动量守恒定律及应用(包括验证动量守恒的实验)

动量守恒定律及应用(包括验证动量守恒的实验)
动量守恒定律及应用(包括验证动量守恒的实验)

动量守恒定律及其应用复习教案

(实验:验证动量守恒定律)

一、动量

1.定义:物体的质量与速度的乘积.

2.表达式:p=□01____,单位kg·m/s.

3.动量的性质

(1)矢量性:方向与□02______速度方向相同.

(2)瞬时性:动量是描述物体运动状态的量,是针对某一时刻而言的.

(3)相对性:大小与参考系的选取有关,通常情况是指相对地面的动量.4.动量、动能、动量的变化量的关系

(1)动量的变化量:Δp=p′-p.

(2)动能和动量的关系:E k=p2 2m

.

二、动量守恒定律

1.守恒条件

(1)理想守恒:系统□03______________外力或所受外力的合力为□04______,则系统动量守恒.

(2)近似守恒:系统受到的合力不为零,但当□05______远大于外力时,系统的动量可近似看成守恒.

(3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒.

2.动量守恒定律的表达式:

m1v1+m2v2=□06__________或Δp1=-Δp2.

三、碰撞

1.碰撞

物体间的相互作用持续时间□07________,而物体间相互作用力□08______的现象.

2.特点

在碰撞现象中,一般都满足内力□09________外力,可认为相互碰撞的系统动量守恒.3.分类

,1-1.下列说法正确的是( )

A.速度大的物体,它的动量一定也大

B.动量大的物体,它的速度一定也大

C.只要物体的运动速度大小不变,物体的动量也保持不变

D.物体的动量变化越大则该物体的速度变化一定越大

1-2.(2014·广州调研)两个质量不同的物体,如果它们的( )

A.动能相等,则质量大的动量大

B.动能相等,则动量大小也相等

C.动量大小相等,则质量大的动能小

D.动量大小相等,则动能也相等

2-1.把一支弹簧枪水平固定在小车上,小车放在光滑水平地面上,枪射出一颗子弹时,关于枪、弹、车,下列说法正确的是( )

A.枪和弹组成的系统动量守恒

B.枪和车组成的系统动量守恒

C.枪弹和枪筒之间的摩擦力很小,可以忽略不计,故二者组成的系统动量近似守恒D.枪、弹、车三者组成的系统动量守恒

2-2.如图所示,放在光滑水平面上的两物体,它们之间有一个被压缩的轻质弹簧,用细线把它们拴住.已知两物体质量之比为m1∶m2=2∶1,把细线烧断后,两物体被弹开,速

度大小分别为v1和v2,动能大小分别为E k1和E k2,则下列判断正确的是( )

A.弹开时,v1∶v2=1∶1 B.弹开时,v1∶v2=2∶1

C.弹开时,E k1∶E k2=2∶1 D.弹开时,E k1∶E k2=1∶2

3.A球的质量是m,B球的质量是2m,它们在光滑的水平面上以相同的动量运动,B在前,A在后,发生正碰后,A球仍朝原方向运动,但其速率是原来的一半,碰后两球的速率比v′A∶v′B为( )

C.2

动量守恒定律的理解与应用

1.动量守恒定律的不同表达形式

(1)p=p′,系统相互作用前的总动量p等于相互作用后的总动量p′.

(2)m1v1+m2v2=m1v′1+m2v′2,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.

(3)Δp1=-Δp2,相互作用的两个物体动量的增量等大反向.

(4)Δp=0,系统总动量的增量为零.

2.应用动量守恒定律解题的步骤

(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程);

(2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒);

(3)规定正方向,确定初、末状态动量;

(4)由动量守恒定律列出方程;

(5)代入数据,求出结果,必要时讨论说明.

如图所示,质量为m B的平板车B的上表面水平,开始时静止在光滑水平面上,在平板车左端静

止着一个质量为m A的物体A,一颗质量为m0的子弹以v0的水平初速度射入物体A,射穿A后速度变为

v.已知A、B之间的动摩擦因数不为零,且A与B最终达到相对静止.求:

(1)子弹射穿物体A的瞬间物体A的速度v A;

(2)平板车B和物体A的最终速度v共(设车身足够长)

[课堂笔记]

1.(2013·高考福建卷)将静置在地面上,质量为M(含燃料)的火箭模型点火升空,在极短时间内以相

对地面的速度v0竖直向下喷出质量为m的炽热气体.忽略喷气过程重力和空气阻力的影响,则喷气结

束时火箭模型获得的速度大小是( )

v0v0

v0v0

碰撞现象的规律

1.碰撞遵守的规律

(1)动量守恒,即p 1+p 2=p ′1+p ′2.

(2)动能不增加,即E k1+E k2≥E ′k1+E ′k2或p 212m 1+p 222m 2≥p ′212m 1+p ′22

2m 2

.

(3)速度要合理.

①碰前两物体同向,则v 后>v 前;碰后,原来在前的物体速度一定增大,且v ′前≥v ′后. ②两物体相向运动,碰后两物体的运动方向不可能都不改变. 2.两种碰撞特例 (1)弹性碰撞

两球发生弹性碰撞时应满足动量守恒和机械能守恒.

以质量为m 1、速度为v 1的小球与质量为m 2的静止小球发生正面弹性碰撞为例,则有

m 1v 1=m 1v ′1+m 2v ′2①

12m 1v 21=12m 1v ′21+12

m 2v ′22② 由①②得v ′1=(m 1-m 2)v 1m 1+m 2 v ′2=2m 1v 1m 1+m 2

结论:

①当m 1=m 2时,v ′1=0,v ′2=v 1,两球碰撞后交换了速度. ②当m 1>m 2时,v ′1>0,v ′2>0,碰撞后两球都向前运动. ③当m 10,碰撞后质量小的球被反弹回来. (2)完全非弹性碰撞

两物体发生完全非弹性碰撞后,速度相同,动能损失最大,但仍遵守动量守恒定律.

(2013·高考新课标全国卷Ⅱ)如图,光滑水平直轨道上有三个质量均为m 的物块

A 、

B 、的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A 以速度v 0朝B 运动,压缩弹

簧;当A 、 B 速度相等时,B 与C 恰好相碰并粘接在一起,然后继续运动.假设B 和C 碰撞过程时间极短,求从A 开始压缩弹簧直至与弹簧分离的过程中:

(1)整个系统损失的机械能;

(2)弹簧被压缩到最短时的弹性势能.

[思路点拨]

(1)从开始到A、B共速过程中,A、B与弹簧组成的系统动量守恒;

(2)B、C发生完全非弹性碰撞,(与A无关)动量守恒,系统损失机械能;

(3)B、C粘接在一起后,通过弹簧与A发生作用,进一步压缩弹簧至最短,此时A、B、C三者共速,

系统动量守恒.

[课堂笔记]

2.(2014·贵州五校联考)如图所示,在水平光滑直导轨上,静止着三个质量为m=1 kg 的相同的小

球A、B、C,现让A球以v0=2 m/s的速度向B球运动,A、B两球碰撞后粘在一起继续向右运动并与

C球碰撞,C球的最终速度v C=1 m/s.问:

(1)A、B两球与C球相碰前的共同速度多大;

(2)两次碰撞过程中一共损失了多少动能

爆炸和反冲人船模型

1.爆炸的特点

(1)动量守恒:由于爆炸是在极短的时间内完成的,爆炸时物体间的相互作用力远远大于受到的外力,

所以在爆炸过程中,系统的总动量守恒.

(2)动能增加:在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸后系统的总

动能增加.

(3)位移不变:爆炸的时间极短,因而作用过程中物体运动的位移很小,一般可忽略不计,可以认为

爆炸后仍然从爆炸时的位置以新的动量开始运动.

2.反冲

(1)现象:物体的不同部分在内力的作用下向相反方向运动.

(2)特点:一般情况下,物体间的相互作用力(内力)较大,因此系统动量往往有以下几种情况:①动

量守恒;②动量近似守恒;③某一方向动量守恒.

反冲运动中机械能往往不守恒.

注意:反冲运动中平均动量守恒.

(3)实例:喷气式飞机、火箭、人船模型等.

3.人船模型

若人船系统在全过程中动量守恒,则这一系统在全过程中的平均动量也守恒.如果系统由两个物体组

成,且相互作用前均静止,相互作用后均发生运动,则由m1v1=-m2v2得m1x1=-m2x2.

该式的适用条件

是:(1)系统的总动量守恒或某一方向上的动量守恒.

(2)构成系统的两物体原来静止,因相互作用而反向运动.

(3)x1、x2均为沿动量方向相对于同一参考系的位移.

如图所示,一辆质量为M=3 kg的小车A静止在光滑的水平面上,小车上有一质量为m=1 kg

的光滑小球B,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p=6 J,小球与小车右壁距离为L,

解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:

(1)小球脱离弹簧时小球和小车各自的速度大小;

(2)在整个过程中,小车移动的距离.

[课堂笔记]

3.(2013·高考江苏卷)如图所示,进行太空行走的宇航员A和B的质量分别为80 kg 和100 kg,他

们携手远离空间站,相对空间站的速度为 m/将B向空间站方向轻推后,A的速度变为m/s,

求此时B的速度大小和方向.

动量与能量观点的综合应用

1.若研究对象为一个系统,应优先考虑应用动量守恒定律和能量守恒定律(机械能守恒定律).

2.若研究对象为单一物体,且涉及功和位移问题时,应优先考虑动能定理.

3.因为动量守恒定律、能量守恒定律(机械能守恒定律)、动能定理都只考查一个物理过程的始末两个状态有关物理量间的关系,对过程的细节不予细究,这正是它们的方便之处.特别对于变力做功问题,就更显示出它们的优越性.

如图所示,一水平面上P点左侧光滑,右侧粗糙,质量为m的劈A在水平面上静止,上表面光滑,A右端与水平面平滑连接,质量为M的物块B恰好放在水平面上P点,物块B与水平面间的动摩擦因数为μ.一质量为m的小球C位于劈A的斜面上,距水平面的高度为h.小球C从静止开始滑下,然后与B发生正碰(碰撞时间极短,且无机械能损失).已知M=2m,求:

(1)小球C与劈A分离时,A的速度;

(2)小球C的最后速度和物块B的运动时间.

[课堂笔记]

[总结提升] 利用动量和能量的观点解题应注意下列问题

(1)动量守恒定律是矢量表达式,还可写出分量表达式;而动能定理和能量守恒定律是

标量表达式,绝无分量表达式.

(2)动量守恒定律和能量守恒定律,是自然界最普遍的规律,它们研究的是物体系统,在力学中解题时必须注意动量守恒的条件及机械能守恒的条件.在应用这两个规律时,当确定了研究的对象及运动状态变化的过程后,根据问题的已知条件和要求解的未知量,选择研究的两个状态列方程求解.

4.(2014·银川模拟)在光滑水平面上静置有质量均为m的木板AB和滑块CD,木板AB 上表面粗糙,动摩擦因数为μ,滑块CD上表面是光滑的1/4圆弧,其始端D点切线水平且在木板AB上表面内,它们紧靠在一起,如图所示.一可视为质点的物块P,质量也为m,从木板AB的右端以初速度v0滑上木板AB,过B点时速度为v0/2,又滑上滑块CD,最终恰好能滑到滑块CD圆弧的最高点C处,求:

(1)物块滑到B处时木板的速度v AB;

(2)滑块CD圆弧的半径R.

实验:验证动量守恒定律

1.实验原理

在一维碰撞中,测出物体的质量m和碰撞前后物体的速率v、v′,找出碰撞前的动量p =m1v1+m2v2及碰撞后的动量p′=m1v′1+m2v′2,看碰撞前后动量是否守恒.2.实验方案

方案一:利用气垫导轨完成一维碰撞实验

(1)测质量:用天平测出滑块质量. (2)安装:正确安装好气垫导轨.

(3)实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前后的速度(①改变滑块的质量.②改变滑块的初速度大小和方向).

(4)验证:一维碰撞中的动量守恒.

方案二:利用等长悬线悬挂等大小球完成一维碰撞实验 (1)测质量:用天平测出两小球的质量m 1、m 2. (2)安装:把两个等大小球用等长悬线悬挂起来.

(3)实验:一个小球静止,拉起另一个小球,放下时它们相碰.

(4)测速度:可以测量小球被拉起的角度,从而算出碰撞前对应小球的速度,测量碰撞后小球摆起的角度,算出碰撞后对应小球的速度.

(5)改变条件:改变碰撞条件,重复实验. (6)验证:一维碰撞中的动量守恒.

方案三:在光滑桌面上两车碰撞完成一维碰撞实验 (1)测质量:用天平测出两小车的质量.

(2)安装:将打点计时器固定在光滑长木板的一端,把纸带穿过打点计时器,连在小车的后面,在两小车的碰撞端分别装上撞针和橡皮泥.

(3)实验:接通电源,让小车A 运动,小车B 静止,两车碰撞时撞针插入橡皮泥中,把两小车连接成一体运动.

(4)测速度:通过纸带上两计数点间的距离及时间由v =Δx

Δt 算出速度.

(5)改变条件:改变碰撞条件,重复实验. (6)验证:一维碰撞中的动量守恒.

方案四:利用斜槽上滚下的小球验证动量守恒定律

(1)用天平测出两小球的质量,并选定质量大的小球为入射小球.

(2)按照如图所示安装实验装置,调整固定斜槽使斜槽底端水平.

(3)白纸在下,复写纸在上,在适当位置铺放好.记下重垂线所指的位置O.

(4)不放被撞小球,让入射小球从斜槽上某固定高度处自由滚下,重复10次.用圆规画尽量小的圆把所有的小球落点圈在里面,圆心P就是小球落点的平均位置.

(5)把被撞小球放在斜槽末端,让入射小球从斜槽同一高度自由滚下,使它们发生碰撞,重复实验10次.用步骤(4)的方法,标出碰后入射

小球落点的平均位置M和被碰小球落点的平均位置N.如图所示.

(6)连接ON,测量线段OP、OM、ON的长度.将测量数据填入表中.最后代入m1OP=m1OM +m2ON,看在误差允许的范围内是否成立.

(7)整理好实验器材放回原处.

(8)实验结论:在实验误差范围内,碰撞系统的动量守恒.

如图,用“碰撞实验器”可以验证动量守恒定律,即研究两个小球在轨道水平部分碰撞前后的动量关系.

(1)实验中,直接测定小球碰撞前后的速度是不容易的,但是,可以通过仅测量________(填选项前的符号),间接地解决这个问题.

A.小球开始释放高度h

B.小球抛出点距地面的高度H

C.小球做平抛运动的射程

(2)图中O点是小球抛出点在地面上的垂直投影.实验时先让入射球m1多次从斜轨上S 位置静止释放,找到其平均落地点的位置P,测出平抛射程OP.然后,把被碰小球m2静置于轨道的水平部分,再将入射球m1从斜轨上S位置静止释放,与小球m2相碰,并多次重复.接下来要完成的必要步骤是________(填选项前的符号)

A.用天平测量两个小球的质量m1、m2

B.测量小球m1开始释放的高度h

C.测量抛出点距地面的高度H

D.分别找到m1、m2相碰后平均落地点的位置M、N

E.测量平抛射程OM、ON

(3)若两球相碰前后的动量守恒,其表达式可表示为______[用(2)中测量的量表示];

若碰撞是弹性碰撞,那么还应满足的表达式为__________[用(2)中测量的量表示].

(4)经测定,m1= g,m2= g,小球落地点的平均位置距O点的距离如图所示.碰撞前、后m1的动量分别为p1与p′1,则p1∶p′1=________∶11.若碰撞结束时m2的动量为p′2,则p′1∶p′2=11∶________.

实验结果说明,碰撞前、后总动量的比值p1

p′1+p′2

为________.

(5)有同学认为,上述实验中仅更换两个小球的材质,其他条件不变,可以使被碰小球做平抛运动的射程增大.请你用(4)中已知的数据,分析和计算出被碰小球m2平抛运动射程ON的最大值为________cm.

[尝试解答]

________________________________________________________________________ [总结提升] 利用斜槽小球碰撞验证动量守恒的注意事项

(1)斜槽末端的切线必须水平;

(2)入射小球每次都必须从斜槽同一高度由静止释放;

(3)选质量较大的小球作为入射小球;

(4)实验过程中实验桌、斜槽、记录的白纸的位置要始终保持不变.

动量守恒中临界问题的处理方法

1.涉及追碰的临界问题

两个在光滑水平面上做匀速运动的物体,甲物体追上乙物体的条件是甲物体的速度v 甲

大于乙物体的速度v 乙,即v 甲>v 乙,而甲物体刚好能追上乙物体的临界条件是v 甲=v 乙.滑块在木板(小车)上不滑下来的临界条件是:滑到端点处两者速度相同.

2.涉及弹簧的临界问题

对于由弹簧组成的系统,在物体间发生相互作用的过程中,当弹簧被压缩到最短时,弹簧两端的两个物体的速度相等.

3.涉及最大高度的临界问题

在物体滑上斜面(斜面放在光滑水平面上)的过程中,由于弹力的作用,斜面在水平方向将做加速运动.物体滑到斜面上最高点的临界条件是物体与斜面沿水平方向具有共同的速度,物体在竖直方向的分速度等于零.

[规范解答]————————————该得的分一分不丢!

设甲车(包括人)滑下斜坡后速度为v 1,由机械能守恒定律得12(m 1+M )v 21=(m 1+M )gh (2

分)

解得v 1=2gh =2v 0.(1分)

设人跳离甲车的水平速度(相对地面)为v ,人跳离甲车的过程中,人和甲车组成的系统动量守恒,人跳上乙车的过程中,人和乙车组成的系统动量守恒.设人跳离甲车和跳上乙车后,两车的速度分别为v ′1和v ′2,则根据动量守恒定律有

人跳离甲车时(M +m 1)v 1=Mv +m 1v ′1 即(2m +m )v 1=2mv +mv ′1①(2分) 人跳上乙车时Mv -m 2v 0=(M +m 2)v ′2 即2mv -2mv 0=(2m +2m )v ′2②(2分) 由①②式解得v ′1=6v 0-2v ③(2分)

v ′2=12v -12

v 0④(2分)

两车不可能发生碰撞的临界条件是v ′1=±v ′2(2分) 当v ′1=v ′2时,由③④式解得v =13

5v 0(2分)

当v ′1=-v ′2时,由③④式解得v =11

3v 0(2分)

故v 的取值范围为135v 0≤v ≤11

3v 0.(1分)

【答案】

135v 0≤v ≤113

v 0 【总结提升】 正确把握以下两点是求解动量守恒定律中的临界问题的关键: (1)寻找临界状态

看题设情景中是否有相互作用的两物体相距最近,避免相碰和物体开始反向运动等临界状态.

(2)挖掘临界条件

在与动量相关的临界问题中,临界条件常常表现为两物体的相对速度关系与相对位移关系,即速度相等或位移相等.

一 高考题组

1.(2012·高考福建卷)如图,质量为M 的小船在静止水面上以速率v 0向右匀速行驶,

一质量为m 的救生员站在船尾,相对小船静止.若救生员以相对水面速率v 水平向左跃入水中,则救生员跃出后小船的速率为( )

A .v 0+m

M v B .v 0-m M v C .v 0+m M

(v 0+v )

D .v 0+m M

(v 0-v )

2.(2013·高考新课标全国卷Ⅰ)在粗糙的水平桌面上有两个静止的木块A 和B ,两者相距为d .现给A 一初速度,使A 与B 发生弹性正碰,碰撞时间极短.当两木块都停止运动后,相距仍然为d .已知两木块与桌面之间的动摩擦因数均为μ,B 的质量为A 的2倍,重力加速度大小为g .求A 的初速度的大小.

3.(2013·高考广东卷)如图,两块相同平板P 1、P 2置于光滑水平面上,质量均为的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L .物体P 置于P 1的最右端,质量为2m 且可看做质点.P 1与P 以共同速度v 0向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起.P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度内).P 与P 2之间的动摩擦因数为μ.求:

(1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2;

(2)此过程中弹簧的最大压缩量x和相应的弹性势能E p.

二_模拟题组

4.(2014·南京模拟)两球在水平面上相向运动,发生正碰后都变为静止.可以肯定的是,碰前两球的( )

A.质量相等B.动能相等

C.动量大小相等D.速度大小相等

5.

(2014·长沙重点高中测试)如图所示,在光滑的水平桌面上有一金属容器C,其质量为m C=5 kg,在C的中央并排放着两个可视为质点的滑块A与B,其质量分别为m A=1 kg,m B =4 kg,开始时A、B、C均处于静止状态,用细线拉紧A、B使其中间夹有的轻弹簧处于压缩状态,剪断细线,使得A以v A=6 m/s的速度水平向左弹出,不计一切摩擦,两滑块中任意一个与C侧壁碰撞后就与其合成一体,求:

(1)滑块第一次与挡板碰撞损失的机械能;

(2)当两滑块都与挡板碰撞后,金属容器C的速度.

6.(2014·衡水模拟)如图所示,质量为3m 的木板静止在光滑的水平面上,一个质量为2m 的物块(可视为质点)静止在木板上的A 端,已知物块与木板间的动摩擦因数为μ.现有一质量为m 的子弹(可视为质点)以初速度v 0水平向右射入物块并穿出,已知子弹穿出物块时的速度为v 0

2

,子弹穿过物块的时间极短.不计空气阻力,重力加速度为g .求:

(1)子弹穿出物块时物块的速度大小;

(2)子弹穿出物块后,为了保证物块不从木板的B 端滑出,木板的长度至少为多少

基础再现·对点自测

□mv □瞬时 □不受 □零 □内力 □m 1v ′1+m 2v ′2 □很短 □很大 □远大于 □守恒 □最大

[自我校对] 1- 1- 2- 2-

考点透析·讲练互动

【例1】[解析](1)子弹射穿物体A 的过程时间极短,由动量守恒定律得m 0v 0=m 0v +m A v A 解得v A =

m 0v 0-v

m A

. (2)物体A 在平板车B 上滑行的过程中,因为地面光滑,且A 、B 最后相对静止,故A 、

B 组成的系统水平方向动量守恒,有m A v A =(m A +m B )v 共

解得v 共=

m A

m A +m B v A =m 0v 0-v m A +m B

. [答案](1)

m 0v 0-v m A (2)m 0v 0-v

m A +m B

【突破训练1】[解析]选D.应用动量守恒定律解决本题,注意火箭模型质量的变化.取向下为正方向,由动量守恒定律可得:

0=mv 0-(M -m )v ′ 故v ′=

mv 0

M -m

,选项D 正确.

【例2】[解析](1)从A 压缩弹簧到A 与B 具有相同速度v 1时,对A 、B 与弹簧组成的系统,由动量守恒定律得

mv 0=2mv 1①

此时B 与C 发生完全非弹性碰撞,设碰撞后的瞬时速度为v 2,损失的机械能为ΔE .对B 、

C 组成的系统,由动量守恒定律和能量守恒定律得

mv 1=2mv 2②

12mv 21=ΔE +1

2(2m )v 22③ 联立①②③式得ΔE =116

mv 2

0.④

(2)由②式可知v 2

mv 0=3mv 3⑤

12mv 20-ΔE =1

2(3m )v 23+E p ⑥ 联立④⑤⑥式得

E p =1348

mv 20.

[答案](1)116mv 20 (2)1348

mv 20

【突破训练2】[解析](1)A 、B 两球相碰,满足动量守恒定律,则有

mv 0=2mv 1

代入数据求得A 、B 两球跟C 球相碰前的速度v 1=1 m/s (2)A 、B 两球与C 球碰撞同样满足动量守恒定律,则有 2mv 1=mv C +2mv 2

相碰后A 、B 两球的速度v 2= m/s 两次碰撞损失的动能

ΔE k =12mv 20-122mv 22-12mv 2

C = J.

[答案](1)1 m/s (2) J

【例3】[解析](1)设小球脱离弹簧时小球和小车各自的速度大小分别为v 1、v 2,则

mv 1-Mv 2=0

经典验证动量守恒定律实验练习题(附答案)

· 验证动量守恒定律由于v 1、v1/、v2/均为水平方向,且它们的竖直下落高 度都相等,所以它们飞行时间相等,若以该时间为时间单位,那么小球的水平射程的数值就等于它们的水平速度。在右图中分别用OP、OM和O/N表示。因此只需验证: m 1OP=m 1 OM+m 2 (O/N-2r)即可。 注意事项: ⑴必须以质量较大的小球作为入射小球(保证碰撞后两小球都向前运动)。 ⑵小球落地点的平均位置要用圆规来确定:用尽可能小的圆把所有落点都圈 在里面,圆心就是落点的平均位置。 ⑶所用的仪器有:天平、刻度尺、游标卡尺(测小球直径)、碰撞实验器、复写纸、白纸、重锤、两个直径相同质量不同的小球、圆规。 ⑷若被碰小球放在斜槽末端,而不用支柱,那么两小球将不再同时落地,但两个小球都将从斜槽末端开始做平抛运动,于是验证式就变为: m 1OP=m 1 OM+m 2 ON,两个小球的直径也不需测量 《 实验练习题 1. 某同学设计了一个用打点计时器验证动量守恒定律的实验:在小车A的前m 端粘有橡皮泥,推动小车A使之作匀速运动。然后与原来静止在前方的小车B 相碰并粘合成一体,继续作匀速运动,他设计的具体装置如图所示。在小车A 后连着纸带,电磁打点计时器电源频率为50Hz,长木板垫着小木片用以平衡摩擦力。 若已得到打点纸带如上图,并测得各计数点间距标在间上,A为运动起始的第一点,则应选____________段起计算A的碰前速度,应选___________段来计算A 和B碰后的共同速度。(以上两格填“AB”或“BC”或“CD”或“DE”)。已测得 小l车A的质量m 1=0.40kg,小车B的质量m 2 =0.20kg,由以上测量结果可得:碰 前总动量=__________kg·m/s. 碰后总动量=_______kg·m/s 2.某同学用图1所示装置通过半径相同的A. B两球的碰撞来验证动量守恒定律。图中PQ是斜槽,QR为水平槽,实验时先使A球从斜槽上某一固定位置G由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹。重复上述操作10次,得到10个落点痕迹再把B球放在水平槽上靠近槽末端的地方,让A球仍从位置G

动量守恒定律及应用(包括验证动量守恒地实验)

动量守恒定律及其应用复习教案 (实验:验证动量守恒定律) 一、动量 1.定义:物体的质量与速度的乘积. 2.表达式:p=□01____,单位kg·m/s. 3.动量的性质 (1)矢量性:方向与□02______速度方向相同. (2)瞬时性:动量是描述物体运动状态的量,是针对某一时刻而言的. (3)相对性:大小与参考系的选取有关,通常情况是指相对地面的动量.4.动量、动能、动量的变化量的关系 (1)动量的变化量:Δp=p′-p. (2)动能和动量的关系:E k=p2 2m . 二、动量守恒定律

1.守恒条件 (1)理想守恒:系统□03______________外力或所受外力的合力为□04______,则系统动量守恒. (2)近似守恒:系统受到的合力不为零,但当□05______远大于外力时,系统的动量可近似看成守恒. (3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒. 2.动量守恒定律的表达式: m1v1+m2v2=□06__________或Δp1=-Δp2. 三、碰撞 1.碰撞 物体间的相互作用持续时间□07________,而物体间相互作用力□08______的现象. 2.特点 在碰撞现象中,一般都满足内力□09________外力,可认为相互碰撞的系统动量守恒.3.分类 动量是否守恒机械能是否守恒 弹性碰撞守恒□10______ 非完全弹性碰撞守恒有损失 完全非弹性碰撞守恒损失□11______ ,1-1.下列说法正确的是( ) A.速度大的物体,它的动量一定也大 B.动量大的物体,它的速度一定也大 C.只要物体的运动速度大小不变,物体的动量也保持不变

经典验证动量守恒定律实验练习题(附答案)

验证动量守恒定律 由于v 1、v1/、v2/均为水平方向,且它们的竖直下落高 度都相等,所以它们飞行时间相等,若以该时间为时间单 位,那么小球的水平射程的数值就等于它们的水平速度。 在右图中分别用OP、OM和O/N表示。因此只需验证: m1?OP=m1?OM+m2?(O/N-2r)即可。 注意事项: ⑴必须以质量较大的小球作为入射小球(保证碰撞后两小球都向前运动)。 ⑵小球落地点的平均位置要用圆规来确定:用尽可能小的圆把所有落点都圈在里面,圆心就是落点的平均位置。 ⑶所用的仪器有:天平、刻度尺、游标卡尺(测小球直径)、碰撞实验器、 ⑷若被碰小球放在斜槽末端,而不用支柱,那么两小球将不再同时落地,但两个小球都将从斜槽末端开始做平抛运动,于是验证式就变为:m1?OP=m1?OM+m2?ON,两个小球的直径也不需测量 实验练习题 1. 某同学设计了一个用打点计时器验证动量守恒定律的实验:在小车A的前m 端粘有橡皮泥,推动小车A使之作匀速运动。然后与原来静止在前方的小车B 相碰并粘合成一体,继续作匀速运动,他设计的具体装置如图所示。在小车A 后连着纸带,电磁打点计时器电源频率为50Hz,长木板垫着小木片用以平衡摩擦力。 若已得到打点纸带如上图,并测得各计数点间距标在间上,A为运动起始的第一点,则应选____________段起计算A的碰前速度,应选___________段来计算A 和B碰后的共同速度。(以上两格填“AB”或“BC”或“CD”或“DE”)。已测得小l车A的质量m1=0.40kg,小车B的质量m2=0.20kg,由以上测量结果可得:碰前总动量=__________kg·m/s. 碰后总动量=_______kg·m/s 2.某同学用图1所示装置通过半径相同的A. B两球的碰撞来验证动量守恒定律。图中PQ是斜槽,QR为水平槽,实验时先使A球从斜槽上某一固定位置G由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹。重复上述操作10次,得到10个落点痕迹再把B球放在水平槽上靠近槽末端的地方,让A球仍从位置G由静止开始滚下,记录纸上的垂直投影点。B球落点痕迹如图2所示,其中米尺水平放置。且平行于G.R.Or所在的平面,米尺的零点与O 点对齐。 (1)碰撞后B球的水平射程应取为______cm. (2)在以下选项中,哪些是本次实验必须进行的测量?答:

高中物理-动量守恒定律及其应用(实验)教案

高中物理-动量守恒定律及其应用(实验)教案 【学习目标】 1.知道动量与冲量的概念,理解动量定理与动量守恒定律. 2.会用动量定理与动量守恒定律解决实际应用问题. 3.明确探究碰撞中的不变量的基本思路. 【要点导学】 1.冲量与动量的概念理解. 2.运用动量定理研究对象与过程的选择. 3.动量守恒定律的适用条件、表达式及解题步骤. 4.弹性碰撞和非弹性碰撞 (1)弹性碰撞:___________________________________ (2)非弹性碰撞:____________________________________ (3)在光滑水平面上,质量为m 1的小球以速度v 1与质量为m 2的静止小球发生弹性正碰,根据动量 守恒和机械能守恒,碰后两个小球的速度分别为: v 1’=_____________v 2’=_____________。 【典型例题】 类型一 冲量与动量定理 【例1】质量为m 的小球,从沙坑上方自由下落,经过时间1t 到达沙坑表面,又经过时间2t 停在沙坑里。 求: (1)沙对小球的平均阻力F ; (2)小球在沙坑里下落过程所受的总冲量I 的大小. 类型二 动量守恒定律及守恒条件判断 【例2】 把一支枪水平固定在小车上,小车放在光滑的水平面上,枪发射出一颗子弹时,关于枪、 弹、 车,下列说法正确的是( ) A .枪和弹组成的系统,动量守恒 B .枪和车组成的系统,动量守恒 C .三者组成的系统,因为枪弹和枪筒之间的摩擦力很小,使系统的动量变化很小,可以忽略不计,故系 统动量近似守恒 D .三者组成的系统,动量守恒,因为系统只受重力和地面支持力这两个外力作用,这两个外力的合 力为零 【变式训练1】如图A 、B 两物体的质量之比m A ∶m B =3∶2,原来静止在平板小车C 上,A 、B 间有 一根被压缩了的弹簧,A 、B 与平板车上表面间的滚动摩擦系数相同,地面光滑,当弹簧突然释放后, 则( ) A .A 、B 组成的系统动量守恒 B .A 、B 、 C 组成的系统动量守恒 C .小车向左运动 D .小车向右运动 类型三 动量守恒与能量守恒的综合应用 【例3】在静止的湖面上有一质量为M=100kg 的小船,船上站一个质量为m=50kg 的人。船长6米, A B C

验证动量守恒定律实验

物理一轮复习学案 第六周(10.8—10.14)第四课时 验证动量守恒定律实验 【考纲解读】 1.会用实验装置测速度或用其他物理量表示物体的速度大小. 2.验证在系统不受外力的作用下,系统内物体相互作用时总动量守恒. 【重点难点】 验证动量守恒定律 【知识结构】 一、验证动量守恒定律实验方案 1.方案一 实验器材:滑块(带遮光片,2个)、游标卡尺、气垫导轨、光电门、天平、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥等。 实验情境:弹性碰撞(弹簧片、弹性碰撞架);完全非弹性碰撞(撞针、橡皮泥)。 2.方案二 实验器材:带细线的摆球(摆球相同,两套)、铁架台、天平、量角器、坐标纸、胶布等。实验情境:弹性碰撞,等质量两球对心正碰发生速度交换。 3.方案三 实验器材:小车(2个)、长木板(含垫木)、打点计时器、纸带、天平、撞针、橡皮泥、刻度尺等。 实验情境:完全非弹性碰撞(撞针、橡皮泥)。 4.方案四 实验器材:小球(2个)、斜槽、天平、重垂线、复写纸、白纸、刻度尺等。 实验情境:一般碰撞或近似的弹性碰撞。 5.不同方案的主要区别在于测速度的方法不同:①光电门(或速度传感器);②测摆角(机械能守恒);③打点计时器和纸带;④平抛法。还可用频闪法得到等时间间隔的物体位置,从而分析速度。 二、验证动量守恒定律实验(方案四)注意事项 1.入射球质量m1应大于被碰球质量m2。否则入射球撞击被碰球后会被弹回。 2.入射球和被碰球应半径相等,或可通过调节放被碰球的立柱高度使碰撞时球心等高。否则两球的碰撞位置不在球心所在的水平线上,碰后瞬间的速度不水平。 3.斜槽末端的切线应水平。否则小球不能水平射出斜槽做平抛运动。 4.入射球每次必须从斜槽上同一位置由静止释放。否则入射球撞击被碰球的速度不相等。5.落点位置确定:围绕10次落点画一个最小的圆将有效落点围在里面,圆心即所求落点。6.水平射程:被碰球放在斜槽末端,则从斜槽末端由重垂线确定水平射程的起点,到落地点的距离为水平射程。

动量守恒定律及应用(包括验证动量守恒的实验)

动量守恒定律及应用(包括验证动量守恒的实验)

动量守恒定律及其应用复习教案 (实验:验证动量守恒定律) 一、动量 1.定义:物体的质量与速度的乘积. 2.表达式:p=□01____,单位kg·m/s. 3.动量的性质 (1)矢量性:方向与□02______速度方向相同. (2)瞬时性:动量是描述物体运动状态的量,是针对某一时刻而言的. (3)相对性:大小与参考系的选取有关,通常情况是指相对地面的动量. 4.动量、动能、动量的变化量的关系 (1)动量的变化量:Δp=p′-p. (2)动能和动量的关系:E k=p2 2m . 二、动量守恒定律 1.守恒条件 (1)理想守恒:系统□03______________外力或所受外力的合力为□04,则系统动量守恒.

(2)近似守恒:系统受到的合力不为零,但当□05______远大于外力时,系统的动量可近似看成守恒. (3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒. 2.动量守恒定律的表达式: m1v1+m2v2=□06__________或Δp1=-Δp2. 三、碰撞 1.碰撞 物体间的相互作用持续时间□07________,而物体间相互作用力□08______的现象. 2.特点 在碰撞现象中,一般都满足内力□09________外力,可认为相互碰撞的系统动量守恒.3.分类 动量是否守恒机械能是否守恒 弹性碰撞守恒□10______ 非完全弹 性碰撞 守恒有损失 完全非弹性碰撞守恒 损失□11 ______

,1-1.下列说法正确的是( ) A.速度大的物体,它的动量一定也大 B.动量大的物体,它的速度一定也大 C.只要物体的运动速度大小不变,物体的动量也保持不变 D.物体的动量变化越大则该物体的速度变化一定越大 1-2.(2014·广州调研)两个质量不同的物体,如果它们的( ) A.动能相等,则质量大的动量大 B.动能相等,则动量大小也相等 C.动量大小相等,则质量大的动能小 D.动量大小相等,则动能也相等 2-1.把一支弹簧枪水平固定在小车上,小车放在光滑水平地面上,枪射出一颗子弹时,关于枪、弹、车,下列说法正确的是( ) A.枪和弹组成的系统动量守恒 B.枪和车组成的系统动量守恒 C.枪弹和枪筒之间的摩擦力很小,可以忽略不计,故二者组成的系统动量近似守恒D.枪、弹、车三者组成的系统动量守恒 2-2.如图所示,放在光滑水平面上的两物

大学物理仿真实验报告——碰撞与动量守恒

大学物理仿真实验实验报告 碰撞和动量守恒 班级:信息1401 姓名:龚顺学号:201401010127 【实验目的】: 1 了解气垫导轨的原理,会使用气垫导轨和数字毫秒计进行试验。 2 进一步加深对动量守恒定律的理解,理解动能守恒和动量守恒的守恒条件。 【实验原理】 当一个系统所受和外力为零时,系统的总动量守恒,即有 若参加对心碰撞的两个物体的质量分别为m1和m2 ,碰撞前后的速度分别为V10、V20和V1 、V2。 1,完全弹性碰撞在完全弹性碰撞中,动量和能量均守恒,故有: 取V20=0,联立以上两式有: 动量损失率: 动能损失率: 2,完全非弹性碰撞 碰撞后两物体粘在一起,具有相同的速度,即有: 仍然取V20=0,则有: 动能损失率:

动量损失率: 3,一般非弹性碰撞中 一般非弹性碰撞中,两物体在碰撞后,系统有部分动能损失,定义恢复系数: 两物体碰撞后的分离速度比两物体碰撞前的接近速度即恢复系数。当V20=0时有: e的大小取决于碰撞物体的材料,其值在0~1之间。它的大小决定了动能损失的大小。 当e=1时,为完全弹性碰撞;e=0时,为完全非弹性碰撞;0

2018_2019学年高中物理第一章碰撞与动量守恒实验验证动量守恒定律分层训练粤教版选修3_5201

实验验证动量守恒定律 1.图1是“验证碰撞中的动量守恒”实验的实验装置.让质量为m1的小球从斜面上某处自由滚下,与静止在支柱上质量为m 2的小球发生对心碰撞,则 图1 图2 (1)两小球的质量关系必须满足________. A.m1=m2B.m1>m2 C.m1<m2D.没有限制 (2)实验必须满足的条件是________. A.轨道末端的切线必须是水平的 B.斜槽轨道必须是光滑的 C.入射小球m1每次都必须从同一高度由静止释放 D.入射小球m1和被碰小球m2的球心在碰撞的瞬间可以不在同一高度上 (3)若采用图1装置进行实验,以下所提供的测量工具中必需的是________. A.直尺B.游标卡尺C.天平D.弹簧秤E.秒表 (4)在实验装置中,若用游标卡尺测得小球的直径如图2,则读数为_______cm. 解析:(1)在“验证碰撞中的动量守恒”实验中,为防止被碰球碰后反弹,入射球的质量必须(远)大于被碰球的质量,因此B正确,A、C、D错误.故选B. (2)要保证每次小球都做平抛运动,则轨道的末端必须水平,故A正确;“验证动量守恒定律”的实验中,是通过平抛运动的基本规律求解碰撞前后的速度的,只要离开轨道后做平抛运动,对斜槽是否光滑没有要求,故B错误;要保证碰撞前的速度相同,所以入射球每次都要从同一高度由静止滚下,故C正确;要保证碰撞后都做平抛运动,两球要发生正碰,碰撞的瞬间,入射球与被碰球的球心应在同一水平高度,两球心的连线应与轨道末端的切线平行,因此两球半径应该相同,故D错误.故选AC. (3)小球离开轨道后做平抛运动,它们抛出点的高度相同,在空中的运动时间t相等,m1v1=m1v1′+m2v2′,两边同时乘以时间t,则有:m1v1t=m1v1′t+m2v2′t,m1OP=m1OM+m2(ON-2r),则实验需要测出:小球的质量、小球的水平位置、小球的半径,故需要用到的仪器有:天平,直尺和游标卡尺;故选,ABC.

高中物理_复习:《验证动量守恒定律实验》教学设计学情分析教材分析课后反思

复习:《实验:验证动量守恒定律》教学设计 一、教学目标: 【知识与技能】 1、明确验证动量守恒定律的基本思路; 2、掌握同一条直线上运动的两个物体碰撞前后的速度的测量方法; 3、掌握实验数据处理的方法; 【过程与方法】 1、学习根据实验要求,设计实验,完成气垫导轨实验和斜槽小球碰撞实验的设计方法; 2、学习根据实验数据进行处理、归纳、总结的方法。 【情感态度与价值观】 1、通过对实验方案的设计,培养学生积极主动思考问题的习惯,并锻炼其思考的全面性、准确性与逻辑性。 2、通过对实验数据的记录与处理,培养学生实事求是的科学态度,能使学生灵活地运用科学方法来研究问题,解决问题,提高创新意识。 3、在对实验数据处理、误差处理的过程中合作探究、头脑风暴,提高学生合作探究能力。 4、在对现象规律的语言阐述中,提高了学生的语言表达能力,还体现了各学科之间的联系,可引伸到各事物间的关联性,使自己溶入社会。 【教学重难点】 教学重点:验证动量守恒定律的实验探究 教学难点:速度的测量方法、实验数据的处理. 【教学过程】 (一)复习导入:问题1、动量守恒定律的内容是什么? 2、动量守恒的条件是什么? (二)讲授新课 实验方案一:气垫导轨以为碰撞实验 1、实验器材 气垫导轨、光电计时器、天平、滑块(两个)、重物、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥等. 2、实验步骤

(1)测质量:用天平测出滑块的质量. (2)安装:正确安装好气垫导轨. (3)实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前后的速度(①改变滑块的质量;②改变滑块的初速度大小和方向③通过放置橡皮泥、振针、胶布等改变能量损失). (4)验证:一维碰撞中的动量守恒. (5)数据处理 1.滑块速度的测量:v =Δx Δt ,式中Δx 为滑块挡光片的宽度(仪器说明书上给出,也可直接测量),Δt 为数字计时器显示的滑块(挡光片)经过光电门的时间. 2.验证的表达式:m 1v 1+m 2v 2=m 1v′1+m 2v′2。 (6)注意事项 气垫导轨应水平 [典例1] 现利用图(a)所示的装置验证动量守恒定律.在图(a)中,气垫导轨上有A 、B 两个滑块,滑块A 右侧带有一弹簧片,左侧与打点计时器(图中未画出)的纸带相连;滑块B 左侧也带有一弹簧片,上面固定一遮光片,光电计时器(未完全画出)可以记录遮光片通过光电门的时间. 实验测得滑块A 的质量m1=0.310 kg ,滑块B 的质量m2=0.108 kg ,遮光片的 宽度d =1.00 cm ;打点计时器所用交流电的频率f =50.0 Hz. 将光电门固定在滑块B 的右侧,启动打点计时器,给滑块A 一向右的初速度,使它与B 相碰.碰后光电计时器显示的时间为ΔtB =3.500 ms ,碰撞前后打出的纸带如图(b)所示. 实验测得滑块A 的质量m1=0.310 kg ,滑块B 的质量m2=0.108 kg ,遮光片的 宽度d =1.00 cm ;打点计时器所用交流电的频率f =50.0 Hz. 将光电门固定在滑块B 的右侧,启动打点计时器,给滑块A 一向右的初速度,使它与B 相碰.碰后光电计时器显示的时间为ΔtB =3.500 ms ,碰撞前后打出的纸带如图(b)所示. (b) 若实验允许的相对误差绝对值× 100%最大为5%,本实验是否在误差范围内验证了动量守恒

专地的题目:弹性碰撞、非弹性碰撞动量守恒定律实验

专题:弹性碰撞、非弹性碰撞实验:探究动量守恒定律 学习目标: 1、了解弹性碰撞、非弹性碰撞和完全非弹性碰撞。 2、会用动量、能量的观点综合分析、解决一维碰撞问题。 3、了解探究动量守恒定律的三种方法。 学习过程: 系统不受外力,或者所受的外力为零,某些情况下系统受外力,但外力远小于内力时均可以认为系统的动量守恒,应用动量守恒定律时请大家注意速度的方向问题,最好能画出实 际的情境图协助解题。请规范解下列问题。 一、弹性碰撞、非弹性碰撞: 实例分析1:在气垫导轨上,一个质量为2kg的滑块A以1m/s的速度与另一个质量为1kg、速度为4m/s并沿相反方向运动的滑块B迎面相撞,碰撞后两个滑块粘在一起,求: (1)碰撞后两滑块的速度的大小和方向?系统的动能减少了多少?转化为什么能量? ⑵若碰撞后系统的总动能没有变化,则碰撞后两滑块的速度的大小和方向? 问题一:什么叫做弹性碰撞?什么叫做非弹性碰撞?什么叫做完全非弹性碰撞?碰撞过程中

会不会出现动能变多的情形?

实例分析2 :如图,光滑的水平面上,两球质量均为m,甲球与一轻弹簧相连,静止不动, 乙球以速度v撞击弹簧,经过一段时间和弹簧分开,弹簧恢复原长,求: (1 )撞击后甲、乙两球相距最近时两球球的速度的大小和方向? (2 )弹簧的弹性势能最大为多少? (3)乙球和弹簧分开后甲、乙两球的速度的大小和方向? 思考与讨论:假设物体m i以速度v i与原来静止的物体m2发生弹性碰撞,求碰撞后两物体 的速度V3、V4,并讨论m i=m 2; m 1》m2; m 1《m2时的实际情形。

二、探究动量守恒的实验: 问题二(P4参考案例一)如何探究系统动量是否守恒(弹性碰撞、分开模型、完全非弹性碰撞)? 问题三(P5参考案例二):某同学采用如图所示的装置进行实验. 把两个小球用等长的细线悬挂于同一点,让B球静止,拉起A球,由静止释放后使它们相碰,碰后粘在一起.实验 过程中除了要测量A球被拉起的角度i,及它们碰后摆起的最大角度还需测量哪些 2之外, 物理量(写出物理量的名称和符号)才能验证碰撞中的动量守恒.用测量的物理量表 示动量守恒应满足的关系式. 问题四(P5参考案例三):水平光滑桌面上有A、B两个小车,质量分别是0.6 kg和0.2 kg.A 车的车尾拉着纸带,A车以某一速度与静止的B车碰撞,碰后两车连在一起共同向前运动 碰撞前后打点计时器打下的纸带如图所示?根据这些数据,请通过计算猜想:对于两小车组 成的系统,什么物理量在碰撞前后是相等的?

验证动量守恒定律练习题(附答案)

(1)若已得到打点纸带如图所示,并将测得的各计数点间距离标在图上, A 点是运动起 始的第一点,则应选 __________ 段来计算A 的碰前速度,应选 __________ 段来计算A 和 B 碰后 的共同速度(以上两格填“ AB '或“ BC"或“CD"或"DE ”). A B C D E = U ------ r J-f * ... 小 1 8,40c m 1 2 10.50cm 1 9.08cm 1 6.95cm r } (2)已测得小车 A 的质量 m 仁0. 40kg ,小车B 的质量 m2=0 . 20kg ,由以上测量结 果可得:碰前 mAv++mBv= ____________________ k g ?m /s ;碰后 mAvA ,+mBvB= ___________ k g ?m /s .并 比较碰撞前后两个小车质量与速度的乘积之和是否相等 2.某同学用所示装置通过半径相同的 a. b 两球的碰撞来验证动量守恒定律。实验 时先使a 球从斜槽上某一固定位置由静止开始滚下, 落到位于水平地面的记录纸 上,留下痕迹。重复上述操作10次,得到10个落点痕迹再把b 球放在水平槽上 靠近槽末端的地方,让a 球仍从同一位置由静止开始滚下, 记录纸上的垂直投影 点。b 球落点痕迹如图所示,其中米尺水平放置。 I | I r 11 | H 111 30 (cm) 1 碰撞后b 球的水平射程应取为 ________ cm. 2 在以下选项中,哪些是本次实验必须进行的测量?答: ____________ (填选项 号) A. 水平槽上未放b 球时,测量a 球落点位置到O 点的距离 B. a 球与b 球碰撞后,测量a 球落点位置到O 点的距离 C. 测量a 球或b 球的直径 D. 测量a 球和b 球的质量(或两球质量之比) E. 测量地面相对于水平槽面的高度 3)设入射球a 、被碰球b 的质量分别为m 1、m 2,半径分别为门、r 2,为了减 小实验误差,下列说法正确的是( ) 验证动量守恒定律 1.某同学设计了一个用打点计时器验证动量守恒定律的实验: 在小车A 的前端 粘有橡皮泥,推动小车 A 使之做匀速运动?然后与原来静止在前方的小车 B 相碰并粘合成 一体,继续做匀速运动,他设计的具体装置如图所示?在小车 A 后连着纸带,电磁打点计 时器电源频率为50Hz ,长木板下垫着小木片用以平衡摩擦力.

1.4 实验:验证动量守恒定律

1.4 实验:验证动量守恒定律 一、实验目的 1.掌握动量守恒定律适用范围。2.会用实验验证动量守恒定律。 二、实验原理 1.碰撞中的特殊情况——一维碰撞 两个物体碰撞前沿同一直线运动,碰撞后仍沿这条直线运动. 2.两个物体在发生碰撞时,作用时间很短。根据动量定理,它们的相互作用力很大。如果把这两个物体看作一个系统,那么,虽然物体还受到重力、支持力、摩擦力、空气阻力等外力的作用,但是这些力与系统内两物体的相互作用力相比很小,在可以忽略这些外力的情况下,使系统所受外力的矢量和近似为0,因此,碰撞满足动量守恒定律的条件。 3.物理量的测量 需要测量物体的质量,以及两个物体发生碰撞前后各自的速度。物体的质量可用天平直接测量。速度的测量可以有不同的方式,根据所选择的具体实验方案来确定。 三、实验方案设计 方案一:用气垫导轨完成两个滑块的一维碰撞,实验装置如图所示: (1)质量的测量:用天平测量质量. (2)速度的测量:利用公式v =Δx Δt ,式中Δx 为滑块(挡光片)的宽度,Δt 为计时器显示的滑块(挡光片)经过光电门时对应的时间. (3)利用在滑块上增加重物的方法改变碰撞物体的质量. (4)碰撞的实现:两小车的碰撞端分别装上撞针和橡皮泥. 实验器材:气垫导轨、光电计时器、天平、滑块(两个)、弹簧、细线、弹性 碰撞架、胶布、撞针、橡皮泥等. 实验过程: (1)测质量:用天平测出小车的质量m 1、m 2。 (2)安装:正确安装好光电计时器和滑轨。 (3)实验:接通电源,让质量小的小车在两个光电门之间,给质量大的小车一个初速度去碰撞质量小的小车,利用配套的光电计时器测出两个小车各种情况下碰撞前后的速度v 1、v 1′、v 2′。 本实验可以研究以下几种情况。 a.选取两个质量不同的滑块,在两个滑块相互碰撞的端面装上弹性碰撞架,滑块碰撞后随即分开。 b.在两个滑块的碰撞端分别装上撞针和橡皮泥,碰撞时撞针插入橡皮泥中,使两个滑块连成一体运动。 如果在两个滑块的碰撞端分别贴上尼龙拉扣,碰撞时它们也会连成一体。 c.原来连在一起的两个物体,由于相互之间具有排斥的力而分开,这也可视为一种碰撞。这种情况可以通 过下面的方式实现:在两个滑块间放置轻质弹簧,挤压两个滑块使弹簧压缩,并用一根细线将两个滑块固定。烧断细线,弹簧弹开后落下,两个滑块由静止向相反方向运动。

实验,验证动量守恒定律

高中物理实验 验证动量守恒定律 实验练习题 1. 某同学设计了一个用打点计时器验证动量守恒定律的实验:在小车A的前m 端粘有橡皮泥,推动小车A使之作匀速运动。然后与原来静止在前方的小车B 相碰并粘合成一体,继续作匀速运动,他设计的具体装置如图所示。在小车A 后连着纸带,电磁打点计时器电源频率为50Hz,长木板垫着小木片用以平衡摩擦力。 若已得到打点纸带如上图,并j测得各计数点间距标在间上,A为运动起始的第一点,则应选____________段起计算A的碰前速度,应选___________段来计算A和B碰后的共同速度。(以上两格填“AB”或“BC”或“CD”或“DE”)。已测得小l车A的质量m1=0.40kg,小车B的质量m2=0.20kg,由以上测量结果可得:碰前总动量=__________kg·m/s. 碰后总动量=_______kg·m/s 2.某同学用图1所示装置通过半径相同的A. B两球的碰撞来验证动量守恒定律。图中PQ是斜槽,QR为水平槽,实验时先使A球从斜槽上某一固定位置G由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹。重复上述操作10次,得到10个落点痕迹再把B球放在水平槽上靠近槽末端的地方,让A球仍从位置G由静止开始滚下,记录纸上的垂直投影点。B球落点痕迹如图2所示,其中米 尺水平放置。且平行于G.R.Or所在的平面,米尺的零点与O 点对齐。 (1)碰撞后B球的水平射程应取为______cm. (2)在以下选项中,哪些是本次实验必须进行的测量?答: _________(填选项号) A. 水平槽上未放B球时,测量A球落点位置到O点的 B. A球与B球碰撞后,测量A球落点位置到O点的距离 C. 测量A球a或B球的直径 D. 测量A球和B球的质量(或两球质量之比) E. 测量G点相对于水平槽面的高度 3. 用如图所示的装置验证动量守恒,图中A、B两球的直径均为d,质量分别是为m1和m2. ①实验中所必需的测量工具是_______________ ②A球为入射球,B球为被碰球,两球质量的关系是m1___m2。 ③根据题中给出的数据和图中点间距离,动量守恒要验证的关系 式是______________。

实验1 动量守恒定律的研究

实验1 动量守恒定律的研究 ――气垫导轨实验(一) 气垫技术是20世纪60年代发展起来的一种新技术,这一新技术克服了物体与运动表面之间的摩擦阻力,减少了磨损,延长了仪器寿命,提高了机械效率。因此,在机械、电子、纺织、运输等领域中得到了广泛的应用,如激光全息实验台、气垫船、空气轴承、气垫输送带等。 气垫导轨(Air track )是采用气垫技术的一种阻力极小的力学实验装置。利用气源将压缩空气打入导轨腔内,再由导轨表面上的小孔喷出气流,在导轨与滑行器(滑块)之间形成很薄的空气薄膜,浮起滑块,使滑块可以在导轨上作近似无阻力的直线运动,为力学实验创造了较为理想的测量条件。在力学实验中,利用气垫导轨可以观察和研究在近似无阻力情况下物体的各种运动规律,极大地减少了由于摩擦力的存在而出现的较大误差,大大提高了实验的精确度。利用气垫导轨和光电计时系统,许多力学实验可以进行准确的定量分析和研究,使实验结果接近理论值,实验现象更加真实、直观。如速度和加速度的测量,重力加速度的测定,牛顿运动定律的验证,动量守恒定律的研究,谐振运动的研究,等等。 动量守恒定律是自然界的一个普遍规律,不仅适用于宏观物体,也适用于微观粒子,在科学研究和生产技术方面都被广泛应用。本实验通过两个滑块在水平气垫导轨上的完全弹性碰撞和完全非弹性碰撞过程来研究动量守恒定律。 【实验目的】 1.了解气垫导轨的基本构造和功能,熟悉气垫导轨的调节和使用方法。 2.了解光电计时系统的基本组成和原理,掌握电脑通用计数器的使用方法。 3.用观察法研究完全弹性碰撞和完全非弹性碰撞的特点。 4.验证动量守恒定律,学会判断实验是否能够验证理论的基本方法。 【实验原理】 1.碰撞与动量守恒定律 如果某一力学系统不受外力,或外力的矢量和为零,则系统的总动量保持不变,这就是动量守恒定律。 在一直线上运动的两个物体,质量分别为1m 和2m ,在水平方向不受外力的情况下发生碰撞,碰撞前的运动速度为10v 和20v ,碰撞后的运动速度为1v 和2v ,则由动量守恒定律可得 2211202101v m v m v m v m +=+ (1) 实验中利用气垫导轨上两个滑块的碰撞来研究动量守恒定律。 2.完全弹性碰撞 完全弹性碰撞的特点是碰撞前后系统的动量守恒,机械能也守恒。如图1所示,如果在两个滑

动量守恒定律实验复习题

m1 m2 P M N 0` 姓名 动量守恒实验期末复习 一、实验目的:1、研究碰撞(对心正碰)中的动量守恒;2、培养学生的动手实验能力和探索精神 二、实验器材 斜槽轨道(或J2135-1型碰撞实验器)、入射小球m 1和被碰小球m 2、天平(附砝码一套)、游标卡尺、毫米刻度尺、白纸、复写纸、圆规、小铅锤 注意: ①选球时应保证入射球质量m 1大于被碰小球质量m 2,即m 1>m 2,避免两球落点太近而难找落地点; ②避免入射球反弹的可能,通常入射球选钢球,被碰小球选有机玻璃球或硬胶木球。 ③球的半径要保证r 1=r 2(r 1、r 2为入射球、被碰小球半径),因两球重心等高,使碰撞前后入射钢球能恰好由螺钉支柱顶部掠过而不相碰,以免影响球的运动。 三、实验原理 测质量的工具: 测速度的方案: 由于入射球和被碰小球碰撞前后均由同一高度飞出做平抛运动,飞行时 间相等,若取飞行时间为单位时间,则可用相等时间内的水平位移之比代替 水平速度之比。 注意:如图所示,根据平抛运动性质,入射球碰撞前后的速度分别为 v 1=t OP ,v 1`=t OM ,被碰小球碰后速度为v2`=t N O t OO ON ``=- 被碰小球碰撞前后的时间仅由下落高度决定,两球下落高度相同,时间 相同,所以水平速度可以用水平位移数值表示,如图所示;v 1用OP 表示;v′1 用OM 表示,v′2用O`N 表示,其中O 为入射球抛射点在水平纸面上的投影, (由槽口吊铅锤线确定)O′为被碰小球抛射点在水平纸面上的投影,显然明确上述表示方法是实验成功的关键。 于是,上述动量关系可表示为:m 1·OP= m 1·OM+m 2·(ON-2r),通过实验验证该结论是否成立。 三、实验步骤 (1)将斜槽固定在桌边使末端点的切线水平。 (2)让入射球落地后在地板上合适的位置铺上白纸并在相应的位置铺上复写纸。 (3)用小铅锤把斜槽末端即入射球的重心投影到白纸上O 点。 (4)不放被碰小球时,让入射小球10次都从斜槽同一高度由阻止开始滚下落在复写纸上,用圆规找出 落点的平均位置P 点。 (5)把入射球放在槽口末端露出一半,调节支柱螺柱,使被碰小球与入射球重心等高且接触好,然后 让入射球在同一高度滚下与被碰小球碰10次,用圆规找出入射球和碰小球的平均位置M 、N 。 (6)用天平测出两个球的质量记入下表,游标卡尺测出入射球和被碰小球的半径r 1和r 2,在ON 上取 OO`=2 r ,即为被碰小球抛出点投影,用刻度尺测出其长度,记录入表内。 (7)改变入射球的高度,重复上述实验步骤,再做一次。 注意:①重做实验时,斜槽、地板上白纸的位置要始终保持不变; ②入射球的高度要适宜,过高会使水平速度偏大,致使落地点超越原地白纸;过低会使碰撞前后速度偏小,使落地点彼此靠近分不清,测量两球的水平位移分度不大。

验证动量守恒定律

验证动量守恒定律 一、目的:验证两小球碰撞中的动量守恒 二、器材 斜槽,两个大小相同而质量不等的小球,天平,刻度尺、重锤线、白纸、复写纸、圆规、游标卡尺 三、原理 大小相同,质量为m1和m2的两个小球相碰,若碰前m1运动,m2静止,根据系统动量守恒定律有:m1v1=m1v1′+m2v2′。 因小球从斜槽上滚下后做平抛运动,由平抛运动知识可知,只要小球下落的高度相同,在落地前运动的时间就相同,则小球的水平飞行距离跟做平抛运动的初速度成正比。所以只要测出小球的质量及两球碰撞前后飞出的水平距离,代入公式就可以验证动量守恒定律。 由于v1、v1′、v2′均为水平方向,且它们的竖直下落高度都相等,所以它们飞行时间也相等,若以该时间为时间单位,那么小球的水平射程的数值就等于它们的水平速度。在图中分别用OP、OM和O′N表示。因此只需验证:m1OP=m1OM+m2(ON-2r)即可。 四、步骤

1.在桌边固定斜槽(如图实8-1),使它的末端切线水平,并在它的末端挂上重锤线。在桌边的地板上铺上记录纸来记录小球的落地点,在纸上记下重锤线所指位置O点。 2.用天平测出入射球质量m1和被碰球质量m2。 3.用游标卡尺测出两球直径d(两球直径应相等),在纸上标出O′点,OO′=d。 4.不放被碰球m2,让m1从斜槽顶点A自由滚下,重复若干次记下落地点平均位置P。 5.把被碰球m2放在斜槽末端支柱上(如图实8-2),使两球处于同一高度,让m1从A点自由滚下与m2相碰,重复若干次,分别记下m1、m2落地点的平均位置M、N。 6.用刻度尺分别测出OP,OM,O′N,验证:是否成立。 五、数据记录及处理(略) 六、注意事项 1.入射球质量m1应大于被碰球质量m2。 2.两球发生正碰,碰后均做平抛运动,这要求通过调整支柱使两球等高。 3.入射球每一次都从同一高度无初速度释放。 4.在实验中,至少重复10次,用尽可能小的圆把各小球的落点分别圈在里面,以确定小球落点的平均位置,其目的是为了减小实验误差。思考与注意: (1)小球a、b的质量ma、mb应该满足什么关系?为什么? ma> mb,保证碰后两球都向前方运动; (2)放上被碰小球后,两小球碰后是否同时落地?如果不是同时落地,对

经典验证动量守恒定律实验练习题(附答案)

验证动量守恒定律 、v1/、v2/均为水平方向,且它们的竖直下落高 由于v 度都相等,所以它们飞行时间相等,若以该时间为时间单 位,那么小球的水平射程的数值就等于它们的水平速度。 在右图中分别用OP、OM和O/N表示。因此只需验证: m1?OP=m1?OM+m2?(O/N-2r)即可。 注意事项: ⑴必须以质量较大的小球作为入射小球(保证碰撞后两小球都向前运动)。 ⑵小球落地点的平均位置要用圆规来确定:用尽可能小的圆把所有落点都圈在里面,圆心就是落点的平均位置。 ⑶所用的仪器有:天平、刻度尺、游标卡尺(测小球直径)、碰撞实验器、 个小球都将从斜槽末端开始做平抛运动,于是验证式就变为:m1?OP=m1?OM+m2?ON,两个小球的直径也不需测量 实验练习题 1. 某同学设计了一个用打点计时器验证动量守恒定律的实验:在小车A的前m 端粘有橡皮泥,推动小车A使之作匀速运动。然后与原来静止在前方的小车B 相碰并粘合成一体,继续作匀速运动,他设计的具体装置如图所示。在小车A 后连着纸带,电磁打点计时器电源频率为50Hz,长木板垫着小木片用以平衡摩擦力。 若已得到打点纸带如上图,并测得各计数点间距标在间上,A为运动起始的第一点,则应选____________段起计算A的碰前速度,应选___________段来计算A 和B碰后的共同速度。(以上两格填“AB”或“BC”或“CD”或“DE”)。已测得小l车A的质量m1=0.40kg,小车B的质量m2=0.20kg,由以上测量结果可得:碰前总动量=__________kg·m/s. 碰后总动量=_______kg·m/s 2.某同学用图1所示装置通过半径相同的A. B两球的碰撞来验证动量守恒定律。图中PQ是斜槽,QR为水平槽,实验时先使A球从斜槽上某一固定位置G由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹。重复上述操作10次,得到10个落点痕迹再把B球放在水平槽上靠近槽末端的地方,让A球仍从位置G由静止开始滚下,记录纸上的垂直投影点。B球落点痕迹如图2所示,其中米 尺水平放置。且平行于G.R.Or所在的平面,米尺的零点与O 点对齐。 (1)碰撞后B球的水平射程应取为______cm. (2)在以下选项中,哪些是本次实验必须进行的测量?答:

碰撞与动量守恒实验报告

大学物理仿真实验 ——碰撞与动量守恒 实 验 报 告

一、实验简介: 动量守恒定律和能量守恒定律在物理学中占有非常重要的地位。力学中的运动定理和守恒定律最初是冲牛顿定律导出来的,在现代物理学所研究的领域中存在很多牛顿定律不适用的情况,例如高速运动物体或微观领域中粒子的运动规律和相互作用等,但是能量守恒定律仍然有效。因此,能量守恒定律成为了比牛顿定律更为普遍适用的定律。 本实验的目的是利用气垫导轨研究一维碰撞的三种情况,验证动量守恒和能量守恒定律。定量研究动量损失和能量损失在工程技术中有重要意义。同时通过实验还可提高误差分析的能力。 二、实验容: 1.研究三种碰撞状态下的守恒定律 (1)取两滑块m1、m2,且m1>m2,用物理天平称m1、m2的质量(包括挡光片)。将两滑块分别装上弹簧钢圈,滑块m2置于两光电门之间(两光电门距离不可太远),使其静止,用m1碰m2,分别记下m1通过第一个光电门的时间Δt10和经过第二个光电门的时间Δt1,以及m2通过第二个光电门的时间Δt2,重复五次,记录所测数据,数据表格自 拟,计算、。 (2)分别在两滑块上换上尼龙搭扣,重复上述测量和计算。 (3)分别在两滑块上换上金属碰撞器,重复上述测量和计算。 2.验证机械能守恒定律 (1)a=0时,测量m、m’、m e、s、v1、v2,计算势能增量mgs和动能增量 ,重复五次测量,数据表格自拟。 (2)时,(即将导轨一端垫起一固定高度h,),重复以上测量。

三、实验原理: 如果一个力学系统所受合外力为零或在某方向上的合外力为零,则该力学系统总动量守恒或在某方向上守恒,即 (1) 实验中用两个质量分别为m1、m2的滑块来碰撞(图4.1.2-1),若忽略气流阻力,根据动量守恒有 (2) 对于完全弹性碰撞,要求两个滑行器的碰撞面有用弹性良好的弹簧组成的缓冲器,我们可用钢圈作完全弹性碰撞器;对于完全非弹性碰撞,碰撞面可用尼龙搭扣、橡皮泥或油灰;一般非弹性碰撞用一般金属如合金、铁等,无论哪种碰撞面,必须保证是对心碰撞。 当两滑块在水平的导轨上作对心碰撞时,忽略气流阻力,且不受他任何水平方向外力的影响,因此这两个滑块组成的力学系统在水平方向动量守恒。由于滑块作一维运动,式(2)中矢量v可改成标量,的方向由正负号决定,若与所选取的坐标轴方向相同则取正号,反之,则取负号。 1.完全弹性碰撞 完全弹性碰撞的标志是碰撞前后动量守恒,动能也守恒,即 (3)

验证动量守恒定律实验一

实验:验证动量守恒定律 1、实验目的: (1)验证两小球碰撞中的动量守恒; (2)掌握实验操作步骤和所需的实验仪器的性能; (3)知道实验注意事项,会进行误差分析,并在实验中尽量减小误差。 2、实验原理: 质量为m1和m2的两个小球发生正碰,若碰前m1运动,m2静止,根据动量守恒定律应有m1v1 = m1' v+ m2'2v。因小球从斜槽上滚下后做平抛运动,由平抛运动知识可知, 1 只要小球下落的高度相同,在落地前运动的时间就相同,则小球的水平速度若用飞行时间作时间单位,在数值上就等于小球飞出的水平距离.所以只要测出小球的质量及两球碰撞前后飞出的水平距离,代入公式就可验证动量守恒定律。 3、实验器材 斜槽、大小相等而质量不同的小球两个、重锤线一条、白纸、复写纸、天平一台、刻度尺、游标卡尺、圆规。 4、实验步骤 (1)先用天平测出小球质量m1、m2。 (2)用游标卡尺测出小球直径D, 那么如图S oo的距离等于D (3) 如图1所示,安装好实验装置, 将斜槽固定在桌边,使槽的末端点 切线水平,把被碰小球放在斜槽水平方向的末端.调节实验装置使两个相碰时处于同一水平高度,且碰撞瞬间,入射球与被碰球的球心联机与轨道末端的切线平行,以确保碰撞后的速度方向水平。 (4)在地上铺一张白纸,白纸上铺放复写纸。 (5)在白纸上记下重锤线所指的位置O,它表示入射球被碰前的位置,如图( a) 所示。 (6)先不放被碰小球,让入射球从斜槽上同一高度处自由滚下,重复10次,用圆规画尽可能小的圆,把所有的小球落点围在里面,圆心就是入射球不碰撞时的落地点P。(7)把被碰小球放在斜槽末端,让入射小球从同一高度处自由滑下,使它们发生正碰,重复10次,仿步骤(6)求出入射小球落点的平均位置M和被碰小球落点的平均位置N。(8) 用刻度尺量出线段、、的长度。把两小球的质量和相应的速度数值 代入,看是否成立. (9)整理实验器材,放回原处。

相关文档
最新文档