峰顶线和谷底线之间的距离。 在幅度参数常用范围内优先选用Ra。在2006年以前国家标准中还有一个评定参数为“微观不平度十点高度”用Rz表示,轮廓最大高度用Ry表示,在2006年以后国家标准中取消了微观不平度十点高度,采用Rz表示轮廓最大高度。 间距特征参数 用轮廓单元的平均宽度Rsm表示。在取样长度内,轮廓微观不平度间距的平均值。微观不平度间距是指轮廓峰和相邻的轮廓谷在中线上的一段长度。 形状特征参数 用轮廓支承长度率Rmr(c)表示,是轮廓支撑长度与取样长度的比值。轮廓支承长度是取样长度内,平行于中线且与轮廓峰顶线相距为c的直线与轮廓相截所得到的各段截线长度之和。 表面粗糙度(surface roughness)是指加工表面具有的较小间距和微小峰谷的不平度。其两波峰或两波谷之间的距离(波距)很小(在1mm以下),它属于微观几何形状误差。表面粗糙度越小,则表面越光滑。

表面粗糙度一般是由所采用的加工方法和其他因素所形成的,例如加工过程中刀具与零件表面间的摩擦、切屑分离时表面层金属的塑性变形以及工艺系统中的高频振动等。由于加工方法和工件材料的不同,被加工表面留下痕迹的深浅、疏密、形状和纹理都有差别。 表面粗糙度与机械零件的配合性质、耐磨性、疲劳强度、接触刚度、振动和噪声等有密切关系,对机械产品的使用寿命和可靠性有重要影响。一般标注采用Ra。 取样长度 取样长度lr是评定表面粗糙度所规定一段基准线长度。取样长度应根据零件实际表面的形成情况及纹理特征,选取能反映表面粗糙度特征的那一段长度,量取取样长度时应根据实际表面轮廓的总的走向进行。规定和选择取样长度是为了限制和减弱表面波纹度和形状误差对表面粗糙度的测量结果的影响。 评定长度 评定长度ln是评定轮廓所必须的一段长度,它可包括一个或几个取样长度。由于零件表面各部分的表面粗糙度不一定很均匀,在一个取样长度上往往不能合理地反映某一表面粗糙度特征,故需在表面上取几个取样长度来评定表面粗糙度。评定长度ln一般包含5个取样长度lr。 基准线 基准线是用以评定表面粗糙度参数的轮廓中线。基准线有下列两种:

地表粗糙度反演方法

1. 反熵法 k=1.13 A 为反熵 以20140624天数据为例, ①利用20140624天radarsat-2进行HAAlph 分解,并计算反熵A ,利用上述公式计算均方根高度s ,对s 影像进行统计如下: 通过对比估算的S 和实测s 可以看出:估算的明显小于实测数据,该算法不适合该示范区 ②分析实测ks 与反熵A 相关性: 结论:无明显规律

③引入DEM利用ARCGIS计算地表粗糙度参数 地面粗糙度是指在一个特定的区域内,地球表面积与其投影面积之比。它也是反映地表形态的一个宏观指标。根据地面粗糙度的定义,求每个栅格单元的表面积与其投影面积之比,可以用如下方法来完成。假如ABC是一个栅格单元的纵剖面,α为此栅格单元的坡度,则AB面的面积为此栅格的表面积,AC面为此栅格的投影面积(也既是此栅格的面积),根据公式: Cosα=AC/AB则可得出此栅格单元的地面粗糙度M为: M=“AB面的面积”/“AC栅格单元的面积”=(AC*AB)/(AC*AC)=1/Cosα地面粗糙度的提取步骤如下: (1)激活DEM主题,选择Spatial Analysis-Surface Analysis-Slope命令,提取DEM主题的坡度,得 到主题Slope of DEM; (2)激活主题Slope of DEM,在Spatial Analysis下使用栅格计算器Calculator,如图20所示,公式为: 1/Cos([Slope of DEM]*3.14159/180) 分析地表粗糙度参数和反熵A之间相关性: 由上图可以看出:反熵A和地表粗糙度、坡度、DEM没有明显的相关性? 2.交叉极化比法

结构设计总说明(带图完整版)剖析

混凝土结构设计总说明 1.工程概况 1.1 本工程位于xx市xxxxx,总建筑面积约13万平方米,由多栋商铺组成; 主要功能层数高度(m) 结构型式基础类型商铺 4 15.400 框架结构独基、管桩 2.设计依据 2.1 本工程主体结构设计使用年限为50年。 2.2 自然条件:基本风压:0.35kN/m 2(50年重现期);基本雪压:0.45kN/m 2; 抗震设防参数:本工程最大地震影响系数αmax=0.04(第一设防水准);场地特征周期Tg=0.35秒;场地为可进行建设的一般地段。本工程抗震基本烈度为6 度,场地土类别为Ⅱ类。 2.3 xxx工程有限公司2014.10xxx一期-4号中心岩土工程详细勘察报告书工 程编号:2014-K53 2.4 本工程施工图按初步设计审查批复文件和甲方的书面要求进行设计。 2.5 本工程设计采用的现行国家标准规范规程主要有: 建筑结构可靠度设计统一标准GB50068-2001 建筑地基基础设计规范GB50007-2011 建筑工程抗震设防分类标准GB50223-2008 建筑抗震设计规范GB50011-2010 建筑结构荷载规范GB50009-2012 混凝土结构设计规范GB50010-2010 砌体结构设计规范GB50003-2011 地下工程防水技术规范GB50108-2008 工业建筑防腐蚀设计规范GB50046-2008 建筑桩基技术规范JGJ 94-2008 人民防空地下室设计规范GB50038-2005 多孔砖砌体结构技术规范JGJ137-2001(200 3年局部修订) 混凝土外加剂应用技术规范GB50119-2013 补充收缩混凝土应用技术规程JGJ/T 178-2009 建筑边坡工程技术规范GB/T50330-2013 工程建设标准强制性条文(房屋建筑部分)2013年版(涉及规范版本更新及修订的应按现行规范执行) 2.6 桩基静载荷试验报告和地基载荷板试验报告(本工程需有前述报告后方可进 行基础施工) 3.图纸说明 3.1 计量单位(除注明外):长度:mm;角度:度;标高:m;强度:N/mm 2。 3.2 本工程±0.000相当于绝对标高41.700m。 3.3 本工程施工图与国标11G101-1《混凝土结构施工图平面整体表示方法制图 规则和构造详图》配套使用。 3.4 结构专业设计图应与其它专业设计图配合施工,并采用下列标准图: 国标 11G101-1、11G101-2、11G101-3、11G329-1;中南标 12ZG002、12ZG003、12ZG313 3.5 管桩专项说明另详。 3.6 本工程在设计使用年限内未经技术鉴定或设计许可,不得改变结构的用途和 使用环境。

表面粗糙度对照表

表面粗糙度是指加工表面具有较小间距和较小峰谷的粗糙度[1]。两个波峰或波谷之间的距离(波距)很小(小于1毫米),这属于微观几何误差。表面粗糙度越小,表面越光滑。 表面粗糙度通常由加工方法和其他因素形成,例如工具与零件表面之间的摩擦力,分离芯片时表面金属的塑性变形以及加工系统中的高频振动。由于加工方法和工件材料的不同,在加工表面上留下的痕迹的深度,密度,形状和纹理也不同。 表面粗糙度与机械零件的匹配特性,耐磨性,疲劳强度,接触刚度,振动和噪声密切相关,并且对机械产品的使用寿命和可靠性具有重要影响。通常,RA用于标记。 相关规范为“GB / T 1031-2009表面纹理轮廓方法表面粗糙度参数及其值”和“GB / T 131-2006(ISO 1302:2002)”表示的表面纹理。 高度特征参数 轮廓RA的算术平均偏差:采样长度(LR)内轮廓偏移的绝对值的算术平均值。在实际测量中,测量点数越多,RA越准确。[2]

轮廓的最大高度RZ:轮廓的峰线和底线之间的距离。 在幅度参数范围内,RA [1]是首选。在2006年之前,国家标准中还有另一个评估参数,用RZ表示,轮廓的最大高度用ry表示。2006年后,国家标准取消了微观粗糙度的十点高度,并使用RZ表示轮廓的最大高度。 间距特征参数 它由轮廓元素的平均宽度RSM [2]表示。采样长度内轮廓的微不均匀间距的平均值。微观不均匀距离是指轮廓峰和中线上相邻轮廓谷的长度。[1] 形状特征参数 用轮廓支撑长度r MR(c)[2]的比率表示,它是轮廓支撑长度与采样长度的比率。轮廓的支撑长度是线的每个部分的长度的总和,该长度平行于中心线,并且在采样长度内与轮廓的峰线相距C。

表面粗糙度对照表

00.1 国内表面光洁度与表面粗糙度Ra、Rz数值换算表(单位:μm)

另附:粗糙度仪新旧标准参数变化对照表现将TR200粗糙度仪依据新标准更改参数的情况列表如下,如有问题,由时代公司负责解释。本表还适用于公司TR1系列粗糙度仪。修改后可测量参数的总数没有变化,仍为13个参数,只是显示在不同的标准中,也就是说:时代粗糙度仪产品参数:涵盖新旧标准参数!(详见表)

另附:表面粗糙度国际标准加工方法

表面粗糙度有Ra,Rz,Ry 之分,据GB 3505摘录: 表面粗糙度参数及其数值(Surface Roughness Parameters and their Values)常用的3个分别是: 轮廓算数平均偏差(Ra)--arithmetical mean deviation of the profile; 微观不平度十点高度(Rz)--the point height of irregularities; 轮廓最大高度(Ry)--maximum height of the profile。 Ra--在取样长度L内轮廓偏距绝对值的算术平均值。 Rz--在取样长度内5个最大的轮廓峰高的平均值与5个最大的轮廓谷深的平均值之和。 Ry--在取样长度L内轮廓峰顶线和轮廓谷底线之间的距离。 如果图面没标注粗糙度选用Ra /Rz /Ry 的情况下默认为Ra。

表面粗糙度是指加工表面具有的较小间距和微小峰谷不平度。其两波峰或两波谷之间的距离(波距)很小(在1mm以下),用肉眼是难以区别的,因此它属于微观几何形状误差。表面粗糙度越小,则表面越光滑。表面粗糙度的大小,对机械零件的使用性能有很大的影响,主要表现在以下几个方面: ①表面粗糙度影响零件的耐磨性。表面越粗糙,配合表面间的有效接触面积越小,压强越大,磨损就越快。 ②表面粗糙度影响配合性质的稳定性。对间隙配合来说,表面越粗糙,就越易磨损,使工作过程中间隙逐渐增大;对过盈配合来说,由于装配时将微观凸峰挤平,减小了实际有效过盈,降低了联结强度。 ③表面粗糙度影响零件的疲劳强度。粗糙零件的表面存在较大的波谷,它们像尖角缺口和裂纹一样,对应力集中很敏感,从而影响零件的疲劳强度。 ④表面粗糙度影响零件的抗腐蚀性。粗糙的表面,易使腐蚀性气体或液体通过表面的微观凹谷渗入到金属内层,造成表面腐蚀。 ⑤表面粗糙度影响零件的密封性。粗糙的表面之间无法严密地贴合,气体或液体通过接触面间的缝隙渗漏。 此外,表面粗糙度对零件的外观、测量精度也有影响。 粗糙度:0.012、0.025、0.050、0.100、0.20、0.40、0.80、1.6、3.2、6.3、12.5、25、50、100 6.3:半精加工表面。用于不生要的零件的非配合表面,如支柱、轴、、支架、外壳、衬套、盖等的端面;螺钉、螺栓各螺母的自由表面;不要求定心和配合特性的表面,如螺栓孔、螺钉通孔、铆钉孔等;飞轮、带轮、离合器、联轴节、凸

相关文档
最新文档