电子管差分放大电路设计及优势解析

电子管差分放大电路设计及优势解析
电子管差分放大电路设计及优势解析

差分放大电路是为解决直流放大器的工作点漂移而出现的。由于集成电路中晶体管的一致性好,且大电容不易制造,差分电路已成为模拟集成电路中放大电路的主要形式。电子管差分放大器与晶体管差分放大器原理差不多,但在音频领域内实际应用并不多。其基本电路如上图所示。

当两个电子管的特性一致时,两管的屏流相等,两个输出端的电压幅值相等,相位相反。由于阴极电阻R5的作用,在电子管的栅极输入信号时,一个管子屏流的增加必然导致另一个管子屏流的减少,并且增加量与减少量相等,而输出电压则是二者之差,这正是差分电路名称的由来。

但当电子管的工作点选择不当时,仍可能出现一个管子的增加量不等于另一个管子减小量的情况,即放大器出现了失真。当双端输出时,失真被抵销一大部分,而单端输出时,失真并不能被抵销,与单管放大器(工作点相同)差不多。电子管差分放大电路对管子的配对要求也比较高,两管一致性越好,电路性能越好。此外还与阴极电阻R5有关,R5越大,电路性能越好。但阴极电阻大,相应要求负电源电压高。例如《电子报》2006年24期《电子管差分放大电路》一文阴极电阻高达68kΩ,若每管屏流为1mA,则负电源应达-134V)(栅负压-2V)功耗也增加。为此,也可采用在阴极电路接入恒流源的方法,如下图所示,但又增加了电路的复杂性,恒流源除可采用晶体管,也可采用恒流二极管或电子管,此时,阴极负电压只需10~20V。

在采用阴极电阻的情况下,电阻大小可用下式计算:

R5=|VS|+|VG|/2I式中VS为阴极负电压,VG为栅负压,I为单管屏极电流。当|VS||VG|时,可按R5=VS2/2I选取电阻。当电阻接入电路后,其直流负反馈作用可自动提供适宜的栅负压稳定工作点(工作点可能与原选值略有差异,但不影响正常工作)。

较之单管放大器,电子管差分放大器有如下优点:

1.省去了阴极旁路电路,电路频响可至OHz,成为直流放大器,但高端频响不变。

2.具有高的共模抑制能力,对共模干扰、噪声及电源电压变化不敏感。

3.工作点十分稳定,阴极负电压越高,工作点越稳定。

4.输入、输出均可选择单端、双端任意搭配,十分灵活。如可实现单端输入,双端输出,且输出大小相等、相位相反的电压。

但同时也存在固有缺陷:

1.多用了一倍的电子管及元件,且选管配对要求高。

2.必须另设一组单独的较高质量阴极负电源。若负电源质量不高,反而引入干扰和噪声。

3.单端输入、单端输出时的尖真与单管放大器差不多,而其放大倍数减少一半。

通常,音频放大器并不需要放大直流信号,其输入、输出端大都为电容耦合,工作点轻微变动并不影响交流放大。同时,工作中的共模干扰也很少,加之又存在上述三个固有缺陷,决定了电子管差分放大电路在音频领域中应用并不很多。特别是一般前级放大器,根本没有必要采用差分放大器。当然,音响发烧进行试验及追求完美另当别论。电子管差分放大器在音频电路中应用主要有两个方面:一是作为平衡输入的前级放大器,以配合线路平衡传输时要求的双端输入及对共模干扰的抑制。二是作为末级推挽功放的倒相推动级,由于差分放大器双端输出的是相位相反的音频信号,故可通过电容耦合直接推动末级推挽功率电子管,较之常见的分负载倒相或变压器倒相有更好的性能。另外,电路上图、下图中的电位器是在两管特性不太一致时调平衡之用,以保证输入为零时双端输出为零。用于交流放大时,两管屏流的轻微不平衡不影响正常工作,此电位器可省去。也可在每个管子的阴极串一小电阻再接阴极电阻上,以提供适量的本级负反馈。

集成运算放大器习题集及答案

第二章集成运算放大器 题某集成运放的一个偏置电路如图题所示,设T1、T2管的参数完全相同。问: (1) T1、T2和R组成什么电路 (2) I C2与I REF有什么关系写出I C2的表达式。 图题解:(1) T1、T2和R2组成基本镜像电流源电路 (2) REF BE CC REF C R V V I I - = = 2 题在图题所示的差分放大电路中,已知晶体管的=80,r be=2 k。 (1) 求输入电阻R i和输出电阻R o; (2) 求差模电压放大倍数 vd A 。

图题解:(1) R i =2(r be +R e )=2×(2+= k Ω R o =2R c =10 k Ω (2) 6605 .08125 80)1(-=?+?-=β++β- =e be c vd R r R A 题 在图题所示的差动放大电路中,设T 1、T 2管特性对称, 1 = 2 =100,V BE =,且r bb ′=200,其余参数如图中所示。 (1) 计算T 1、T 2管的静态电流I CQ 和静态电压V CEQ ,若将R c1短路,其它参数不变,则T 1、T 2管的静态电流和电压如何变化 (2) 计算差模输入电阻R id 。当从单端(c 2)输出时的差模电压放 大倍数2 d A =; (3) 当两输入端加入共模信号时,求共模电压放大倍数2 c A 和共模抑制比K CMR ; (4) 当v I1=105 mV ,v I2=95 mV 时,问v C2相对于静态值变化了多少

e 点电位v E 变化了多少 解:(1) 求静态工作点: mA 56.010 2101/107 122)1/(1=?+-=+β+-= e b BE EE CQ R R V V I V 7.07.010100 56 .01-≈-?- =--=BE b BQ E V R I V V 1.77.01056.012=+?-=--=E c CQ CC CEQ V R I V V 若将R c1短路,则 mA 56.021==Q C Q C I I (不变) V 7.127.0121=+=-=E CC Q CE V V V V 1.77.01056.0122=+?-=--=E c CQ CC Q CE V R I V V (不变) (2) 计算差模输入电阻和差模电压放大倍数: Ω=?+=β++=k 9.456 .026 101200) 1('EQ T bb be I V r r Ω=+?=+=k 8.29)9.410(2)(2be b id r R R 5.338 .2910100)(22 =?=+β=be b c d r R R A (3) 求共模电压放大倍数和共模抑制比: 5.0201019.41010 1002)1(2 -=?++?-=β++β-=e be b c c R r R R A 675.05.332 2===c d CMR A A K (即)

差分放大电路仿真02605

苏州市职业大学实验报告姓名:学号:班级:

二、选好元器后,将所有元器件连接绘制成仿真电路(见图 1) R3 6.8k Q 三、仿真分析 1.静态工作点分析 1)调零。信号源先不接入回路中,将输入端对地短接,用万用表测量两个输出 节点,调节三极管的射极电位,使万用表的示数相同,即调整电路使左右完 全对称。测量电路及结果如图2所示 2)静态工作点调试。零点调好以后,可以用万用表测量 Q1、Q2管各电极电位, 结果如图 3 所示,测得 I B 1 15 A , I C 1 1.089mA , U CE 5.303V 。 2.测量差模放大倍数 将函数信号发生器XFG1的“ +”端接放大电路的R1输入端,“一”端接R2输入 端,COM 端接地。调节信号频率为1kHz ,输入电压10mV 调入双踪示波器,分别 接输入输出,如图4所示,观祭波形变化,示波器观祭到的差分放大电路输入、 输出波形如图5所示 R4 6.8k Q R1 ■ 酉 2 ?R6 >510 Q <3 ------- Q1 R8 12k Q 12 V 双端输入、 100Q Key=A 丄V2 -— 12 V 11 R5 5.1k 10 双端输出的长尾式差分放大电路 8 Q ■ 4 Q2 2N3903 R2 AAAr-| 2k Q 7 50% Rp1

4.607 V H-、4 -Q *: LR3 S : : ?6+BkQ : a ): >R4 :>G.?kn ............ R& '''' ---------- VA ---------- it::12W5::: 1 F ■! ■ I R1 .,,斗,- VA- :7W. . \ ■1 2M39G 3 :R2 : : 2K1: 2N39G3 -” R6 5100 : ::5C% :10QQ ::Key=A 丄V2「::二12W TV '' 图2差分放大器电路调零

低频典型例题--部分参考答案

复习题 一、填空: 1.为使BJT发射区发射电子,集电区收集电子,必须具备的条件是(发射极正偏,集电极 反偏)。 2.N型半导体是在纯硅或锗中加入(磷(+5))元素物质后形成的杂质半导体。 3.差分放大电路对(差模)信号有放大作用,对(共模)信号起到抑制作用。 4.在电容滤波和电感滤波中,(电感)滤波适用于大电流负载,(电容)滤波的直流输出电压高。 5.集成运放主要包括输入级、( 中间级)、( 输出级)和 ( 偏置)电路。其中输入级一般采用( 差分放大)电路。 6.为稳定放大器的静态工作点,应在放大电路中引入(直流负)反馈,为稳定放大器 的输出电压应引入(电压负)反馈。 7.甲类功放电路相比,乙类互补对称功率放大电路的优点是(效率高,管耗小),其最高效率可达到( 78.5% ),但容易产生(交越)失真。 8.集成运算放大器是一种采用(直接)耦合方式的多级放大电路,它的输入级常采用差分电路形式,其作用主要是为了克服(零漂、温漂)。 9.若放大器输入信号电压为1mV,输出电压为1V,加入负反馈后,为达到同样输出需要的输入信号为10mV,该电路的反馈深度为( 10 )。 10.产生1Hz~1MHz范围内的低频信号一般采用( RC )振荡器,而产生1MHz以上的高频信号一般采用( LC )振荡器。 11.半导体二极管具有(单向导电)作用,稳压二极管用作稳压元件时工作在(反向击穿)状态。 12.晶体三极管是一种(电流控制电流)控制型器件,当工作在饱和区时应使其发射结(正偏)集电结(反偏),而场效应管是一种( 电压控制电流 ) 控制型器件。 13.集成电路运算放大器是一种高电压增益、高输入电阻、(低)输出电阻的(直接)耦合方式的多级放大电路。 14.差分放大电路有四种输入-输出方式,其差模电压增益大小与输(出)有关而与输(入)方式无关。 15.在放大电路中引入(直流负)反馈可以稳定放大电路的静态工作点,。

差动放大器实验报告

差动放大器实验报告 以下是为大家整理的差动放大器实验报告的相关范文,本文关键词为差动,放大器,实验,报告,篇一,实验,差动,放大器,南昌大学,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在工作报告中查看更多范文。 篇一:实验五差动放大器 南昌大学实验报告 实验五差动放大器 一、实验目的 1、加深对差动放大器性能及特点的理解 2、学习差动放大器主要性能指标的测试方法 二、实验原理 下图是差动放大器的基本结构。它由两个元件参数相同的基本共射放大电路组成。当开关K拨向左边时,构成典型的差动放大器。调零电位器Rp用来调节T1、T2管的静态工作点,使得输入信号ui=0时,双端输出电压uo=0。Re为两管共用的发射极电阻,它对差模信号无负反馈作用,因而不影响差模电压放大倍数,但对共模信号有较

强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。 图5-1差动放大器实验电路 1、静态工作点的估算典型电路Ic1=Ic2=1/2Ie恒流源电路Ic1=Ic2=1/2Ic3 2、差模电压放大倍数和共模电压放大倍数 双端输出:Re=∞,Rp在中心位置时, Ad? 单端输出 △uoβRc ?? △ui Rb?rbe??β)Rp 2 Ad1? △uc11?Ad △ui2 Ad2? △uc21 ??Ad △ui2 当输入共模信号时,若为单端输出,则有 △uc1?βRcR

Ac1?Ac2????c △uiR?r?(1?β)(1R?2R)2Re bbepe 3、共模抑制比cmRR2 为了表征差动放大器对有用信号(差模信号)的放大作用和对共模信号的抑制能力,通常用一个综合指标来衡量,即共模抑制比AA cmRR?d或cmRR?20Logd?db? AcAc 三、实验设备与器材 1、函数信号发生器 2、示波器 3、交流毫伏表 4、万用表 5、实验箱 6、差动放大器集成块 四、实验内容 1、典型差动放大器性能测试 按图5-1连接实验电路,开关K拨向左边构成典型差动放大器。 1)测量静态工作点2)①调节放大器零点 信号源不接入。将放大器输入端A、b与地短接,接通±12V直流电源,用直流电压表测量输出电压uo,调节调零电位器Rp,使uo=0。调节要仔细,力求准确。 ②测量静态工作点 零点调好以后,用直流电压表测量T1、T2管各电极电位及射极电阻Re两端电压uRe,记入表5-1。

差分放大器AD813x常见问题解答

差分放大器AD813x常见问题解答 问题:如何计算差分放大器电路的增益,如何分析差分放大器电路? 答案:如图所示,差分放大电路分析的基本原则与普通运算放大器中虚断虚短原则相同,同 时还具有其特有的分析原则: 差分放大器电路分析图 1.同向反向输入端的电流为零,即虚断原则。 2.同向反相输入端的电压相同,即虚短原则。 3.输出的差分信号幅度相同,相位相差180度,以Vocm共模电压为中心对称。 4.依照上述三个原则,差分信号的增益为Gain=R F/R G。 问题:为什么电路的输出不正确? 答案:对于差分放大器的应用来讲,要得到正确的输出,必须要注意以下几点: 1.输出信号的摆幅必须在数据手册指定的范围内。以AD8137为例,在单电源5V的情况下,V out-与V out+都必须在450mV~4.55V之内(见下表) 2.输入端信号的范围必须在数据手册指定的范围之内。以AD8137为例,在单电源5V的情况下,+IN与-IN的电压必须在1~4V之内。(见下表) 数据手册单电源5V供电的芯片指标

在你的电路中,一定要先进行分析计算,检查输出端电压和输入端共模信号的范围是否在数据手册指定范围之内(请注意电源电压的条件)。对于单电源供电的情况,更容易出现问题。 下面我们以AD8137举例说明怎样判断电路是否能够正常工作? AD8137双电源供电放大电路 如图,这是AD8137在+/-5V电源供电情况下的一个放大电路。输入是一个8Vpp的信号。按照虚短、虚断的原则,根据2.1的分析,差分信号增益是1,即,差分输出每一端的摆幅都是+/-2V,但相位相差180度。由于Vocm加入了2.5V的共模电压,因此得到Voutp和Voutn的电压为2.5V+/-2.0 V和2.5V-/+2.0V,即0.5V~4.5V的范围内。这个信号范围符合数据手册+/-5V电源供电情况下的指标(-4.55V~+4.55V)。

全差分运算放大器设计

全差分运算放大器设计 岳生生(200403020126) 一、设计指标 以上华0.6um CMOS 工艺设计一个全差分运算放大器,设计指标如下: ?直流增益:>80dB ?单位增益带宽:>50MHz ?负载电容:=5pF ?相位裕量:>60度 ?增益裕量:>12dB ?差分压摆率:>200V/us ?共模电压:2.5V (VDD=5V) ?差分输入摆幅:>±4V 二、运放结构选择

运算放大器的结构重要有三种:(a )简单两级运放,two-stage 。如图2所示;(b )折叠共源共栅,folded-cascode 。如图3所示;(c )共源共栅,telescopic 。如图1的前级所示。本次设计的运算放大器的设计指标要求差分输出幅度为±4V ,即输出端的所有NMOS 管的,DSAT N V 之和小于0.5V ,输出端的所有PMOS 管的,DSAT P V 之和也必须小于0.5V 。对于单级的折叠共源共栅和直接共源共栅两种结构,都比较难达到该 要求,因此我们采用两级运算放大器结构。另外,简单的两级运放的直流增益比较小,因此我们采用共源共栅的输入级结构。考虑到折叠共源共栅输入级结构的功耗比较大,故我们选择直接共源共栅的输入级,最后选择如图1所示的运放结构。两级运算放大器设计必须保证运放的稳定性,我们用Miller 补偿或Cascode 补偿技术来进行零极点补偿。 三、性能指标分析 1、 差分直流增益 (Adm>80db) 该运算放大器存在两级:(1)、Cascode 级增大直流增益(M1-M8);(2)、共源放大器(M9-M12) 第一级增益 1 3 5 11 1357 113 51 3 57 5 3 ()m m m o o o o o m m m m o o o o m m g g g g g g G A R r r r r g g r r r r =-=-=-+ 第二级增益 9 2 2 9112 9 9 11 ()m o o o m m o o g g G A R r r g g =-=-=- + 整个运算放大器的增益: 4 1 3 5 9 1 2 1 3 5 7 5 3 9 11 (80)10m m m m overall o o o o m m o o dB g g g g A A A g g g g r r r r = = ≥++ 2、 差分压摆率 (>200V/us ) 转换速率(slew rate )是大信号输入时,电流输出的最大驱动能力。 定义转换速率SR :

场效应管及其放大电路例题解析

第3章 场效应管及其放大电路例题解析 例3.1 试将场效应管栅极和漏极电压对电流的控制机理,与双极型晶体管基极和集电极电压对电流的控制机理作一比较。 场效应管栅极电压是通过改变场效应管导电沟道的几何尺寸来控制电流。漏极电压则改变导电沟道几何尺寸和加速载流子运动。双极型三极管基极电压是通过改变发射结势垒高度来控制电流,集电极电压(在放大区)是通过改变基区宽度,从而改变基区少子密度梯度来控制电流。 例3.2 N 沟道JFET 的转移特性如图3.1所示。试确定其饱和漏电流I DSS 和夹断电压V P 。 解 由图3.1可至知,此JFET 的饱和漏电流I DSS ≈4mA ,夹断电压V P ≈-4V 。 例3.3 N 沟道JFET 的输出特性如图3.2所示。漏源电压的V DS =15V ,试确定其饱和漏电流I DSS 和夹断电压V P 。并计算V GS =-2V 时的跨导g m 。 解 由图3.2可得:饱和漏电流I DSS ≈4mA ,夹断电压V P ≈-4V ,V GS =-2V 时,用作图法求得跨导近似为:ms g m 2.1) 2(14.16.2=----≈ 例3.4 在图3.3所示的放大电路中,已知V DD =20V ,R D =10k Ω,R S =10k Ω,R 1=200k Ω,R 2=51k Ω,R G =1M Ω,并将其输出端接一负载电阻R L =10 k Ω。所用的场效应管为N 沟道耗尽型,其参数I DSS =0.9mA ,V P =—4V ,g m =1.5mA /V 。试求:(1)静态值; (2)电压放大倍数。 解 (1) 画出其微变等效电路,如图3.4所示。其中考虑到rGS很大,可认为rGS开路,由电路图可知, V V V R R R V DD G 42010 )51200(105133 212=??+?=+= 并可列出 D D S G G S I I R V V 310104?-=-= 图3.1 图3. 2

放大电路练习题及答案..

一、填空题 1.射极输出器的主要特点是电压放大倍数小于而接近于1, 输入电阻高 、 输出电阻低 。 2.三极管的偏置情况为 发射结正向偏置,集电结反向偏置 时,三极管处于饱和状态。 3.射极输出器可以用作多级放大器的输入级,是因为射极输出器的 输入电阻高 。 4.射极输出器可以用作多级放大器的输出级,是因为射极输出器的 输出电阻低 。 5.常用的静态工作点稳定的电路为 分压式偏置放大 电路。 6.为使电压放大电路中的三极管能正常工作,必须选择合适的 静态工作点 。 7.三极管放大电路静态分析就是要计算静态工作点,即计算 I B 、 I C 、 U CE 三个值。 8.共集放大电路(射极输出器)的 集电极 极是输入、输出回路公共端。 9.共集放大电路(射极输出器)是因为信号从 发射极 极输出而得名。() 10.射极输出器又称为电压跟随器,是因为其电压放大倍数 电压放大倍数接近于1 。 11.画放大电路的直流通路时,电路中的电容应 断开 。 12.画放大电路的交流通路时,电路中的电容应 短路 。 13.若静态工作点选得过高,容易产生 饱和 失真。 14.若静态工作点选得过低,容易产生 截止 失真。 15.放大电路有交流信号时的状态称为 动态 。 16.当 输入信号为零 时,放大电路的工作状态称为静态。 17.当 输入信号不为零 时,放大电路的工作状态称为动态。 18.放大电路的静态分析方法有 估算法 、 图解法 。 19.放大电路的动态分析方法有 微变等效电路法 、 图解法 。 20.放大电路输出信号的能量来自 直流电源 。 二、选择题 1、在图示电路中,已知U C C =12V ,晶体管的β=100,' b R =100k Ω。当i U =0V 时, 测得U B E =0.7V ,若要基极电流I B =20μA ,则R W 为 k Ω。A A. 465 B. 565 C.400 D.300 2.在图示电路中,已知U C C =12V ,晶体管的β=100,若测得I B =20μA ,U C E =6V ,则R c = k Ω。A A.3 B.4 C.6 D.300

实验四 两级放大电路实验报告

实验四 两级放大电路 一、实验目的 l 、掌握如何合理设置静态工作点。 2、学会放大器频率特性测试方法。 3、了解放大器的失真及消除方法。 二、实验原理 1、对于二极放大电路,习惯上规定第一级是从信号源到第二个晶体管BG2的基极,第二级是从第二个晶体管的基极到负载,这样两极放大器的电压总增益Av 为: 2V 1V 1 i 1 O 2i 2O 1i 2O ,i 2O S 2O V A A V V V V V V V V V V A ?=?==== 式中电压均为有效值,且2i 1O V V =,由此可见,两级放大器电压总增益是单级电压增益的乘积,由结论可推广到多级放大器。 当忽略信号源内阻R S 和偏流电阻R b 的影响,放大器的中频电压增益为: 1be 2 be 1C 1be 1L 11i 1O S 1O 1V r r //R 1 r R V V V V A β-='β-=== 2 be L 2C 2 2be 2L 21O 2O 1i 2O 2V r R //R r R V V V V A β-='β-=== 2 be L 2C 2 1be 2be 1C 12V 1V V r R //R r r //R A A A β?β=?= 必须要注意的是A V1、A V2都是考虑了下一级输入电阻(或负载)的影响,所以第一级的输出电压即为第二级的输入电压,而不是第一级的开路输出电压,当第一级增益已计入下级输入电阻的影响后,在计算第二级增益时,就不必再考虑前级的输出阻抗,否则计算就重复了。 2、在两极放大器中β和I E 的提高,必须全面考虑,是前后级相互影响的关系。 3、对两级电路参数相同的放大器其单级通频带相同,而总的通频带将变窄。 ) dB (A log 20G 式中G G G V u o 2u o 1u uo =+= 三、实验仪器 l 、双踪示波器。 2、数字万用表。 3、信号发生器。 4、毫伏表 5、分立元件放大电路模块 四、实验内容 1、实验电路见图4-1

集成运算放大器习题集及答案

第二章 题3.2.1 某集成运放的一个偏置电路如图题3.2.1所示,设T 1、T 2管的参数完全相同。问: (1) T 1、T 2和R 组成什么电路? (2) I C2与I REF 有什么关系?写出I C2的表达式。 图题3.2.1 解:(1) T 1、T 2和R 2组成基本镜像电流源电路 (2) REF BE CC REF C R V V I I -==2 题3.2.2 在图题3.2.2所示的差分放大电路中,已知晶体管的β =80,r be =2 k Ω。 (1) 求输入电阻R i 和输出电阻R o ; (2) 求差模电压放大倍数vd A 。 图题3.2.2 解:(1) R i =2(r be +R e )=2×(2+0.05)=4.1 k Ω R o =2R c =10 k Ω (2) 6605 .0812580)1(-=?+?-=β++β-=e be c vd R r R A 题3.2.3 在图题3.2.3所示的差动放大电路中,设T 1、T 2管特性对称,β1=β2=100,V BE =0.7V ,且r bb ′=200Ω,其余参数如图中所示。 (1) 计算T 1、T 2管的静态电流I CQ 和静态电压V CEQ ,若将R c1短路,其它参数不变,则

T 1、T 2管的静态电流和电压如何变化? (2) 计算差模输入电阻R id 。当从单端(c 2)输出时的差模电压放大倍数2 d A =?; (3) 当两输入端加入共模信号时,求共模电压放大倍数2 c A 和共模抑制比K CMR ; (4) 当v I1=105 mV ,v I2=95 mV 时,问v C2相对于静态值变化了多少?e 点电位v E 变化了多少? 解:(1) 求静态工作点: mA 56.010 2101/107122)1/(1=?+-=+β+-=e b BE EE CQ R R V V I V 7.07.010100 56.01-≈-?-=--=BE b BQ E V R I V V 1.77.01056.012=+?-=--=E c CQ CC CEQ V R I V V 若将R c1短路,则 mA 56.021==Q C Q C I I (不变) V 7.127.0121=+=-=E CC Q CE V V V V 1.77.01056.0122=+?-=--=E c CQ CC Q CE V R I V V (不变) (2) 计算差模输入电阻和差模电压放大倍数: Ω=?+=β++=k 9.456 .026101200)1('EQ T bb be I V r r Ω=+?=+=k 8.29)9.410(2)(2be b id r R R 5.338 .2910100)(22=?=+β=be b c d r R R A (3) 求共模电压放大倍数和共模抑制比: 5.020 1019.410101002)1(2-=?++?-=β++β-=e be b c c R r R R A 675.05.332 2===c d CMR A A K (即36.5dB ) (4) 当v I1=105 mV ,v I2=95 mV 时, mV 109510521=-=-=I I Id v v v mV 1002 95105221=+=+=I I Ic v v v mV 285100)5.0(105.33222=?-+?=?+?=?Ic c I d d O v A v A v 所以,V O2相对于静态值增加了285 mV 。 由于E 点在差模等效电路中交流接地,在共模等效电路中V E 随共模输入电压的变化

电流镜负载的差分放大器设计概要

电流镜负载的差分放大器设计 摘要 在对单极放大器与差动放大器的电路中,电流源起一个大电阻的作用,但不消耗过多的电压余度。而且,工作在饱和区的MOS器件可以当作一个电流源。 在模拟电路中,电流源的设计是基于对基准电流的“复制”,前提是已经存在一个精确的电流源可以利用。但是,这一方法可能引起一个无休止的循环。一个相对比较复杂的电路被用来产生一个稳定的基准电流,这个基准电流再被复制,从而得到系统中很多电流源。而电流镜的作用就是精确地复制电流而不受工艺和温度的影响。在典型的电流镜中差动对的尾电流源通过一个NMOS镜像来偏置,负载电流源通过一个PMOS镜像来偏置。电流镜中的所有晶体管通常都采用相同的栅长,以减小由于边缘扩散所产生的误差。而且,短沟器件的阈值电压对沟道长度有一定的依赖性。因此,电流值之比只能通过调节晶体管的宽度来实现。而本题就是利用这一原理来实现的。

一、设计目标(题目) (3) 二、相关背景知识 (4) 1、单个MOSTFET的主要参数包括: (4) 三、设计过程 (5) 1、电路结构 (5) 2、主要电路参数的手工推导 (6) 3、参数验证(手工推导) (7) 四、电路仿真 (7) 1、NMOS特性仿真及参数推导 (7) 2、PMOS特性仿真及参数推导 (10) 3、最小共模输入电压仿真 (12) 4、电流镜负载的差分放大器特性仿真及参数推导 (14) 五、性能指标对比 (18) 六、心得 (18)

一、设计目标(题目) 电流镜负载的差分放大器 设计一款差分放大器,要求满足性能指标: ● 负载电容pF C L 1= ● V VDD 5= ● 对管的m 取4的倍数 ● 低频开环增益>100 ● GBW(增益带宽积)>30MHz ● 输入共模范围>3V ● 功耗、面积尽量小 参考电路图如下图所示 设计步骤: 1、仿真单个MOS 的特性,得到某W/L 下的MOS 管的小信号输出电阻和跨导。 2、根据上述仿真得到的器件特性,推导上述电路中的器件参数。 3、手工推导上述尺寸下的差分级放大器的直流工作点、小信号增益、带宽、输入共模范围。

差动放大器实验报告

差动放大电路的分析与综合(计算与设计)实验报告 1、实验时间 10月31日(周五)17:50-21:00 2、实验地点 实验楼902 3、实验目的 1. 熟悉差动放大器的工作原理(熟练掌握差动放大器的静态、动态分析方法) 2. 加深对差动放大器性能及特点的理解 3. 学习差动放大电路静态工作点的测量 4. 学习差动放大器主要性能指标的测试方法 5. 熟悉恒流源的恒流特性 6. 通过对典型差动放大器的分析,锻炼根据实际要求独立设计基本电路的能力 7. 练习使用电路仿真软件,辅助分析设计实际应用电路 8. 培养实际工作中分析问题、解决问题的能力 4、实验仪器 数字示波器、数字万用表、模拟实验板、三极管、电容电阻若干、连接线 5、电路原理 1. 基本差动放大器 图是差动放大器的基本结构。它由两个元件参数相同的基本共射放大电路组成。 部分模拟图如下 1.直流分析数据 2.直流分析仿真数据 3.交流分析数据 4.交流分析仿真数据 具有平衡电位器的 差动放大器 图是差动放大器的结 构。它由两个元件参数相 近的基本共射放大电路组 成。 1.直流分析数据 2.直流分析仿真数据

3.交流分析数据 4.交流分析仿真数据 具有恒流源的差动放大器 图2-3是差动放大器的结构。它由两个元件参数相近的基本共射放大电路组成。 1.直流分析数据 2.直流分析仿真数据 3.交流分析数据 4.交流分析仿真数据 图3.1 差动放大器实验电路 当开关K 拨向右边时,构成具有恒流源的差动放大器。晶体管 T 3 与电阻3E R 共同组成镜象恒流源电路 , 为差动放大器提供恒定电流E I 。用晶体管恒流源代替发射极电阻 E R ,可以进一步提高差动 放大器抑制共模信号的能 力。 1、差动电路的输入输 出方式 根据输入信号和输出信号的不同方式可以有四种连接方式,即 : (l) 双端输入 -双端输出,将差模信号加在1s V 、2s V 两端 , 输出取自1o V 、2o V 两端。 (2) 双端输入 -单端输出,将差模信号加在1s V 、2s V 两端 , 输出取自1o V 或2o V 到地。 (3) 单端输入一双端输出,将差模信号加在1s V 上,2s V 接地 ( 或1s V 接地而信号加在2s V 上 ), 输出取自1o V 、2o V 两端。 (4) 单端输入 -单端输出 将差模信号加在1s V 上,2s V 接地 ( 或1s V 接地而信号加在2s V 上 ), 输出取自1o V 或2o V 到地。

第四章 场效应管(FET)及基本放大电路要点

第四章 场效应管(FET )及基本放大电路 §4.1 知识点归纳 一、场效应管(FET )原理 ·FET 分别为JFET 和MOSFET 两大类。每类都有两种沟道类型,而MOSFET 又分为增强型和耗尽型(JFET 属耗尽型),故共有6种类型FET (图4-1)。 ·JFET 和MOSFET 内部结构有较大差别,但内部的沟道电流都是多子漂移电流。一般情况下,该电流与GS v 、DS v 都有关。 ·沟道未夹断时,FET 的D-S 口等效为一个压控电阻(GS v 控制电阻的大小),沟道全夹断时,沟道电流D i 为零;沟道在靠近漏端局部断时称部分夹断,此时D i 主要受控于GS v ,而DS v 影响较小。这就是FET 放大偏置状态;部分夹断与未夹断的临界点为预夹断。 ·在预夹断点,GS v 与DS v 满足预夹断方程: 耗尽型FET 的预夹断方程:P GS DS V v v -=(P V ——夹断电压) 增强型FET 的预夹断方程:T GS DS V v v -=(T V ——开启电压) ·各种类型的FET ,偏置在放大区(沟道部分夹断)的条件由表4-4总结。 表4-4 FET 放大偏置时GS v 与DS v 应满足的关系 ·偏置在放大区的FET ,GS v ~D i 满足平方律关系: 耗尽型: 2 ) 1(P GS DSS D V v I i - =(DSS I ——零偏饱和漏电流) 增强型:2 )(T GS D V v k i -=*

· FET 输出特性曲线反映关系 参变量 G S V DS D v f i )(=,该曲线将伏安平面分为可变电阻区 (沟道未夹断),放大区(沟道部分夹断)和截止区(沟道全夹断);FET 转移特性曲线反映在放大区的关系)(GS D v f i =(此时参变量DS V 影响很小),图4-17画出以漏极流向源极的沟道电流为参考方向的6种FET 的转移特性曲线,这组曲线对表4-4是一个很好映证。 二、FET 放大偏置电路 ·源极自给偏压电路(图4-18)。该电路仅适用于耗尽型FET 。有一定稳Q 的能力,求解该电路工作点的方法是解方程组: 22() [FET ()]GS D DSS d GS T P GS S D v i I v i k v V V v R i ? =-=-?? ?=-?对于增强型,用关系式 ·混合偏压电路(图4-20)。该电路能用于任何FET ,在兼顾较大的工作电流时,稳Q 的效果更好。求解该电路工作点的方法是解方程组: ??? ??-+=D s CC GS i R R R R V v 212平方律关系式 以上两个偏置电路都不可能使FET 全夹断,故应舍去方程解中使沟道全夹断的根。 三、FET 小信号参数及模型 ·迭加在放大偏置工作点上的小信号间关系满足一个近似的线性模型(图4-22低频模 型,图4-23高频模型)。 ·小信号模型中的跨导 Q GS D m v i g ??= m g 反映信号gs v 对信号电流d i 的控制。m g 等于FET 转移特性曲线上Q 点的斜率。 m g 的估算:耗尽管 D DSS P m I I V g ||2 = 增强管D m kI g 2= ·小信号模型中的漏极内阻 Ds ds D Q v r i ?= ? ds r 是FET “沟道长度调效应”的反映,ds r 等于FET 输出特性曲线Q 点处的斜率的倒 数。 四、基本组态FET 小信号放大器指标 1.基本知识 ·FET 有共源(CS )共漏(CD )和共栅(CG )三组放大组态。 ·CS 和CD 组态从栅极输入信号,其输入电阻i R 由外电路偏置电阻决定,i R 可以很大。 ·CS 放大器在其工作点电流和负载电阻与一个CE 放大器相同时,因其m g 较小,|| V A

多级放大电路习题参考答案

第四章多级放大电路习题答案3.1学习要求 (1)了解多级放大电路的概念,掌握两级阻容耦合放大电路的分析方法。 (2)了解差动放大电路的工作原理及差模信号和共模信号的概念。 (3)理解基本互补对称功率放大电路的工作原理。 3.2学习指导 本章重点: (1)多级放大电路的分析方法。 (2)差动放大电路的工作原理及分析方法。 本章难点: (1)多级放大电路电压放大倍数的计算。 (2)差动放大电路的工作原理及分析方法。 (3)反馈的极性与类型的判断。 本章考点: (1)阻容耦合多级放大电路的静态和动态分析计算。 (2)简单差动放大电路的分析计算。 3.2.1多级放大电路的耦合方式 1.阻容耦合 各级之间通过耦合电容和下一级的输入电阻连接。优点是各级静态工作点互不影响,可单独调整、计算,且不存在零点漂移问题;缺点是不能用来放大变化很缓慢的信号和直流分量变化的信号,且不能在集成电路中采用阻容耦合方式。 静态分析:各级分别计算。

动态分析:一般采用微变等效电路法。两级阻容耦合放大电路的电压放大倍数为: 其中i2L1r R =。 多级放大电路的输入电阻就是第一级的输入电阻,输出电阻就是最后一级的输出电阻。 2.直接耦合 各级之间直接用导线连接。优点是可放大变化很缓慢的信号和直流分量变化的信号时,且适宜于集成;缺点是各级静态工作点互相影响,且存在零点漂移问题,即当0i =u 时0o ≠u (有静态电位)。引起零点漂移的原因主要是三极管参数(I CBO ,U BE ,β)随温度的变化,电源电压的波动,电路元件参数的变化等。 3.2.2差动放大电路 1.电路组成和工作原理 差动放大电路由完全相同的两个单管放大电路组成,两个晶体管特性一致,两侧电路参数对称,是抑制直接耦合放大电路零点漂移的最有效电路。 2.信号输入 (1)共模输入。两个输入信号的大小相等、极性相同,即ic i2i1u u u ==。在共模输入信号作用下,电路的输出电压0o =u ,共模电压放大倍数0c =A 。 (2)差模输入。两个输入信号的大小相等、极性相反,即id i2i12 1u u u =-=。在共模输入 信号作用下,电路的输出电压o1o 2u u =,差模电压放大倍数d1d A A =。 (3)比较输入。两个输入信号大小不等、极性可相同或相反,即i2i1u u ≠,可分解为共模信号和差模信号的组合,即: 式中u ic 为共模信号,u id 为差模信号,分别为: 输出电压为: 3.共模抑制比 共模抑制比是衡量差动放大电路放大差模信号和抑制共模信号的能力的重要指标,定义为A d 与A c 之比的绝对值,即: 或用对数形式表示为:

加法器及差分放大器项目实验报告

加法器及差分放大器项目实验报告 一、项目内容和要求 (一)、加法器 1、任务目的: (1)掌握运算放大器线性电路的设计方法; (2)理解运算放大器的工作原理; (3)掌握应用仿真软件对运算放大器进行仿真分析的方法。 2、任务内容: 2.1 设计一个反相加法器电路,技术指标如下: (1)电路指标 运算关系:)25(21i i O U U U +-=。 输入阻抗Ω≥Ω≥K R K R i i 5,521。 (2)设计条件 电源电压Ec=±5V ; 负载阻抗Ω=K R L 1.5 (3)测试项目 A :输入信号V U V U i i 5.0,5.021±=±=,测试4种组合下的输出电压; B :输入信号V KHz U V U i i 1.0,1,5.021为正弦波±=信号,测试两种输入组合情况下的输出电 压波形。 C :输入信号V U i 01=,改变2i U 的幅度,测量该加法器的动态范围。 D :输入信号V U i 01=,V U i 1,2为正弦波,改变正弦波的频率,从1kHz 逐渐增加,步长为 2kHz ,测量该加法器的幅频特性。 2.2 设计一个同相加法器电路,技术指标如下: (1)电路指标 运算关系:21i i O U U U +=。 (2)设计条件 电源电压Ec=±5V ; 负载阻抗Ω=K R L 1.5 (3)测试项目 A :输入信号V U V U i i 1,121±=±=,测试4种组合下的输出电压; B :输入信号V KHz U V U i i 1,1,121为正弦波±=信号,测试两种输入组合情况下的输出电压 波形。 (二)、差分放大器 1、任务目的: (1)掌握运算放大器线性电路的设计方法; (2)理解运算放大器的工作原理; (3)掌握应用仿真软件对运算放大器进行仿真分析的方法。 2、任务内容 2.1 设计一个基本运放差分放大器电路,技术指标如下: (1)电路指标 运算关系:)(521i i O U U U --=。 输入阻抗Ω≥Ω≥K R K R i i 5,521。 (2)设计条件

场效应管放大电路

第四章场效应管放大电路 本章内容简介 场效应管是利用改变外加电压产生的电场强度来控制其导电能力的半导体器件。它具有双极型三极管的体积小、重量轻、耗电少、寿命长等优点,还具有输入电阻高、热稳定性好、抗辐射能力强、噪声低、制造工艺简单、便于集成等特点。在大规模及超大规模集成电路中得到了广泛的应用。场效应管的分类根据结构和工作原理的不同,场效应管可分为两大类:结型场效应管(JFET)和绝缘栅型场效应管(IGFET)。 4.1 结型场效应管 4.1.1 JFET的结构和工作原理 1. 结构 在一块N型半导体材料的两边各扩散 一个高杂质浓度的P+ 区,就形成两个不对 称的PN结,即耗尽层。把两个P+区并联在 一起,引出一个电极g,称为栅极,在N 型半导体的两端各引出一个电极,分别称 为源极s和漏极d。 场效应管的与三极管的三个电极的对应关系: 栅极g—基极b;源极s—发射极e;漏极d—集电极c夹在两个PN结中间的区域称为导电沟道(简称沟道)。 如果在一块P型半导体的两边各扩散一 个高杂质浓度的N+区,就可以制成一个P沟 道的结型场效应管。P沟道结型场效应管的

结构示意图和它在电路中的代表符号

如图所示。 2. 工作原理 v GS对i D的控制作用 为便于讨论,先假设漏-源极间所加的电压v DS=0。 (a) 当v GS=0时,沟道较宽,其电阻较小。 (b) 当v GS<0,且其大小增加时,在这个反偏电压的作用下,两个PN结耗尽层将加宽。由于N 区掺杂浓度小于P+区,因此,随着|v GS| 的增加,耗尽层将主要向N沟道中扩展,使沟道变窄,沟道电阻增大。当|v GS| 进一步增大到一定值|V P| 时,两侧的耗尽层将在沟道中央合拢,沟道全部被夹断。由于耗尽层中没有载流子,因此这时漏-源极间的电阻将趋于无穷大,即使加上一定的电压v DS,漏极电流i D也将为零。这时的栅-源电压v GS称为夹断电压,用V P表示。在预夹断处:V GD=V GS-V DS =V P 上述分析表明: (a)改变栅源电压v GS的大小,可以有效地控制沟道电阻的大小。 (b)若同时在漏源-极间加上固定的正向电压v DS,则漏极电流i D将受v GS的控制,|v GS|增大时,沟道电阻增大,i D减小。 (c)上述效应也可以看作是栅-源极间的偏置电压在沟道两边建立了电场,电场强度的大小控制了沟道的宽度,即控制了沟道电阻的大小,从而控制了漏极电流i D的大小。 v DS对i D的影响 设v GS值固定,且V P

全差分运算放大器设计

全差分运算放大器设计 岳生生(0126) 一、设计指标 以上华CMOS 工艺设计一个全差分运算放大器,设计指标如下: 直流增益:>80dB 单位增益带宽:>50MHz 负载电容:=5pF 相位裕量:>60度 增益裕量:>12dB 差分压摆率:>200V/us 共模电压:(VDD=5V) 差分输入摆幅:>±4V 运放结构选择

运算放大器的结构重要有三种:(a )简单两级运放,two-stage 。如图2所示;(b )折叠共源共栅,folded-cascode 。如图3所示;(c )共源共栅,telescopic 。如图1的前级所示。本次设计的运算放大器的设计指标要求差分输出幅度为±4V ,即输出端的所有NMOS 管的 ,DSAT N V 之和小于,输出端的所有PMOS 管的 ,DSAT P V 之和也必须小于。对于单 级的折叠共源共栅和直接共源共栅两种结构,都比较难达到该要求,因此我们采用两级运算放大器结构。另外,简单的两级运放的直流增益比较小,因此我们采用共源共栅的输入级结构。考虑到折叠共源共栅输入级结构的功耗比较大,故我们选择直接共源共栅的输入级,最后选择如图1所示的运放结构。两级运算放大器设计必须保证运放的稳定性,我们用Miller 补偿或Cascode 补偿技术来进行零极点补偿。 性能指标分析 差分直流增益 (Adm>80db) 该运算放大器存在两级:(1)、Cascode 级增大直流增益(M1-M8);(2)、共源放大器(M9-M12) 第一级增益 1 3 5 1 1 1 3 5 7 1 1 3 5 1 3 5 7 5 3 ()m m m o o o o o m m m m o o o o m m g g g g g g G A R r r r r g g r r r r =-=-=- +P 第二级增益9 2 2 9 11 2 9 9 11 ()m o o o m m o o g g G A R r r g g =-=-=-+P 整个运算放大器的增益: 4 1 3 5 9 1 2 1 3 5 7 5 3 9 11 (80)10m m m m overall o o o o m m o o dB g g g g A A A g g g g r r r r == ≥++ 差分压摆率 (>200V/us ) 转换速率(slew rate )是大信号输入时,电流输出的最大驱动能力。 定义转换速率SR : 1)、输入级: max 1max |2| Cc out DS C C d SR dt I v I C C = = = 单位增益带宽1m u C g C ω= ,可以得到 1m C u g C ω =

3.3自测题及答案

3.3.1填空题 (1)差分放大电路对信号具有放大作用,对信号具有很强的抑制作用。差分放大电路的零漂很。 (2)某差分放大电路的两个输入端电压分别为U I1=30mV,U I2=10mV,则该电路的差模输入电压U Id 为V,共模输入电压U Ic为V。 (3)差模电压放大倍数与共模电压放大倍数之比的绝对值称为。 (4)当差分放大电路输入端加入大小相等、极性相反的信号时,称为输入;当加入大小和极性都相同的信号时,称为输入。 答案:(1)差模共模小(2)20m 20m (3)共模抑制比(4)差模共模 3.3.2单选题 (1)选用差分放大电路的主要原因是()。 A.减小零漂B.提高输入电阻C.稳定放大倍数D.减小失真 (2)把长尾式差分放大电路中的发射极公共电阻改为电流源可以() A.增大差模输入电阻B.提高共模增益 C.提高差模增益D.提高共模抑制比 (3)对恒流源而言,下列说法不正确的为()。 A.可以用作偏置电路B.可以用作有源负载 C.交流电阻很大D.直流电阻很大 (4)差分放大电路由双端输入改为单端输入,则差模电压放大倍数()。 A.不变B.提高一倍C.提高为原来的2倍D.减小为原来的一半 答案:(1)A (2)D (3)D (4)A 3.3.3是非题(对打√;不对打×) (1)空载时,差分放大电路单端输出电压放大倍数为双端输出时的一半。() (2)差分放大电路双端输出时,主要靠发射极公共电阻的负反馈作用来抑制温漂。() (3)单端输出的具有电流源的差分放大电路,主要靠电流源的恒流特性来抑制温漂。()答案:(1)√(2)×(3)√

3.3.4 电路如图3.3.1(a )所示,已知三极管β=100,r bb’ =200?,U BEQ =0.7V ,试:(1)计算V 1、 V 2的静态工作点I CQ1、 U CEQ1和I CQ2、U CEQ2 ;(2)画出差模交流通路;(3)求差模电压放大倍数A ud =u o /u i ;(4)求差模输入电阻R id 和输出电阻R o 。 解: (1)求静态工作点 由于电路结构左右完全对称,故两管静态工作点相同,流过负载的静态电流为零,由图得 V U mA mA I I CEQ EQ CQ 1.7V 7.012465.012465.01027 .010 =+×?==×?=≈)( (2)画差模交流通路如图3.3.1(b)所示 (3)求A ud Ω=Ω×+Ω=k r be 85.5465.026 101200 故 9385.5)10//12( 100 2//(?=ΩΩ ?=?=k k r R R A be L C ud β (3)求R id 、R o R id =2r be =2×5.85 k ?=11.7k ? R o =2R c =24k ? (a ) 图3.3.1 题3.3.4电路 (a )电路 (b )交流通路 (b )

相关文档
最新文档