接地电容电流分析

接地电容电流分析
接地电容电流分析

摘要:随着城市电网的发展,变电站10kV出线中电缆所占比重越来越高,导致10kV系统的电容电流越来越大,远远超过了规程规定的10A(10kV为架空线和电缆线混合的系统)。因此需要在10kV中压电网中采用中性点谐振接地(经消弧线圈接地)方式。理想的消弧线圈能实时监测电网电容电流的大小,在正常运行时电抗值很大,相当于中性点不接地系统,在发生单相接地故障时能在极短时间内自动调节电抗值完全补偿电容电流,使接地点残流的基波无功分量为零。自动跟踪补偿消弧装置基本能实现上述功能,技术现已相当成熟,能将接地故障电流限制在允许范围内,保证系统的可靠运行及人身和设备的安全。

[关键词]:中压电网中性点谐振接地方式

一、引言

对10kV中压电网而言,设备的绝缘裕度受经济因素的制约作用较小,工频电压升高的不良影响较低,相反限制单相接地故障电流及其一系列危害显得尤为重要,加之接地继电保护选择性难题的攻克(之前为了检出和清除故障线路曾采用低电阻接地方式),现国内10kV中压电网多采用中性点非有效接地方式。其包括如下几种方式:1、中性点不接地方式;

2、中性点经高电阻接地方式;

3、中性点谐振接地(经消弧线圈接地)方式。

所谓中性点不接地方式,实际系统是经过一定数值容抗接地的。当系统发生一点接地时,保护不跳闸,仅发出接地信号,可带故障运行1-2小时(前提是系统接地故障电流不大

于10A)。因接地系数(零序阻抗与正序阻抗比值)k小于0,△U=-U相可能高于相

电压,非故障相的工频电压升高将会略高于线电压,约为1.05U线。另外,中性点不接地系统还具有中性点不稳定的特点,当单相接地电弧自行熄灭后,容易导致电压互感器的铁芯饱和激发中性点不稳定过电压,引起电压互感器烧毁与高压熔丝熔断等事故。

如采用中性点经高电阻接地方式:可限制电弧接地过电压;限制单相接地电弧熄灭后激起的中性点不稳定过电压。但如系统发生单相接地故障时的故障电流超过10A,接地电弧不能自行熄灭,将引起电弧接地过电压,所以中性点经高电阻接地方式有一定局限性,只适合用于规模较小的10kV电网中。

随着城市的发展,对环境要求的提高,蜘蛛网式满天横飞的架空线路影响了城市的美观,城市的各大街道纷纷将架空线路改为电缆入地。而每公里电缆的电容电流远大于同等长度的架空线路。以10kV线路为例:

架空线路的电容电流计算(按水泥杆、有避雷线计算)

Ic=3.7U线l×10-3=3.7×10×1×10-3=0.037A(1)式

电缆线路的电容电流计算

Ic(u)=[(95+1.44S)/2200+0.23S]U线(2)式

其中S为电缆心线截面积(mm2)

以截面积为300的10kV电缆为例,每公里电容电流为2.32A。

10kV线路每公里电缆的电容电流约为架空线路的63倍,10kV出线中电缆比重的增大势必引起电容电流的增大,从而导致接地电弧无法熄灭,严重影响系统的可靠性,影响人身及设备的安全。我国电力行业标准DL\T620-1997《交流电气装置的过电压保护和绝缘配合》中明确规定:3-10kV不直接连接发电机且由架空线路构成的系统,当单相接地故障电容电流超过10A又需在接地故障条件下运行时,应采用消弧线圈接地方式。

中性点经消弧线圈接地方式与前两种小电流接地方式相比,单相接地故障电流明显减小,非故障相的工频电压升高降低,且不存在中性点不稳定过电压的情况,基本运行特性明显优越。

二、自动跟踪补偿装置

理想的消弧线圈能实时监测电网电容电流的大小,在正常运行时电抗值很大,相当于中性点不接地系统,在发生单相接地故障时能在极短时间内自动调节电抗值完全补偿电容电流,使接地点残流的基波无功分量为零。当然这只是一种理想状态,但实际上现已研制出多种自动跟踪补偿消弧装置,基本实现了上述功能。现即对自动跟踪补偿装置的构成及各部件的结构原理作一简要介绍。自动跟踪补偿消弧装置主要由三大核心部件构成:接地变压器、可调节的消弧线圈及带小电流接地选线功能的自动调谐控制器。针对消弧线圈的不同调节方式又配置了不同的部件,如调匝式等配置阻尼电阻箱,可控硅调节式配置可控硅控制箱等。

1、接地变压器

因为10kV系统为三角形结线,无中性点引出,这就需要先通过接地变压器来形成一个中性点。接地变压器采用Z型结线(或称曲折型结线),与普通变压器的区别是每相线圈分别绕在两个磁柱上,这样零序磁通能沿磁柱流通,而普通变压器的零序磁通是沿漏磁磁路流通,所以Z型接地变压器的零序阻抗很小,可带90%-100%容量的消弧线圈,相比普通变压器可带消弧线圈容量不得超过变压器容量的20%,可节省投资。

一般当系统不平衡电压较大时,Z型变三相绕组做成平衡式,当系统不平衡电压较小时(如全电缆网络),Z型变中性点要做出50-100V的不平衡电压以满足测量需要。

接地变压器除可带消弧线圈外,也可带二次负载,兼作站用变。

2、自动跟踪补偿的控制原理

如何实现消弧线圈的自动跟踪补偿,使发生接地故障后的残流|Il-Ic|<5A。(Il-消弧线圈上电感电流;Ic-电网的电容电流)。就需要实时监测系统的电容电流。算法有很多,如利用系统电容电流参数变化引起中性点电压、电流之间的相位变化量来计算电容电流;从消弧线圈内附PT二次侧加一电源,使位移电压发生变化,从而计算出电容电流;从消弧线圈内附PT二次侧注入不同频率的电流信号,找出谐振频率,根据谐振频率计算脱谐度和电容电流等等。目前在自动跟踪补偿装置中用得较好的是电容电流在线实时测量法,其原理如下:首先画出系统正常运行时的零序等效电路:

U0为系统的不对称电压,在装置投入运行时应先测量出来;C为系统对地的等效电容;R为回路电阻;L为有载调节消弧线圈。首先将消弧线圈调至L1档,测量零序回路电流为I1,再将消弧线圈调至L2档,测量零序回路电流为I2。

U0=I1[R+j(X L1-X C)]

U0=I2[R+j(X L2-X C)]

由上两式即可求出R和X C,I C=U相/X C。

微机控制器是根据电网的脱谐度和残流的要求进行调节的,在投运前先将脱谐度ε=( Il-Ic)/ Il设定在一个范围内,当系统的脱谐度超出此范围,控制器发出指令,调整消弧线圈使脱谐度及残流满足要求。

控制器同时还有小电流接地选线功能。在电力系统中,当小电流接地系统发生单相接地故障时会导致:a、系统零序电压升高;b、非故障线路零序电流为本身电容电流值,相位超前零序电压近90度;c、故障线路零序电流最大,为所有非故障线路零序电流之和,相位滞后零序电压近90度。以上三点当无消弧线圈时对于基波、5次谐波均成立;而在有消弧线圈过补偿时对于基波不成立,只对5次谐波成立;另一方面,流过消弧线圈串接电阻的有功功率会流过故障点。综上所述,采用零序基波电流、5次谐波电流相对算法,并结合零序有功分量等多种算法进行比较、表决,可大大提高接地选线的准确性。

另外还有一种称为残流增量法的算法,即在系统发生单相接地后把各线路的零序电流采集下来,然后调一档,再把各线路的零序电流采集一遍,求出各线路调档前后零序电流的变化量,其中最大者为接地线路,因为它等于消弧线圈调档前后电感电流的改变值,而其它线路基本不变。

3、消弧线圈的调节方式

消弧线圈的调节方式主要有:①调匝式;②调容式;③可控硅调节式;④调直流偏磁式;⑤调气隙式…

①调匝式

调匝式消弧线圈是将绕组按不同的匝数抽出若干个分接头,用有载分接开关进行切换,改变接入的匝数,从而改变电感量。

调匝式因调节速度慢,只能工作在预调谐方式(即在系统正常运行无接地发生时,消弧线圈跟踪到最佳补偿位置,接地后不再调节),为保证较小的残流,必须在谐振点附近运行。这将导致中性点位移电压升高,因此需加装阻尼电阻进行限压,保证中性点的位移电压不超过15%相电压。为避免阻尼电阻上的有功电流使接地残流增大,在发生单相接地时,必须将阻尼电阻延时0.5秒后短接(为与选线装置配合),其原理如下:

JJ为交流接触器的触点;JC为直流接触器的触点,当系统发生单相接地时,中性点电压升高,电流增大,同时母线PT开口三角输出电压。如其值超过设定值时会启动JC或JJ将阻尼电阻短接。延时由时间继电器控制。

②调容式

通过调节消弧线圈二次侧电容量大小来调节消弧线圈的电感电流。其采用二次调节消弧线圈,其结构如图所示:

二次绕组连接电容调节柜,当二次电容全部断开时,主绕组感抗最小,电感电流最大。二次绕组有电容接入后,根据阻抗折算原理,相当于主绕组两端并接了相同功率、阻抗为k2倍的电容,使主绕组感抗增大,电感电流减小。因此通过调节二次电容的容量即可控制主绕组的感抗及电感电流的大小。电容器的内部或外部装有限流线圈,以限制合闸涌流。电容器内部还装有放电电阻。

因调容式调节速度快,可实现接地后调节(即系统正常运行时,消弧线圈工作在远离谐振点的位置,满足中性点位移电压不大于15%相电压的要求。当发生接地故障后,再将消弧线圈调至满足残流要求的合适位置),可不加阻尼电阻。

③可控硅调节式

采用高短路阻抗变压器式可控消弧线圈(短路阻抗可达100%),其结构原理图及等效电路图如下:

一次绕组(GR)作为工作绕组接在接地变中性点与地之间,二次绕组(KR)作为控制绕组由两个反向并接的可控硅(KKG)短路,可控硅的导通角由触发控制器控制。调节可控硅的导通角由0至180度之间变化,使可控硅的等效阻抗Z KKG在无穷大至零之间变化,输出的补偿电流就可在零至额定值之间得到连续无极调节。系统中专门设计了有效滤波设施抑制可控硅导通时产生的谐波,使输出的电流保持为工频电流。由于可控硅工作于与电感串联的无电容电路中,其工况既无反峰电压的威胁又无电流突变的冲击,可靠性得到了保障。

可控硅调节式调节速度极快,正常时消弧线圈工作在远离谐振点的位置,不加阻尼电阻。其一大优点是因采用短路阻抗而不是励磁阻抗作为工作阻抗,所以伏安特性可保证在0-110%额定电压范围内保持极佳的线性度。

④调直流偏磁式

交流工作线圈内布置一个铁芯磁化段,通过改变铁芯磁化段磁路上的直流励磁磁通大小来调节交流等值磁导,实现电感连续可调。其基本结构如图所示:

直流励磁绕组采取反串连接方式,使整个绕组上感应的工频电压相互抵消。通过对三相全控整流电路输出电流的闭环调节,实现消弧线圈励磁电流的控制,利用微机的数据处理能力,对这类消弧线圈伏安特性上固有的不大的非线性实施动态校正。

消弧线圈还有另外一些调节方式,如调气隙式等就不一一介绍了。

三、工程中的具体应用

成都地区过去10kV系统均采用中性点不接地方式,但由于10kV出线电缆所占比重的增加,导致电容电流升高超过了规程的要求,现在新建变电站已广泛采用10kV自动跟踪补偿消弧装置。以新建青白江110kV大湾变电站为例:

变电站10kV采用单母线分段结线方式,共分两段。按照规划的10kV建设规模,每段母线上各连接15km的架空线路(按水泥杆、有避雷线计算)和15km的电缆(按电缆芯线截面积300mm2计算)。根据(1)、(2)式计算电容电流为31.275A,再算上变电站增加16%

的电容电流,I C=(1+16%)×31.275=36.279A。根据Q消=kI C×U e/,过补偿取k=1.35,计算需消弧线圈容量297kVA,选择315kVA的消弧线圈。接地变带二次绕组兼做站用变。因所需站用变容量为160kVA,所以接地变容量选择为500kVA。(接地变容量为消弧线圈与站

用变容量之和;也可更经济地根据公式S接=计算)。

自动跟踪补偿装置原理如图所示(消弧线圈采用调匝式)

消弧线圈在系统正常运行时工作在最佳补偿状态,即在谐振点附近运行,残流和调谐度都控制在允许范围内,此时需投入阻尼电阻将中性点位移电压限制在15%U相内。系统发生单相接地故障时,自动调谐控制器感知母线PT开口三角电压、中性点电压升高及中性点电流增大,延时0.5秒(供自动选线装置找出故障线路)后启动阻尼电阻控制器将阻尼电阻短接,投入消弧线圈补偿电容电流。

四、小结

随着电网的发展,加之接地继电保护选择性难题的攻克,中压电网中性点采用谐振接地(经消弧线圈接地)的优越性已逐渐显示出来。而自动跟踪补偿消弧装置技术的成熟,必将使其成为中压电网中性点接地方式的发展方向。

小电流接地系统原因与分析

小电流接地系统接地的原因分析及对策 小电流接地系统特别是35KV及以下的小接地系统,由于线路分支多,走向复杂,电压等级较低,在设计施工中质量不易保证,运行中发生接地故障的几率很高。为了便于电网值班人员准确判断接地类别,及时处理故障,保证电网的安全可靠运行,提高用户电能质量。本文通过对兴义市地方电网的运行实践,从小接地系统绝缘监察装置的构成及动作原理,历年接地故障情况的统计、接地原因、故障判别及预防接地的措施等几个方面进行分析,对运行值班人员和工程技术人员有一定的借鉴作用。 1.问题提出 目前,小电流接地系统特别是35KV及以下的小接地系统,由于其线路分支多,走向复杂,电压等级较低,在设计施工中线路质量不易保证,运行中发生接地故障的几率是很高的。从我市地方电网历年来的运行统计资料来看,在小电流接地系统的接地故障中,35KV电网占8.2%,10KV电网占91.8%。本文通过笔者在实践中对电网运行工况的了解以及运行经验的总结,分析了小电流接地系统在实际运行中易引起误判的几类接地故障,在给出其原因分析的基础上着重阐述了接地故障的判别方法、处理措施及对策。相信对同行有一定的借鉴作用。 2.易引起误判的几类接地故障及其原因分析 为了便于展开下文,我们有必要首先对电网发生接地的原因作一个简单的分析。如图1,当中性点电压Uo不为0且Uo大于绝缘监察系统定值时,便有接地信号发出,而Uo 反映的是零序电压,其计算公式为: Uo=(ùa+ùb+ùc)/3 从上式可以看出,当电网各相电压ùa、ùb、ùc不平衡时,便有中性点电压Uo产生,而电网电压的不平衡度是接地信号发生与否的关键,本文下面的论述将紧紧围绕接地故障发生的原因作具体分析。根据兴义市地方电网历年来的运行资料,我们统计了如下几类经常发生接地的情况:

电容电流计算书

电容电流的计算书 电网的电容电流,应包括有电气连接的所有架空线路、电缆线路、发电机、变压器以及母线和电器的电容电流,并应考虑电网5~10年的发展。 1.架空线路的电容电流可按下式估算: I C =(2.7~3.3)U e L×10-3 (F-1) 式中:L——线路的长度(㎞); U e——线路系统电压(线电压KV) I C ——架空线路的电容电流(A); 2.7 ——系数,适用于无架空地线的线路; 3.3 ——系数,适用于有架空地线的线路; 同杆双回线路的电容电流为单回路的1.3~1.6倍。 亦可按附表1所列经验数据查阅。 附表1 架空线路单相接地电容电流(A/km) 2.电缆线路的电容电流可按(F-2)式估算,亦可进行计算 I C=0.1U e L (F-2) 按电容计算电容电流 具有金属保护层的三芯电缆的电容值见附表2。 附表2 具有金属保护层的三芯电缆每相对地电容值(μF/㎞)

将求得的电缆总电容值乘以1.25即为全系统总的电容近似值(即包括变压器绕组、电 动机以及配电装置等的电容)。单相接地电容电流可由下式求出: I C = 3 U e ωC ×10-3 (F-3) 其中 ω=2πf e 式中 I C —— 单相接地电容电流(A ); U e —— 厂用电系统额定线电压(kV ); ω —— 角频率; f e —— 额定功率(Hz ); C —— 厂用电系统每相对地电容(μF ); 2.2、6~10 kV 电缆和架空线的单相接地电容电流I C 也可通过下式求出近似值。 6kV 电缆线路 = I C 6S 22002.84S 95++U e (A ) (F-4) 10kV 电缆线路 =I C 0.23S 22001.44S 95++U e (A ) (F-5) 式中 S —— 电缆截面 (㎜2) U e —— 厂用电系统额定电压(kV ) 2.3 电容电流的经验值见附表3。 附表3 6~35kV 电缆线路单位长度的电容电流(A/㎞) 2.4 6~10 kV 交联聚乙烯绝缘电力电缆的接地电容电流。 前述各公式主要用于油浸纸绝缘电力电缆,而目前广泛采用的交联聚乙烯绝缘电力电 缆,由于其结构特点,其单独接地电容电流比同截面的纸绝缘电缆的电容电流大,根据厂家提供的参数和现场实测数据,大约增大20%左右,其值见附表4。 附表4 6~10 kV 交联聚乙烯绝缘电缆的接地电容电流

单相接地电容电流试验施工安全措施.docx

单相接地电容电流试验施工安全措施 安全技术措施 措施名称:单相接地电容电流试验施工安全措施编制单位:保运区 持用单位:保运区 编制日期:XXX年X月X日

审批记录 主持人:措施名称:单相接地电容电流试验施工安全措施 签名日期 编制人 施工单位 区负责人 安监处 安全生产信息中心 审批单位 机电科 机电副总 总工程师 审批意见

单相接地电容电流试验施工安全措施 一、概述 根据《煤矿安全规程》第 453 条规定:矿井 6000V及以上高压电网,必须采取措施限制单相接地电容电流,生产矿井不超过 20A,新建矿井不超 过 10A。位确保我矿供电系统符合本要求,计划对 35K 变电所进行单相接地电容电流试验。为保证试验安全高效进行,特编此安全技术措施。 二、施工组织 施工时间: 2017 年月日 施工地点: 35KV变电所 施工负责人: 安全责任人: 三、施工前准备 1、认真组织参加施工的所有人员学习本安全技术措施,了解施工步骤 及施工中应注意的安全事项; 2、准备好个人工具及劳保用品,验电笔,绝缘手套,绝缘靴; 3、在 6KV两段母线上各准备一台备用开关柜; 4、确认母联柜处于断开位置,6KV两段母线处于分列运行状态。 四、施工步骤 1、施工负责人与各重要车间、变电所和各局扇司机联系好,确保人员 已全部到位,汇报矿安全生产信息中心,申请开始进行试验; 2、对 6KVⅠ回路进行测试,选用柜号为6137 柜。将断路器摇至实验位置,经放电、验电完毕后,将实验设备接到开关柜负荷侧 A 相。

3、将 6137 柜断路器摇至工作位置,按照试验人员要求,将断路器合闸,试验进行 5s 左右,断开断路器。 4、实验完毕后,将6137 柜断路器摇至实验位置,放电、验电,拆除连接线,确认无误后,将开关柜恢复至实验前状态。 5、对 6KVⅡ回路进行测试,选用柜号为6236 柜。将断路器摇至实验位置,经放电、验电完毕后,将实验设备接到开关柜负荷侧 A 相。 6、将 6236 柜断路器摇至工作位置,按照试验人员要求,将断路器合闸,试验进行 5s 左右,断开断路器。 7、实验完毕后,将6236 柜断路器摇至实验位置,放电、验电,拆除连接线,确认无误后,将开关柜恢复至实验前状态。 五、安全注意事项 1、施工前向施工人员详细贯彻本措施。 2、指定专人联系、专人指挥。 3、施工期间,各重要车间及采区变电所、局扇位置必须设专人看护, 确保实验期间出现掉电能够及时送电。 4、严格执行两票制度。 5、本措施未尽事项参照《煤矿安全规程》。

小电流接地故障现象及原因分析通用版

安全管理编号:YTO-FS-PD721 小电流接地故障现象及原因分析通用 版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

小电流接地故障现象及原因分析通 用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 1 引言 随着全国农村电网改造工程的全面展开,农村供电网络健康水平明显提高,小接地电流电网中三相对地电压不平衡现象是电网异常和故障的反映,电气运行人员若能正确判断并限制故障发展,迅速排除故障,则可保证电网安全运行。反之,往往导致配电变压器电磁式电压互感器烧损、高压熔断器熔断、避雷器爆炸、导线烧断、线路短路、保护误动、大面积停电等事故发生。 1 引言 随着全国农村电网改造工程的全面展开,农村供电网络健康水平明显提高,小接地电流电网中三相对地电压不平衡现象是电网异常和故障的反映,电气运行人员若能正确判断并限制故障发展,迅速排除故障,则可保证电网安全运行。反之,往往导致配电变压器电磁式电压互感器烧损、高压熔断器熔断、避雷器爆炸、导线烧断、线路短

配电网电容电流计算

配电网电容电流计算 一、概述 随着城市电网的扩大,电缆出线的增多,系统电容电流大大增大。当系统发生单相接地故障,其接地电弧不能自熄,极易产生间隙性弧光接地过电压,持续时间一长,在线路绝缘弱点还会发展成两相短路事故。因此,当网络足够大时,就需要采用消弧线圈补偿电容电流,这是保证电力系统安全运行的重要技术措施之一。为避免不适当的补偿给电力系统安全运行带来威胁,首先必须正确测定系统的电容电流值,并据此合理调整消弧线圈电流值,才能做到正确调谐,既可以很好地躲过单相接地的弧光过电流,又不影响继电保护的选择性和可靠性。 目前,电容电流的测定方法很多,通常采用附加电容法和金属接地法进行测量和计算,但前者测量方法复杂,附加电容对测量结果影响较大,后者试验中具有一定危险性。目前,根据各种消弧线圈不同的调谐原理,有多种间接测量电网电容电流的方法。其根本思想都是利用电网正常运行时的中性点位移电压、中性点电流以及消弧线圈电感值等参数,计算得到电网的对地总容抗,然后由单相故障时的零序回路,计算当前运行方式下的电容电流。 在实际运行中,对于出线数较多、线路较长或包含大量电缆线路的配电系统,当其发生单相接地故障时,对地电容电流会相当大,接地电弧如果不能自熄灭,极易产生间隙性弧光接地过电压或激发铁磁谐振,持续时间长,影响面大,线路绝缘薄弱点往往还会发展成两相短路事故。因此,DL/T620-1997《交流电气装置的过电压保护和绝缘配合》规定:3~10kV钢筋混凝土或金属杆塔的架空线路构成的系统和所有35kV、66kV系统,当单相接地故障电流大于10A时应装设消弧线圈;3~10kV电缆线路构成的系统,当单相接地故障电流大于30A,又需在接地故障条件下运行时,应采用消弧线圈接地方式。消弧线圈一般为过补偿运行(即流过消弧线圈的电感电流大于电容电流),也就是说装设的消弧线圈的电感必须根据对地电容电流的大小来确定,以防止中性点不接地系统发生单相接地而引起弧光过电压。 故障后,消弧线圈必须快速合理地补偿电容电流,以使接地电弧快速自熄,所以消弧线圈应实时跟踪电网运行方式的变化,在电网正常运行时,测量计算当前运行方式下的电容电流,以合理调节消弧线圈的出力。显然,电网电容电流的

电容电流估算方法

1.1.1 电容电流估算方法 1.1.1.1 6~10kV 电网单相接地电流的计算 在中性点不接地的6~10kV 电网中,电网每相对地存在着分布电容和分布绝缘电阻,在计算接地电流时,可以把它们用集中参数来表示,如图8所示。当电网某相发生单相经电阻接地时(电阻为零便为直接接地),在接地点有一接地电流流过,下面分析一下接地电流的计算。 图8 6~10kV 供电系统 A U 、B U 、C U ——电网各相电源电压;A U ' 、B U ' 、C U ' ——电网各相对地电压; C ——电网每相对地电容;R ——电网每相对地绝缘电阻;E R ——接地电阻 当电网某相(如图8中的A 相)经电阻E R 接地时,按照对称分量法的原理, 可以将故障点处的三相电流、电压分解成正序电流(1A I 、1B I 、1C I )、电压(1A U 、1 B U 、1 C U );负序电流(2A I 、2B I 、2C I )、电压(2A U 、2B U 、2C U )和零序电流0I 、零序电压0U 。可以求出流过电阻E R 的电流E I 和各序电流之间]的关系为: E A A I I I I 3 1021=== (31) 由(31)式得出复合序网如图9所示。 C U

图 9 单相接地故障的复合序网 图9中1Z 、2Z 、0Z 分别表示电网的正序阻抗、负序阻抗、零序阻抗,由于1Z 、2Z 是电网线路和变压器的漏抗与电网对地阻抗的并联,很小,均可忽略,0Z 是电网线路阻抗与电网对地阻抗的串联,有:1Z =2Z ≈0,0Z ≈Z = C j R ω+1 1。 根据对称分量的原理,故障点处的对地电压: ?????++='++='++='0 21021021U U U U U U U U U U U U C C C B B B A A A (32) 可以得出: ???????======0 22211 1C B A C C B B A A U U U U U U U U U (33) 所以在故障点存在有正序电压和零序电压,负序电压接近于零。 下面分析计算一下零序电压和零序电流以及接地电流。根据前面的分析我们知道:流过每相对地电容和对地绝缘电阻及流过接地电阻的电流分别为: E R 3

电容电流测试报告

XZZNDQAQ-2014-019 某某煤矿集团西风井35kV变电所6kV电网单相接地电容电流测试报告 徐州智能电气安全研究所 二〇一四年四月

编写:审核:审批:

1. 测量方案 1.1. 测量原理 电网对地电容电流常用的测量方法有:单相直接接地测量法、单相经电阻接地测量法、附加电容测量法和注入法等。其中单相直接接地测量法属于直接测量方法,其它属于间接测量方法。本次测试采用单相经电阻接地测量法,该方法有简单、易实施、测试过程安全、测量精度高、测试时间短、对电网冲击小等优点,并且适用于中性点非有效接地系统各种中性点接地形式,具体原理如下。 R 图1-1 中性点不接地电网绝缘参数测量模型 上图为中性点不接地电网的绝缘参数测量模型,C 、r 分别为各相对地电容和绝缘电阻。考虑到试验的安全性,采用电网单相经电阻接地的方法,电网的一相经接地电阻和电流表接地。接地电阻R 根据电网类型一般在500~1000Ω范围选取,接地电流控制在几安培范围,测量必要的参数,即可求出电网单相直接接地时的接地电流。 电网单相接地电流是电网对地总的零序电流之和,理论推导可知,不管是直接接地,还是经过电阻接地,电网对地总的零序电流(接地电流)是同零序电压成正比关系。因此,测量出电网单相经电阻接地时的零序电压,就能得到单相电网直接接地的电流。其计算公式是: 2 02 l E R U I I U (1-1) 式中:I E 为电网单相直接接地电流 U l2为电压互感器二次线电压 U 02为电网单相经电阻接地时的二次零序电压 I R 为电网单相经电阻接地的电流 因此,只要测得电网的二次线电压、零序电压、单相经电阻接地时电阻流过

大电流接地系统与小电流接地系统

大电流接地系统与小电流接地系统(不接地系统)发生故障的区别,对系统设备运行的影响,处理原则和注意事项。 中性点直接接地(包括经小阻抗接地)得系统,当发生单相接地故障时,接地电流一般都比较大,所以称为大电流接地系统.一般110kv及以上的系统采用大电流接地系统。 中性点不接地或经消弧线圈接地的系统,发生单相接地故障时,由于不构成短路回路,接地短路电流比负荷电流小很多,这种系统称为小电流接地系统。一般66kv及以下系统常采用这种系统 1 中性点不接地电网的接地保护 中性点不接地系统的接地保护、接地选线装置 (1) 系统接地绝缘监视装置:(陡电6.0KV厂用电系统) 绝缘监视装置是利用零序电压的有无来实现对不接地系统的监视。 将变电所母线电压互感器其中一个绕组接成星形,利用电压表监视各相对地电压,另一绕组接成开口三角形,接入过电压继电器,反应接地故障时出现的零序电压。 当发生单相接地故障时,开口三角形出现零序电压,过电压继电器动作,发出接地信号。 该保护只能实现监测出接地故障,并能通过三只电压表判别出接地的相别,但不能判别出是哪条线路的接地。要想判断故障线路,必须经拉线路试验。且若发生两条线路以上接地故障时,将更难判别。 装置可能会因电压互感器的铁磁谐振、熔断器的接触不良、直流的接地、回路的接触不良而误发或拒发接地信号。(2) 零序电流保护:零序电流保护是利用故障线路的零序电流比非故障线路零序电流大的特点来实现选择性的保护,如DD-11接地电流继电器和南自厂的RCS-955系列保护。 该保护一般安装在零序电流互感器的线路上,且出线较多的电网中更能保证它的灵敏度和选择性。但由于零序电流互感器的误差,线路接线复杂,单相接地电容的大小、装置的误差、定值的误差、电缆的导电外皮等的漏电流等影响,发生单相接地故障线路零序电流二次反映不一定比非故障线路大,易发生误判断、误动。 (3) 零序功率保护: 零序功率方向保护是利用非故障线路与故障线路的零序电流相差180°来实现有选择性的保护。如传统的零序功率方向继电器,无人值守综自所应用的如南瑞DSA113、119系列零序功率方向保护。 零序功率方向保护没有死区,但对零序电压零序电流回路接线等要求比较高,对系统中有消弧线圈的需用五次谐波功率原理。 (4) 小电流接地选线综合装置:

单相接地电容电流

自动化论坛: 单相接地电容电流的计算方法 单相接地电容电流的计算 4.1 空载电缆电容电流的计算方法有以下两种: (1)根据单相对地电容,计算电容电流(见参考文献2)。 Ic=√3×UP×ω×C×103 式中: UP━电网线电压(kV) C ━单相对地电容(F) 一般电缆单位电容为200-400 pF/m左右(可查电缆厂家样本)。 (2)根据经验公式,计算电容电流 Ic=0.1×UP ×L 式中: UP━电网线电压(kV) L ━电缆长度(km) 4.2 架空线电容电流的计算有以下两种: (1)根据单相对地电容,计算电容电流 Ic=√3×UP×ω×C×103 式中: UP━电网线电压(kV) C ━单相对地电容(F) 一般架空线单位电容为5-6 pF/m。 (2)根据经验公式,计算电容电流 Ic= (2.7~3.3)×UP×L×10-3 式中: UP━电网线电压(kV) L ━架空线长度(km) 2.7━系数,适用于无架空地线的线路 3.3━系数,适用于有架空地线的线路 关于单相接地电容电流计算 单相接地电容电流我所知道估算公式: 对架空线:Ic=UL / 350 对电缆:Ic=UL / 10 我想请问的是L是指的架空线长度还是架空线距离?比如是三相的L是不是为距离X 3 另请问有没有更详细的计算方法? 工业与民用配电设计手册上对L的定义是线路的长度,单位km,这里的长度与楼主说的距离是同一个概念,也就是说L是指架空线或电缆的距离,三相不需要再用距离乘以3 更详细的单相接地电容电流计算公式见附件,摘自工业与民用配电设计手册152页 描述:没有文件说明 附件:( 189 K)单相接地电容电流计算.pdf下载次数(27) 首先应该明确为什么要算这个电容电流,一般计算单相接地电容电流首先要了解,中性点接地系统的分类,什么样的系统才要计算单相接地电容电流,相关国家规定是怎样规定的,算出这个电流怎样进行相关的补偿,选用什么装置进行补偿,补偿的分类是欠补偿,还是过补

6-35kV中性点不接地系统电容电流测试方案

米易供电公司中性点不接地系统 电容电流测试方案 根据DL/T620—1997《交流电气装置过电压保护绝缘配合》规定:由水泥或金属杆构成的6kV—10kV和所有35kV 中性点不接地系统发生单相接地故障时其电容电流应小于10A,6kV—10kV电缆构成的系统其电容电流应小于30A,否则应采用消弧线圈接地方式。四川省电力公司技术监督重点也强调要加强电容电流的测试。根据公司实际情况选取XXX 个别点进行测试,掌握这些变电站发生单相接地时电容电流的大小,为不符合要求的系统提供改造科技依据。为保证测试的安全进行,特制定本方案。 一、测试方法: 采用“金属直接接和间接地测试”,该方法能直接测量系统发生单相接地故障后的实际电容电流,真实反映了在该方式运行下系统的运行情况。 步骤:选取变电站母线任一出线,断开断路器,断开母线和线路侧刀闸,在开关任一相下端用接地用接地线可靠接地,测量用钳形表挂在接地线上。合上母线刀闸,断路器,读取测试数据分析,断路开断路器,拉开母刀测试线束。取下接地线和钳形表,合上线刀和母刀,合上断路器恢复出线运行(若无备用断路器,则退出任一出线或电容器组,拉开

线刀,测试结束恢复出线运行)。 测试接线图如下: 二、测试变电站: 根据变电站电容电流估算,确定XXXX站为测试点: XX站10kv母线分列运行,1M、3M分别测试。 XXX站并列运行,测试一次。 三、测试时注意事项: 必须在天气较好的情况下进行测试,测试过程中在一相接地读取测试数据时,非接地两相的电压升高至线电压,有可能危害非接地相的绝缘薄弱处,形成两相接地短路故障,造成线路停电。为此现场应作好10kV、35kV设备绝缘检查工作,保证断路器的准确跳闸试验(保护的灵敏性、可靠性等),同时考虑投入后备保护问题。 测试时接地线和地网必须接地良好,以免产生弧光接地过电压。 测试时测量表计应放在绝缘垫上,人员远离测量线和接地点,满足安规规定安全距离的要求。

小电流接地故障现象及原因分析(正式版)

文件编号:TP-AR-L2950 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 小电流接地故障现象及 原因分析(正式版)

小电流接地故障现象及原因分析(正 式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 1 引言 随着全国农村电网改造工程的全面展开,农村供 电网络健康水平明显提高,小接地电流电网中三相对 地电压不平衡现象是电网异常和故障的反映,电气运 行人员若能正确判断并限制故障发展,迅速排除故 障,则可保证电网安全运行。反之,往往导致配电变 压器电磁式电压互感器烧损、高压熔断器熔断、避雷 器爆炸、导线烧断、线路短路、保护误动、大面积停 电等事故发生。

1 引言 随着全国农村电网改造工程的全面展开,农村供电网络健康水平明显提高,小接地电流电网中三相对地电压不平衡现象是电网异常和故障的反映,电气运行人员若能正确判断并限制故障发展,迅速排除故障,则可保证电网安全运行。反之,往往导致配电变压器电磁式电压互感器烧损、高压熔断器熔断、避雷器爆炸、导线烧断、线路短路、保护误动、大面积停电等事故发生。 2 故障现象判断与分析 2.1 绝缘监视装置自身故障的判断 2.1.1 TV熔断器一相熔断的现象与判断 (1)单相TV接线Y0/Y0/Δ接线时,由于磁路系统为单路回路,如果TV一次侧A相熔断器熔断,则

10KV的电网中性点不接地单相接地时的电容电流

10KV的电网中性点不接地单相接地时的电容电流 下面是一些摘录资料: 在GB50070-94《矿山电力设计规范》第2。0。10条中规定,“矿井6-10KV电网,当单相接地电容电流小于等于10A时,宜采用电源中性点不接地方式;大于10A时,必须采取限制措施”。这条规定是依据国内外有关科研成果和国内外现行规程、标准以及人身触电安全要求等三方面作出的。现分述如下: 1、试验研究和运行经验数据 ①《电缆网络单相接地电弧电流不自熄下限试验研究》技术鉴定书指出,“电弧引弧试验的数据近200个。这些数据客观地、真实地描述了在给定工况条件下,电缆接地电弧电流的熄灭情况”。部级鉴定委员会同意由西北电力中试所和北京煤炭设计研究院完成的试验研究报告,并肯定该报告可供修改规程、规范时参考。该报告的结论是,电弧接地不自熄电流下限值:全塑电缆25A;油浸纸绝缘电缆15A;交联电缆10A。以安全计应取其中最小值10A。 ②华中、湖北电力试验研究所1992年试验研究的成果表明,3-10KV架空配电线路,当电容电流在16A及以上时,不能自熄电弧;当电容电流小于10A,几乎全能自熄。 ③湖北省6-10KV配电网运行经验与上述试验研究结果一致。 ④开滦矿务局赵各庄煤矿从60年代以来,单相接地电容电流达18A左右,井下高压电缆发生着火事故次数显著增多。 ⑤原中国统配煤矿总公司6KV电网安全调研组于1988年对引起矿井电缆“放炮”事故做了统计分析。结论是,电容电流在20A左右的矿井电缆“放炮”事故仍很严重。 ⑥(GB50070-94)《矿山电力设计规范》专题组编写的《关于矿井高压电网单相接地电流限值问题的分析讨论》报告中指出,某矿实测6KV电网电容电流为16A,曾发生多重接地故障。 ⑦中国矿业大学《矿井6KV电网单相接地电流及限制方案的制定》一文指出,实验研究和仿真计算结果表明,当单相接地电弧电流小于10A时,电弧可自熄。 ⑧前苏联《煤矿供电效率的提高》专著中指出,当接地电容电流大于10A时,中性点应采用消弧线圈补偿方式。 ⑨美国EBASCO公司认为,为了减少单相接地故障对设备的损坏程度,应限制单相接地电流在10-15A范围之内。 ⑩前苏联电力专家石林才思认为,接地故障电流减小到10A以下,配电装置单相接地故障不易转变为相间短路故障。 2、国内外标准、规程的相关规定 ①《苏联电气装置安装法规》(1988年版)规定,3-20KV架空线路电网(钢筋水泥或金属电杆)和所有35KV电网,当接地电容电流大于10A时,应进行补偿。 ②美国电气标准规定,为了减少单相接地故障时对设备的损坏程度,单相接地电流应限制在不大于10-15A。 ③英国电气规程规定,由于电弧接地引起电缆故障,并常引起电气灾害,为此限制接地故障电流小于等于15A。英国变压器制造厂向我国及英国国内供货时,均保证符合这一要求。④德国矿业电气规程规定,接地故障电流大于10A时,必须加装自动跟踪补偿灭弧装置,以把接地残流限制在4A以内。 ⑤瑞典推荐中性点消弧装置的补偿效果是应使6-11KV电网故障点的残流小于等于7A。 ⑥罗马尼亚国家电气规程规定,接地电容电流大于10A时,应采用连续可调式消弧装置。

10~35kV电网单相接地电容电流的新测试法

10~35kV电网单相接地电容电流的新测试法程治盐城供电局(224002) 一、测试电容电流的必要性 10~35kV电网中性点一般采用不直接接地的方式。若发生单相接地电 容电流过大时,故障点的电弧不易熄灭,可能产生间歇性弧光过电压而损坏设备。故《过电压保护设计技术规程》规定,对35kV电网若接地电弧线圈,以抑制单相接地弧光过电压的产生。接地电容电流是选择消弧线圈补偿电流的唯一依据。现介绍一种分相接入电容法来测接地电容电流,供参考。 二、分相接入电容测试法原理 不接地系统中的每条线路,对地都存在着分布电容,并用集中电容c0代替,由于三相电路对称,对地电容基本相等,故三相线路可视为对称电路,2即 c=c=c=c;E=Eq=Ea,E=U现将外加电容c接入A相上,利用等值电ABC0ABcAφcf 源定理,可将其转化成由等值电势和等值内阻串联的简单电路。为求c上f的电压,可将c作为负荷,将其余部分作为电源画出其等值电路图(见图1)。 f 1.先计算等效电源内阻抗Z。 将U、U、U短接,由于电压恒定,即相当于电源内阻抗为零,显然从ABC?c两端(H)看进去,其Z为: fO0 后的电压U’。C断开后,三相电容组成一个对称的星形2.求断开ctHOf

负载,则电容器中性点O’和电源中性点O重合,故开路电压U’=E=U。HOAφ由于开路电压和内阻均已求出,利用等值电源定理画出其等值电路(见图 2)。 3.计算系统电容电流 由于外加电容c接入后,流过此电容的电流即可测出,同时由于三相不对f 称,在P开口三角处即可测出中性点位移电压U’的大小。从图2可看出,此TOO电路相当于c与3c和电源E串联电路,此时流过c的电流为: f0f 由于流过c、3c的电流同相,故U’与U’同相见图3: f0OOAO 由于知道了3c两端的电压,知道了流过c的电流:故 0f

浅谈矿井接地电容电流测试及其补偿

浅谈矿井接地电容电流测试及其补偿 发表时间:2019-09-17T11:14:29.927Z 来源:《电力设备》2019年第7期作者:黄奇1 贾宝田2 李楠2 [导读] 摘要:介绍了6KV中性点不接地系统中电容电流过大的危害,并采用偏置电容法测试接地电容电流,阐述了新型消弧线圈自动跟踪补偿装置的组成及特点。 (铁法煤业(集团)有限责任公司供电部辽宁铁岭 112700) 摘要:介绍了6KV中性点不接地系统中电容电流过大的危害,并采用偏置电容法测试接地电容电流,阐述了新型消弧线圈自动跟踪补偿装置的组成及特点。 关键词:接地电容电流;新型消弧线圈自动跟踪补偿装置 引言 在矿井供电系统6kV中性点不接地系统(小电流接地系统)中:当一相发生金属性接地故障时,接地相对地电位为零,其它两相对地电位比接地前升高倍,一般情况下,当发生单相金属性接地故障时,流过故障点的短路电流仅为全部线路接地电容电流之和其值并不大,发出接地信号,值班人员可在2小时内选择和排除接地故障,保证连续不间断供电。根据《煤矿安全规程》第434条规定“矿井高压电网的单相接地电容电流不得超过20A,否则,必须采取限制措施”。 1、单相接地电容电流的危害 矿区供电系统的配电线路以电缆为主,6kV出线总长度增加,对地电容较大时,单相接地电流就不容忽视。单相接地电容电流过大的对矿区供电产生很大的危害,主要体现在以下方面: 1)线路发生接地时,接地点电弧不能自行熄灭,出现间歇性电弧接地时,产生弧光接地过电压,这种过电压可达相电压的3-5倍或更高,它不仅击穿电网中的绝缘薄弱环节,还造成用电设备、电缆、变压器等绝缘老化,缩短使用寿命,而且对整个电网绝缘都有很大的危害。 2)产生的接地电容电流流入接地网后由于接地电阻的原因,使整个接地电网电压升高,危害人身安全。 3)在雷雨季节,配电网对地电容电流增大后,会提高单相接地引起的短路跳闸事故。 4)入井电缆发生接地或者发生相间短路,产生的接地电弧还会直接引起火灾,甚至直接引起可燃气体、煤尘爆炸。 2、单相接地电容电流的测试 为了更好的掌握矿井变电所接地电容电流的情况,我们采用了偏置电容法进行间接测量。单相接地电容电流测定接线如图1所示,选用高压6 kV并联补偿电容器,容量20~40kvar,电流表选用0.5级的0~5A交流或交直流电流表,电压表选用可测交流的0.5级0~30V的一只,串接电容器的连接导线应选用截面积不小于15mm2 的铜芯电缆,测量开口三角电压,0~150V的二只。图2中的PT 为变电所6kV 母线三相五柱电压互感器。接好线后,备用开关柜送电, 分别测量出A、B、C在单独串联电容器时,流过偏置电容的电流为IA、IB、IC取平均值I’;同时读取6KV电压互感器二次侧开口三角相电压Uao、Ubo、Uco取平均值U’’与PT二次侧的电压继电器的相电压值UA、UB、UC取平均值U’。 图1 偏置电容法测量原理图 图2 PT变电所6KV母线三相五柱式电压互感器 根据测量数据通过公式Id= I’计算出变电所6KV接地电容电流值。测量应注意以下事项:

小电流接地系统接地故障分析知识讲解

小电流接地系统 单相接地故障分析与检测 为了提高供电可靠性,配电网中一般采取变压器中性点不接地或经消弧线圈和高阻抗接地方式,这样当某一相发生接地故障时,由于不能构成短路回路,接地故障电流往往比负荷电流小得多,因而这种系统被称为小电流接地系统。 小电流接地系统中单相接地故障是一种常见的临时性故障,当该故障发生时,由于故障点的电流很小,且三相之间的线电压仍保持对称,对负荷设备的供电没有影响,所以允许系统内的设备短时运行,一般情况下可运行1-2个小时而不必跳闸,从而提高了供电的可靠性。但一相发生接地,导致其他两相的对地电压升高为相电压的倍,这样会对设备的绝缘造成威胁,若不及时处理可能会发展为绝缘破坏、两相短路,弧光放电,引起去系统过压。然而当系统发生单相接地故障时,由于构不成回路,接地电流是分布电容电流,数值比负荷电流小得多,故障特征不明显,因此接地故障检测仍是一项世界难题,很多技术有待克服。 单相接地故障分析 当任意两个导体之间隔着绝缘介质时会形成电容,因此在简单电网中,中性 ,在相电压作用下,点不接地系统正常运行时,各相线路对地有相同的对地电容C 每相都有一个超前于相电压900的对地电容电流流入地中,然而由于电容的大小与电容极板面积成正比而与极板距离成反比,所以线路的对地电容,特别是架空线路对地电容很小,容抗很大,对地电容电流很小。 系统正常运行时,如图1,由于三相相电压U A、U B、U C是对称的,三相对地电容电流I co.A、I co.B、I co.C也是平衡的,因此,三相的对地电容电流矢量和为0,没有电流流向大地,每相对地电压就等于相电压。

图1中性点不接地电力系统电路图与矢量图 当系统中某一相出现接地故障后,假设C相接地,如图2所示,相当于在C 相的对地电容中并联了一个大电阻,由于故障电流I C没有返回电源的通路,只能通过另外两项非故障A、B相线路的对地电容返回电源。此时C相线路的对地电压为U C’ = U CD = 0,而A相对地线电压即U A’ = U AD = U AC = -U CA = -U C∠-300 = U B∠-900,而B相对地线电压即U B’ = U BC = U B∠-300,则U A’和U B’相差600。非故障相中流向故障点的电容电流I AC= U A’jwC0,I BC= U B’jwC0,且I AC、I BC超前U A’和U B’ 900,I AC、I BC大小相等为I co.A之间相差600。 图2中性点不接地电力系统发生C相接地故障电路图与矢量图由此可见,C相接地时,不接地的A、B两相对地电压U A’和U B’由原来的相电压升高到线电压,即值升高到原来的倍,相位由原来的相差1200变为相差600。此时,从接地点流回的电流I C应为A、B两相的对地电容电流之和,即I C = I AC + I BC。

采用外接电容法测量10千伏系统单相接地电容电流方法

采用外接电容法测量10千伏系统单相接地电容电流方法 发表时间:2016-12-13T14:47:05.813Z 来源:《电力设备》2016年第19期作者:侯保清 [导读] 近几年,随着国家对农网建设投资力度的不断加大,每个县域的配网10KV系统的建设得到了持续有力的发展。 (国网河南方城县供电公司河南方城 473200) 摘要:近几年,随着国家对农网建设投资力度的不断加大,每个县域的配网10KV系统的建设得到了持续有力的发展,使得县域10KV 配网运行也越来可靠坚强。但是,在配网网架变得越来越坚强的同时,10KV系统的容性电流也变得越来越大,若不及时掌握自身区域内 10KV系统在正常运行方式下,电容电流的大小,为变电站是否需要安装消弧线圈提供准确依据,则为变电站发生接地点弧光过电压,发生设备烧毁事故埋下隐患。因此,定期测量10KV配网容性电流,找出一种简单、可靠的容性电流测量方法,对提高配电网安全稳定运行有着十分重要的意义。经过多方试验,采用外接电容测量10千伏系统单相接地电容电流方法十分可行。 关键词:电容、电流、测量、设备 一、测试环境和人员要求: 在计划对10KV配网系统进行容性电流测试时,应选择在天晴晴朗,微风或无风,湿度不大于80%情况下时进行,同时,测试人员要求:现场总指挥一名,工作负责人一名,测试人员一名,数据记录一人,接线配合人员2到3人。 二、所备测试设备: 额定电压为11千伏,容量为3微发电容器2到3只;交流电流表一个,量程为5A,10A和20A,精度不大于0.5级;数字千伏表一个(可选),量程为20千伏或100千伏,精度不大于0.5级;数字万用表一个。 三、测试原理: 采用外接电容法测量单相接地电容电流。 在任一相加上已知电容Cf,测量加偏置电容前后的电压即可计算出系统电容电流。 Ic=If? (A) 式中:If=ω?Uφ′?Cf 即流过偏值电容的电流,单位A。 UΦ为加上偏值电容前的相电压,单位V; UΦ′为加上偏值电容后的相电压,单位V; Cf 为施加的偏置电容,单位为F(法拉),1微发(μF)=10-6法拉(F)。 外加电容采用2--4台电容量为3.2μF,容量为30kvar电容器并联。相电压通过阻容分压器测量,If通过串联在电容器回路中的电流表测量。在测量中为了减少误差,可以采用三相轮流加压的办法来测量系统电容电流。原理图见下: 外加1μF的电容器时,流过电容器的电流为: If=ω?Uφ?Cf =2*3.14*50*(104/1.732)*1*10-6=3.14/1.732=1.813(A) 四、实施测试前准备工作: 1、确认天气良好,符合测试要求,系统无接地,所有出线全部正常运行。 2、对所选择的电容器进行高压试验,极对外壳绝缘电阻;交流耐压(30千伏1分钟)试验完好;电容量与名牌相符;充放电正常。 3、电流表精度正确,指针或数字显示完好。 4、数字电压表完好,显示正确,无异常。 五、实施测试步骤: 1、选取最近运行过或正在运行中的电容器组,进行该接线,作为测试部位;断开该组电容器(如1号电容器),并放电做安全措施; 2、选取该组电容器任意一相(如A相)中若干个电容器,进行串联或并联接线改造,使得其通过相电压时流过的电流在10A左右。将交流电流表串接在改接好的电容器接地极与地之间,要求确保接线牢固,电流表的接地端必须可靠接地,并经反复确认,电流表应放置在围栏内侧,并方便读数的位置;电容器高压接线端要直接接在乙刀闸上,或短接该相串联电抗器;数字高压电压表并接于电容器和地之间(可选),退出该组电容器的所有保护。 3、断开变电站10KV母联100开关,用数字万用表测量两段母线电压互感器各相电压,并换算成系统一次相电压,分别记录为UA1:UB1:UC1和UA2:UB2:UC2。 4、测试人员离开测试现场10米以上距离,确保现场没有人员后,合上该组电容器的开关,站内设备无异常后,用数字万用表测量各相电压,记录并换算成一次相电压,分别记录为U/A1:U/B1:U/C1和U/A2:U/B2:U/C2;读取电流表数据If1(A);记录数据后,断开该组电容器开关,并做安全措施。 5、利用公式Ic=If? (A)进行计算,就得到该组电容器所在母线上的电容电流(注意单位换算),在确认测试数据于估测数据基本一致或确认测试正确后,再进行下一步测试。。 6、合上100开关,用数字万用表测量两段母线电压互感器各相电压,并换算成系统一次相电压,分别记录为UA10:UB10:UC10和UA20:UB20:UC20。 7、测试人员离开测试现场10米以上距离,确保现场没有人员后,合上该组电容器的开关,站内设备无异常后,用数字万用表测量各

小电流接地故障现象及原因分析

小电流接地故障现象及原因分析 摘要:随着全国农村电网改造工程的全面展开,农村供电网络健康水平明显提高,小接地电流电网中三相对地电压不平衡现象是电网异常和故障的反映,电气运行人员若能正确判断并限制故障发展,迅速排除故障,则可保证电网安全运行。反之,往往导致配电变压器电磁式电压互感器烧损、高压熔断器熔断、避雷器爆炸、导线烧断、线路短路、保护误动、大面积停电等事故发生。 关键词:小电流接地故障原因分析 1 引言 随着全国农村电网改造工程的全面展开,农村供电网络健康水平明显提高,小接地电流电网中三相对地电压不平衡现象是电网异常和故障的反映,电气运行人员若能正确判断并限制故障发展,迅速排除故障,则可保证电网安全运行。反之,往往导致配电变压器电磁式电压互感器烧损、高压熔断器熔断、避雷器爆炸、导线烧断、线路短路、保护误动、大面积停电等事故发生。 2 故障现象判断与分析 2.1 绝缘监视装置自身故障的判断 2.1.1 TV熔断器一相熔断的现象与判断 (1)单相TV接线Y0/Y0/Δ接线时,由于磁路系统为单路回路,如果TV一次侧A相熔断器熔断,则二次侧A相无感应电压,但因TV负载另两侧相电压与A相形成一串联回路,故A相对地有很小的电压,A相二次熔断器熔断时,也同样因TV有负载,A相有很小的电压,电压表可能有一点指示。 (2)三相五柱式TV接成Y0/Y0/Δ接线时,它们的磁路是互通的,高压侧A相熔断器熔断,二次侧A相仍能感应出一定的电压,但此时的A相电压比单相TV接线时要高一些,二次侧断开一相时,情况与单相TV接线时相同。 2.1.2 TV熔断器两相熔断的现象与判断 (1)高压熔断器两相熔断时,熔断的两相相电压很小或接近于零,未熔断一相的相电压接近于正常相电压。熔断器熔断的两相相间电压为零(即线电压为零),其它线电压降低,但不为零。 (2)低压熔断器熔断两相时,熔断的两相相电压降低很多,但不为零,未断的一相电压正常,熔断器熔断的两相间电压为零,其它线电压降低,但不为零。 2.1.3 TV一次侧中性线断线的现象与判断

10KV电网单相接地电容电流1

山西朔州山阴金海洋台东山煤业有限公司 35kv变电站10KV母线单相接地电容电流测试报告中性点不接地系统的优点是单相接地电流较小,单相电流不形成短路回路,电力系统安全运行规章规定可继续运行1~2小时。但是,长时间接地运行,极易形成俩相接地短路,弧光接地还会引起全系统过电压。特别是矿井电网,因其大部分为电缆供电,若单相接地电流较大,加之井下环境恶劣,故障多,高压电缆经常发生单相漏电或单相接地故障,且过大的单相接地电流经常引起电缆放炮和击穿现象,影响正常生产,并给矿井和人身安全带来严重后果。因此,正确测量、了解电网单相接地电流情况,对保证矿井安全运行极为重要。 1 单相接地电流及其分量的测量方法 电网单相对地绝缘参数的常用测量方法有:附加电源测量法,交流伏安法,中性点位移电压法,谐振测量法。其中第一种方法所测的是测量频率下的绝缘参数,只可间接地反映工频下的绝缘参数;而后三种方法是采用电网工作电源进行测量,反映了电网的实际绝缘参数。中性点位移电压法也称间接测量法,是目前测量小电流接地系统单相接地电容电流的常用方法。其一般作法是在电网一相与地之间接入一个附加电容,实测流过此电容的电流与中性点位移电压,通过计算来求得电网单相接地电容电流。但由于电容的充电效应,在人为接地的瞬间,相当于在电网中产生了一个金属性接地故障,这显然不利于安全。因此,有必要研究一种更加安全可靠地新方法,即单相经电

阻接地的间接测量方法。 图1 中性点不接地电网绝缘参数测量模型 图1为一中性点不接地电网的绝缘参数测量模型,C 、r 分别为各相对地电容和绝缘电阻。考虑到实验的安全性,采用电网单相经电阻接地的方法,电网的任何一相(如A 相)经附加电阻R 和电流表A 接地。接地电阻R 选用500—1000 Ω,接地电流可控制在几安培,并通过理论计算,求出电网单相直接接地时的电流。 我们知道,电网单相接地电流是电网对地总的零序电流之和,不管是直接接地,还是经过电阻接地,电网对地总的零序电流(接地电流)是同零序电压成正比关系。因此,测量出电网单相经电阻接地时的零序电压,就能得到单相电网直接接地的电流。其计算公式是: R E I U I ?=02 100 (1)

相关文档
最新文档