NOX形成机理,如何控制NOX浓度

NOX形成机理,如何控制NOX浓度
NOX形成机理,如何控制NOX浓度

NOX形成机理,如何控制NOX浓度

1、NOx的危害:

氮氧化物(NOx)是重要的空气污染物质,其产生的途径为燃烧火焰在高温下氮气与氧气的化合,以及燃料中的氮成分在燃烧时氧化而成。氮氧化物的环境危害有二种,在阳光的催化作用下,氮氧化物易与碳氢化物光化反应,造成光雾及臭氧之二次空气污染;此外氮氧化物也易与水气结合成为含有硝酸成分的酸雨。

2、NOx生成机理和特点

2.1 NOx生成机理

在NOx中,一氧化氮约占90%以上,二氧化氮占5%~10%,产生机理一般分为如下3种:

(1)热力型NOx,燃烧时,空气中氮在高温下氧化产生,其中的生成过程是一个不分支连锁反应。其生成机理可用捷里多维奇(ZELDOVICH)反应式表示,即

O2+N→2O+N, O+N2→NO+N, N+O2→NO+O

在高温下总生成式为

N2+O2→2NO, NO+0.5O2→NO2

随着反应温度T的升高,其反应速率按指数规律增加。当T<1 500 ℃时,NO的生成量很少,而当T>1 500 ℃时,T每增加100 ℃,反应速率增大6~7倍。

(2)快速型NOx,快速型NOx是1971年FENIMORE通过实验发现的。在碳氢化合物燃料燃烧在燃料过浓时,在反应区附近会快速生成NOx,由于燃料挥发物中碳氢化合物高温分解生成的CH自由基可以和空气中氮气反应生成HCN和N,再进一步与氧气作用以极快的速度生成NOx,其形成时间只需要60 ms,所生成的NOx与炉膛压力的0.5次方成正比,与温度的关系不大。

(3)燃料型NOx,指燃料中含氮化合物,在燃烧过程中进行热分解,继而进一步氧化而生成NOx。由于燃料中氮的热分解温度低于煤粉燃烧温度,在600~800 ℃时就会生成燃料型NOx。在生成燃料型NOx过程中,首先是含有氮的有机化合物热裂解产生N,CN,HCN等中间产物基团,然后再氧化成NOx。由于煤的燃烧过程由挥发份燃烧和焦炭燃烧两个阶段组成,故燃料型NOx的形成也由气相氮的氧化和焦炭中剩余氮的氧化两部分组成。

2.2 NOx生成特点

在这3种途径中,快速型NOx所占的比例不到5%,在温度低于1300℃时,几乎没有热力型NOx。对常规燃煤锅炉而言,NOx主要通过燃料型生成途径而产生。由NOx的生成机理可以看出,NOx的生成及破坏与以下因素有关:⑴煤的燃烧方式、燃烧工况,其生成量依赖于燃烧温度水平;⑵煤种特性,如煤的含氮量,挥发份含量等;

⑶炉膛内反应区烟气的气氛,即烟气内氧气,氮气,NO和CHi的含量;⑷燃料及燃烧产物在火焰高温区和炉膛内的停留时间。

3、降低NOx的主要控制技术

降低NOx排放措施分为一级脱氮技术和二级脱氮技术。一级脱氮技术主要是采用低NOx 燃烧器以及通过燃烧优化调整,有效控制NOx的产生,从源头上减少NOx生成量;二级脱氮技术则是利用各种措施,尽可能减少已生成NOx的排放,属于烟气脱硝范畴,目前主要有两种成熟技术选择性催化还原法(SCR)和选择性非催化还原法(SNCR)。

3.1、级脱氮技术

3.1.1、气分级

3.1.1.1、根据NOx的生成机理,燃烧区的氧浓度对各种类型的NOx生成都有很大影响。当过量空气系数α<1,燃烧区处于“缺氧燃烧”状态时,抑制NOx的生成量有明显效果[6]。根据这一原理,将燃料的燃烧过程分阶段完成,把供给燃烧区的空气量减少到全部燃

烧所需用空气量的80%左右,形成富燃区,从而降低了燃烧区的氧浓度,也降低了燃烧区的温度水平。因此,第一级燃烧区的主要作用就是抑制NOx的生成,推迟燃烧过程,并将已生成的NOx分解还原,使燃料型NOx减少;由于此时火焰温度降低,使得热力型NOx 的生成量也减少。燃烧所需的其余空气则通过燃烧器上面的燃烬风喷口送入炉膛与第一级所产生的烟气混合,使燃料燃烧完全,成为燃烬区,从而完成整个燃烧过程。

影响分解炉出口NO2含量的主要因素有:分解炉初始燃烧部位的温度;煤质及其挥发分和氮的含量;进分解炉前热风中NO二的含量;氧含量的富余情况(尤其是初始燃烧时)。在低NO x段,煤粉燃料带人的氮,在气相中以N,,HC N,NH 。和少量NO的形式存在,其它的氮仍包含在焦炭中,除含氮化合物外,气相中还存在有H25,H2 ,CO ,CH ,和CA 等。在生料和焦炭的催化作用下,NO在初始阶段与CH反应还原生成HCN,反应式为:

CH +N O -HCN (i=1,2,3) (1)

CO +N O- NZ+CO2 (2 )

Hz+ NO -- NZ+HZO ( 3)

HZ+ N O- NH3+Hz0 (4 )

反应( 1)需要高温环境促进,并需要少量的氧来不断形成CHI。反应(2),(3),(4)一方面受生料催化,另一方面受氧的阻碍,如果氧相对CO达到一定的富余量,反应(2)将完全受阻。为了有效控制NOx的排放量,操作上要做到:严格控制窑尾烟气中的氧含量,以降低窑头燃烧生成的NOx量和提高NOx的还原程度。另外,通过在氧化带和还原带之间正确分配生料,在不造成窑尾上升和还原带结皮的情况下,尽量提高还原带的温度,可有利于反应(1)的效率,提高NO二的还原程度。

3.1.2、燃料分级

已生成的NOx在遇到烃根和未完全燃烧产物时,会发生NOx

的还原反应。利用这一原理,将80%~85%的燃料送入一级燃烧区,在α>1条件下燃烧生成,送入一级燃烧区的燃料称为一级燃料;其余15%~20%则在主燃烧器上部送入二级燃烧区,在α<1条件下形成还原性气氛,NOx进入该区将被还原成N2,二级燃烧区又称再燃区。燃料分级技术的关键是在主燃烧器形成的初始燃烧区的上方喷入二次燃料,形成富燃料燃烧的再燃区,实验证实,改变再燃区的燃料与空气之比是控制NOx排放量的关键因素。

3.1.3、烟气再循环

该技术通常的做法是从省煤器出口抽出烟气,加入二次风或一次风中。加入二次风时,火焰中心不受影响,唯一作用是降低火焰温度和助燃空气的氧浓度。此方法对热力型NOx所占份额较大的液态排渣炉、燃油和燃气锅炉有效,对于热力型NOx所占份额不大的干态排渣炉作用有限。利用烟气再循环,燃气、燃油锅炉NOx 减少量可达50%,燃煤锅炉NOx减少量可达20%。烟气再循环法的脱NOx效果不仅与燃料种类有关,而且与再循环烟气量有关,当烟气再循环倍率增加时,NOx减少,但进一步增大循环倍率,NOx的排放将趋于一个定值,该值随燃料含氮量增加而增大,但若循环倍率过大,炉温降低太多,会导致燃烧损失增加。因此,烟气再循环率一般不超过30%,大型锅炉控制在10%~20%。当燃用难着火煤种时,由于受炉温和燃烧稳定性降低的限制,烟气再循环法不适用[7]。

3.1.4、低NOx燃烧器

3.1.

4.1、从NOx的生成机理看,占NOx绝大部分的燃料型NOx是在煤粉着火阶段生成的。因此,通过特殊设计的燃烧器结构(LNB)及改变通过燃烧器的风煤比例,以达到在燃烧器着火区空气分级、燃烧分级或烟气再循环法的效果。在保证煤粉着火燃烧的同时,有效地抑制NOx的生成。如三菱重工研制开发的PM型浓淡燃烧器,它是利用含粉气流在弯曲管道内流动时,煤粉受离心力

作用向弯管的外侧集聚,把浓度较高的含粉气流从弯管出口的一端引出;靠弯管内侧则为稀相含粉气流,从弯管出口的另一端引出。这样就可以借结构简单的惯性型煤粉浓缩装置把气粉混合物分成浓、淡二股气流输入炉膛。这种结构可以使炉膛内的火炬形成富氧和低氧两种状态的燃烧。占主体的浓相煤粉浓度高,所需着火热量少,利于着火和稳燃,由淡相补充后期所需的空气,利于煤粉的燃尽,同时浓淡燃烧均偏离了NOx生成量高的化学当量燃烧区,大大降低了NOx生成量。与传统的切向燃烧器相比,NOx生成量可显著降低。

3.1.

4.2、水泥窑头用燃烧器

该燃烧器的中心是油枪和点火气枪的保护套管,保护套管外依次是中心风管,煤风管,径向风管和轴向风管。中心风管外部安装有耐磨层以减缓煤粉对它的磨损,入口处连接有金属软管,用以输送来自一次风机的冷却风,在出口装有冷却孔板。煤风管通过导向支撑固定在中心管外,煤人口处内表面安装有耐磨层,耐磨层从人口处一直伸人到前端,煤风管与径向风管通过膨胀节连接。径向风管的出口置于轴向风管的锥形喷嘴内,其内侧有旋流器。一次风出口设有锥形喷嘴,煤风管可以前后移动以改变一次风的喷口面积。从燃烧器喷出的一次风仅占燃烧空气量的7%-10%,最大风速达200-210 m/s。由于一次风的风速比煤风大得多,所以,喷出煤粉被加速,同时吸人大量的高温二次风,保证了煤粉的充分混合和快速燃烧。为了有效控制NO二的排放量,操作上要做到以下几点:

(1) 在不同负荷运行时,要及时前后移动煤风管,改变一次风的喷口面积,调节一次风的喷出速度,保证较高的燃料空气当量比,降低NO2的生成。

(2) 在燃煤品质改变,工况发生变化时,及时通过调节内外风管上的调节阀开度,调节径向风与轴向风的比例,从而调节综合旋流强度,改善气流的混合情况;控制火焰形状饱满有力,在满足烧成

的情况下,降低燃烧强度,减少NOx的生成。

(3) 合理调节中心冷却风用量,形成低氧燃烧工况,控制火焰在合理的温度范围,最大限度地减少NO二的生成。

4.2 二级脱氮技术

4.2.1 选择性催化还原法(SCR)

国外大多数燃煤电厂,采用以氨气为还原剂的选择性催化还原法(SCR)进行烟气脱氮。其基本过程是:还原剂NH3均匀分布到320~400 ℃的烟气中并与烟气一道通过一个由催化剂填充的脱氮反应器,反应器中的催化剂分上下多层有序放置。在催化剂作用下,NOx和NH3发生如下反应:

4NO+4NH3+O2→4N2+6H2O,6NO2+8NH3→7N2+12H2O

反应产物N2和H2O对大气没有多大影响。经过最后一层催化剂后,烟气中的NOx控制在排放限值以下。由于该反应没有产生副产物,并且装置结构简单,适合于处理大量的烟气。根据SCR反应器在锅炉之后的不同位置,SCR 系统大致有3种工艺流程。高粉尘SCR(High Dust SCR),低粉尘SCR (Low Dust SCR)和尾部SCR(Tail End SCR)。HD-SCR反应器布置在锅炉省煤器后,空气预热器前。锅炉尾部烟气温度足以满足催化剂的运行,烟气不需要再加热。因此,这种布置投资低,但这里烟尘大(High Dust),催化剂必须选择防堵的材料。同时还受到场地的限制,适合于新建电厂。与HD-SCR相比,TE-SCR反应器布置在静电除尘器和FGD后。由于催化剂在“干净”的环境中运行,材料容易选择,催化剂的寿命长。这种布置适合对旧厂改造。但是烟气要加热到一定温度以满足催化剂的运行,投资和运行成本较HD-SCR布置大。而LD-SCR虽然催化剂是在较“干净”的条件下工作,但静电除尘器在290~450 ℃的温度下效率很低,无法正常工作,所以一般不采用。

选择性催化还原脱氮法在实际运行中,下列因素特别值得重视:

焦炉加热燃烧时氮氧化物的形成机理分析解析

焦炉加热燃烧时氮氧化物的形成机理及控制 钟英飞 燃气在焦炉立火道燃烧时会产生氮氧化物(NO x ),氮氧化物通常多指NO 和NO 2 的混合物,大气中的氮氧化物破坏臭氧层,造成酸雨,污染环境。上世纪80代中期,发达国家就视其为有害气体,提出了控制排放标准。目前发达国家 控制标准基本上是氮氧化物(废气中O 2 含量折算至5%时),用焦炉煤气加热的 质量浓度以NO x 计不大于500mg/m3,用贫煤气(混合煤气)加热的质量浓度不大于 350mg/m3(170ppm) 。 随着我国经济的快速发展,对焦炉排放氮氧化物的危害也日益重视,并准备制订排放控制标准。本文将对氮氧化物在焦炉燃烧过程中的形成机理及控制 措施进行论述。研究表明,在燃烧生成的NO x 中,NO占95%, NO 2 为5%左右,在 大气中NO缓慢转化为NO 2,故在探讨NO x 形成机理时,主要研究NO的形成机理。 焦炉燃烧过程中生成氮氧化物的形成机理有3种类型:一是温度热力型NO;二是碳氢燃料快速型NO;三是含N组分燃料型NO。也有资料将前两种合称温度型NO。 1 温度热力型NO形成机理及控制 燃烧过程中,空气带入的氮被氧化为NO N 2+O 2 = 2NO NO的生成由如下一组链式反应来说明,其中原子氧主要来源于高温下O 2 的离解: O+N 2 = NO+N N+O 2 = NO+O 由于原子氧和氮分子反应,需要很大的活化能,所以在燃料燃烧前和燃烧火焰中不会生成大量的NO,只有在燃烧火焰的下游高温区(从理论上说,只有火焰的下游才积聚了全部的热焓而使该处温度最高,燃烧火焰前部与中部都不 是高温区),才能发生O 2 的离解,也才能生成NO。

焦炉加热燃烧时氮氧化物的形成机理及控制

焦炉加热燃烧时氮氧化物的形成机理及控制 燃气在焦炉立火道燃烧时会产生氮氧化物(NOx),氮氧化物通常多指NO和NO2的混合物,大气中的氮氧化物破坏臭氧层,造成酸雨,污染环境。上世纪80代中期,发达国家就视其为有害气体,提出了控制排放标准。目前发达国家控制标准基本上是氮氧化物(废气中O2含量折算至5%时),用焦炉煤气加热的质量浓度以NOx计不大于500mg/m3,用贫煤气(混合煤气)加热的质量浓度不大于350mg/m3(170ppm) 。 随着我国经济的快速发展,对焦炉排放氮氧化物的危害也日益重视,并准备制订排放控制标准。本文将对氮氧化物在焦炉燃烧过程中的形成机理及控制措施进行论述。研究表明,在燃烧生成的NOx中,NO占95%, NO2为5%左右,在大气中NO缓慢转化为NO2,故在探讨NOx形成机理时,主要研究NO的形成机理。焦炉燃烧过程中生成氮氧化物的形成机理有3种类型:一是温度热力型NO;二是碳氢燃料快速型NO;三是含N组分燃料型NO。也有资料将前两种合称温度型NO。 1 温度热力型NO形成机理及控制 燃烧过程中,空气带入的氮被氧化为NO N2+O2 = 2NO NO的生成由如下一组链式反应来说明,其中原子氧主要来源于

高温下O2的离解: O+N2 = NO+N N+O2 = NO+O 由于原子氧和氮分子反应,需要很大的活化能,所以在燃料燃烧前和燃烧火焰中不会生成大量的NO,只有在燃烧火焰的下游高温区(从理论上说,只有火焰的下游才积聚了全部的热焓而使该处温度最高,燃烧火焰前部与中部都不是高温区),才能发生O2的离解,也才能生成NO。 关于燃烧高温区的温度,综合有关资料,选择以《炼焦炉中气体的流动和传热》的论述为依据,当α = 1.1,空气预热到1100℃时。焦炉煤气的理论燃烧温度为2350℃;高炉煤气理论燃烧温度为2150℃。一般认为,实际燃烧温度要低于此值,实际燃烧温度介于理论燃烧温度和测定的火道砌体温度之间。如测定的火道温度不小于1350℃,则焦炉煤气的实际燃烧温度不小于1850℃,而贫煤气不小于1750℃。 《大气污染控制工程》中对NOx的生成机理及控制有所论述,并列出了NOx的生成量和燃烧温度关系图表2-5。该图表显示,气体燃料燃烧温度一般在1600~1850℃之间,燃烧温度稍有增减,其温度热力型NO生成量增减幅度较大(这种关系在有关焦炉废气中NOx 浓度与火道温度之关系中也表现明显。有资料表明,火道温度1300~1350℃,温度±10℃时,则NOx量为±30mg/m3左右)。燃烧温度对温度热力型NO生成有决定性的作用,当燃烧温度低于1350℃时,

NOX形成机理,如何控制NOX浓度

NOX形成机理,如何控制NOX浓度 1、NOx的危害: 氮氧化物(NOx)是重要的空气污染物质,其产生的途径为燃烧火焰在高温下氮气与氧气的化合,以及燃料中的氮成分在燃烧时氧化而成。氮氧化物的环境危害有二种,在阳光的催化作用下,氮氧化物易与碳氢化物光化反应,造成光雾及臭氧之二次空气污染;此外氮氧化物也易与水气结合成为含有硝酸成分的酸雨。 2、NOx生成机理和特点 2.1 NOx生成机理 在NOx中,一氧化氮约占90%以上,二氧化氮占5%~10%,产生机理一般分为如下3种: (1)热力型NOx,燃烧时,空气中氮在高温下氧化产生,其中的生成过程是一个不分支连锁反应。其生成机理可用捷里多维奇(ZELDOVICH)反应式表示,即 O2+N→2O+N, O+N2→NO+N, N+O2→NO+O 在高温下总生成式为 N2+O2→2NO, NO+0.5O2→NO2 随着反应温度T的升高,其反应速率按指数规律增加。当T<1 500 ℃时,NO的生成量很少,而当T>1 500 ℃时,T每增加100 ℃,反应速率增大6~7倍。 (2)快速型NOx,快速型NOx是1971年FENIMORE通过实验发现的。在碳氢化合物燃料燃烧在燃料过浓时,在反应区附近会快速生成NOx,由于燃料挥发物中碳氢化合物高温分解生成的CH自由基可以和空气中氮气反应生成HCN和N,再进一步与氧气作用以极快的速度生成NOx,其形成时间只需要60 ms,所生成的NOx与炉膛压力的0.5次方成正比,与温度的关系不大。

(3)燃料型NOx,指燃料中含氮化合物,在燃烧过程中进行热分解,继而进一步氧化而生成NOx。由于燃料中氮的热分解温度低于煤粉燃烧温度,在600~800 ℃时就会生成燃料型NOx。在生成燃料型NOx过程中,首先是含有氮的有机化合物热裂解产生N,CN,HCN等中间产物基团,然后再氧化成NOx。由于煤的燃烧过程由挥发份燃烧和焦炭燃烧两个阶段组成,故燃料型NOx的形成也由气相氮的氧化和焦炭中剩余氮的氧化两部分组成。 2.2 NOx生成特点 在这3种途径中,快速型NOx所占的比例不到5%,在温度低于1300℃时,几乎没有热力型NOx。对常规燃煤锅炉而言,NOx主要通过燃料型生成途径而产生。由NOx的生成机理可以看出,NOx的生成及破坏与以下因素有关:⑴煤的燃烧方式、燃烧工况,其生成量依赖于燃烧温度水平;⑵煤种特性,如煤的含氮量,挥发份含量等; ⑶炉膛内反应区烟气的气氛,即烟气内氧气,氮气,NO和CHi的含量;⑷燃料及燃烧产物在火焰高温区和炉膛内的停留时间。 3、降低NOx的主要控制技术 降低NOx排放措施分为一级脱氮技术和二级脱氮技术。一级脱氮技术主要是采用低NOx 燃烧器以及通过燃烧优化调整,有效控制NOx的产生,从源头上减少NOx生成量;二级脱氮技术则是利用各种措施,尽可能减少已生成NOx的排放,属于烟气脱硝范畴,目前主要有两种成熟技术选择性催化还原法(SCR)和选择性非催化还原法(SNCR)。 3.1、级脱氮技术 3.1.1、气分级 3.1.1.1、根据NOx的生成机理,燃烧区的氧浓度对各种类型的NOx生成都有很大影响。当过量空气系数α<1,燃烧区处于“缺氧燃烧”状态时,抑制NOx的生成量有明显效果[6]。根据这一原理,将燃料的燃烧过程分阶段完成,把供给燃烧区的空气量减少到全部燃

氮氧化物的产生机理及脱氮技术原理.

氮氧化物的产生机理及脱氮技术原理: 一、氮氧化物的产生机理 在氮氧化物中,NO占有90%以上,二氧化氮占5%-10%,产生机理一般分为如下三种: (a热力型 燃烧时,空气中氮在高温下氧化产生,其中的生成过程是一个不分支连锁反应。其生成机理可用捷里多维奇(Zeldovich反应式表示。 随着反应温度T的升高,其反应速率按指数规律。当T<1500℃时,NO的生成量很少,而当T>1500℃时,T每增加100℃,反应速率增大6-7倍。 热力型氮氧化物生成机理(Zeldovich反应式 在高温下总生成式为 (b瞬时反应型(快速型 快速型NOx是1971年Fenimore通过实验发现的。在碳氢化合物燃料燃烧在燃料过浓时,在反应区附近会快速生成NOx。 由于燃料挥发物中碳氢化合物高温分解生成的CH自由基可以和空气中氮气反应生成HCN和N,再进一步与氧气作用以极快的速度生成,其形成时间只需要60ms,所生成的与炉膛压力0.5次方成正比,与温度的关系不大。 上述两种氮氧化物都不占NOx的主要部分,不是主要来源。 (c燃料型NOx 由燃料中氮化合物在燃烧中氧化而成。由于燃料中氮的热分解温度低于煤粉燃烧温度,在600-800℃时就会生成燃料型,它在煤粉燃烧NOx产物中占60-80%。

在生成燃料型NOx过程中,首先是含有氮的有机化合物热裂解产生N,CN,HCN 和等中间产物基团,然后再氧化成NOx。由于煤的燃烧过程由挥发份燃烧和焦炭燃烧两个阶段组成,故燃料型的形成也由气相氮的氧化(挥发份和焦炭中剩余氮的氧化(焦炭两部分组成。 燃料中氮分解为挥发分N和焦炭N的示意图 二、低NOx燃烧技术原理 对于没有脱硝设备和脱硝燃烧器的燃煤锅炉来说,也就是采用低氮燃烧技术来减少NOx的生成机会。 1在燃用挥发分较高的烟煤时,燃料型NOx含量较多,快速型NOx极少。燃料型NOx是空气中的氧与煤中氮元素热解产物发生反应生成NOx,燃料中氮并非全部转变为NOx,它存在一个转换率,降低此转换率,控制NOx排放总量,可采取: (1减少燃烧的过量空气系数; (2控制燃料与空气的前期混合; (3提高入炉的局部燃料浓度。 2热力型NOx:是燃烧时空气中的N2和O2在高温下生成的NOx,产生的主要条件是高的燃烧温度使氮分子游离增加化学活性;然后是高的氧浓度,要减少热力型NOX的生成,可采取: (1减小燃烧最高温度区域范围; (2降低锅炉燃烧的峰值温度; (3降低燃烧的过量空气系数和局部氧浓度。 具体来说,就是在保证锅炉燃烧安全的前提下,采取以下措施来减少氮氧化物的生成:

氮氧化物的产生机理及脱氮技术原理

一、氮氧化物的产生机理 在氮氧化物中,NO占有90%以上,二氧化氮占5%-10%,产生机理一般分为如下三种: (a)热力型 燃烧时,空气中氮在高温下氧化产生,其中的生成过程是一个不分支连锁反应。其生成机理可用捷里多维奇(Zeldovich)反应式表示。 随着反应温度T的升高,其反应速率按指数规律。当T<1500℃时,NO的生成量很少,而当T>1500℃时,T每增加100℃,反应速率增大6-7倍。 热力型氮氧化物生成机理(Zeldovich反应式) 在高温下总生成式为 (b)瞬时反应型(快速型) 快速型NOx是1971年Fenimore通过实验发现的。在碳氢化合物燃料燃烧在燃料过浓时,在反应区附近会快速生成NOx。 由于燃料挥发物中碳氢化合物高温分解生成的CH自由基可以和空气中氮气反应生成HCN和N,再进一步与氧气作用以极快的速度生成,其形成时间只需要60ms,所生成的与炉膛压力次方成正比,与温度的关系不大。 上述两种氮氧化物都不占NOx的主要部分,不是主要来源。 (c)燃料型NOx 由燃料中氮化合物在燃烧中氧化而成。由于燃料中氮的热分解温度低于煤粉燃烧温度,在600-800℃时就会生成燃料型,它在煤粉燃烧NOx产物中占60-80%。 在生成燃料型NOx过程中,首先是含有氮的有机化合物热裂解产生N,CN,HCN和等中间产物基团,然后再氧化成NOx。由于煤的燃烧过程由挥发份燃烧和焦炭燃烧两个阶段组成,故燃料型的形成也由气相氮的氧化(挥发份)和焦炭中剩余氮的氧化(焦炭)两部分组成。燃料中氮分解为挥发分N和焦炭N的示意图 二、低NOx燃烧技术原理 对于没有脱硝设备和脱硝燃烧器的燃煤锅炉来说,也就是采用低氮燃烧技术来减少NOx的生成机会。 1)在燃用挥发分较高的烟煤时,燃料型NOx含量较多,快速型NOx极少。燃料型NOx是空气中的氧与煤中氮元素热解产物发生反应生成NOx,燃料中氮并非全部转变为NOx,它存在一个转换率,降低此转换率,控制NOx排放总量,可采取: (1)减少燃烧的过量空气系数; (2)控制燃料与空气的前期混合; (3)提高入炉的局部燃料浓度。 2)热力型NOx:是燃烧时空气中的N2和O2在高温下生成的NOx,产生的主要条件是高的燃烧温度使氮分子游离增加化学活性;然后是高的氧浓度,要减少热力型NOX的生成,可采取:(1)减小燃烧最高温度区域范围; (2)降低锅炉燃烧的峰值温度; (3)降低燃烧的过量空气系数和局部氧浓度。 具体来说,就是在保证锅炉燃烧安全的前提下,采取以下措施来减少氮氧化物的生成: 1、低过量空气燃烧 使燃烧过程尽可能在接近理论空气量的条件下进行,随着烟气中过量氧的减少,可以抑制NOx的生成。这是一种最简单的降低NOx排放的方法。一般可降低NOx排放15~20%。但如炉内氧浓度过低(3%以下),会增加化学不完全燃烧热损失,引起飞灰含碳量增加,使锅炉燃烧效率下降。因此,在锅炉运行时,应选取最合理的过量空气系数。 2、空气分级送入炉膛

燃料燃烧过程中NOx产生的机理

燃烧过程中NOx生成机理 1本文介绍燃料燃烧过程中NOx产生的机理和危害,我国电站锅炉还未有Nox排放标准.四角切圆燃烧锅炉有利于降低NOx生成和控制NOx排放,适合我国国情,电站锅炉采用低NOx燃烧是一投入少,见效快的发展道路。 关键词:四角切圆燃烧降低NOx生成控制NOx排放 0前言 当今世界对电站锅炉产生的有害排放物作为一个重要控制指标,世界发达国家均已制定了电站锅炉NOx排放标准,美国已建电站锅炉NOx排放规定: 气体燃料: 86g/GJ 油: 129g/GJ 煤:切圆燃烧 193g/GJ 墙式燃烧 215 g/GJ 新建电站锅炉NOx排放在某些地区必须达到50g/GJ。对达不到标准的要受到严厉的处罚,直至关闭。 我国现在还没有电站锅炉NOx排放标准和连续测量NOx排放的装置。现按引进技术制造设置顶部风(即OFA)的1025t/h控制循环锅炉在性能考核期内,NOx排放值:吴径热电厂为152g /GJ,石横发电厂为225g/GJ,其他较多锅炉还未得到控制。 氮氧化物主要以NO、N02、N2O、N203、N204、N205等形式出现,统称为NOx。在空气中,NO浓度越大,毒性越强,N02的毒性更大。它很易与人体和动物血液中的血色素混合夺取氧分,使血液缺氧,引起中枢神经麻痹症,N02还强烈刺激呼吸器管粘膜,引起肺部疾病。还对入体的心、肝、肾脏及造血组织有损害,严重时会导致死亡。 NO和N02会破坏同温层中的臭氧层,使其失去对紫外光辐射的屏蔽作用,危害地面生物。大气中有NOx与Sox、粉尘共存,生成硫酸或硫酸盐溶液和硝酸或硝酸盐溶液,形成酸雨。 由于NOx对人类和自然界存在危害,必须控制NOx的生成和排放。我国也应参照先进国家的经验,尽早制定出符合国情的火电站锅炉NOx排放标准。 1 NOx的生成及控制 NOx大多在各种燃料的燃烧过程中产生的,其中NO约占NOx总量的90%-95%,在大气中会迅速氧化成毒性更大的NO2 燃料燃烧中生成的NOx有“热力型”和“燃料型”两种:

NOx生成及控制措施

一概述 中国是一个以煤炭为主要能源的国家,煤在一次能源中占75%,其中84%以上是通过燃烧方法利用的。煤燃烧所释放出废气中的氮氧化物(NOx),是造成大气污染的主要污染源之一。氮氧化物(NOx)引起的环境问题和人体健康的危害主要有以下几方面:氮氧化物(NOx)的主要危害: (1)NOx对人体的致毒作用,危害最大的是NO2,主要影响呼吸系统,可引起支气管炎和肺气肿等疾病;(2)NOx对植物的损害;(3)NOx是形成酸雨、酸雾的主要污染物;(4)NOx与碳氢化合物可形成光化学烟雾;(5)NOx参与臭氧层的破坏。 (2)不同浓度的NO2对人体健康的影响 二、燃煤锅炉NOx生成机理 氮氧化物(NOx)是造成大气污染的主要污染源之一。通常所说的NOx有多种不同形式:N2O、NO、NO2、N2O3、N2O4和N2O5,其中NO 和NO2是重要的大气污染物,另外还有少量N2O。我国氮氧化物的排放量中70%来自于煤炭的直接燃烧,电力工业又是我国的燃煤大户,因此火力发电厂是NOx排放的主要来源之一。

煤的燃烧过程中产生的氮氧化物(NOx )主要是一氧化氮(NO )和二氧化氮(NO2),在煤燃烧过程中氮氧化物的生成量和排放量与煤的燃烧方式,特别是燃烧温度和过量空气系数等密切相关。燃烧形成的NOx 生成途径主要由以下三个:为燃料型、热力型和快速型3种。其中快速型NOx 生成量很少,可以忽略不计。 1. 热力型NOx 指空气中的氮气(N2)和氧(O2)燃料燃烧时所形成的高温环境下生成的NO 和NO2的总和,其总反应式为: 2 2222NO O NO NO O N ?+?+ 当燃烧区域温度低于1000℃时,NO 的生成量较少,而温度在1300℃—1500℃时,NO 的浓度约为500—1000ppm ,而且随着温度的升高,NOx 的生成速度按指数规律增加,当温度足够高时热力型NOx 可达20%。因此,温度对热力型NOx 的生成具有绝对性的作用,过量空气系数和烟气停留时间对热力型NOx 的生成有很大影响。 根据热力型NOX 的生成过程,要控制其生成,就需要降低锅炉炉膛燃烧温度,并避免产生局部高温区,以降低热力型NOX 的生成。 2. 燃料型NOx 燃料型NOx 的生成是燃料中的氮化合物在燃烧过程中氧化反应而生成的NOx ,称为燃料型NOx 。燃煤电厂锅炉中产生的NOx 中大约75%~90%是燃料型NOx ,因此燃料型NOx 是燃煤电厂锅炉产生NOx 的主要途径。研究燃料型NOx 的生成和破坏机理,对于控制燃烧过程中NOx 的生成和排放,具有重要的意义。在燃料燃烧生成NOx 的过程中,

NOx的生成机理

随着我国实行可持续发展的战略,经济建设和环境的协调发展已成为可持续发展的一项重要内容,因此环境保护已成为当前和今后一项任重而道远的工作。在燃煤电厂排放的大气污染物中,氮氧化物(NOx)因为对生态环境和人体健康的危害极大,且难以处理,所以成为重点控制排放的污染物之一。由于环保滞后,特别是治理资金的匮乏,我国对NOx的治理还很有限,因此通过燃烧调整来减少燃煤电厂污染物的排放,特别是NOx的排放,具有积极的意义。 1NOx的生成机理 NOx主要指NO和NO2,其次是N2O3,N2O,N2O4和N2O5。在发电厂锅炉的煤粉燃烧过程中,NOx的形成途径主要有两条:一是有机地结合在煤中的氮化物在高温火焰中发生热分解,并进一步氧化而生成NOx;二是供燃烧用的空气中的氮在高温状态与燃烧空气中的氧发生化合反应而生成NOx。在煤粉锅炉生成的NOx中,主要是NO,约占95%,而NO2仅占5%左右,N2O3,N2O,N2O4和N2O5的量很少。NOx的生成量与锅炉的容量、结构、燃烧设备、煤种、炉内温度水平和氧量、运行方式等有关。 煤燃烧过程中所生成的NOx有三种类型,即热力型NOx、燃料型NOx和快速型NOx。 1.1热力型NOx的生成 热力型NOx是燃烧空气中的氮在高温下氧化而成的。其生成机理是由前苏联科学家捷里道维其(Zeldovich)提出的,按这一机理,热力型NOx的生成主要由以下链锁反应来描述: 式中:t——反应时间; T——反应温度; c(NO)——NO的浓度; c(O2)——O2的浓度; c(N2)——N2的浓度。 由上式可以看出,影响热力型NOx生成量的主要因素有燃烧反应的温度、氧气浓度和反应时间,而且温度对热力型NOx的生成影响最大。实际上在1 350 ℃以下,热力型NOx 生成量很少,但随着温度的上升,热力型NOx生成量迅速增加,温度达1 600 ℃以上时,热力型NOx占NOx生成总量的25%~30%。 1.2燃料型NOx的生成 燃料型NOx占煤粉锅炉NOx生成总量的70%~80%。一般认为,燃料型NOx是燃料中的氮化合物在燃烧过程中发生热分解,并进一步氧化而生成的,同时还存在NO的还原反应。燃料型NOx的生成和还原机理相当复杂,至今仍无法解析清楚。燃料型NOx的生成可用下式表示:

氮氧化物的形成及控制

氮氧化物的形成及控制技术 孙铁朦 (中南大学能源科学与工程学院,湖南长沙,410083) 摘要:随着我国经济的快速发展和能源生产与消费量的急速增长,氮氧化物排放量也随之增加。有关研究表明,氮氧化物排放加剧了大气酸沉降、光化学烟雾和城市灰霾的污染。由于氮氧化物可以在大气层中长距离输送,引起的全球性或区域性污染问题也日渐突出。如果对此不加以控制,氮氧化物的持续增加将会明显抵消掉二氧化硫减排所取得的重大环境效益。我国氮氧化物排放控制还处于起步阶段,氮氧化物排放控制技术有待进一步普及,并提出氮氧化物排放治理的一些方法。 关键词:氮氧化物;危害;控制技术。 The formation of nitrogen oxide and control technology Sun tie meng (School of Energy Science and Engineering, Central South University, Changsha 410083, China) Abstract: With the rapid growth of China's rapid energy production and consumption,nitrogen oxide emissions have increased. The study showed that nitrogen oxide emissions contribute to atmospheric acid deposition,photochemical smog and urban haze pollution. Due tolong-range transport of nitrogen oxides in the atmosphere which caused by global or regional pollution problems have become increasingly prominent. If this is left unchecked, the continued increase of the nitrogen oxides will be significantly offset by the significant environmental benefits achieved by the sulfur dioxide emission reduction. Due to nitrogen oxides emission reduction program in china is still in its initial stages,nitrogen oxide control technology needs further popularization and provide some methods on nitrogen oxide emission control. Key words:nitrogen oxide;damage:control technology. 1前言 氮氧化物是大气中主要的气态污染物之一,包括多种化合物,如氧化亚氮(N O)、一氧化 2 )、三氧化二氮(N2O3)、四氧化二氮(N2O4)和五氧化二氮(N2O5)等。其中氮(NO)、二氧化氮(NO 2 N2O3、N2O4、N2O5很不稳定,常温下很容易转化成NO和NO2。大气中含量较高的氮氧化物主O、NO和NO2。其中,NO和NO2是大气中主要的氮氧化物。 要包括N 2 自然界中的NOx主要来自雷电,森林草原火灾,氧化大气中的氮和土壤中微生物的消化作用,这些氮氧化物在大气系统中均匀分散,并参加在环境中的氮循环。人类活动产生的氮

氮氧化物控制原理及技术

氮氧化物排放控制原理及新技术 中国环境学会 2011年03月31日 李俊华,陈亮,常化振,郝吉明清华大学环境科学与工程系 (通讯地址:清华大学环境系,100084,Tel:62771093,email:lijunhua@https://www.360docs.net/doc/244035858.html,) 摘要:NOx排放量逐年增加,造成区域酸沉降趋势不断恶化,大气中二次颗粒物臭氧(O3)和微细可吸入颗粒物(PM2.5)居高难下,严重影响人体健康和生态环境质量。本文介绍了我国NOx排放趋势,重点讨论了NOx控制原理及关键控制技术的研究进展。基于目前烟气脱硝技术存在的问题,提出了脱硝催化剂原材料和制备工艺国产化、针对我国不同煤种研究催化剂适应性的问题,以及下一步燃煤烟气协同污染控制最新研究方向。 关键词:氮氧化物,燃煤烟气,稀燃汽车,排放,脱硝催化剂,协同控制 1 我国NOx排放现状 《国家环境保护“十一五”规划》提出确保实现SO2减排目标,实施燃煤电厂脱硫工程,实施酸雨和SO2污染防治规划,重点控制高架源的SO2和NOx排放,综合改善城市空气环境质量。随着“十一五”期间对电厂实施烟气脱硫效果明显,大气SO2浓度及硫沉降均有所下降。但NOx作为一类主要的大气污染物,在我国其排放量仍在增加,不仅对人体健康造成直接危害,同时也不仅会造成空气中NO2浓度的增加、区域酸沉降趋势不断恶化,还会使对流层O3浓度增加,并在空气中形成微细颗粒物(PM),影响大气环境质量[1,2]。 我国以煤为主的能源结构和发电结构,使得燃煤成为NOx的最大来源,全国NOx排放量的67%来自煤炭燃烧,其中燃煤电厂是NOx排放的最大分担者。2007年全国NOx排放量为1643.4万吨,工业排放NOx1261.3万吨,其中火电厂排放811万吨,占全国NOx排放量的49.4%,占工业NOx排放的64.3%[3]。今年NOx排放量将达到1800万吨,未来若无控制措施,NOx排放在2020年将达到3000万吨以上,届时我国将成为世界上第一大NOx排放国,污染将进一步加重,污染进一步加重。我国于2004年1月1日起执行的《火电厂大气污染物排放标准》(GB13223—2003),将新建燃煤电厂的氮氧化物的排放浓度控制在450mg/Nm3。对于氮氧化物污染严重和环境容量有限的经济发达地区,当地政府提出了更高的排放要求,如北京为了迎接2008年奥运会,将NOx排放标准严格到100mg/Nm3。因此针对重点源开展NOx排放控制原理及新技术的研究变得十分必要和迫切。

氮氧化物产生与控制分析.

前言 能源与环境是当今社会发展的两大问题,如何文明用能、合理用能已经成为人们越来越关注的话题。在能源的利用中,矿物燃料的燃烧要排放出大量污染物。例如,我国每年排入大气中的87%的SO2、68%的NOx和60%的粉尘均来自于煤的直接燃烧,因此,文明用能、合理用能,发展高效、低污染的清洁煤燃烧技术,降低NOx和SO2的排放量是当前亟待解决的问题。 循环流化床锅炉是最近二十年里发展起来的一种新型燃烧技术,它的主要特点在于燃料及脱硫剂经多次循环、反复地进行低温燃烧和脱硫反应,炉内湍流运动强烈。它不但能达到90%的脱硫效率和与煤粉炉相近的燃烧效率,而且具有燃料适应性广、负荷调节性能好、灰渣易于综合利用等优点。本文对循环流化床锅炉中的NOx生成机制进行深入研究,分析影响NOx浓度的因素,探讨控制NOx排放量的措施,为循环流化床锅炉的设计、运行提供参考。 1NOx的生成机制 煤燃烧过程中产生的氮氧化物主要是一氧化氮(NO)和二氧化氮(NO2),这两者统称为NOx,此外还有少量的氧化二氮(N2O)产生。和SO2的生成机理不同,在煤燃烧过程中氮氧化物的生成量和排放量与煤燃烧方式、特别是燃烧温度和过量空气系数等燃烧条件关系密切。 在煤燃烧过程中,生成的NOx途径有三个: (1)热力型NOx(Thermal NOx),它是空气中的氮气在高温下氧化而生成的。 (2)燃料型NOx(Fuel NOx),它是燃料中含有的氮化合物在燃烧过程中热分解而又接着氧化而生成的NOx。 (3)快速型NOx(Prompt NOx),它是燃烧时空气中的氮和燃料中的炭氢离子团如CH等反应生成的NOx。其中燃料型NOx是最主要的,它占总生成量的60%~80%以上,热力型NOx的生成和燃烧温度的关系很大,在温度足够高时,热力型NOx的生成量可占到总量的20%;快速型NOx在煤燃烧过程中的生成量很小。另外,N2O和NOx燃料型一样,也是从燃料的氮化合物转化生成的,它的生成过程和燃料型NOx的生成和破坏密切相关。 2 影响因素分析 在循环流化床锅炉中,一方面,氮在燃烧过程中被不断氧化生成NOx,另一方面在还原性气氛中NOx也会被不断还原生成N2,因此,影响氧化、还原反应的所有因素都将影响到NOx的浓度。 2.1燃料特性的影响 由于NOx主要来自于燃料中的氮,因此,从总体上看,燃料氮含量越高,则NOx的排放量也越高;同时,燃料中氮的存在形态不同,NOx的排放量也不一样,以胺的形态存在于煤中的燃料氮在燃烧过程中主要生成NO,而以芳香环形式存在的燃料氮在挥发分燃烧过程中主要生成N2O。一般来说,褐煤、页岩等劣质燃料中燃料氮的主要存在形态是胺,故NOx 排放量较多,N2O很少;相反,烟煤、无烟煤中燃料氮的主要存在形态是芳香环,故NOx 排放量较少,而N2O很高。 煤,尤其是其挥发分中的各种元素比也会影响到NOx的排放量。显然,O/N比越大,NOx排放量较高。H/C比越高,则NO越难于被还原,故NOx排放量也越高。另外,S/N比会影响到各自的排放水平,因为S和N氧化时会相互竞争,故SO2排放量越高,NOx排放量越低。 2.2 过量空气系数的影响 当风不分级时,降低过量空气系数,在一定程度上可限制反应区内的氧浓度,因而,对热力型NOx和燃料型NOx 的生成都有一定的控制作用,采用这种方法可使NOx排放量降低15%~20%,但是CO浓度会增加,燃烧效率会下降。

氮氧化物生成机理及控制技术

氮氧化物生成机理及控制技术 前言:能源与环境是当今社会发展的两大问题,如何文明用能、合理用能已经成为人们越来越关注的话题。在能源的利用中,矿物燃料的燃烧要排放出大量污染物。例如,我国每年排入大气中的87%的SO2、68%的NOx和60%的粉尘均来自于煤的直接燃烧,因此,文明用能、合理用能,发展高效、低污染的清洁煤燃烧技术,降低NOx和SO2的排放量是当前亟待解决的问题。 循环流化床锅炉是最近二十年里发展起来的一种新型燃烧技术,它的主要特点在于燃料及脱硫剂经多次循环、反复地进行低温燃烧和脱硫反应,炉内湍流运动强烈。它不但能达到90%的脱硫效率和与煤粉炉相近的燃烧效率,而且具有燃料适应性广、负荷调节性能好、灰渣易于综合利用等优点。本文对循环流化床锅炉中的NOx生成机制进行深入研究,分析影响NOx浓度的因素,探讨控制NOx 排放量的措施,为循环流化床锅炉的设计、运行提供参考。 1NOx的生成机制 煤燃烧过程中产生的氮氧化物主要是一氧化氮(NO)和二氧化氮(NO2),这两者统称为NOx,此外还有少量的氧化二氮(N2O)产生。和SO2的生成机理不同,在煤燃烧过程中氮氧化物的生成量和排放量与煤燃烧方式、特别是燃烧温度和过量空气系数等燃烧条件关系密切。 在煤燃烧过程中,生成的NOx途径有三个: (1)热力型NOx(Thermal NOx),它是空气中的氮气在高温下氧化而生成的。 (2)燃料型NOx(Fuel NOx),它是燃料中含有的氮化合物在燃烧过程中热分解而又接着氧化而生成的NOx。 (3)快速型NOx(Prompt NOx),它是燃烧时空气中的氮和燃料中的炭氢离子团如CH等反应生成的NOx。其中燃料型NOx是最主要的,它占总生成量的

氮氧化物产生与控制分析

氮氧化物产生与控制分析

前言 能源与环境是当今社会发展的两大问题,如何文明用能、合理用能已经成为人们越来越关注的话题。在能源的利用中,矿物燃料的燃烧要排放出大量污染物。例如,我国每年排入大气中的87%的SO2、68%的NOx和60%的粉尘均来自于煤的直接燃烧,因此,文明用能、合理用能,发展高效、低污染的清洁煤燃烧技术,降低NOx和SO2的排放量是当前亟待解决的问题。 循环流化床锅炉是最近二十年里发展起来的一种新型燃烧 技术,它的主要特点在于燃料及脱硫剂经多次循环、反复地进行低温燃烧和脱硫反应,炉内湍流运动强烈。它不但能达到90%的脱硫效率和与煤粉炉相近的燃烧效率,而且具有燃料适应性广、负荷调节性能好、灰渣易于综合利用等优点。本文对循环流化床锅炉中的NOx生成机制进行深入研究,分析影响NOx浓度的因素,探讨控制NOx排放量的措施,为循环流化床锅炉的设计、运行提供参考。 1NOx的生成机制 煤燃烧过程中产生的氮氧化物主要是一氧化氮(NO)和二氧化氮(NO2),这两者统称为NOx,此外还有少量的氧化二氮(N2O)产生。和SO2的生成机理不同,在煤燃烧过程中氮氧化物的生成量和排放量与煤燃烧方式、特别是燃烧温度和过量空气系数等燃烧条件关系密切。 在煤燃烧过程中,生成的NOx途径有三个: (1)热力型NOx(Thermal NOx),它是空气中的氮气在高温下氧化而生成的。

煤,尤其是其挥发分中的各种元素比也会影响到NOx的排放量。显然,O/N比越大,NOx排放量较高。H/C比越高,则NO 越难于被还原,故NOx排放量也越高。另外,S/N比会影响到各自的排放水平,因为S和N氧化时会相互竞争,故SO2排放量越高,NOx排放量越低。 2.2 过量空气系数的影响 当风不分级时,降低过量空气系数,在一定程度上可限制反应区内的氧浓度,因而,对热力型NOx和燃料型NOx的生成都有一定的控制作用,采用这种方法可使NOx排放量降低 15%~20%,但是CO浓度会增加,燃烧效率会下降。 当风分级时,可有效地降低NOx的排放量。一般情况下,二次风从床上一定距离送入较好,如果过低则对NOx的排放量影响甚小。随着一次风量的减少、二次风量的增加,N被氧化的速度下降,NOx排放量也随之下降,并在某一风量分配下达到最小值。 2.3 燃烧温度的影响 燃烧温度对NOx的排放量的影响已取得共识,即随着炉内燃烧温度的提高,NOx的排放量将升高,因此,可以通过降低床温来控制NOx的排放量。但是,床温的降低会带来两个不利的后果,一个是CO炉内浓度将增加,不完全燃烧热损失增大,从而使得燃烧效率下降;另一个是不利于N2O分解,从而使得N2O的排放浓度增加。 2.4 脱硫剂的影响

烟气中NOX形成机理

氮氧化物的产生机理 在氮氧化物中,NO占有90%以上,二氧化氮占5%-10%,产生机理一般分为如下三种: (a)热力型 燃烧时,空气中氮在高温下氧化产生,其中的生成过程是一个不分支连锁反应。其生成机理可用泽尔多维奇(Zeldovich)反应式表示。随着反应温度T的升高,其反应速率按指数规律增加。当T<1500℃时,NO的生成量很少,而当T>1500℃时,T每增加100℃,反应速率增大6-7倍。 热力型氮氧化物生成机理(Zeldovich反应式): O2+N-->2O+N O+N2-->NO+N N+O2-->NO+O 在高温下总生成式为: N2+O2-->2NO NO+(1/2)O2-->NO2 (b)瞬时反应型(快速型) 快速型NOx是1971年Fenimore通过实验发现的。在碳氢化合物燃料燃烧在燃料过浓时,在反应区附近会快速生成

NOx。由于燃料挥发物中碳氢化合物高温分解生成的CH自由基可以和空气中氮气反应生成HCN和N,再进一步与氧气作用以极快的速度生成,其形成时间只需要60ms,所生成的与炉膛压力0.5次方成正比,与温度的关系不大。 上述两种氮氧化物都不占NOx的主要部分,不是主要来源。 (c)燃料型NOx 由燃料中氮化合物在燃烧中氧化而成。由于燃料中氮的热分解温度低于煤粉燃烧温度,在600~800℃时就会生成燃料型,它在煤粉燃烧NOx产物中占60~80%。在生成燃料型NOx过程中,首先是含有氮的有机化合物热裂解产生N、CN、HCN等中间产物基团,然后再氧化成NOx。由于煤的燃烧过程由挥发份燃烧和焦炭燃烧两个阶段组成,故燃料型的形成也由气相氮的氧化(挥发份)和焦炭中剩余氮的氧化(焦炭)两部分组成。

NOx生产机理及降低的办法

NOx生成机理 在NOx中,一氧化氮约占90%以上,二氧化氮占5%~10%,产生机理一般分为如下3种: (1)热力型NOx,燃烧时,空气中氮在高温下氧化产生,其中的生成过程是一个不分支连锁反应。其生成机理可用捷里多维奇(ZELDOVICH)反应式表示,即 O2+N→2O+N,O+N2→NO+N,N+O2→NO+O 在高温下总生成式为 N2+O2→2NO,NO+0.5O2→NO2 随着反应温度T的升高,其反应速率按指数规律增加。当T<1500℃时,NO的生成量很少,而当T>1500℃时,T每增加100℃,反应速率增大6~7倍。 (2)快速型NOx,快速型NOx是1971年FENIMORE通过实验发现的。在碳氢化合物燃料燃烧在燃料过浓时,在反应区附近会快速生成NOx,由于燃料挥发物中碳氢化合物高温分解生成的CH自由基可以和空气中氮气反应生成HCN和N,再进一步与氧气作用以极快的速度生成NOx,其形成时间只需要60ms,所生成的NOx与炉膛压力的0.5次方成正比,与温度的关系不大。 (3)燃料型NOx,指燃料中含氮化合物,在燃烧过程中进行热分解,继而进一步氧化而生成NOx。由于燃料中氮的热分解温度低于煤粉燃烧温度,在600~800℃时就会生成燃料型NOx。在生成燃料型NOx过程中,首先是含有氮的有机化合物热裂解产生N,CN,HCN等中间产物基团,然后再氧化成NOx。由于煤的燃烧过程由挥发份燃烧和焦炭燃烧两个阶段

组成,故燃料型NOx的形成也由气相氮的氧化和焦炭中剩余氮的氧化两部分组成。 NOx生成特点 在这3种途径中,快速型NOx所占的比例不到5%,在温度低于1300℃时,几乎没有热力型NOx。对常规燃煤锅炉而言,NOx主要通过燃料型生成途径而产生。由NOx的生成机理可以看出,NOx的生成及破坏与以下因素有关[3]:⑴煤的燃烧方式、燃烧工况,其生成量依赖于燃烧温度水平;⑵煤种特性,如煤的含氮量,挥发份含量等;⑶炉膛内反应区烟气的气氛,即烟气内氧气,氮气,NO和CHi的含量;⑷燃料及燃烧产物在火焰高温区和炉膛内的停留时间。 根据NOx的生成机理,燃烧区的氧浓度对各种类型的NOx生成都有很大影响。当过量空气系数α<1,燃烧区处于“缺氧燃烧”状态时,抑制NOx的生成量有明显效果[6]。根据这一原理,将燃料的燃烧过程分阶段完成,把供给燃烧区的空气量减少到全部燃烧所需用空气量的80%左右,形成富燃区,从而降低了燃烧区的氧浓度,也降低了燃烧区的温度水平。因此,第一级燃烧区的主要作用就是抑制NOx的生成,推迟燃烧过程,并将已生成的NOx分解还原,使燃料型NOx减少;由于此时火焰温度降低,使得热力型NOx的生成量也减少。燃烧所需的其余空气则通过燃烧器上面的燃烬风喷口送入炉膛与第一级所产生的烟气混合,使燃料燃烧完全,成为燃烬区,从而完成整个燃烧过程。

相关文档
最新文档