玻璃池窑运行中常出现的四种异常问题

玻璃池窑运行中常出现的四种异常问题
玻璃池窑运行中常出现的四种异常问题

玻璃池窑运行中常出现的四种异常问题

玻璃熔化池炉是玻璃厂的心脏,又处在不间断的动态高温运行之中,每个从事窑炉热工管理的工程技术人员都希望窑炉在高温下不停产连续运行,直至耐火材料充分蚀损不能再继续保证正常生产为止,进入停产拆炉大修,完成窑炉的一个使用周期。但在生产实践中,总是存在着诸多因素影响生产的连续运行,如机器设备的检修更换、燃料的不稳定性、班组操作水平的差异、窑炉的正常损坏、烟道系统的积水、积灰堵塞、甚至缺水停电等等因素都会造成停产。窑炉运行中的异常情况多种多样,显而易见的比较容易分析判断,但往往很多时候是内部系统故障,整个系统环境处于高温状态,看不见摸不着,需要用丰富的实践经验加以分析判断,才能找出问题所在并正确处理。如果分析判断和处理不当,不但不能消除故障,还会造成事故的扩大化,甚至带来严重的后果。对实际工作中蓄热式马蹄焰玻璃池窑运行中的一些异常情况进行分析。1 熔化池炉温疲软、提温困难排除窑炉设计缺陷和燃料的因素,在蓄熔比、换热传热面积足够的正常情况下,若窑炉运行一段时间后,炉温异常疲软,达不到正常生产所需温度,从窑炉方面应考虑内部结构是否发生了破坏。1.1蓄热室十字墙出现缝隙穿火在蓄热室的修建中,普遍采用下部粘土砖、中部高铝砖、上部硅砖的耐材砌筑结

构形式,以节省建造费用。由于硅砖荷软温度远高于粘土和高铝耐材,窑炉运行一段时间后,往往发生中、下部耐材蠕变软化下坠,从而造成十字墙出现缝隙穿火,尤其是蓄热室运行温度较高且粘土、高铝耐材砌筑部位较高的窑炉更易发生此种情况。此外,窑炉砌筑时预留的膨胀缝未胀满也会存在缝隙。若缝隙出现在两个空气格子体之间隔墙,情况还不算很严重。如果在空-煤格子体之间隔墙出现缝隙,由于压力差将会发生部分煤气和空气提前在进气侧蓄热室内混合燃烧,从而造成进气侧空气或煤气格子体温度异常升高,进入炉内燃烧的有效成分减少,窑炉熔化部温度就会疲软。此种情况若发生在单侧,则进气侧格子体温度异常升高,炉温疲软,换火后又恢复到正常炉温;若两侧空-煤格子体墙都有缝隙穿火,则两侧格子体温度都异常升高,换火也不能消除熔化部炉温疲软现象。如果十字墙缝隙出现在两个煤气格子体之间,则会发生进气侧煤气一部分从隔墙缝隙经另一侧煤气格子体跑掉,导致进入炉内燃烧的煤气量减少,也使熔化部温度疲软,难以达到正常炉温,且由于窑炉废气中的过剩空气和从缝隙短路跑掉的煤气在另一侧煤气格子体内燃烧,造成排气侧煤气格子体温度异常升高现象,并且随着穿火缝隙的不断扩大,排气侧煤气格子体温度会越来越高,甚至达到接近熔化部的温度,此种情况换火也不能排除炉温疲软问题。无论是空一煤或煤一煤格子体墙出现缝隙穿火,都将带

来炉温疲软、格子体温度异常升高现象,而且是恶性循环,缝隙越来越大,格子体温度越来越高,发展到最后只有停炉检修,挖补堵漏,才能彻底根治。1.2舌头拱垮塌由于小炉是整座窑炉热负荷最高的部位,加上高温气流的冲刷、回头飞扬粉料的侵蚀,往往造成喷火口结构的提前损坏。舌头拱处于小炉热负荷的中心,窑炉运行一段时间后往往出现舌头拱部分垮塌的现象,从而加大了小炉预混室的距离。空、煤气提前混合更增大了小炉的热负荷.进人熔化池内燃烧的火焰会变短,而且由于垮塌的舌头拱耐火材料堆积在小炉底板上,改变了喷火口火焰的走向,往往造成火焰上飘不能直射玻璃液面。若在大碹顶拱用热电偶测温,则会在仪表上反映炉温升高,但玻璃熔化质量却反而有所下降的现象。此时可打开小炉侧墙预留的事故处理孔,清除小炉底板上堆积的垮塌耐火材料,保持小炉通道的畅通,可缓解矛盾,待到窑炉停炉大修时恢复舌头拱结构方可彻底解决问题。1.3交换器故障对于跳罩式交换器,其钢结构浸泡在水中的部分使用一段时间以后就会被腐蚀变薄,尤其跳罩和通口水线部位极易蚀穿,造成漏气漏水。通口蚀穿漏水容易被发现,注水不满即是征兆;但如果跳罩蚀穿漏气,由于处在交换器内部,所以很难被发现,这种情况会造成部分煤气或空气从跳罩蚀穿部位经总烟道抽走,致使进入炉内燃烧的煤气、空气总量减少,也会使炉温疲软,提温困难。定期检查更换跳罩和焊补

通口即可消除此故障。2 窑压异常升高玻璃窑炉的窑压由烟道闸板进行调控,一般应处在微正压状态下运行。若窑压升高,将会带来窑炉耐火材料的加速损坏,从而大大缩短窑炉的使用寿命。在窑炉各项操作运行指标未改变的情况下,如果窑压异常升高,则应考虑烟道积水、积灰堵塞、格子体堵塞等问题。对于烧发生炉煤气的玻璃熔窑,煤气中带出物较多,加上回头飞扬粉料在格子体材料上的粘附,往往造成窑炉运行一段时间后,煤气格子体堵塞,从而造成排气不畅、窑压升高,而且是持续升高的现象。在地下水丰富的地区或突降暴雨的季节,往往发生地下烟道积水堵塞造成窑压的突然升高现象,此时动用排水泵抽除积水即可解决。对于因格子体积灰堵塞造成窑压升高的问题,则要用压缩空气或蒸汽吹扫,在回头走废气侧格子体墙上打开吹扫孔,用压缩空气或蒸汽逐层吹扫清通堵塞的格子体。对于因烟道积灰堵塞造成排气不畅、窑压升高问题,则要定期人工清理积灰消除堵塞,才能保证窑炉的正常运行。3 换火温度差异对于蓄热式马蹄焰熔窑,正常运行时每隔半小时左右要进行一次换火操作,改变蓄热室进气和排气的万向。换火时窑炉熔化部和蓄热室温度会发生一定的波动,窑炉正常运行中蓄热室上部的温度变化近似正弦曲线和余弦曲线,熔化部温度变化近似锯齿状的曲线。如果在一个换火周期和另一个换火周期中,窑炉熔化部和蓄热室上部温度变化与正常运行差异较大,除前

述十字墙出现缝隙穿火、交换器蚀穿故障等情况外,还可能有交换器底座的故障问题此故障比较隐蔽,不易被发现,往往造成分析判断错误。交换器底座与烟道耐火材料之间的接合面应保持气密状态,但由于材料膨胀的差异和高温气流的腐蚀冲刷等原因,往往造成交换器钢结构底座与耐火材料接合面A点或B点产生间隙。若A点产生间隙,当跳罩置于左侧,右边支烟道进煤气或空气时,就有部份煤气或空气从A点间隙短路直接进入总烟道抽走,造成进入炉内的煤气或空气减少,从而在该侧换火时炉温降低,反之若在B点产生间隙,煤气或空气短路亦然,从而造成换火温差。此种情况的换火温差与蓄热室十字墙出现缝隙穿火产生的温差不同,十字墙缝隙穿火产生的温差伴随着蓄热室格子体温度的异

常升高,而交换器底座缝隙短路造成的换火温差,蓄热室温度变化不大,仅以总烟道温度有所升高为明显标志。以窑炉实际运行时蓄热室和熔化部温度变化曲线与正常运行的温

度变化趋势对比即可判断窑炉异常情况发生在何处。若交换器底座出现缝隙短路时,解决的办法只有停止输送煤气或空气,待烟道温度降低后进入垣塞堵住A点或B点缝隙,才能消除换火温差。4 玻璃液脏料近年来随着原材料成本的攀升,各地厂家都在大量引入外购废玻璃掺入到配合料中以降低生产成本。由于外购废玻璃中瓶盖、瓷片等各种杂质很多,也不能保证彻底清洗和检选干净,再加上窑炉耐火材料的剥

落,久而久之,在熔化池内积累了相当数量的杂质,尤其含铁杂质密度较大,沉淀于窑炉底部且又多含着色成份,从而形成窑炉底部的“脏料”层。正常情况下,该层炉底“脏料”附着在池底几乎不流动,不会对产品带来明显的影响。但如果炉温发生忽高忽低的大变动,就会造成炉内玻璃液的异常流动,池底“脏料”会随玻璃液的异常流动而一股一股随玻璃液流带出进入料道,从而使玻璃制品产生明显的“脏料”缺陷。要消除产品“脏料”缺陷,外购废玻璃检选清洗干净是前提,窑炉温度稳定是保证。玻璃窑炉一旦因异常情况停产,炉温的急剧升降将会造成窑炉耐火材料加速损坏和缩短窑炉的正常使用周期。因此,如果生产出现异常,工程技术人员应迅速判明原因,找出问题所在并尽快处理,将窑炉的损伤降到最低限度,才能保证连续生产并充分延长窑炉的使用寿命。关注更多窑炉维护保养,高温窑炉在线内窥镜检查,热修高温陶瓷焊补

玻璃马蹄焰窑炉结构设计

第二章结构设计 2.1熔化部设计 2.1.1熔化率K值确定 瓶罐玻璃池窑设计K值在2.2—2.6t/m2.d为宜。熔化率取的过小,窑炉不节能,取得过大,熔化操作困难,或是达不到设计容量,本次取2.5t/(m2·d)。理由如下:目前国外燃油瓶罐玻璃窑炉熔化率均在2.2以上,而我国却在2.0左右,偏低的原因: (1)整个池窑缺少有助于强化熔融的配套设计。 (2)操作管理,设备,材料等使得窑后期生产条件恶化。 由于这些影响熔化能力的因素,现在瓶罐玻璃K值偏小。在全面改进窑炉结构和有关附属设备后,根据国内耐火材料配套情况和玻璃原料量与制备情况。采取了K=2.5 t/(m2·d)。 2.1.2熔化池设计 (1)确定来了熔化率K值:熔化部面积 100/2.5=40m2。 (2)熔化池的长、宽、深:L×B×H=8000mm×5000mm×1200mm 本设计取长宽比值为1.6。 长宽比确定后,在具体确定窑池长度时,要保证玻璃液充分熔化和澄清,并考虑到砖窑材料的质量以及燃烧火焰的情况,一般要求火焰转向点在窑长的2/3处。窑长应≥4m 。 在确定窑池宽度时,应考虑到火焰的扩展范围,此范围取决于小炉宽度、中墙宽度(两个小炉的间距,小炉的间距,既要便于热修,又不要降低火焰的覆盖面积,一般小炉之间的通道宽度取0.9~1.2 m )。窑池宽度约为2~7m。 长宽选定后,当然具体尺寸还要按照池底排砖情况(最好是直缝排砖)作出适量调整,池底一般厚为200~300m。具体的池底排列会在后面设计的选材方面进行说明。这里先不做细讲。 综上,本次选用L=8m ,B=5m。 窑池深度一般根据经验确定。池深一般在900—1200mm为宜。池深不仅影响到玻璃

浮法玻璃熔制技术

浮法玻璃熔制技术 1、浮法玻璃熔制技术工艺流程 浮法玻璃的熔制过程是将合格的配合料经过高温加热形成均匀、纯净、透明并符合成型要求的玻璃液的过程,是浮法玻璃制造过程中的主要过程之一。熔制速度和熔制的合理性对玻璃的产量、质量、合格率、生产成本、燃料消耗和池窑寿命等影响很大。 浮法玻璃熔制技术工艺流程示意图: 2、玻璃熔制工艺原理 浮法玻璃的熔制过程是一个很复杂的过程,包括一系列的物理、化学、物理化学反应,而这些反应的进行与玻璃的产量和质量有密切关系。各种不同配合料在熔制过程中发生的反应见下表: 各种不同配合料在熔制过程中发生的反应

根据熔制过程中的不同特点,从加热配合料到最终成为符合成型要求玻璃液的过程,可分为五个阶段,即硅酸盐形成阶段、玻璃液形成阶段、玻璃液澄清阶段、玻璃液均化阶段和玻璃液冷却阶段。直观地,也可分为配合料堆的反应烧结阶段;硅酸盐形成及其熔化物熔化阶段,主要是残余石英砂溶解于已形成的硅酸盐中;澄清消除气泡阶段,主要是降低各种气体在玻璃液中的过饱和程度;逐渐冷却至成型温度阶段。 (1)硅酸盐形成阶段配合料入窑后,在800~1000℃温度范围发生一系列物理的、化学的和物理-化学的反应,如粉料受热、水分蒸发、盐类分解、多晶转变、组分熔化以及石英砂与其他组分之间进行的固相反应。这个阶段结束时,大部分气态产物从配合料中逸出,配合料最后变成由硅酸盐和二氧化硅组成的不透明烧结物。硅酸盐形成速度取决于配合料性质和加料方式。 (2)玻璃形成阶段当温度升到1200℃时,烧结物中的低共熔物开始熔化,出现了一些熔融体,同时硅酸盐与未反应的石英砂粒

反应,相互熔解。伴随着温度的继续升高,硅酸盐和石英砂粒完全熔解于熔融体中,成为含大量可见气泡、条纹、在温度上和化学成分上不够均匀的透明的玻璃液。 在浮法玻璃生产过程中,硅酸盐形成阶段与玻璃形成阶段之间没有明显的界限,即在硅酸盐阶段尚未结束时,玻璃液形成阶段已经开始,并且硅酸盐形成进行得极为迅速,而玻璃液形成却很缓慢。这是由于在实际生产中,配合料被直接投入到1300℃左右的投料池中,硅酸盐形成极快(约3~5min ),而玻璃液的形成必须等待石英砂粒的完全熔解。因此要划分这两个阶段很困难,所以生产上把这两个阶段视作一个阶段,称为配合料熔化阶段。 (3)玻璃液澄清阶段随着温度继续升高,达到1400~1500℃时,玻璃液的粘度约为10Pa·s ,玻璃液在形成阶段存在的可见气泡和溶解气体,由于温度升高,体积增大,玻璃液粘度降低而大量逸出,直到气泡全部排出。 (4)玻璃液均化阶段当玻璃液长时间处于高温下,由于对流、扩散、溶解等作用,玻璃液中的条纹逐渐消除,化学组成和温度逐渐趋向均一。此阶段结束时的温度略低于澄清温度。 玻璃液的均化过程早在玻璃液形成阶段时已开始,然而主要的还是在澄清后期进行。它与澄清过程混在一起,没有明显的界限,可以看作一面澄清,一面均化,且澄清加速了均化的进程,均化的结束在澄清之后,并一直延续到冷却阶段。此外,搅拌是提高均匀性的一个很好的方法。

玻璃马蹄焰池窑课程设计说明书

玻璃马蹄焰池窑课程设 计说明书 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

玻璃窑炉及设计课程设计说明书题目:年产42200吨高白料酒瓶燃油 蓄热式马蹄焰池窑设计 学生姓名:\ 学号: 院(系):材料科学与工程学院 专业:无机非金属材料工程 指导教师: 2013年6月20日 目录

1绪论 课程设计是培养学生运用《窑炉及设计(玻璃)》课程的理论和专业知识,解决实际问题,进一步提高设计、运算、使用专业资料等能力的重要教学环节。目的是使学生受到设计方法的初步训练,逐步树立正确的设计观点,增强设计能力、创新能力和综合能力,初步掌握窑炉及其它热工设备设计的基本知识和技能,并对所学窑炉热工理论知识进行验证和深化,为将来从事生产、设计、研究及教学等方面工作打下良好的基础。同时为毕业设计(论文)奠定良好的基础。 1.1设计依据: (1)设计题目:年产42200吨高白料酒瓶燃油马蹄焰玻璃池窑的设计 (2) 原始数据: 产品规格:高白酒瓶容量550mL, 重量450g/只 行列机年工作时间及机时利用率:325 天,95% 机速:QD8行列机高白酒瓶75只/分钟 QD6行列机高白酒瓶42只/分钟 产品合格率:90% 玻璃熔化温度1430℃ 玻璃形成过程耗热量q玻=2350kJ/kg玻璃液 重油组成(质量分数%),见表1 。 1.2简述玻璃窑炉的发展历史及今后的发展动向 玻璃生产专用热工设备统称为玻璃窑炉。 玻璃窑炉是玻璃行业生产的心脏,是能源消耗的主要设备。目前我国正在运行的窑炉以火焰炉为主,能耗水平较高(一般在300~500公斤标煤/吨成品左右,

浮法玻璃基础知识

浮法玻璃基础知识汇总 浮法玻璃是我国上世纪70年代末,由洛阳玻璃厂率先引进英国皇家浮法玻璃生产线。 它是在锡槽里,玻璃浮在锡液的表面上出来的。因此,这种玻璃首先是平度好,没有水波纹。用于制镜、汽车玻璃。不发脸,不走形,这是它的一大优点。其次是浮法玻璃选用的矿石石英砂,原料好。生产出来的玻璃纯净、透明度好。明亮、无色。没有玻璃疔,气泡之类。第三是结构紧密、重,手感平滑,同样厚度每平方米比平板比重大,好切割,不易破损。全国30多条生产线都严格按照国家标准生产,这种玻璃是民用建筑的最好玻璃。它的价格,同等厚度相比,仅比平板玻璃每平方米高4元左右。 生产工艺: 浮法玻璃生产的成型过程是在通入保护气体(N2及H2)的锡槽中完成的。熔融玻璃从池窑中连续流入并漂浮在相对密度大的锡液表面上,在重力和表面张力的作用下,玻璃液在锡液面上铺开、摊平、形成上下表面平整、硬化、冷却后被引上过渡辊台。辊台的辊子转动,把玻璃带拉出锡槽进入退火窑,经退火、切裁,就得到平板玻璃产品。浮法与其他成型方法比较,其优点是:适合于高效率制造优质平板玻璃,如没有波筋、厚度均匀、上下表面平整、互相平行;生产线的规模不受成形方法的限制,单位产品的能耗低;成品利用率高;易于科学化管理和实现全线机械化、自动化,劳动生产率高;连续作业周期可长达几年,有利于稳定地生产;可为在线生产一些新品种提供适合条件,如电浮法反射玻璃、退火时喷涂膜玻璃、冷端表面处理等。 普通平板玻璃与浮法玻璃有什么不同 A:普通平板玻璃与浮法玻璃都是平板玻璃。只是生产工艺、品质上不同。 普通平板玻璃是用石英砂岩粉、硅砂、钾化石、纯碱、芒硝等原料,按一定比例配制,经熔窑高温熔融,通过垂直引上法或平拉法、压延法生产出来的透明五色的平板玻璃。普通平板

玻璃窑炉设计技术之单元窑

玻璃窑炉设计技术之单元窑 第一章单元窑 用来制造E玻璃和生产玻璃纤维的窑炉,通常采用一种称为单元窑的窑型。它是一种窑池狭长,用横穿炉膛的火焰燃烧和使用金属换热器预热助燃空气的窑炉。通过设在两侧胸墙的多对燃烧器,使燃烧火焰与玻璃生产流正交,而燃烧产物改变方向后与玻璃流逆向运动。因此在单元窑内的玻璃熔化、澄清行程长,比其它窑型在窑内停留时间长,适合熔制难熔和质量要求高的玻璃。单元窑采用复合式燃烧器,该燃烧器将雾化燃料与预热空气同时从燃烧器喷出,经烧嘴砖进入窑炉内燃烧。雾化燃料处在燃烧器中心,助燃空气从四周包围雾化燃料,能达到较好的混合。所以与采用蓄热室小炉的窑型相比,燃料在燃烧过程中更容易获得助燃空气。当空气过剩系数为1.05时能完全燃烧,通过调节燃料与助燃空气接触位臵即可方便地控制火焰长度。由于使用多对燃烧器,分别调节各自的助燃风和燃料量,则可以使全窑内纵向温度分布和炉内气氛满足玻璃熔化与澄清的要求,这也是马蹄焰窑所无法达到的。单元窑运行中没有换火操作,窑内温度、气氛及窑压的分布始终能保持稳定,这对熔制高质量玻璃有利。现代单元窑都配臵有池底鼓泡,窑温、窑压、液面及燃烧气氛实行自动控制等系统,保证了难熔的E玻璃在较高熔化率下能获取用于直接拉制玻璃纤维的优质玻璃液。所以迄今在国际上单元窑始终是E玻璃池窑拉丝的首选窑型。 单元窑与其它窑型相比的不足之处是能耗相对较高。这是因为单元窑的长宽比较大,窑炉外围散热面积也大,散热损失相对较高。采用金属换热器预热助燃空气的优点是不用换火,缺点是空气预热温度,受金属材料抗氧化、抗高温蠕变性能的制约,一般设计金属换热器的出口空气温度为650~850℃。大多数单元窑热效率在15%以内,但如能对换热器后的废气余热再予利用,其热效率还可进一步提高。 配合料在单元窑的一端投入,投料口设在侧墙的一边或两边,也有设在端墙上的。熔化好的玻璃从另一端穿过沉式流液洞流至称为通路的拉丝作业部。 第一节单元窑的结构设计

马蹄焰池窑设计

马蹄焰池窑设计

窑炉及设计(玻璃)课程设计说明书 题目:年产1.2万吨玻璃酒瓶燃油马蹄焰池窑的设计 学生姓名: 学号: 院(系):材料科学与工程学院 专业:无机非金属材料工程 指导教师: 2012 年 6 月 17 日

陕西科技大学 窑炉及设计(玻璃)课程设计任务书 材料科学与工程学院无机非金属材料工程专业班级学生: 题目:年产1.2万吨玻璃酒瓶燃油马蹄焰池窑的设计 课程设计从 2012 年 6 月 4 日起到 2012 年 6 月 17 日 1、课程设计的内容和要求(包括原始数据、技术要求、工作要求等): (1) 原始数据: a.产品规格:青白酒瓶容量500mL, 重量400g/只 b.行列机年工作时间及机时利用率:313 天,95% c.机速:QD6行列机青白酒瓶38只/分钟 d.产品合格率:90% e.玻璃熔化温度1430℃ f.玻璃形成过程耗热量q玻=2350kJ/kg玻璃液 g.重油组成(质量分数%),见表1。 表1 重油组成 C ar H ar N ar O ar S ar M ar A ar合计 89.43 6.500.600.010.43 3.000.03100 (2) 设计计算说明书组成(电子纸质版) 参考目录如下 1.绪论 1.1设计依据 1.2简述玻璃窑炉的发展历史及今后的发展动向

1.3对所选窑炉类型的论证 1.4有关工艺问题的论证 2.设计计算内容 2.1日出料量的计算 2.2熔化率的选取 2.3熔窑基本结构尺寸的确定 2.4燃料燃烧计算 2.5燃料消耗量的计算 2.6小炉结构的确定与计算 2.7蓄热室的设计 2.8窑体主要部位所用材料的选择和厚度的确定 3.主要技术经济指标 4.对本人设计的评述 参考文献 设计说明书格式见《陕西科技大学课程设计说明书撰写格式暂行规范》。(3)图纸要求采用绘图纸铅笔绘制,图纸断面见参考图。图幅大小见表3。各断端面绘图比例必须一致。 表3 图纸要求 序号图纸名称图幅 1 窑炉水平断面Ⅰ-Ⅰ,Ⅱ-Ⅱ图A3 2 窑炉纵立断面A-A图A3 2、对课程设计成果的要求〔包括图表、实物等硬件要求〕: 设计计算说明书一套,窑炉图纸两张。

浮法玻璃池窑毕业设计(理工类)

第1章绪论 1.1 本设计的意义、目的及设计任务 浮法玻璃池窑是浮法玻璃生产的重要热工设备,设计合理与否直接关系到浮法玻璃的质量等级。我国许多的池窑工作者积累了大量的宝贵经验并且吸取国外一些先进的设计理念将之应用到池窑设计当中,取得了很大的进步,但在浮法玻璃池窑的寿命、玻璃质量能耗等技术指标方面与先进的浮法玻璃池窑仍然还有一定的差距。因此,本设计可以让学生很好的了解浮法玻璃池窑的结构及各部分工作原理,使学生对浮法玻璃池窑生产工艺流程有一个全面的了解。同时,可以培养学生严谨的工作作风和求真务实的科学态度,弄清浮法玻璃池窑工艺制度的设计方法,进一步培养学生独立思考、综合运用已学理论知识及其它途径分析和解决实际问题的工作能力、锻炼学生理论结合实际的能力、制图和看图的能力、设计和科研的能力。 本设计要求设计日产600吨平板玻璃工厂浮法玻璃池窑结构。需要依次进行玻璃成分设计,配料计算、浮法总工艺计算;玻璃工厂储库、堆场及堆棚设计计算;玻璃池窑结构设计计算;绘制池窑结构图及耐火材料排布图;绘制全厂总平面布置图。 1.2 目前国内外浮法玻璃发展状况 1、国外浮法玻璃发展状况 自1959年2月,英国Pilkington玻璃兄弟有限公司宣布浮法工艺成功以来,浮法玻璃技术得到了迅速推广。截止2001年末,世界各地区已建成投产的浮法玻璃生产线约280条,其中亚洲约130条,欧洲79条,北美洲56条,南美洲10条,非洲和大洋洲5条,280条浮法线日熔化总能力约为13万吨,年生产能力可达3600万吨以上[1]。其中,西欧占27%,约894万吨;东欧占5%,约165万吨;北美占23%,约761万吨;中国占30.8%,约1020万吨(2.04亿重量箱);日本占11%,约364万吨;非洲及中东地区占3%,约99万吨[2]。截至2003年底,全世界已有36个国家和地区(不包括中国内地)建成了140多条浮法玻璃生产线,总产量达到3亿吨左右,并占到平板玻璃总量的80%以上。截至2010年,世界浮法玻璃生产利用效率已经高达94%,库存约小于6%,其中市场消耗优质浮法玻璃已经超过了10亿重量箱以上。目前,国外一些大公司掌握了较为先进的玻璃制造技术,可以生产出0.5~25mm之间各种厚度不等的浮法玻璃,其玻璃

浮法玻璃成型技术

浮法玻璃成型技术 1、浮法玻璃成型的定义 浮法玻璃成型工艺过程为熔化、澄清、冷却的优质玻璃液在调节闸板的控制下经流道平稳连续地流入锡槽,在锡槽中漂浮在熔融锡液表面,在自身重力的作用下摊平、在表面张力作用下抛光、在主传动拉引力作用下向前漂浮,通过挡边轮控制玻璃带的中心偏移,在拉边机的作用下实现玻璃带的展薄或积厚并冷却、固型等过程,成为优于磨光玻璃的高质量的平板玻璃。 玻璃液在前进的过程中经历了在锡液面上的摊开、达到平衡厚度、自然抛光以及拉薄或积厚四个过程。 浮法玻璃的成型设备因为是盛满熔融锡液的槽形容器而被称作 锡槽,它是浮法玻璃成型工艺的核心,被看作为浮法玻璃生产过程的三大热工设备之一。 2、浮法玻璃成型工艺过程 池窑中熔化好的玻璃液,在1100℃左右的温度下,沿流道流入 锡槽,由于玻璃的密度只有锡液密度的1/ 3 左右,因而漂浮在锡液面上,完成玻璃的平整化过程,然后逐渐降温,在外力的作用下冷却成板。玻璃带冷却到600~620℃时,被过渡辊台抬起,在输送辊道牵引力作用下,离开锡槽,进入退火窑,消除应力,再经质量检测,纵横切割,装箱入库。为了防止锡液在高温下的氧化,通常通入弱还原性的保护气体,以提高玻璃质量。 玻璃带成型时的作用力有两种,即表面张力和自身重力,前者阻

止玻璃液无限摊开,对玻璃表面的光洁度影响极大;后者则促使玻璃液摊开。当表面张力与自身重力平衡时,漂浮在锡液面上的玻璃带就获得自然厚度。 3、浮法玻璃成型工艺因素 对浮法玻璃成型起决定作用的因素有玻璃的粘度、表面张力和自身的重力。在这3 个因素中,粘度主要起定型的作用,表面张力主要起抛光的作用,重力则主要起摊平作用。但是三者对摊平、抛光和展薄都有一定作用,这三者结合才能很好的进行浮法玻璃的生产。 玻璃液刚流入锡槽时,处于自身重力和液-液-气三相系统表面张力的作用下。随着玻璃液的不断流入,在自身重力影响下,玻璃液沿锡液表面摊开,并在锡液面上形成了玻璃液的流体静压,作为玻璃带成型的源流。在1025℃左右的温度范围内,在自身重力和表面张力的作用下,玻璃液以自然厚度(7mm 左右)向四周流动摊开,此过程称为玻璃的摊平过程。 在玻璃的摊平过程中,主要涉及玻璃液的平整化,亦即摊得平不平,这是生产优质浮法玻璃之关键。生产实践证明,欲得到平整的玻璃带,必须具备下述条件。 (1)适于平整化的均匀的温度场。玻璃液在锡液面上摊平必须有适于平整化的温度范围。适于浮法玻璃自身摊平的温度范围为1065~996℃。只有在此范围内,才能使玻璃带摊得厚度均匀、表面平整。 (2)足够的摊平时间。玻璃的平整化除必须有一定的温度范围,以达到一定的表面张力外,还必须具备足够的摊平时间,以保证表面

t浮法玻璃熔窑熔制制度的确定

玻 璃 熔 制 组别:第二组 组长:黄忠伦 组员:孙印持、黄忠伦、张彬、何洋、赖世飞、朱子寒

“玻璃熔制”课程任务 一、任务目的: 400t/d浮法玻璃熔窑熔制制度的确定 二、主要内容: 1、确定玻璃熔制过程的温度-黏度曲线; 2、确定玻璃熔制的各种熔制制度; 3、分析熔制制度对玻璃质量的影响; 三、基本要求: 1、玻璃熔制制度应符合实际生产情况要求,便于组织生产; 2、熔制制度参数选择合理、先进; 3、熟悉玻璃熔制制度对玻璃质量的影响; 4、提交一份打印的任务说明书及电子文档; 5、提交本小组各成员的成绩表(100分制);

(一)黏度与温度的关系 1.由于结构特性的不同,玻璃熔体与晶体的黏度随温度的变化趋势有显著的差别。晶体在高于熔点时,黏度变化很小,当到达凝固点时,由于熔融态转变晶态的缘故,黏度呈直线上升。玻璃的黏度则随温度下降而增大,从玻璃液到固态,玻璃的黏度是连续变化的,其间没有数值上的突变。 (1)应变点:应力能在几小时内消除的温度,大致相当于粘度为1013.6Pa·s时的温度,也称退火下限温度。(2)转变点(Tg):相当于粘度为1012.4Pa·s时的温度。高于此点脆性消失,并开始出现塑性变形,物理性能开始迅速变化。 (3)退火点:应力能几分钟内消除的温度,大致相当于粘度为1012Pa·S时的温度,也称退火上限温度。(4)变形点:相当于粘度为1010-1011Pa·S时的温度范围。(5)、软化温度(Ts):它与玻璃的密度和表面张力有关,相当于黏度为3×106~1.5×107Pa·s的温度范围。对于密度约等于2.5的玻璃它相当于粘度为106.6Pa·S时的温度。(6)操作范围:相当于成型玻璃表面的温度范围。T上限指准备成型的温度,相当于粘度为102-103Pa·S时的温度;T下限相当于成型时能保持制品形状的温度,相当于粘度>105Pa·S时的温度。操作范围的粘度一般为103-106.6Pa·S

玻璃联系

1、蓄热式玻璃池窑为什么要有换火程序? 答案: 2、什么叫平板玻璃池窑的前脸墙?常用的玻璃池窑投料机有那几种类型? 答案: 3、为什么玻璃池窑的胸墙要独立支撑?玻璃池窑大碹碹蹅的作用是什么? 答案: 4、耳池的作用是什么? 答案: 5、窑坎能否可以单独使用作为玻璃液分隔装置? 答案: 6、玻璃熔窑的保温原则是什么? 答案: 7、玻璃熔窑的保温原则是什么? 答案: 8、蓄热室内常用的格子体结构有哪几种? 答案: 9、锡槽内有几种功率? 答案: 10、玻璃池窑的作业制度有哪几种? 答案:

11、平板玻璃池窑内“泡界线”的含义是什么?生产中有哪些作用? 答案: 12、浮法玻璃退火过程有哪几个阶段?其退火窑又分为哪几个区? 答案: 13、玻璃池窑哪个部位耐火材料受到的侵蚀最严重?举例说明一般的耐火材料配置方案? 答案: 14、举例说明蓄热室格子体耐火材料配置方案? 答案: 15、拉边机有哪些作用? 答案: 16、浮法玻璃拉薄与拉厚各有哪些方法? 答案: 17、在锡槽结构上如何保证锡液的流动? 答案: 18、浮法玻璃成型过程对锡槽有哪些要求? 答案: 19、锡槽各段保护气体成分是否一致? 答案: 20、退火过程中常见的缺陷有哪些? 答案: 21、浮法玻璃成型过程中常见的缺陷有哪些?

22、浮法玻璃常见的固体缺陷有哪些? 答案: 23、提高玻璃澄清的措施有哪些? 答案: 24、加强玻璃配合料熔化的措施有哪些? 答案: 25、影响玻璃均化的因素有哪些? 答案: 26、玻璃液冷却不当会带来哪些问题? 答案: 27、浮法玻璃主要原料的粒度要求是什么? 答案: 28、降低原料车间粉尘的措施有哪些? 答案: 29、配合料为什么要有一定的含水率? 答案: 30、选择原料是应考虑哪些问题? 答案: 31、使用碎玻璃时应注意哪些问题? 答案: 32、浮法玻璃的成分特点是什么?

玻璃窑炉马蹄焰池窑简介

玻璃窑炉马蹄焰池窑简介 1.结构尺寸 (1)熔化面积。 窑炉的熔化率主要取决于熔化温度,因为中碱和无碱玻璃球窑的熔制温度比较高,如果进一步提高熔化温度来提高熔化率,会加速对耐火材料的侵蚀,降低球质和影响炉龄。而采取鼓泡和电助熔技术可以相应提高中下层玻璃温度,促进玻璃的均化,并且提高熔化率。 (2)熔池长宽比。 长宽比越大,玻璃原料从熔化到澄清的行程也大,这有利于玻璃质量的控制和提高,而长宽比又受到小炉结构设计、火焰长度及拐弯要求的限制。采用高热值燃料的球窑池长可达到10mm,所以可选择较大的长宽比。而采用低热值燃料的球窑应选择较小的长宽比。一般长宽比选用范围为1.4—2.0。

(3)池深。 池深不仅影响到玻璃液流和池底温度,而且影响玻璃液的物理化学均匀性以及窑炉的熔化率。一般池底温度在1200—1360℃之间较为合适。池底温度的提高可使熔化率提高。但池底温度高于1380℃时,需要提高池底耐火材料的质量及品种,否则则会加速池底的侵蚀并降低炉龄,且会增加玻璃球的结石含量,这对后道拉丝生产是不利的,影响池底温度的决定性因素是玻璃的铁含量和玻璃气氛。当Fe2O3含量在0.25—0.3%范围内时,池深800—1200mm的玻璃球窑,其垂直温降约为15—30℃/100mm。 (3)工作池。 选择半圆形工作池时,其半径R决定于制球机台数与布置方式。一般工作池半径小于等于熔化池池宽,工作池深度浅于熔化池池深300—400mm。 (4)投料池。 为了获得稳定的玻璃质量,一般在池壁两侧设置一

对投料池,随换火操作交替由火根投料。投料池中心线与窑炉池壁的距离主要决定于小炉喷火口的温度,温度越高距离可缩小。一般其距离可定在0.8—1.0m。 (5)流液洞。 流液洞的功能是降温和均化。采用沉式流液洞比采用直通式流液洞温降大。而均化效果受液洞高度影响较大。如高度越小则均化效果越好。所以设计流液洞宽度一般应大于其高度。在不考虑玻璃回流的情况下,玻璃流经流液洞的平均速度可取5—20m/h。 (6)胸墙高度。 胸墙高度应根据窑炉容积发热强度来确定,目前容积发热强度设计值一般取60—200KW/m3(相当于50—180*103kcal/N.m3),比早期的数据已有明显下降,这说明提高了胸墙高度,而且采用质量改善的耐火材料和较好的保温效果,使窑炉热损失减少,大容积空间更有利于燃料的完全燃烧和增强其容积辐射强度,有利于提高熔制质量和降低能耗。

玻璃池窑最新设计与新式池窑建造

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!""" "第四篇玻璃池窑最新设计与新式池窑建造

第一章玻璃池窑的分类与构造 第一节玻璃熔窑的分类与构成 一、玻璃熔窑的分类 玻璃熔窑有许多种窑型结构,适合于生产各种不同品种的玻璃制品。按照熔制玻璃所采用容器的构造,玻璃熔窑可分为池窑和坩埚窑两大类。池窑是最普遍使用的一种熔窑,由于配合料在这种槽形池内被熔化成玻璃液,故名玻璃池窑。 玻璃池窑又可按下面几种形式分类: (一)按玻璃熔制过程的连续进行,可将熔窑分为连续作业 与间歇作业两种。 !"连续作业 指玻璃熔制过程,从投料、熔化、冷却到成型是在窑内不同部位同时连续进行的,窑内各处的温度是稳定的。 #"间歇作业 指玻璃熔制过程是间歇进行的,是在同一部位投料、熔化、冷却和成型,待料用完后,再重新投料,因此,窑内的温度制度是变动的。 (二)按废气余热回收设备的形式,可分为蓄热式与换热式 窑两种。 !"蓄热式窑 是利用格子砖作为蓄热体,回收从窑内排出的废气的部分热量,换向后用来加热进入窑内的空气和煤气。 #"换热式窑 是用耐火构件或金属管道作为传热体,窑内排出的废气通过传热体把热量传给进入 — $%#—第一章玻璃池窑的分类与构造

窑内的空气和煤气。 (三)按窑内火焰流动的方向,可将熔窑分为横火焰、马蹄形 火焰与纵火焰窑三种。 !"横火焰窑 指窑内火焰方向从窑的一侧喷向另一侧,横越熔窑并与玻璃液流方向相垂直。 #"马蹄焰窑 指火焰在窑内成马蹄形流动。 $"纵火焰窑 指火焰在窑内呈纵向流动,其流动方向与玻璃液的流动方向相平行。 (四)按产品种类可分为:平板玻璃窑、球窑、日用玻璃窑等。 平板玻璃窑又可按成型工艺,分为有槽垂直引上窑、无槽引上窑、浮法窑、压延窑、平拉窑等。 我国目前大中型玻璃熔窑,不论采用何种成型方式、何种燃料,都是采用连续作业蓄热室式横火焰池窑(全电熔窑除外)。 二、玻璃池窑的构成 目前,我国大中型平板玻璃生产都是以浮法和有槽垂直引上法为主,另外,还有压延、平拉、对辊、无槽等方法。无论采用哪种生产成型方式,它们的窑型结构虽然有所不同,但从整体上来看,都有其共同之处。都是由熔化部、冷却部、成型作业室、小炉、废气余热利用设备、空间分隔设备与玻璃液分隔设备、保温与冷却设施、废气排出与鼓风助燃装置及窑体钢结构等部分组成。 下面以连续作业蓄热式横火焰池窑的结构为重点分别讲述,并选取六对小炉九机分隔式蓄热室玻璃池窑的平面、横剖面及纵剖面示意图,连通式蓄热室玻璃池窑的平面、横剖面示意面以及六对小炉燃油浮法玻璃池窑的平面、燃油玻璃池窑横剖面与压延窑平面示意图,分别列于图%&!&!、图%&!&#、图%&!&$、图%&!&%、图%&!&’、图%&!&(、图%&!&)、图%&!&*,以供讲述时参考。 — +*#—第四篇玻璃池窑最新设计与新式池窑建造

浮法玻璃毕业设计

前言 浮法玻璃因熔融玻璃液漂浮在熔融的锡液表面成型为平板玻璃而得名。这种生产方法由于无需克服玻璃本身重力,可使玻璃原板板面宽度加大,拉引速度大大提高,产量和生产规模增大;由于玻璃成型是在熔融锡液表面进行,因此可以获得双面抛光的优质镜面,其表面平整度、平行度可以与机械磨光玻璃相媲美,而机械性能和化学稳定性又优于机械磨光玻璃;到目前为止,采用该方法可以生产出厚度在0.3~25mm之间多种品种、规格的优质浮法玻璃,以满足不同用途的需求;另外,浮法工艺还可以在线生产多种颜色玻璃和Low-E玻璃,大大丰富了平板玻璃的范畴,扩大了平板玻璃在各个领域的应用。 中国玻璃工作者自从在洛阳研制出中国浮法后,浮法玻璃在中国迅速得到了发展。经过我国玻璃工作者的不断努力,我国先后在熔窑日熔化量、玻璃生产技术装备、节能降耗、环境保护、多功能玻璃开发以及超薄、超厚品种研制与产业化等方面取得了重大突破。 据统计,至2009年末我国日熔化能力500 t以上熔窑占浮法玻璃总熔化能力的75.4% , 600 t以上占54.48% , 700 t以上占28.83%。600 t以上熔窑占浮法玻璃总熔化能力比重首次超过50% ,成为我国浮法玻璃主力窑型。浮法玻璃生产线规模结构的提高,提高了我国浮法玻璃生产的能源利用效率,降低了污染物和二氧化碳排放水平。从产能上看, 700 t以上36条的能力占28.83% , 600~620 t 的42条能力占25. 65% , 500~550 t的40条能力占20.92% , 400~480 t的38条能力占16.51% , 400 t以下26条能力占8.08%。 大吨位低单位产品能耗和小吨位高产品价值是今后平板玻璃熔窑的发展方向,没有地缘优势,产品无技术特点,小吨位、高能耗的普通浮法玻璃将在市场上没有立足之地。 在技术领域,采用中国浮法玻璃技术建设的生产线,技术装备与实物质量已达到国际先进水平。通过对原料配料称量,熔窑、锡槽、退火窑三大热工设备及自动控制系统成套软件的一系列科技攻关,进而对各关键技术进行系统集成和工程转化,形成了具有自主知识产权并全面达到国际先进水平的新一代中国浮法玻璃技术。 还有像我国自主开发的余热发电技术与装备、烟气脱硫技术与装备、石英尾砂提纯及综合利用技术,全氧燃烧技术与装备也逐渐应用到到浮法熔窑。 目前国际玻璃新技术均向能源、材料、环保、信息、生物等五大领域发展。在材料方面,主要指玻璃原片的生产向大片、薄片、厚片、白片四个方向发展。在研发新技术方面,通过对玻璃产品进行表面和内在改性处理,使其更具备强度、节能、隔热、耐火、安全、阳光控制、隔声、自洁、环保等优异功能。 本次设计遵循以下原则: (1)认真总结国外同级别浮法熔窑的经验和教训,结合国内生产线的实际情况、操作特点,围绕生产优质玻璃液这个重点来进行设计。 (2)着重节能降耗,采用国际先进的节能措施和节能产品,降低生产成本。 (3)全窑工艺尺寸确定既要注重以往的经验数据,同时要有理论创新,要在总结以往经验数据的基础上对新结构确立理论依据。 (4)本熔窑出现的超出国内设计手册的结构设计,必须确保结构安全,此类

玻璃熔制一

“玻璃熔制” 课 程 任 务 书 系:材料工程系 班级:玻璃132 部门:一 任务:一

目录 一、任务题目:300t/d浮法玻璃熔窑熔制制度的确定 二、主要内容: 1、确定玻璃熔制过程的温度-粘度曲线 2、确定玻璃熔制的各种熔制制度 3、分析熔制制度对玻璃质量的影响 三、基本要求: 1、玻璃熔制制度应符合实际生产情况要求,便于组 织生产 2、熔制制度参数选择合理、先进 3、熟悉玻璃熔制制度对玻璃质量的影响 4、提交一份打印的任务说明书与电子文档 5、提交本小组成员的成绩表

一、确定玻璃熔制过程的温度-粘度曲线 玻璃熔制是按照玻璃配方混合好配合料,经过高温加热形成均匀透明的、无缺陷的并符合成型要求的玻璃液的过程。影响玻璃熔制过程的因素 1、熔化温度:温度增加,反应速度加快,温度每升高10℃,反应速度也上升10%。 2、物料颗粒度:粒度减小,速度上升,粒度过小,结团速度下降。 3、配合料均匀度:均匀度上升,速度加快。 4、原料的种类、形成:块、粒状速度快。 投料方法与质量:正面投料,料层薄,熔化快 黏度:速度梯度为1时单位接触面积上的内摩擦力。 黏度的工艺意义 1. 影响玻璃的熔制质量,黏度大,石英熔化困难,气泡排除 困难。 2. 决定玻璃的产量。 3. 决定玻璃制品的成型质量,不同的制品和成型方法,其成 型黏度也不同。 4. 决定制品退火温度和热处理温度。 5. 黏度与温度的关系 6. 由于结构特性的不同,玻璃熔体与晶体的黏度随温度的变 化趋势有显著的差别。晶体在高于熔点时,熔化变化很小,

当达到凝固点时,由于熔融态转变成晶态的缘故,黏度呈直线上升。玻璃的黏度则随温度下降而增大,从玻璃液到固态,玻璃的黏度是连续变化的,其间没有数值上的突变。 所以实用硅酸盐玻璃,其黏度随温度的变化都属于同一类型,只是黏度随温度变化的速度以及对应于某给定黏度的温度有所不同。随着温度的变化,玻璃的黏度变化速率不同,这被称为具有不同的料性。分为长性玻璃和短性玻璃。 随温度降低长性玻璃的硬化速度较慢,被称为慢凝玻璃,而短性玻璃的硬化速度较快,又被称为快凝玻璃。 1、黏度与玻璃组成的关系 2、玻璃组成与黏度之间存在复杂的关系,加入某种氧化物后所引起的黏度的改变,不仅取决于该氧化物的性质,而且还取决于玻璃本身的成分。一般来说,当引入SiO2、Al2O 3、ZrO2等氧化物时,因这些阳离子电荷多、离子半径小,故作用力大,总是倾向于形成更为复杂且巨大的阴离子团,黏滞活化能变大,玻璃的黏度增加。当引入碱金属氧化物时,因能提供“游离氧”,使原来复杂的硅氧阴离子团解离,黏滞活化能变小,玻璃的黏度降低。当引入二价氧化物时对黏度的影响较为复杂,它们一方面与碱金属离子一样,放出游离氧使复杂的硅氧阴离子团解离,使黏度减小,另一方面这些阳离子电价较高、离子半径又不大,可能夺取原来复合硅氧阴离子团中的氧离子以致使复合阴离子团“缔合”

玻璃马蹄焰池窑课程设计说明书

玻璃窑炉及设计课程设计说明书 题目:年产42200吨高白料酒瓶燃油 蓄热式马蹄焰池窑设计 学生姓名:\ 学号: 院(系):材料科学与工程学院 专业:无机非金属材料工程 指导教师: 2013年6月20日

目录 1绪论 (2) 设计依据: (2) 简述玻璃窑炉的发展历史及今后的发展动向 (2) 对所选窑炉类型的论证 (3) 有关工艺问题的论证 (4) 2.设计计算内容 (5) 日出料量的计算 (5) 熔化率的选取 (5) 熔化部面积计算 (5) 冷却部面积的计算 (6) 窑池长度、宽度的确定 (6) 池窑深度的确定 (7) 熔窑基本结构尺寸的确定 (7) 窑体结构设计 (7) 火焰空间 (8) 流液洞 (8) 投料口 (9) 燃料燃烧计算 (9) 理论空气需要量及燃烧产物量的计算 (9) 理论烟气量的计算 (9) 燃料消耗量的计算 (10) 全窑热平衡热支出主要有三项 (10) 窑炉热量收入 (10) 校核各项经济指标 (11) 熔化热效率η熔 (11) 小炉结构的确定与计算 (11) 初定小炉尺寸 (12) 小炉喷嘴 (12) 小炉口材质 (12) 蓄热室的设计 (12) 窑体主要部位所用材料的选择和厚度的确定 (13) 3.主要技术经济指标 (13) 4.对本人设计的评述 (14) 参考文献 (15)

1绪论 课程设计是培养学生运用《窑炉及设计(玻璃)》课程的理论和专业知识,解决实际问题,进一步提高设计、运算、使用专业资料等能力的重要教学环节。目的是使学生受到设计方法的初步训练,逐步树立正确的设计观点,增强设计能力、创新能力和综合能力,初步掌握窑炉及其它热工设备设计的基本知识和技能,并对所学窑炉热工理论知识进行验证和深化,为将来从事生产、设计、研究及教学等方面工作打下良好的基础。同时为毕业设计(论文)奠定良好的基础。 设计依据: (1)设计题目:年产42200吨高白料酒瓶燃油马蹄焰玻璃池窑的设计 (2) 原始数据: 产品规格:高白酒瓶容量550mL, 重量450g/只 行列机年工作时间及机时利用率:325 天,95% 机速:QD8行列机高白酒瓶75只/分钟 QD6行列机高白酒瓶42只/分钟 产品合格率:90% 玻璃熔化温度1430℃ 玻璃形成过程耗热量q玻=2350kJ/kg玻璃液 重油组成(质量分数%),见表1 。 简述玻璃窑炉的发展历史及今后的发展动向 玻璃生产专用热工设备统称为玻璃窑炉。 玻璃窑炉是玻璃行业生产的心脏,是能源消耗的主要设备。目前我国正在运行的窑炉以火焰炉为主,能耗水平较高(一般在300~500公斤标煤/吨成品左右,国际先进水平为相当于150~200公斤标煤/吨成品);熔化率低(一般在1。5~2吨玻璃液/平方米熔化面积·天,国际先进水平为3~3。6吨工字钢玻璃液/平方米熔化面积·天),周期熔化率低(国际可超过10000吨玻璃液/窑炉运行周期,国内在2400~6200吨玻璃液/窑炉运行周期)这也与我们企业的产品结构、窑炉熔化面积的大小、生产线的合理配置有关;在能源结构方面,我们目前主要选用煤和油,热利用率低且污染严重,而目前国际上则普遍采用天然气和电等清洁能源,热利用率高污染少。即使用油为燃料的企业,大部分都采用电助熔和纯氧燃烧技术,以提高热效率和熔化率减少污染。在窑炉寿命方面,我们的窑炉一般在4~6年,而国际先进水平都在10年左右,有少数的窑炉寿命超过12年。当然在采用耐火材料和一次性投资造价较高,但算总账可能比4~5年搞一次窑炉停产大修的投入还要低

浮法玻璃池窑液流形态分析熔化部

浮法玻璃池窑液流形态分析(熔化部) 雷 强 (山西光华玻璃有限公司 太原市 030000) 摘 要 本文从流体力学和热力学及运动学等液流运动产生的原因和形成的条件出发,结合浮法玻璃熔窑生产的实际状况,对窑内液流形态进行了一定的分析和探讨,初步给出了其基本形态的模型,对以往研究成果中存疑之处也提出了自己不同的看法。 关键词 玻璃熔窑 液流形态 Fluidiz i ng For m Analysis of Float Glass Furnace L ei Q iang (Shanxi Guanghua Glass Co.) Abstract T h is article m akes an app rop riate analysis and study on fluidizing fo rm,based on the causes and state of fluid movem ent w ith regards to hydrom echanics,thermodynam ics,k inem atics,etc and as w ell as specific conditi ons of float glass m elting p rocess.It also gives a p reli m inary model fo r the fundam ental fo rm s,and p resents different view s on the uncertain po ints of ach ievem ents in scientific research in the past. Key words Glass m elting furnace F luidizing fo rm 以往研究表明造成玻璃熔窑内液流运动的原因是多种多样的,其核心是内部力场发生变化。主要原因表现为如下几方面:一是温度差,由各处玻璃液温度差所造成自身的密度差使得窑内大量的热回流产生;二是由于流道玻璃液的连续流出导致窑内由前向后的补偿性液流运动;三是由于摩擦力的作用使液流产生其他形式的运动,如局部的环流等;四是受到其他影响液流状态的外界作用(如机械力等)形成的液流运动等等。在这些原因对液流内部力场造成影响的基础上,结合具体的现实条件如边界条件(空间条件、散热状况等)、状态条件(包括外部作用如受热、受力状况等,内部作用如热传递、摩擦力状况等)、连续性条件、稳定性条件等共同作用使窑内玻璃液流呈现出一定的形态。本文主要分析熔化部液流形态,并希望能使理论分析和生产实际更好地结合起来。鉴于整个熔化部范围较大,影响因素多而复杂,各部状况不一,这里根据其内部特征将其分为三个区域来进行阐述。 1 投料池及配合料熔化区域的液流形态分析 投料机将配合料以一定的厚度和宽度、密度及速度推入投料池,配合料在窑池内受热辐射、热传递等作用吸收热量熔化为玻璃液。在此区域配合料和玻璃液在窑内各种因素和条件的共同作用下形成特定的液流形态。 111 图示说明 (1)由图1可以看出配合料进入熔窑向前和两侧运动,一般在1#小炉口前后贴住池壁,且料堆位置终止于2~3#小炉之间(对5~6对小炉的熔窑来

玻璃熔窑安全评价分析

玻璃熔窑安全评价分析 摘要 系统安全分析与评价是保证生产系统安全运行的基础。本文将各种系统安全 分析与评价技术进行了归类介绍,从不同的角度和层次上研究了其特点及其应用,对实际系统安全分析与评价具有一定的指导意义。 关键词玻璃熔窑安全分析危害因素管理对策 前言 本论文是针对玻璃熔窑进行的安全评价分析,分析了在玻璃生产中存在的有害因素和机械伤害程度,,并通过国家法规和行业技术标准对玻璃熔窑在设计和生产中容易存在安全隐患的几个系统利用安全分析检查表法对其中的所包含的具体内容进行剖析,并 提出一些安全管理对策措施及建议。 1.工艺系统简述 玻璃熔窑,指玻璃制造中用于熔制玻璃配合料的热工设备。将按玻璃成分配好的粉料和掺加的熟料(碎玻璃)在窑内高温熔化、澄清并形成符合成型要求的玻璃液。 玻璃熔窑有坩埚窑和池窑两大类。它们均包括玻璃熔制、热源供给、余热回收和排烟供 气4个部分。 坩埚窑 窑膛内放置单只或多只坩埚。坩埚窑(图1坩埚窑结构示意)中玻璃熔制的各阶段(熔化、澄清、均化、冷却)在同一坩埚中随时间推移依次进行,窑内温度制度随时间推移变动。成型时,用人工从坩埚口取料,再进行吹制、压制、拉引、浇注等,也可以坩埚底供料,或将整坩埚移出取料。坩埚材质以粘土居多,也有用铂的。形状有开口和横口(闭口)两种。开口坩埚的坩埚口朝向窑膛,能直接得到窑墙及热源辐射和传递的热能;横口坩埚的坩埚口朝向窑外,要通过坩埚壁间接取得热量,能避免窑内气氛对玻璃液的影响和污染。坩埚窑适用于熔制产量小、品种多或经常更换料种的玻璃。 池窑

窑膛包含一耐火材料砌筑的熔池,配合料投入窑池内熔化。池窑有间歇式和连续式两种。间歇式池窑又称日池窑,一般较小,熔池面积仅几平方米。熔制过程完成后,从取料口取料,大多采用手工或半机械成型。适用于生产特种玻璃。绝大多数池窑属于连续式,各个熔制阶段在窑的不同部位进行。各部位的温度制度是稳定的。配合料由投料口投入,在熔化部经历熔化和玻璃液澄清、均化的行进过程,转入冷却部进一步均化和冷却,继而进入成型部最后均化(包括玻璃液温度均化)和稳定供料温度。由于池窑靠近底部玻璃液温度低而呈滞流状态,因此窑池玻璃液总容量大于作业玻璃量,连续作业的加料量与成型量保持平衡。熔化好的玻璃液采用连续机械化成型。连续式池窑容量大,相对散失热少,热效率明显高于坩埚窑,适于大批量高效率的连续性生产。 锡槽 窄进口端:流道溜槽闸板 宽流槽进口端:砍砖侧壁闸板 主体结构有槽身.胸墙.顶盖, 钢结构.电加热系统.冷却系统 退火窑(annealing furnace) 用于玻璃的退火,消除玻璃内的内应力。 玻璃退火主要分为两个方面:内应力的减弱和消除,放置内应力的重新产生。 按照移动情况分为间歇式、半连续式和连续式。 按照加热工艺分加热均热预冷区、重要冷却区、冷却区和急速冷却区。 2系统危险,有害因素识别 2.1工艺设备/装置的危险,有害因素识别 设备、设施缺陷.强度不够、刚度不够、稳定性差、密封不良、应力集中、外形缺陷、外露运动件、操纵器缺陷、制动器缺陷、控制器缺陷、设备设施其他缺陷等 据相关资料的搜集 (1)设备本身能满足工艺的要求。标准设备均由具有生产资质的专业工厂所制造;特种设备的设计、生产、安装、使用,均具有相应的资质或许可证。 (2)设备具备相应的安全附件或安全防护装置,如安全阀、压力表、温度计、液压计、

相关文档
最新文档