高中物理直线运动试题经典及解析

高中物理直线运动试题经典及解析
高中物理直线运动试题经典及解析

高中物理直线运动试题经典及解析

一、高中物理精讲专题测试直线运动

1.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s .取重力加速度g =10 m/s 2. (1)求长直助滑道AB 的长度L ;

(2)求运动员在AB 段所受合外力的冲量的I 大小;

(3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小.

【答案】(1)100m (2)1800N s ?(3)3 900 N 【解析】

(1)已知AB 段的初末速度,则利用运动学公式可以求解斜面的长度,即

22

02v v aL -=

可解得:22

1002v v L m a

-==

(2)根据动量定理可知合外力的冲量等于动量的该变量所以

01800B I mv N s =-=?

(3)小球在最低点的受力如图所示

由牛顿第二定律可得:2C

v N mg m R

-= 从B 运动到C 由动能定理可知:

221122

C B mgh mv mv =

-

解得;3900N N =

故本题答案是:(1)100L m = (2)1800I N s =? (3)3900N N =

点睛:本题考查了动能定理和圆周运动,会利用动能定理求解最低点的速度,并利用牛顿第二定律求解最低点受到的支持力大小.

2.质量为2kg 的物体在水平推力F 的作用下沿水平面做直线运动,一段时间后撤去F ,其运动的

图象如图所示取

m/s 2,求:

(1)物体与水平面间的动摩擦因数; (2)水平推力F 的大小; (3)s 内物体运动位移的大小.

【答案】(1)0.2;(2)5.6N ;(3)56m 。

【解析】 【分析】 【详解】

(1)由题意可知,由v-t 图像可知,物体在4~6s 内加速度:

物体在4~6s 内受力如图所示

根据牛顿第二定律有:

联立解得:μ=0.2

(2)由v-t 图像可知:物体在0~4s 内加速度:

又由题意可知:物体在0~4s 内受力如图所示

根据牛顿第二定律有:

代入数据得:F =5.6N

(3)物体在0~14s内的位移大小在数值上为图像和时间轴包围的面积,则有:

【点睛】

在一个题目之中,可能某个过程是根据受力情况求运动情况,另一个过程是根据运动情况分析受力情况;或者同一个过程运动情况和受力情况同时分析,因此在解题过程中要灵活处理.在这类问题时,加速度是联系运动和力的纽带、桥梁.

3.如图所示,水平平台ab长为20 m,平台b端与长度未知的特殊材料制成的斜面bc连接,斜面倾角为30°.在平台b端放上质量为5 kg的物块,并给物块施加与水平方向成37°角的50 N推力后,物块由静止开始运动.己知物块与平台间的动摩擦因数为0.4,重力加速度g=10 m/s2,sin37°=0.6,求:

(1)物块由a运动到b所用的时间;

(2)若物块从a端运动到P点时撤掉推力,则物块刚好能从斜面b端开始下滑,则aP间的距离为多少?(物块在b端无能量损失)

(3)若物块与斜面间的动摩擦因数μbc=0.277+0.03L b,式中L b为物块在斜面上所处的位置离b端的距离,在(2)中的情况下,物块沿斜面滑到什么位置时速度最大?

【答案】(1)5s (2)14.3m (3)见解析

【解析】

试题分析:(1)根据牛顿运动定律求解加速度,根据位移时间关系知时间;

(2)根据位移速度关系列方程求解;

(3)物体沿斜面下滑的速度最大时,须加速度为0,根据受力分析列方程,结合物块与斜面间的动摩擦因数μbc=0.277+0.03L b知斜面长度的临界值,从而讨论最大速度.

解:(1)受力分析知物体的加速度为

a1===1.6m/s2

x=a1t2

解得a到b的时间为t==5s

(2)物体从a到p:=2a1x1

物块由P到b:=2a2x2

a2=μg

x=x1+x2

解得ap距离为x1=14.3m

(3)物体沿斜面下滑的速度最大时,须加速度为0,

即a==0

μbc=0.277+0.03L b,

联立解得L b=10m

因此如斜面长度L>10m,则L b=10m时速度最大;

若斜面长度L≤10m,则斜面最低点速度最大.

答:(1)物块由a运动到b所用的时间为5s;

(2)若物块从a端运动到P点时撤掉推力,则物块刚好能从斜面b端开始下滑,则间aP 的距离为14.3m;

(3)斜面长度L>10m,则L b=10m时速度最大;若斜面长度L≤10m,则斜面最低点速度最大.

【点评】本题考查的是牛顿第二定律及共点力平衡,但是由于涉及到动摩擦因数变化,增加了难度;故在分析时要注意物体沿斜面下滑的速度最大时,须加速度为0这个条件.

4.如图,AB是固定在竖直平面内半径R=1.25m的1/4光滑圆弧轨道,OA为其水平半径,圆弧轨道的最低处B无缝对接足够长的水平轨道,将可视为质点的小球从轨道内表面最高点A由静止释放.已知小球进入水平轨道后所受阻力为其重力的0.2倍,g取

10m/s2.求:

(1)小球经过B点时的速率;

(2)小球刚要到B点时加速度的大小和方向;

(3)小球过B点后到停止的时间和位移大小.

【答案】(1)5 m/s(2)20m/s2加速度方向沿B点半径指向圆心(3)25s 6.25m

【解析】

(1)小球从A点释放滑至B点,只有重力做功,机械能守恒:mgR=1

2

mv B2

解得v B=5m/s

(2)小环刚要到B点时,处于圆周运动过程中,

22

22 1

5

/20/

1.25

B

v

a m s m s

R

===

加速度方向沿B点半径指向圆心

(3)小环过B点后继续滑动到停止,可看做匀减速直线运动:0.2mg=ma2,解得a2=2m/s2

22

2.5B

v t s a =

= 2

21 6.252

s a t m =

=

5.小球从离地面80m 处自由下落, 重力加速度g=10m/s 2。问: (1)小球运动的时间。

(2)小球落地时速度的大小v 是多少? 【答案】(1)4s ;(2)40m/s 【解析】 【分析】

自由落体运动是初速度为零、加速度为g 的匀加速直线运动,由位移公式求解时间,用速度公式求解落地速度。 【详解】 解:(1)由

得小球运动的时间: 落地速度为:

6.物体在斜坡顶端以1 m/s 的初速度和0.5 m/s 2的加速度沿斜坡向下作匀加速直线运动,已知斜坡长24米,求:

(1) 物体滑到斜坡底端所用的时间. (2) 物体到达斜坡中点速度. 【答案】(1)8s (213/m s 【解析】 【详解】

(1)物体做匀加速直线运动,根据位移时间关系公式,有:

201

2

x v t at +=

代入数据得到:

14=t +0.25t 2

解得:

t=8s 或者t =-12s (负值舍去)

所以物体滑到斜坡底端所用的时间为8s

(2)设到中点的速度为v 1,末位置速度为v t ,有:

v t =v 0+at 1=1+0.5×8m/s=5m/s

22

0 2t v v ax -=

22

10 22

x v v a -=

联立解得:

113m/s v =

7.某运动员助跑阶段可看成先匀加速后匀速运动.某运动员先以4.5m/s 2的加速度跑了5s .接着匀速跑了1s .然后起跳.求: (1)运动员起跳的速度? (2)运动员助跑的距离? 【答案】(1)22.5m/s (2)78.75m

【解析】(1)由题意知,运动员起跳时的速度就是运动员加速运动的末速度,根据速度时间关系知,运动员加速运动的末速度为:

即运动员起跳时的速度为22.5m/s ;

(2)根据位移时间关系知,运动员加速运动的距离为:

运动员匀速跑的距离为:

所以运动员助跑的距离为:

综上所述本题答案是:

(1)运动员将要起跳时的速度为22.5m/s ; (2)运动员助跑的距离是78.75m .

8.一长木板置于粗糙水平地面上,木板左端放置一小物块;在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a )所示.t=0时刻开始,小物块与木板一起以共同速度向右运动,直至t=1s 时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s 时间内小物块的v ﹣t 图线如图(b )所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2.求

(1)木板与地面间的动摩擦因数μ1及小物块与木板间的动摩擦因数μ2; (2)木板的最小长度;

(3)木板右端离墙壁的最终距离.

【答案】(1)0.1和0.4.(2)6.0m (3)6.5m

【解析】试题分析:(1)根据图像可以判定碰撞前木块与木板共同速度为4/v m s =

碰撞后木板速度水平向左,大小也是4/v m s = 木块受到滑动摩擦力而向右做匀减速, 根据牛顿第二定律有2240

/1

g m s μ-=

,解得20.4μ= 木板与墙壁碰撞前,匀减速运动时间t=1s ,位移 4.5x m =, 末速度v=4m/s ,其逆运动则为匀加速直线运动可得2

12

x vt at =+

,带入可得21/a m s = 木块和木板整体受力分析,滑动摩擦力提供合外力,即2g a μ=,可得10.1μ= (2)碰撞后,木板向左匀减速,依据牛顿第二定律有()121M m g mg Ma μμ++=,可得

214

/3

a m s =

对滑块,则有加速度2

24/a m s =,滑块速度先减小到0,

此时,木板向左的位移为2111111023x vt a t m =-=, 末速度18

/3

v m s = 滑块向右位移2140

22

x t m +=

= 此后,木块开始向左加速,加速度仍为2

24/a m s =

木块继续减速,加速度仍为214

/3

a m s =

假设又经历2t 二者速度相等,则有22112a t v a t =-,解得20.5t s =

此过程,木板位移23121217

26

x v t a t m =-

=。末速度31122/v v a t m s =-= 滑块位移此后木块和木板一起匀减速。

二者的相对位移最大为12346x x x x x m ?=++-= 滑块始终没有离开木板,所以木板最小的长度为6m

(3)最后阶段滑块和木板一起匀减速直到停止,整体加速度2

11/a g m s μ==

位移23

522v x m a

== 所以木板右端离墙壁最远的距离为125 6.5x x x m ++= 考点:考查了牛顿第二定律与运动学公式的综合应用

【名师点睛】连接牛顿第二定律与运动学公式的纽带就是加速度,所以在做这一类问题时,特别又是多过程问题时,先弄清楚每个过程中的运动性质,根据牛顿第二定律求加速度然后根据加速度用运动学公式解题或者根据运动学公式求解加速度然后根据加速度利用牛顿第二定律求解力

视频

9.一辆值勤的警车停在公路边,当警员发现从他旁边以10m /s 的速度匀速行驶的货车严

重超载时,决定前去追赶,经过5s 后警车发动起来,并以2m /s 2的加速度做匀加速运动,并尽快追上货车,但警车的行驶速度必须控制在108km /h 以内.问: (1)警车在追赶货车的过程中,两车间的最大距离是多少? (2)求出警车发动后至少要多长时间才能追上货车? 【答案】(1)90m (2)12.5s 【解析】 【分析】 【详解】

()1当两车速度相同时距离最大

由v at =

可得警车达到10/m s 的时间;14t s = 在这段时间警车的位移221111

2.542022

x at m =

=??= 货车相对于出发点的位移()21074110x m =+= 两车间的最大距离90x m =V

()2108/30/km h m s =;

由v at =

可得警车达到最大速度的时间212t s = 此时警车的位移2

3211802

x at m =

= 货车相对于出发点的位移()410712190x m =+= 由于警车的位移小于货车的位移,所以仍末追上 设再经过3t 追上,则()23010190180t -=- 得30.5t s =

则总时间为2312.5t t t s =+= 则警车发动后经过12.5s 才能追上. 故本题答案是:(1)90m (2)12.5s

10.两辆玩具小车在同一水平轨道上运动,在t =0时刻,甲车在乙车前面S 0=4m 的地方以速度v 0=2m /s 匀速行驶,此时乙车立即从静止开始做加速度a =1m /s 2匀加速直线运动去追甲车,但乙车达到速度v m =3m /s 后开始匀速运动.求: (1)从开始经过多长时间乙车落后甲车最远,这个距离是多少?

(2)从开始经过多长时间乙车追上甲车,此时乙车通过位移的大小是多少? 【答案】(1)6m (2)21m 【解析】 【分析】

(1)匀加速追匀速,二者同速时间距最大;

(2)先判断乙车达到最大速度时两车的间距,再判断匀速追及阶段的时间即可.匀加速追及匀速运动物体时,二者同速时有最小间距. 【详解】

(1)当两车速度相等时相距最远,即v 0=at 0,故t 0=2s ; 此时两车距离x =S 0+v 0t 0-12

at 02 解得x =6m ;

(2)先研究乙车从开始到速度达到v m 时与甲车的距离. 对乙车:v m =at 1,2ax 乙=v m 2 , 对甲车:x 甲=v 0t 1

解得x 甲=6m ,x 乙=4.5m t 1=3s

x 甲+S 0>x 乙,故乙车达到最大速度时未追上乙车,此时间距为△s =x 甲+S 0-x 乙=5.5m , 乙车还需要时间20 5.5

5.532

m s t s s v v ?=

==--, 故甲追上乙的时间t =t 1+t 2=3+5.5s =8.5s , 此时乙车的位移为X 总=x 乙+v m t 2=4.5+3×5.5m =21m ;

相关主题
相关文档
最新文档