电振动盘的工作原理和受力分析详解

电振动盘的工作原理和受力分析详解
电振动盘的工作原理和受力分析详解

电磁振动上供料器的工作原理

★原理:

在电磁振动器作用下,料斗作扭转式上下振动,使工件沿着螺旋轨道由低到高

移动,并自动排列定向,直至上部出料口而进入输料槽,然后由送料机构送至相应工位。

为方便分析,以直槽式上供料器为例,图2-40

电磁振动上供料器的工作过程,是由于电磁铁的吸引和支承弹簧的反向复位作用,使料槽产生高速、高频(50~100次/秒)、微幅(0.5~1mm)振动,使工件逐步向高处移动。

I=0时,料槽在支承弹簧作用下向右上方复位,工件依靠它与轨道的摩擦而随轨道向右上方运动,并逐渐被加速。

I>0时,料槽在电磁铁的吸引下向左下方运动,工件由于受惯性作用而脱离轨道,继续向右上方运动(滑移或跳跃)。……下一循环,周而复始→工件在轨道上作由低到高的运动。

1、工件在轨道上的受力分析

* 工件在轨道上的受力:自重力、轨道反力、摩擦力、惯性力;

* 摩擦力、惯性力与电磁铁的电流有关。(1)I=0时,支承弹簧复位,轨道以加

速度a1向右上方运动,工件力平衡如图1-41:

ma1cosβ+mgsinα=F=μN(2—1)

ma1sinβ+mgcosα=N(2—2)(2)I>0时,电磁铁吸引,轨道以加速度

a2向左下方运动,工件受力平衡如图1-42:

Ma2cosβ-mgsinα=F=μ*N(2—3)

ma2sinβ-mgcosα=-N(2—4)

? 2、工件在轨道上的运动状态分析

(1)运动分析根据受力分析,工件在轨道上的运动有两种可

能性:A、因惯性沿轨道下滑,此时I=0,且有

ma1cosβ+mgsinα>μ*N(2 5)

a1>g(sinα-μcosα)/(μsinβ-cosβ)(2 6)

?当轨道向右上方运动的加速度a1满足上式时,工件便会沿轨道下滑。这对振动上供料机构是不希望出现的。

B、沿轨道上行,此时根据电磁铁吸合与否可得:

I=0,a1≤g(sinα-μcosα)/(μsinβ-cosβ)(2 7)

I>0,a2≥g(sinα+μcosα)/(μsinβ+cosβ)(2 8)

?电磁振动供料器要实现预定的上供料,轨道向右上方运动的加速度a1和向左下方运动的加速度a2必须满足上述工件沿轨道上行时的条件式。工件沿轨道上行时的运动状态随多种条件而变化。

(2)运动状态

图1-43 工件在料道上的运动状态

(a)连续跳跃;(b)断续跳跃;(c)连续滑移;(d)断续滑移

注:图示为料槽的两极限位置。

A、连续跳跃

*运动过程:I=0、弹簧使料斗复位,工件依靠摩擦、空间位置从A点上行到B 点;

I>0、电磁铁吸合,由于惯性、工件由B点跳跃起来

↓(腾空时间≥料斗运行至最下方的时间)

I=0、工件再落至轨道上时已到达C点→后又随轨道上行到D点。↓

如此往复,工件随轨道上行--跳跃--再随轨道上行…

→工件跳跃式前进,跳跃间距为AC段。

特点:/工件具有大的供料速度,供料率高;/工件运动平稳性差,对定向不利;/适用于形状简单、定向要求不高的件料及供料速度较大的场合。

运行条件:电磁铁吸力、料槽振幅及抛射角较大。

但工件腾空时间过大→料斗复位时工件再落至轨道过晚

→A点与C点的间距缩小,甚至落回原处而没有前移。

B、断续跳跃

*运动过程:I=0、弹簧使料斗复位,工件依靠摩擦、空间位置从A点上行到B

点;

I>0、电磁铁吸合,由于惯性、工件由B点跳跃起来(腾空时间<料斗运行至最下方的时间)↓→工件很快落至轨道上的C点、并随轨道下行到D点;

I=0、工件再随轨道从空间位置D点上行到E点。

如此往复,工件随轨道上行--跳跃后随轨道下行--再随轨道上行…

→工件断续跳跃式前进,跳跃间距为AD段。

特点:/工件具有较大的供料速度,供料率较高;/工件运动平稳性一般。

运行条件:电磁铁吸力、料槽振幅及抛射角中等。

C、连续滑移

*运动过程:I=0、弹簧使料斗复位,工件依靠摩擦、空间位置从A点上行到

B点;↓

I>0、电磁铁吸合,由于惯性、工件沿轨道由B点滑移

↓(滑移时间≥料斗运行至最下方的时间)

I=0、工件停下时已滑移至C点→后又随轨道上行。↓

如此往复,工件随轨道上行--滑移--再随轨道上行…

→工件滑移式前进,滑移间距为AC段。

* 特点:

/工件具有较大的供料速度和供料率;

/工件运动平稳,利于定向;

/适用于形状较规则、有定向要求的件料及供料速度较大的场合。

* 运行条件:电磁铁吸力、料槽振幅及抛射角均较跳跃时的小。

D、断续滑移

*运动过程:I=0、弹簧使料斗复位,工件依靠摩擦、空间位置从A点上行到B 点;

I>0、电磁铁吸合,由于惯性、工件沿轨道由B点滑移(滑移时间<料斗运行至最下方的时间)↓→工件很快停在轨道上的B′点、并随轨道下行到C点;

I=0、工件再随轨道从空间位置C点上行。如此往复,工件随轨道上行--滑移后随轨道下行--再随轨道上行…→工件断续滑移式前进,滑移间距为AC

段。

特点:/工件供料速度和供料率较小;/工件运动平稳,亦利于定向;/适用于有定向要求但供料速度要求不高的场合。

运行条件:电磁铁吸力、料槽振幅及抛射角均小。

综上:设计合理、参数选择恰当→不产生跳跃、平稳滑移、供料较快

→首选连续滑移。

3、工件在轨道上滑移和跳跃的条件

(1)滑移条件

由前分析,工件沿轨道上行滑移的条件

a1≤g(sinα-μcosα)/(μsinβ-cosβ)

a2≥g(sinα+μcosα)/(μsinβ+cosβ)

如取α=2°(常为1~2°),β=20°(常为15~25°),μ=0.41,

则a1≤0.47g

a2≥0.41g 所以,只要合理设计,使轨道向左下方运行的加速度a2满足一定条件,便可获得预定的滑移状态。

(2)跳跃条件工件在惯性力作用下产生跳跃,脱离轨道,此时受力式(2—4)为

ma2sinβ-mgcosα=0

所以产生跳跃的条件为a2≥gcosα/sinβ

同上取α=2°,β=20°,μ=0.41,则有a1≤0.47g a2≥2.92g

如将料槽受电磁力作用产生的振动视作简谐振动,其频率为f、振幅为A,则轨道最大加速度a max为a max=2π2f2A 所以,当a max=2π2f2A=a2≥gcosα/sinβ,工件就会产生跳跃式前进。

★由上分析可知,连续跳跃所需加速度a2最大,断续滑移时a2最小。

★圆筒形料斗与直槽形的工作原理、件料运动状态完全相同,但振动形式有区别:直槽形料斗是往复直线式振动,而圆筒形是往复扭转式振动。

振动盘原理

振动盘的工作原理及振动盘的结构 一、振动盘的工作原理 振动盘是由具有经验的专业供应商专门设计制造的,不直接从事振动盘设计制造的行业,只需要了解它的基本结构与工作原理、订购方法及使用维护要领即可。要了解振动盘的工作原理,必须清楚地理解以下两个问题: 1、振动盘为什么能将工件连续地由料斗底部向上自动输送? 2、料斗底部工件的姿态方向是杂乱无章的,工件为什么能按规定的方向自动输送出来? 上述两个问题实际上就是振盘的两个基本功能,即自动送料功能和自动定向功能。下面来介绍振动盘如何实现这两个基本功能的,即振动盘的工作原理。 如图:电磁铁5与衔铁4分别安装、固定在输料槽2和底座6上。220v交流电压经半波整流后输入到电磁线圈,在交变电流作用下,铁芯与衔铁之间产生搞频率的吸、断动作。两根相互平行且与竖直方向有一定倾角B、由弹簧钢制作的板弹簧分别与输料槽、底座用螺钉连接,由于板弹簧的弹性,线圈与衔铁之间产生的高频率吸、断动作将导致板弹簧产生一个高频率的弹性变形一弹性变形恢复的循环动作,变形恢复的弹力直接作用在熟料槽上,实

际上给输料槽一个高频的惯性作用力。由于输料槽具有倾斜的表面(与水平面方向成倾斜角a),在改惯性作用力的作用下,输料槽表面的工件沿斜面逐步向上移动。由于电磁铁的吸、断动作频率很高,所以工件在这种高频率的惯性作用力驱动下慢慢沿斜面向上移动,这就是振动盘的自动送料的工作原理。 二、振动盘的结构 上图所示的模型是一种简化的振动盘力学模型,实际的振动盘结构与上述力学模型是有区别的,实际震动盘的结构是带倒锥形或圆柱形料斗的结构。 1、带倒锥形料斗的振动盘:带倒锥形料斗的振动盘一般用于形状具有一定的复杂性,需要经过多次方向选择与调整才能将工件按需要的方向送出的场合,这样工件必须通过的路径就较长,所以倒锥形的料斗就是为了有效地加大工件的行走路径。这类振动盘使用的工件范围较宽,料斗直径一般为300-700mm,工件形状越复杂,料斗的直径也会越大。在某些特殊场合料斗的直径可达到1-2m。这种倒锥形料斗一般采用不锈钢板材制作,也可以用铸铝合金制作,由于定向轨道较长,供料充足,出料速度高,所以适合工件的高速送料。 2、圆柱形振动盘:带圆柱形料斗的振动盘一般用于工件形状简单而规则、尺寸较小的微小工件场合,例如螺钉、螺母、铆钉、开关或继电器行业的银触头等。上述工件的形状比较简单,很容易进行定向,工件所需要的行走路径也较短,因而料斗的直径一般也较小,约为100-300mm。这种料斗连同内部的螺旋轨道一般用NC机床直接加工出来,材料通常用铸造铝合金制作,制造成本低廉。 3、主要结构部件:震动盘主要由底座、减振垫、板弹簧、电磁铁、料斗、螺旋轨道及定向机构、输料槽、控制器组成。

CRH380AL型动车组受电弓工作原理浅析(可编辑修改版).

CRH380AL型动车组受电弓工作原理浅析 摘要:CRH380A动车组,编组16列,目前运行速度300km/h,如此高的运行速度,旅客们对动车组乘坐的舒适性和安全性也提出了很高的要求。但要达到这一目标稳 定的动力输出是必不可少的,要提供稳定动力输出,高压 供电系统的稳定是基础。而提到动车组高压供电系统,就 不得不提到受电弓。 关键词:动车组;动力输出;高压供电系统;受电弓 高压供电系统是动车组关键技术之一,而受电弓的表 现直接关系到动车组高压供电系统的稳定性。在动车组的 检修过程中,对受电弓的检查和试验是相当严格的,是绝 对不能有半点失误的。任何一点失误,都有可能对动车组 的运行造成极其恶劣的影响。现在结合日常的工作,对动 车组受电弓的组成及工作原理进行简要的介绍。 一、受电弓概述 CRH380AL动车组使用的受电弓型号为DSA380,弓头长1950mm,滑板长1576mm,质量(不包括绝缘子和阀板)为117kg,其结构如下图: 图1 受电弓结构 主要参数: (1)最小绝缘距离:≥310mm

(2)最大电流:1000A (3)短路电流:35kA(60ms) (4)车辆静止时最大电流:80A (5)受电弓落弓时高度:666mm (6)静态接触压力为80N、可调 (7)最大集电头(弓头)宽度:1950mm(+0/- 10mm) (8)两根滑板中心线距离:约580mm (9)滑板材料:渗金属碳 (10)弓角材料:部分绝缘 (11)最大上升时间:10s (12)最大下降时间:10s (13)下降310mm的最大时间:3s (14)ADD释放后,故障受电弓降到考核高度下200mm处的最大时间:1.0s (15)输入空气压力:4~10bar (16)形式及管径:内螺纹/G 1/2’ 二、工作原理 1.升降弓工作原理 当受电弓的电磁阀得电时,压缩空气也经过减压阀、电控阀一路向气囊(17)充气,同时一路向受电弓的集电头上的滑板气腔内充气;当气囊内气压达到一定压力时,

受电弓

本章重点:受电弓 本章难点:主断路器 第四章《主型电器》 第一节《受电弓》 一、概述 优质滑板应满足以下要求: 1、力学性能好,能承受一定的冲击载荷。 2、磨擦系数低,对接触导线及滑板自身的磨耗小。 3、电阻率低,耐弧性强。 4、质轻。 二、TSG1-630/25型单臂受电弓 1、TSG1-630/25型的基本结构 ?、滑板机构 滑板机构主要由滑板及支架组成。 滑板的主体组成由铝板压制而成,在一定的强度下用铝可减轻其重量。接触板一般采用碳质和粉未冶金两种。 支架由薄钢板制成,内装有波形圆柱螺旋弹簧,使整个滑板在机车运行时随接触网导线驰度的变化而作前后、上下的摆动,以改善受流状况。 ?、框架 整个框架由上框架、下臂杆、平衡杆、推杆和底架组成。 底架通过三个支持绝缘子安装在机车顶盖上。下臂杆的转轴是无疑钢管构成,装在底架上。推杆两端分别用正反扣螺与推杆铰链连接。 ?、气缸传动机构 整个传动机构由缓冲阀、传动风缸、连杆、滑环及长降弹簧组成。 2、TSG1型单臂受电弓的动作原理 ?、升弓过程 升弓时,司机操纵受电弓按键开关,控制受电弓的电空阀使气路导通。 压缩空气通过缓冲阀7进入传动风缸8,活塞克服降弓弹簧10的压力向右移动,通过气缸盖上杠杆支点,使拉杆绝缘子向左移动,同样通过杠杆支点的作用,滑环12右移,此时拐臂14不受滑环12的约束,下臂杆6便在升弓弹簧的作用下,作顺时针转动。此时,中间铰链座20在推杆5的推动下,作逆时针转动,也即上框架4作逆时针转动,整个受电弓弓头随即升起。 ?、降弓过程 降弓时,司机操纵受电弓按键开关,使受电弓的电空阀将缓冲阀7的气路与大气接通,于是传动风缸8内的压缩空气经缓冲阀排向大气。活塞在降弓弹簧10作用下向左移动,使滑环12也向左移动,当滑环12与拐臂4接触后,迫使拐臂跟随着滑环继续左移,强制下臂杆6作逆时针转动,最终使弓头1降到落弓位。 3、主要技术参数

振动盘最全面技术说明..

振动盘工作原理 一.振动盘简介: 振动盘是一种自动定向排序的送料设备. 振动盘的组成:料斗\底盘\控制器\直线送料器等配套组成.其工作目的是通过振动将无序工件自动有序定向排列整齐,准确地输送到下道工序. 振动盘的料斗分为筒形料斗,螺旋,线料斗,锥形料斗,等分线料斗等五种; 底盘有正拉底盘,侧拉底盘,压电式底盘,精密底盘四种; 控制器分为普通控制器,调频控制器,分级控制器,带缓启动控制器,数显调频控制器五种; 直线送料器可根据客户需求订制各式各样型号直线送料器,也可根据产品要求订制. 振动盘是一种自动组装机械的辅助设备,是一种能自动定向排序的送料设备.能把各种产品有序排出来,它可以配合自动组装设备一起将产品各个部位组装起来成为完整的一个产品.作用:广泛应用于电池\五金\电子\医药\食品\塑胶插件\喷雾器\连接器\精密振动盘应用等各个行业,是解决工业自动化设备供料的必须设备. 振动盘辅助产品:底盘\顶盘\控制器\直线送料器\振动平台料仓\涂层 电磁振动上供料器从结构上分:直槽往复式和圆盘扭动式.其中直槽式一般作为不需要定向整理的粉粒状物料的给料器,或用于清洗,筛选,烘干加热,冷却等操作.圆盘式多用于需要定向整理的,有一定形状和尺寸的物料的上供料. 二.振动盘工作原理 料斗下面有个脉冲电磁铁,可以使料斗垂直方向上下振动,由于弹片的倾斜,使料斗绕其垂直轴做扭摆振动,料斗内零件,由于受到这种振动,而沿螺旋轨道上升,直到送到下道工序运动状态:直线形料斗是往复直线式振动,而圆筒形是往复扭转式振动.主要是由一个振动马达作动力,振动马达工作时产生定向频率的

力,只要把振动盘看成是一个斜面,再对这个斜面进行物理学的受力分析,你就能很容易理解它的工作原理了.振动盘电磁线圈在工作中,斜面受电磁力会微小的上下振幅,调整振动盘的工作频率以及间隙,就可以实现顺利工作. 三振动盘调整步骤与要点 (1)确认振动本体位于盘面确实锁固 (2)将控制器按钮调至中间位置 (3)将电源打开,查看振动盘输送速度是否达到要求 (4)若没有达到要求,将锁付弹片之固定螺丝松脱任意一支,查看振动速度变化 (5)若松脱弹片固定螺丝,振动速度变快,则表示弹片过厚,适度减少弹片数量或厚度后,再进行步骤(4),再次调试 (6)反之则适度增加弹片或厚度后,再进行步骤(4),再次调试 (7)若步骤(4)的调整,振动速度变化不大时,则表示已完成弹片调整 (8)电磁铁要对齐,间隙在1---1.5mm,间隙要平行 四.定购一台合适的振动盘,首先要充分了解您的要求及配合主机使用情况 (9)正式生产中使用的工件样品或图纸 (10)振动盘的送料方向(顺时针,逆时针) (11)工件在振动盘出口时的状态,出料速度 (12)振动盘的空间限制及安装位置,供电\供气情况 (13)外观涂层等其它要求(交货期一般为7---15天,免费安装调试,保修三年) 五.电磁振动上供料器的工作过程,是由于电磁铁的吸引和支承弹簧的反向复位作用,使料槽产生高速高频(50---100次/秒),微幅(0.5---1mm)振动,使工件逐步向高

受电弓原理介绍

受电弓原理介绍 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

第三节受电弓原理介绍受电弓主要功能是从额定电压DC1500V接触网上获取电源,向整个列车电气系统供电,同时还通过列车的再生制动系统将列车的动能转换为电能回馈给接触网供给其它在线列车的使用,起到双向传递枢纽的作用。受电弓在刚性接触网和柔性接触网的线路上均能适用,在整个车辆速度范围内,受电弓有良好的动力学特性能,能够保证在各种轨道和速度下与接触网具有良好的接触状态和接触稳定性。它在气路上的特别设计保证了它降弓时有明显的迅速下降和平稳下降两个阶段。B2型车采用的是SBF920型单臂式受电弓。 (1)受电弓结构 图10 SBF920型单臂式受电弓结构示意图 单臂式受电弓主要特性有:重量轻,设计简单,维护少,卓越的接触性能以及安全的操作。 底架:底架由封闭的矩形空心钢管焊接而成。底架上装有以下部件:支撑下支架轴承座,上支架及下支架缓冲垫,运输挂钩,降弓后支撑弓头的支撑弹簧,升弓装置,连接杆,气动降弓机构,绝缘子,高压连接板,休息位置指示器,锁钩支撑座,气动设备。 下支架:下支架由无缝钢管焊接而成,其底板位于底架上。下支架上装有以下部件:装有升弓装置钢绳驱动的凸轮,气动降弓机构驱动的杠杆,平行导杆,减震器,上支架安装座。 上支架:上支架为无缝铝管的焊接结构,十字形钢缆连接结构使框架具有一定的横向稳定性。上支架装有以下部件:弓头,连接杆,减振器,上升限位装置,受电头支撑轴。

连接杆:连接杆由一根用碳钢圆管制成的连接管和两个分别带有左旋及右旋螺纹的轴承座和两套绝缘轴承组成。通过转动连接管,可调节和微调受电弓的几何形状。 弓头:弓头安装在一根位于上支架上的轴上,叶片弹簧用于悬承被固定在托架盒内的集电板。平行导向滑环确保碳滑板与接触网的平行工作。每个碳滑板的单个悬承可实现最大的接触特性,将磨损尽量减至最小。悬承架在水平和竖直力异常大时保护弓头的叶片弹簧,防止其毁坏。整体的平衡使得弓头能够在接触网上自由转动。 平行导杆: 当受电弓进行升弓或降弓时,平行导杆可防止弓头失稳翻转。 升弓装置:受电弓通过驱动弹簧的作用升起并对接触网施加压力。升弓机构通过驱动钢缆和安装在下支架上的凸轮动作。 液压减震器:液压减振器通过上支架、下支架之间的减振器实现振荡衰减。它保证了碳滑板和接触网之间的良好接触。减振器适合的工作温度在-40至80摄氏度之间。 气动降弓机构:受电弓降弓是依靠固定在底架和下支架的杠杆之间气动降弓机构来完成。受电弓下降通过装在气压缸里的压缩弹簧实现,通过下支架上的触发臂上的活塞和活塞杆起作用。如果气缸受到压缩空气的压力,则压缩弹簧会被活塞压缩,此时受电弓可升弓。 升弓和降弓时间通过两个节流阀进行调节。若要调整受电弓的降弓位置,可以调整下支架的触发接头上的螺丝。如果没有压缩空气可以利用,受电弓可以使用气动脚踏泵升弓。 底架和上支架间的轴承:受电弓装备有免维护,油脂润滑周期长的深沟滚珠球轴承。每套轴承都装配有两个滚珠球轴承在加工好的轴上,轴承间的间隙填满了油脂。轴承外端安装了两个金属保护盖,避免机械损伤。

动车组受电弓故障分析及改进设计

目录 第1章绪论 (1) 1.1 研究背景 (2) 1.2国内外高速动车组受电弓的发展 (2) 1.3 国内受电弓常见的故障 (3) 第2章受电弓概述 (5) 2.1 CRH2A型受电弓组成结构 (5) 2.2 CRH2A受电弓的工作原理 (7) 2.3CRH2A型受电弓特点及其特性 (7) 2.4 CRH2A型受电弓升降装置 (8) 第3章CRH2A型受电弓模型 (10) 3.1 CRH2A型受电弓的日常检查 ........................................................... 10‘ 3.2 CRH2A型受电弓的故障 (11) 3.3 CRH2A型受电弓故障原因 (11) 3.4 CRH2A型受电弓故障分析及改 (12) 参考文献 (18) 致谢 (19)

摘要 世界上第一条高速铁路是1964年开通的日本东海岛新干线,发展至今已有53年。近年来国内高速铁路飞快发展,随着列车速度的提高,受电弓与接触网关系的问题日益突出。动车组是通过受电弓从接触网上获取电能,所以良好的弓网接触是保证列车取流的必要条件,受电弓的滑板成了重中之重,列车运行时如何减少受电弓滑板的损耗,提高受电弓滑板质量已经成为高速铁路技术的重要问题。 动车组受电弓滑板材料如今各国都在加紧研发,它所涉及的材料学问题是其解决受电弓滑板损耗的基础,早期接触网线多采用纯铜或铜合金材料,而在受电弓滑板方面,其材料经历了纯金属滑板、粉末冶金滑板、纯碳滑板、浸金属碳滑板等发展过程。 关键词:动车组;受电弓;安全

第1章绪论 1.1 研究背景 根据我国的基本国情,国内铁路提速是通过修建电气化铁路和对既有线路的改造实现的。而铁路的电气化和高速化已成为世界铁路运输发展趋势,只有实现电气化,才能实现铁路运输高速化目标。因此发展高速铁路是铁路是现代化建设的必然趋势,而高速铁路均采用电力牵引和电气化铁路技术,高速列车必须在高速运行条件下可靠地从接触网上取得电能,否则将影响列车运行和电气驱动系统的性能。 受电弓是电力机车的重要电气部件,属于高压电器,它直接与接触网接触,将电流从接触网上引入机车,供机车使用。随电力机车运行速度的不断提高,对其受流性能也提出了越来越高的要求,其基本要求有:滑板与接触导线接触可靠;磨耗小;升、降弓时不产生过分冲击;运行中受电弓动作轻巧、平稳、动态稳定性好等。而在高速铁路迅速发展的今天,受电弓故障频繁的发生严重制约了高速铁路的发展,因而研究受电弓的故障原因与其处理方法具有很大的现实意义,同时也顺应了高速铁路的发展。 电力机车获得电能主要是通过牵引供电系统,在牵引供电系统中向电力机车直接供电的是接触网。在电气化铁道中,接触网是架设在轨道上方,呈现重复“Z”形走向,沿线路线向机车提供的电力传输网。接触网上的电能是牵引供电所提供的,所以说在机车通过线路的时候,接触网上会一直有电,但是接触网上的电能不可能主动地输送到机车上。作为接触网和机车之间的过渡受流装置,受电弓的作用就是从接触网接触导线上受取电流供电力机车牵引车辆和照明生活使用的一种受流装置。在机车正常运行中,机车受电弓靠滑动接触而受流,是电力机车与固定供电装置之间的连接环节,当受电弓升起时,其滑板与接触网导线直接接触,从接触网导线上受取电流,并将其通过车顶母线传送至机车内部,供机车使用。如果没有受电弓的中间受流,电力机车就不可能从接触网上获得电力供牵引电机使用从而产生牵引力,所以受电弓的中间受流环节作用是电力机车获得电力的关键因素之一。 1.2国内外高速动车组受电弓的发展

受电弓结构原理及应用

目录 1. 概述 (2) 2. 弓网动力学 (2) 3. 工作特点 (2) 4. 受电弓结构 (3) 5. 受电弓分类 (4) 6. 受电弓的工作原理 (6) 7. 受流质量 (6) 7.1. 静态接触压力 (7) 7.1.1. 额定静态接触压力 (7) 7.1.2. 同高压力差 (7) 7.1.3. 同向压力差 (7) 7.2. 最高升弓高度 (7) 7.3. 弓头运行轨迹 (8)

1.概述 受电弓是电力牵引机车从接触网取得电能的电气设备,安装在机车或动车车顶上。 2.弓网动力学 弓网动力学研究电气化铁道机车(动力车)受电弓与接触网动态作用关系与振动问题的学科领域。电力机车是通过受电弓滑板与接触网导线间的滑动接触而获取电能的,当运动的受电弓通过相对静止的接触网时,接触网受到外力干扰,于是在受电弓和接触网两个系统间产生动态的相互作用,弓网系统产生特定形态的振动。当振动剧烈时,可以造成受电弓滑板与接触导线脱离接触,形成离线,产生电弧和火花,加速电器的绝缘损伤,对通信产生电磁干扰,更严重的是直接影响受流,甚至会造成供电瞬时中断,使列车丧失牵引力和制动力。而弓网之间接触力过大时,虽可大大降低离线率,但接触导线与受电弓滑板磨耗增大,使用寿命缩短。因此,良好的弓网关系是确保列车稳定可靠地受流的基本前提。弓网动力学的主要任务就是要研究并抑制弓网系统有害振动,确保受电弓与接触网系统相互适应、合理匹配,为不同营运条件(特别是高速运行)下的受电弓与接触网结构选型和参数设计提供理论指导。评价弓网关系和受流质量,一般采用弓网接触压力、离线率、接触导线抬升量、受电弓振幅、接触网弹性系数、接触导线波动传播速度和受电弓追随性等指标。弓网动力学的研究,通常以理论研究为主,并结合必要试验,通过建立受电弓与接触网振动模型来预测上述性能指标,从而改进或调整系统设计。弓网系统最初的动态设计只是基于一些简化的数学模型而进行的,随着列车运行速度的提高,弓网系统的模型越来越复杂,从20世纪70年代开始,计算机作为一种辅助模拟工具被用于弓网系统动力学仿真和优化设计,从而使得弓网动力学研究领域得到极大丰富和发展。 3.工作特点 (1)受电弓无振动而有规律地升起,直至最大工作高度; (2)靠滑动接触而受流。要求滑板与接触导线接触可靠,受电弓和接触网特别是接触网要磨耗小,升、降弓不产生过分冲击。

CRH3动车组受电弓检修与改进方案

摘要 自从19世纪铁路运输诞生以来,就一直朝着更高速的方向发展。高速铁路具 有载客量高、输送力强、速度较快、安全性好、正点率高、舒适方便以及能耗较低等明显的经济效益和社会效益,在全世界范围内显示出旺盛的生命力。高速铁路是当今世界铁路发展的共同趋势。 各国高速铁路在运营中发生了一些由于列车设备故障引起的事故,由于高速铁路的运营速度高、密度大,行车事故的发生严重影响了高速铁路系统的安全、正点,一些重大的事故甚至对乘客的生命和财产安全造成了不可弥补的损失。因此,防范行车事故、行车设备故障的发生是高速铁路运营部门的不懈追求。 受电弓作为动车组关键设备,受电弓的好坏直接决定动车组列车能否正常行驶。本文以CRH3型动车组受电弓为研究对象,结合受电弓结构特点和CRH3型动车组运行实际情况进行分析,分析了受电弓的检修方法,在此基础上提出了相应的改进措施和建议,以确保动车组正常运用安全。 关键词:CRH3动车组;受电弓;检修;改进方案 I

目录 摘要 ..................................................................................................................................... I 第1章绪论 (2) 1.1选题背景 (2) 1.2主要内容 (3) 第2章CRH3动车组受电弓 (4) 2.1CRH3动车组介绍 (4) 2.2CRH3动车组SS400+受电弓 (5) 第3章CRH3动车组受电弓故障及检修 (8) 3.1受电弓故障 (8) 3.1.1受电弓自身故障 ......................................................... 错误!未定义书签。 3.1.2外部环境故障 (8) 3.1.3共同作用故障 (8) 3.2受电弓故障发生原因 (9) 3.3受电弓故障对策 (10) 3.3.1库内检修故障对策 (10) 3.3.2路线运转故障对策 (11) 3.4受电弓检修指导 (11) 3.4.1受电弓性能检查 (11) 3.4.2受电弓外观检查 (13) 3.4.3受电弓表面清洁 (14) 第4章CRH3动车组受电弓改进方案 (16) 4.1快速降弓阀的改进方案 (16) 4.2ADD供风阀的改进方案 (17) 4.3受电弓升弓故障改进方案 (18) 4.4受电弓磨损问题的改进方案 (19) 参考文献 (21) 1

CRH380B型动车组受电弓控制原理与故障分析

CRH380B型动车组受电弓控制原理与故障分析 摘要:受电弓控制系统是牵引供电系统的核心,而牵引供电系统本身又与轨道 动车的运行效率、质量、安全性等紧密相连,因此对于受电弓故障及控制原理的 探讨是尤为必要的。本文以此为出发点,围绕CRH380B型动车组,从控制原理和 故障原因两个方面,对于受电弓控制系统展开探讨,为我国动车安全高效发展提 供理论层面的内容分析。 关键词:CRH380B型动车组;受电弓;控制原理;故障 引言: 受电弓控制系统在实际动车组当中,是通过多部件组合形成的,其中,平衡 杆在其中发挥着平衡的作用,尤其是对于升弓和降弓过程中弓头的平稳性起到了 至关重要的作用。而连接杆的作用则是通过对于其形状的几何微调,促使其发生 变化,对于动车运行产生作用。阻尼器主要是通过上臂杆和下臂杆两者的相互震荡,来确保良好接触。而接触对象之一,碳滑板,在于接触网的接触过程中,实 现对于电能的传输工作。 一、控制原理分析 对于控制原理的分析可以从受电弓气路控制原理和受电弓电路控制原理两个 方面来展开论述。 (一)气路控制原理 CRH380B型动车组的受电弓气路控制部分主要升弓电磁阀、ADD电磁阀、压 力开关、调压阀、压力传感器、气囊以及过滤器等几个方面构成[1]。 在实际运行过程中,由司机对于升降弓开关进行操作,从而控制升弓电磁阀 能够完成对于受电弓的实际指令,调整其进行升弓或降弓。而在这一过程中,当 需要进行降弓操作时,所发生的就是降弓的指令,收到这一指令后,升弓电磁阀 失电并隔断了与气囊连接的列车管的气路,进而导致气囊中的压力空气排除,完 成整个降弓的动作。而如果收到的是需要进行升弓的操作指令,则需要通过气路 导通,运用相对的操作方式,实现升弓动作[2]。 (二)电路控制原理 CRH380B型动车组受电弓电路控制部分主要分为气动调节器、受电弓控制单元、操作开关、中央控制单元、故障操作诊断信息、网络接口模块、主风管等几 个方面。 其具体的工作状态是,通过多功能车辆总线将信息指令传输给中央控制单元,在经过多功能车辆总线发送给司机室显示屏,在接收到信息指令后,经过诊断和 分析,将预先设置好的模式曲线,重新进行反馈,将信号传输给气动调节器,进 而产生对应的调整行为。 受电弓作为CRH380B型动车组的受流装置,通过采取接触网传递来的电流, 将其送至车内,供系统正常使用[3]。但是由于受电弓本身只用于受流,并没有灭 弧装置,因此,在对于电流的区分上,存在一定的能力误差,而这可能导致在实 际运用过程中,出现断大电流进入到系统的可能性,造成了故障出现的可能性。 而在这个时候,主断路器就发挥了重要作用,实现了保护电路的重要意义。 二、故障现象及原因分析 受电弓控制系统故障建立在其控制原理基础上,可以分为受电弓降弓故障、 主断路器无法闭合故障两个方面。 (一)降弓故障

振动盘工作原理主要是由一个振动马达作动力

振动盘工作原理主要是由一个振动马达作动力,振动马达工作时产生定向频率的力.只要把振动盘看成是一种斜面,再对这个斜面进行物理学的受力分析,你就能很容易理解他的工作原理了。 振动盘电磁线圈在工作中的,斜面受电磁吸力会微小的上下振幅,调整振动盘的工作频率以及间隙就可实现顺利工作。振动电磁铁原理:利用了电磁铁产生交变磁场,振动部分是一个铁片悬浮在电磁铁前方,信号经过电磁铁的时候会使电磁铁磁场变化,从而使铁片振动发声。调节铁片和电线圈之间的距离从而影响的它振动的频率。 主要是由一个振动马达作动力,振动马达工作时产生定向频率的力.只要把振动盘看成是一种斜面,再对这个斜面进行物理学的受力分析,你就能很容易理解他的工作原理了。 振动盘电磁线圈在工作中的,斜面受电磁吸力会微小的上下振幅,调整振动盘的工作频率以及间隙就可实现顺利工作。振动电磁铁原理:利用了电磁铁产生交变磁场,振动部分是一个铁片悬浮在电磁铁前方,信号经过电磁铁的时候会使电磁铁磁场变化,从而使铁片振动发声。 可我不能理解的是为什么控制器在没接线圈时输出是220V,一但接上后电压就变到8V 振动盘是一种自动定向排序的送料设备。振动盘的组成:料斗、底盘、控制器、直线送料器振动盘的工作原理:料斗下面有个脉冲电磁铁,可以使料斗垂直方向振动,由于弹簧片的倾斜,使料斗绕其垂直轴做扭摆振动。料斗内零件,由于受到这种振动,而沿螺旋轨道上升,直到送到出料口。自动送料振动盘是一种自动定向排序的送料设备。其工作目的是通过振动将无序工件自动有序定向排列整齐、准确地输送到下道工序。自动送料振动盘主要由料斗、底盘、控制器、直线送料器等配套组成。自动送料振动盘的料斗下面有个脉冲电磁铁,可以使料斗垂直方向振动,由于弹簧片的倾斜,使料斗绕其垂直轴做扭摆振动。料斗内零件,由于受到这种振动,而沿螺旋轨道上升,直到送到出料口。自动送料振动盘的料斗分为筒形料斗、螺旋、线料斗、锥形料斗、等分线料斗五种;底盘有正拉底盘、侧拉底盘、压电式底盘、精密底盘四种;控制器分为普通控制器、分极控制器、调频控制器、带缓启动控制器、数显调频控制器五种;直线送料器可根据客户需求订制各式各样型号直线送料器亦可根据产品要求订制。 振动盘主要由料斗、底盘、控制器、直线送料器等配套组成。除满足产品排序外还可用于分选、检测、计数包装,是一种现代化高科技产品。振动盘的作用:振动盘广泛应用于电池、五金、电子、医药、食品、连接器等各个行业,是解决工业自动化设备供料的必须设备。 振动盘是一种自动组装机械的辅助设备,能把各种产品有序排出来,它可以配合自动组装设备一起将产品各个部位组装起来成为完整的一个产品。振动盘是由一个振动马达作动力,振动马达工作时产生定向频率的力.只要把振动盘看成是一种斜面,再对这个斜面进行物理学的受力分析,你就能很容易理解他的工作原理了。振动盘电磁线圈在工作中的,斜面受电磁吸力会微小的上下振幅,调整振动盘的工作频率以及间隙就可实现顺利工作。振动磁铁'>电磁铁原理:利用了电磁铁产生交变磁场,振动部分是一个铁片悬浮在电磁铁前方,信号经过电磁铁的时候会使电磁铁磁场变化,从而使铁片振动发声。 振动盘是一种自动定向排序的送料设备。振动盘的组成:料斗、底盘、控制器、直线送料器振动盘的工作原理:料斗下面有个脉冲电磁铁,可以使料斗垂直方向振动,由于弹簧片的倾斜,使料斗绕其垂直轴做扭摆振动。料斗内零件,由于受到这种振动,而沿螺旋轨道上升,直到送到出料口。自动送料振动盘是一种自动定向排序的送料设备。其工作目的是通过振动将无序工件自动有序定向排列整齐、准确地输送到下道工序。自动送料振动盘主要由料斗、底盘、控制器、直线送料器等配套组成。自动送料振动盘的料斗下面有个脉冲电磁铁,可以使料斗垂直方向振动,由于弹簧片的倾斜,使料斗绕其垂直轴做扭摆振动。料斗内零件,由于受到这种振动,而沿螺旋轨道上升,直到送到出料口。自动送料振动盘

受电弓原理介绍

第三节受电弓原理介绍 受电弓主要功能是从额定电压 DC1500V接触网上获取电源,向整个列车电气系统供电,同时还通过列车的再生制动系统将列车的动能转换为电能回馈给接触网供给其它在线列车的使用,起到双向传递枢纽的作用。受电弓在刚性接触网和柔性接触网的线路上均能适用,在整个车辆速度范围内,受电弓有良好的动力学特性能,能够保证在各种轨道和速度下与接触网具有良好的接触状态和接触稳定性。它在气路上的特别设计保证了它降弓时有明显的迅速下降和平稳下降两个阶段。B2型车采用的是 SBF920型单臂式受电弓 (1)受电弓结构 图10 SBF920型单臂式受电弓结构示意图 单臂式受电弓主要特性有:重量轻,设计简单,维护少,卓越的接触性能以及安全的操作。 底架:底架由封闭的矩形空心钢管焊接而成。底架上装有以下部件:支撑下支架轴承座,上支架及下支架缓冲垫,运输挂钩,降弓后支撑弓头的支撑弹簧,升弓装置,连接杆,气动降弓机构,绝缘子,高压连接板,休息位置指示器,锁钩支撑座,气动设备。 下支架:下支架由无缝钢管焊接而成,其底板位于底架上。下支架上装有以下部件:装有升弓装置钢绳驱动的凸轮,气动降弓机构驱动的杠杆,平行导杆,

减震器,上支架安装座。 上支架:上支架为无缝铝管的焊接结构,十字形钢缆连接结构使框架具有一定的横向稳定性。上支架装有以下部件:弓头,连接杆,减振器,上升限位装置,受电头支撑轴。 连接杆:连接杆由一根用碳钢圆管制成的连接管和两个分别带有左旋及右旋螺纹的轴承座和两套绝缘轴承组成。通过转动连接管,可调节和微调受电弓的几何形状。 弓头:弓头安装在一根位于上支架上的轴上,叶片弹簧用于悬承被固定在托架盒内的集电板。平行导向滑环确保碳滑板与接触网的平行工作。每个碳滑板的单个悬承可实现最大的接触特性,将磨损尽量减至最小。悬承架在水平和竖直力异常大时保护弓头的叶片弹簧,防止其毁坏。整体的平衡使得弓头能够在接触网上自由转动。 平行导杆:当受电弓进行升弓或降弓时,平行导杆可防止弓头失稳翻转。 升弓装置:受电弓通过驱动弹簧的作用升起并对接触网施加压力。升弓机构通过驱动钢缆和安装在下支架上的凸轮动作。 液压减震器:液压减振器通过上支架、下支架之间的减振器实现振荡衰减。它保证了碳滑板和接触网之间的良好接触。减振器适合的工作温度在-40至80 摄氏度之间。 气动降弓机构:受电弓降弓是依靠固定在底架和下支架的杠杆之间气动降弓机构来完成。受电弓下降通过装在气压缸里的压缩弹簧实现,通过下支架上的触 发臂上的活塞和活塞杆起作用。如果气缸受到压缩空气的压力,则压缩弹簧会被活塞压缩,此时受电弓可升弓。 升弓和降弓时间通过两个节流阀进行调节。若要调整受电弓的降弓位置,可以调整下支架的触发接头上的螺丝。如果没有压缩空气可以利用,受电弓可以使用气动脚踏泵升弓。 底架和上支架间的轴承:受电弓装备有免维护,油脂润滑周期长的深沟滚珠球轴承。每套轴承都装配有两个滚珠球轴承在加工好的轴上,轴承间的间隙填满了油脂。轴承外端安装了两个金属保护盖,避免机械损伤。 电气设备:所有的轴承位置均通过分流导线进行旁路处理,以防止电流流经轴承。分流导线由一根柔软镀锡铜线和终端线耳组成,在接线板上涂上含铜的导电脂,使分流导线和支架之间有更好的导电性能。 气动设备:气动设备由连接到气压缸的压缩空气供应线路组成。气路中安装了两个节流阀,用于调节升弓和降弓速度。 降弓位置传感器:降弓位置传感器安装在底架的绝缘板上,当受电弓在降弓

浅谈 CRH380BL 型动车组受电弓原理

浅谈 CRH380BL 型动车组受电弓原理 发表时间:2020-01-16T09:49:08.317Z 来源:《工程管理前沿》2019年第24期作者:徐永帅[导读] 针对CRH380BL型动车组受电弓软连线摘要:针对CRH380BL型动车组受电弓软连线、支持绝缘子磨损断裂较为严重问题,结合受电弓结构特点和CRH380BL型动车组运行实际情况进行分析,提出了相应的改进措施和建议,以确保动车组正常运用安全。 关键词:受电弓软连线;支持绝缘子;故障;改进措施引言: 受电弓是动车组极其重要的电器部件,受电弓用于从接触网向电气操作的车辆供应电流,并使集电头适应接触网系统。通过三个支承绝缘子连接到车辆。 CRH380型动车组采用SS400型单臂受电弓。单臂受电弓由带支承绝缘子的底架 升降传动装置 框架 集电头 带有自动下降装置(ADD)的气动设备等主要部件组成: 1 CRH380型动车组受电弓运行故障描述 受电弓是动车组极其重要的电器部件,用来把接触网25kV的电能传导给车内高压设备。经过车辆长期在线上运行,虽然受电弓具有较好的气动力模型和气流调整装置,能有效改善受电弓的气动力稳定性,保证弓头位置稳定,整体性能基本适应动车组运行需要。但是受电弓各软连线、支持绝缘子由于设计和材料的原因,磨损断裂较为严重(软连线、绝缘子新品使用时间分别仅为6天与18天),这些不仅造成工作量和材料成本的增加,而且还容易造成受电弓各轴承的电蚀和绝缘距离的降低,影响受电弓的正常性能的发挥。在车辆的正常运行中,换修率明显高于其他电器部件。 2 CRH380型动车组受电弓运行故障原因分析2.1 接触网硬点及弓网匹配产生的交变剪切应力 接触网接触悬挂的一个重要指标就是弹性均匀,由于接触悬挂本身存在弹性差异,如果在接触悬挂或接触线的某些部位有附加重量、偏斜的线夹和安装不良的分相分段器,在电动车组高速运行情况下,受电弓就可能出现不正常波动或摆动,甚至出现撞弓、碰弓现象。形成这种现象的本征状态称为硬点。硬点是一种结构的本征缺欠,并且是相对的,在已定的接触网结构下列车速度越高硬点表现越明显。硬点是一种有害的物理现象,它会加快接触导线和受电弓滑板的异常磨耗和撞击性损害,撞击力还会向受电弓其他部件传递。 运行中为保证牵引电流的顺利流通,受电弓和接触线之间必须有一定的接触压力[SS400型受电弓接触压力为(80±10)N],接触导线在受电弓抬升作用下会产生不同程度的上升,从而使受电弓在运行中产生上下振动,使受电弓产生一个与其本身归算质量相关的上下交变的动态接触压力。该接触压力和硬点产生的撞击力会使受电弓的上、下臂及下臂、底架之间产生持续不断的相对转动,使臂杆之间及上臂杆与弓头之间的软连线不停地伸缩或扭动,交变剪切应力的作用导致软连线过早断裂。 2.2 动车组空气动力对受电弓部件的影响 动车组运行中,周围空气的动力作用一方面对列车和列车运行性能产生影响,同时对车顶受电弓的运行也产生一定的影响。受电弓作为一个弹性机构,通过自身结构保持与接触网导线的接触压力,在运行过程中,受到运行动态力的影响,使其在运行中的振动变得非常复杂。除此,受电弓在运行中还受到空气流作用产生的一个随速度增加而迅速增加的气动力。 从风洞试验结果来看,动车组表面压力在头车车身、拖车和尾车车身区域为低负压区。在有侧向风作用下,动车组表面压力分布发生很大变化,当列车在曲线上运行又遇到强侧风时,尤其对车顶部件表面压力的影响最大。 2.3 动车组会车时对受电弓部件表面压力的影响 在一列车与另一静止不动的动车组会车以及2列等速或不等速相对运行的动车组会车时,将在静止动车组和2列相对运行动车组一侧的侧墙上引起压力波(压力脉冲)。这是由于相对运动的动车组车头对空气的挤压,在与之交会的另一动车组侧壁上掠过,使动车组间侧壁上的空气压力产生很大的波动。 试验和计算表明,动车组会车压力波幅值大小与速度有关,随着会车速度的大幅度提高,会车压力波的强度将急剧增大。由试验可知,当头部长细比γ为2.5,2列车以等速相对运行会车时,速度由250km/h提高到350km/h,压力波幅值由1015Pa增至1950Pa,增大近1倍。 2.4 受电弓软连线截面形状不当造成的断股 软连线由很多细导线编织而成,由于动车组在运行中其动作次数比较频繁,如果软连线的截面形状和连接方式不当,就会造成软联线逐渐折损。目前,软连线截面形状为扁平矩形结构,在相同的截面面积和空气动力的情况下,该截面结构软连线所受的压力值较高,而从材料力学角度分析,该结构的抗弯曲和剪切许用应力值又较小,其边缘部位又存在一定的应力集中,造成软连线容易断股。软连线断股后,由于单位面积电流的增大,导致软连线及连接座的温度升高,从而使接触电阻增大,造成恶性循环,致使软连线热脆性增强。 2.5 受电弓支持绝缘子硅橡胶伞裙为柔性材料受电弓支持绝缘子是由有机合成材料组成的复合结构绝缘子,主要由芯棒、金具、伞裙护套和粘接层组成。硅橡胶伞裙护套是合成绝缘子的外绝缘部分,其作用是使绝缘子具有足够高的抗湿闪和污闪性能,保护芯棒免受大气侵蚀。金具是合成绝缘子的机械负荷的传递部件,它和芯棒组装在一起构成绝缘子的连接件,伞裙护套与芯棒之间用粘接胶进行粘接。由于硅橡胶绝缘子的伞裙是柔性材料,动车组在高速运行时,绝缘子背风面伞裙在空气流作用下产生较高的负压,在交会列车及速度变化时绝缘子周围空气动力长期作用,易出现交变舞动和振动变形,最终造成伞裙与护套连接处逐渐裂损。 3 CRH3型动车组受电弓运行故障改进措施建议3.1 加强接触网检测减少硬点数量

振动盘工作原理

振动盘工作原理 一. 振动盘简介: 振动盘是一种自动定向排序的送料设备. 振动盘的组成:料斗\底盘\控制器\直线送料器等配套组成.其工作目的是通过振动将无序工件自动有序定向排列整齐,准确地输送到下道工序. 振动盘的料斗分为筒形料斗,螺旋,线料斗,锥形料斗,等分线料斗等五种; 底盘有正拉底盘,侧拉底盘,压电式底盘,精密底盘四种; 控制器分为普通控制器,调频控制器,分级控制器,带缓启动控制器,数显调频控制器五种; 直线送料器可根据客户需求订制各式各样型号直线送料器,也可根据产品要求订制. 振动盘是一种自动组装机械的辅助设备,是一种能自动定向排序的送料设备.能把各种产品有序排出来,它可以配合自动组装设备一起将产品各个部位组装起来成为完整的一个产品.作用:广泛应用于电池\五金\电子\医药\食品\塑胶插件\喷雾器\连接器\精密振动盘应用等各个行业,是解决工业自动化设备供料的必须设备. 振动盘辅助产品:底盘\顶盘\控制器\直线送料器\振动平台料仓\涂层 电磁振动上供料器从结构上分:直槽往复式和圆盘扭动式.其中直槽式一般作为不需要定向整理的粉粒状物料的给料器,或用于清洗,筛选,烘干加热,冷却等操作.圆盘式多用于需要定向整理的,有一定形状和尺寸的物料的上供料. 二.振动盘工作原理 料斗下面有个脉冲电磁铁,可以使料斗垂直方向上下振动,由于弹片的倾斜,使料斗绕其垂直轴做扭摆振动,料斗内零件,由于受到这种振动,而沿螺旋轨道上升,直到送到下道工序运动状态:直线形料斗是往复直线式振动,而圆筒形是往复扭转式振动.主要是由一个振动马达作动力,振动马达工作时产生定向频率的力,只要把振动盘看成是一个斜面,再对这个斜面进行物理学的受力分析,你就能很容易理解它的

受电弓阻尼器原理及常见故障分析

阻尼器是受电弓在异常工况下紧急快速降弓的缓冲保 护装置,其可靠的阻尼特性对受电弓安全运行尤为重要。 一、阻尼器工作原理 受电弓是由底架、下臂、上臂、弓头组成的铰接式机械构件,可等效简化为四杆机构。其中下臂为主动杆,通过特定角度范围内的转动来驱动受电弓升降。阻尼器安装在下臂与底架之间,可调节和缓冲下臂杆转动,从而实现受电弓的减振和缓冲。 阻尼器属于油压减振器的一种,是广泛应用于机车车辆悬挂的重要减振构件。它以油液为工作介质,通过外力拉伸、压缩活塞杆往返运动形成液压阻尼力,达到减振目的。其本身具有良好的减振阻尼效应和柔性的减振效果,能够提高机车车辆及部件高速运行时的平稳性、舒适型和安全性。阻尼器主要由接头、底阀组装、油缸、活塞组装、储油缸组焊、导承、骨架密封件、压盖、活塞杆等组成,如图1 所示。 受电弓工作要求:正常工况下的各工作高度范围内阻尼

器阻尼力较小,从而确保受电弓与接触网之间保持(70±10)N 的恒定静态接触压力,达到稳定受流的目的;异常工况下,受电弓快速降弓接近落弓位置时,阻尼器有缓冲从而避免有害冲击。为满足拉伸、压缩行程时受电弓对阻尼力的需求,受电弓阻尼器的阻尼特性设计为不对称的。 阻尼器特性曲线见图2。图中A 和B 行程为阻尼器的拉伸行程,对应受电弓的降弓过程,拉伸时是变阻尼力,刚开始比较小(< 450 N),拉伸到一定位置时阻尼力突然增大。 A 行程中产生阻尼力由活塞杆的阻尼节流阀系来实现, B 行程中产生的阻尼力由活塞阻尼调节阀系来实现。 C 行程为阻尼器的压缩行程,对应受电弓的升弓过程,C 行程中产生的阻尼力由底阀座组装中阀片弹簧系统实现,通过改变阀片弹簧的刚度来调节阻尼力的大小。 二、阻尼器失效故障及分析 和谐系列电力机车受电弓长期运用经验表明,引发阻尼

电振动盘的工作原理和受力分析详解

电磁振动上供料器的工作原理 ★原理: 在电磁振动器作用下,料斗作扭转式上下振动,使工件沿着螺旋轨道由低到高 移动,并自动排列定向,直至上部出料口而进入输料槽,然后由送料机构送至相应工位。 为方便分析,以直槽式上供料器为例,图2-40 电磁振动上供料器的工作过程,是由于电磁铁的吸引和支承弹簧的反向复位作用,使料槽产生高速、高频(50~100次/秒)、微幅(0.5~1mm)振动,使工件逐步向高处移动。 I=0时,料槽在支承弹簧作用下向右上方复位,工件依靠它与轨道的摩擦而随轨道向右上方运动,并逐渐被加速。 I>0时,料槽在电磁铁的吸引下向左下方运动,工件由于受惯性作用而脱离轨道,继续向右上方运动(滑移或跳跃)。……下一循环,周而复始→工件在轨道上作由低到高的运动。

1、工件在轨道上的受力分析 * 工件在轨道上的受力:自重力、轨道反力、摩擦力、惯性力; * 摩擦力、惯性力与电磁铁的电流有关。(1)I=0时,支承弹簧复位,轨道以加 速度a1向右上方运动,工件力平衡如图1-41: ma1cosβ+mgsinα=F=μN(2—1) ma1sinβ+mgcosα=N(2—2)(2)I>0时,电磁铁吸引,轨道以加速度 a2向左下方运动,工件受力平衡如图1-42:

Ma2cosβ-mgsinα=F=μ*N(2—3) ma2sinβ-mgcosα=-N(2—4) ? 2、工件在轨道上的运动状态分析 (1)运动分析根据受力分析,工件在轨道上的运动有两种可 能性:A、因惯性沿轨道下滑,此时I=0,且有 ma1cosβ+mgsinα>μ*N(2 5) a1>g(sinα-μcosα)/(μsinβ-cosβ)(2 6) ?当轨道向右上方运动的加速度a1满足上式时,工件便会沿轨道下滑。这对振动上供料机构是不希望出现的。 B、沿轨道上行,此时根据电磁铁吸合与否可得: I=0,a1≤g(sinα-μcosα)/(μsinβ-cosβ)(2 7) I>0,a2≥g(sinα+μcosα)/(μsinβ+cosβ)(2 8) ?电磁振动供料器要实现预定的上供料,轨道向右上方运动的加速度a1和向左下方运动的加速度a2必须满足上述工件沿轨道上行时的条件式。工件沿轨道上行时的运动状态随多种条件而变化。 (2)运动状态

相关文档
最新文档