辐射杂散骚扰测试

辐射杂散骚扰测试

辐射杂散骚扰测试(RSE)辐射杂散骚扰测试(RSE)

1. 辐射杂散骚扰测试项目:辐射杂散骚扰(RSE)

2. 辐射杂散骚扰测试参考标准:3GPP 51.010 -1 version 9.4.0 Release 9

3. 辐射杂散骚扰测试频率范围:0.1MHz-18GHz

4. 辐射杂散骚扰主要测试设备:接收天线,频谱仪,全电波暗室

限值:

表 1 移动通信终端辐射杂散骚扰限值(专用模式)

频率范围/MHz 峰值/dBm

GSM850GSM900DCS1800PCS1900

0.1~1000-36-36-36-36 1000~1710-30-30-30-30 1710~1785-30-30-36-30 1785~12750-30-30-30-30表 2移动通信终端辐射杂散骚扰限值(空闲模式)

频率范围/MHz

峰值/dBm

GSM850GSM900DCS1800PCS1900

30~880-57-57-57-57 880~915-57-59-59-57 915~1000-57-57-57-57 1000~1710-47-47-47-47 1710~1785-47-53-53-47 1785~1850-47-47-47-47 1850~1910-53-47-47-53 1910~4000-47-47-47-47

辐射杂散整改(RSE)

电磁兼容整改分析之辐射杂散 辐射杂散(简称RSE)是指当移动台与非辐射性纯阻负载相连接或者在接收机状态时,由移动台产生或放大的通过移动台机壳、电源、控制设备、音频各电缆辐射的工作频率外上的发射。在目前的国际标准中“辐射杂散”基本都将其划分在了射频项目(RF)里面,而国内标准(以YD1032为典型)则将其划分在 电磁兼容(EMC)的测试内容内。 相信接触过无线发射产品认证的朋友都对辐射杂散比较了解,也许还会带点感情色彩认为这个项目比较讨厌,因为无论是在做国内或国际认证中,任何的无线发射产品都逃不掉此项测试要求。从设计及整改角度来讲,对工程人员来说辐射杂散的整改也是其最为头痛的工作内容之一,尤其针对高功率发射产品,如2G,3G设备跟是如此。本文根据摩尔实验室(MORLAB)日常工作经验,以典型的手机产品为例,在此抛砖引玉与大家一起分享一下手机在辐射杂散方面的整改心得。 一.测试场地的布局: 标准辐射杂散的布局如下,其中图一为原理图,图二为摩尔实验室辐射杂散的实景图。 图一:辐射杂散实验布置图

图二:辐射杂散实景图 二.辐射杂散的测试方法: 辐射杂散骚扰的功率点是通过“置换测试法”来确定的。用电波暗室先进行预校正(由信号源和基准天线组成)再置换移动台来进行发射,通过测试接收机得到相同的功率后,则此时预校正器的发射功率就是EUT(被测物)辐射杂散骚扰的功率电平。 三.辐射杂散的指标: 根据不同的产品所对应的标准,辐射杂散的相关指标要求也有所差别,但大体可归纳如下: 发射机的辐射杂散测试要求: 频率限值适用范围 30MHz – 1GHz 1GHz –4GHz, -36dBm -30dBm 欧盟及中国各 类标准 30MHz – 10th-13dBm 美洲

辐射发射实例

通信产品辐射发射超标问题的解决 Solution to the Out-of-limits of Radiated Emission of Communication Products 2003-11-27 作者:赵建平 / Zhao Jianping陈工羽 / Chen Gongyu雷新 / Lei Xin 摘要:文章从通信产品高速数字电路单板在EMC试验中辐射发射超标入手,讨论了辐射发射产生的原因,并结合理论与实践,详细描述了解决高速电路辐射发射超标的过程。 关键字:辐射发射;谐波;电磁干扰;电磁兼容;信号完整性;屏蔽 英文摘要:The EMC test of high-speed digital circuit board of communication products indicates that the radiated emission often exceeds general limits. The reason why radiated emission occurs is discussed, and the process of reducing the radiated emission of a high-speed circuit is described in detail, both theoretically and practically. 英文关键字:Radiated emission; Harmonic waves; EMI; EMC; Signal integrity; Shielding 1 问题的提出 通信技术的发展要求器件的速度愈来愈高,由此引起的电磁兼容问题就更加严重。本文以无线宽带接入系统的终端用户单元(SU)为例,来探讨通信产品的辐射发射超标问题。 无线宽带接入系统的终端用户单元由860小系统、8240小系统、FPGA(现场可编程门阵列)和基带中频单元组成,其中860小系统、8240小系统和FPGA电路在一块PCB(印刷电路板)上,称为网络接口板;基带中频电路单独为一块PCB,称为基带中频板。二者通过插座相连,传递信号和电源。设备外壳为注塑壳体,内层没有喷涂导电漆。笔者对该产品辐射发射指标进行了测试。 测试环境为电波暗室,测试设备为宽带天线、频谱分析仪和信号放大器,天线可以在1 m与4 m高度范围内升降,被测产品放置在一个可360°旋转的平台上,距离天线3 m。测量时转动平台,升降天线找到最大干扰,天线测量取水平和垂直两种极化。 按照接入设备的电磁兼容(EMC)测试要求,设备上电正常运行,测试仪器在30~1 000 MHz的频率范围内进行扫描,其中在30~230 MHz频率范围内要求电磁干扰(EMI)的准峰值低于40 dBuV/m,在230~1000 MHz频率范围内,EMI的准峰值低于47 dBuV/m。测试的结果是:在垂直方向上,412.5 MHz处超标4.08 dB,577.5 MHz处超标3.5 dB;在水平方向上,577.5 MHz处超标7.9 dB,参见图1。 (a) 垂直方向测试曲线 (b) 水平方向测试曲线 图1 SU的辐射发射测试结果 (注:采用欧洲标准EN55022,天线距被测设备3m)

(完整版)射频指标测试介绍

目录 1GSM部分 (1) 1.1常用频段介绍 (1) 1.2 发射(transmitter )指标 (2) 1.2.1发射功率 (2) 122 发射频谱(Output RF spectrum) (4) 1.2.2.1调制频谱 (4) 1.2.2.2开关频谱 (5) 1.2.3 杂散(spurious emission) (5) 1.2.4 频率误差(Frequency Error) (6) 1.2.5 相位误差( Phase Error) (6) 1.2.6功率时间模板(PVT) 7 1.2 接收(receiver) 指标 (8) 1.2.1接收误码率(BER (8) 2 WCDMA (9) 2.1常用频段介绍 (9) 2.2 发射(Transmitter )指标 (9) 2.3 接收(receiver) 指标 (15) 3 CDMA2000 (15) 3.1常用频段介绍 (15) 3.2 发射(transmitter )指标 (16) 3.3 接收(receiver) 指标 (19) 4 TD-SCDMA 部分 (20) 4.1常用频段介绍 (20) 4.2 发射(transmitter )指标 (20) 4.3 接收指标( Receiver) (26) 1GS M部分 1.1常用频段介绍

1.2 发射(transmitter)指标 1.2.1发射功率 定义:发射机载波功率是指在一个突发脉冲的有用信息比特时间上内,基站传送 到手机天线或收集及其天线发射的功率的平均值。 测量目的:测量发射机的载波输出功率是否符合GSM规范的指标。如果发射功 率在相应的级别达不到指标要求,会造成很难打出电话的毛病,即离基站近时容易打出而离基站远时打出困难,往往表现出发射时总是提示用户重拨号码。如果 发射功率在相应的级别超出指标的要求,则会造成邻道干扰。 测试方法: 手机发射部分由发射信号形成电路、功率放大电路、功率控制电路三个单元组成。 GSM频段分为124个信道,功率级别为5----33dBm,即卩LEVEL5--LEVEL19共15 个级别;DCS频段分为373个信道(512----885),功率级别为0----30dBm,即LEVEL0---LEVEL15共15个级别;每个信道有15个功率等级,测试时选上、中、下三个信道对每个功率等级进行测试,每个功率等级以2dBm增减。 功率控制:由于手机不断移动,手机和基站之间的距离不断变化,因此手机的发射功率不是固定不变的,基站根据距离远近的不同向手机发出功率级别信号,手机收到功率级别信号后会自动调整自身的功率,离基站远时发射功率大,离基站 近时发射功率小。具体过程如下:手机中的数据存储器存放有功率级别表,当手 机收到基站发出的功率级别要求时,在CPU的控制下,从功率表中调出相应的 功率级别数据,经数/模转换后变成标准的功率电平值,而手机的实际发射功率经取样后也转换成一个相应的电平值,两个电平比较产生出功率误差控制电压,去调节发射机激励放大电路、预放、功放电路的放大量,从而使手机的发射功率调整到要求的功率级别上。 测试指标: DCS1 800 Power con trol Nomi nal Output Toleranee (dB) for con diti ons

RE103辐射发射测试作业指导书.

RE103辐射发射测试作业指导书 1.目的 为了正确地操作该设备,以使其操作标准化,系统化并达到实验的要求。 2.范围 本实验室之辐射发射操作系统,包括以下两个项目的测试 RE103:10KHz-40GHz天线谐波和乱真输出辐射发射 3.定义 EUT: Equipment Under Test 被测设备。 4.权责 由实验室相关工程师根据相关标准负责执行操作。 5.测试环境 环境温度:15℃-35℃; 相对湿度:25%-75%; 大气压力:86Kpa-106Kpa。 6.测试设备 9mχ6mχ6m半波暗室;VAMP9243天线,BIA-30双椎天线,BBHA9120F喇叭天线,STLP 9128E天线,3142C天线,ESU40接收机TTR48,TTR95,TTR190,TTR37,TTR750滤波器组,EM7845,EM7846滤波器。 7.仪器设备的操作 7.1 检查仪器设备是否在校准的有效期内。 7.2 打开控制仪器电源开关。 7.3 打开ESU40接收机电源开关,检查其自检是否正常。 7.4打开监视器;控制器,天线转台位置是否在0度位置。 7.5接通滤波器和滤波器组。 8.测试软件的操作 8.1打开测试软件,在File下建立新的.db文档,再在Configure的菜单下选择Radiated Emission测试,并选择测试的频率,限值及仪器校准参数,用PK值扫描,按SET键完成设置。 8.2进行频率范围的设置,设置的范围可根据产品来设置或根据客户的要求来设

8.3接收天线的极性及待测物距离的选定,天线有水平和垂直两种方式可选。8.4接收机参数的选择,可针对不同测试法规,对于测量频谱仪的测量带宽和检波方式进行不同的设置。 8.6最后检查测试限制和测试设备和单位有无选对。 9.RE103 测试配置如下 RE103 测试配置 10.测试限值 RE103:除二次和三次谐波以外,所有的谐波发射和乱真发射至少应比基波电平低80dB,二次和三次谐波应抑制50+10㏒P(P为基波峰值输出功率)或80dB,取抑制要求较小者。 11.测试整个操作设置完毕,可点击start键进行测试 ,并记录测试结果、填写原始记录。 12.参考文件 GJB151A-97 军用设备和分系统电磁发射和敏感度要求 GJB152A-97 军用设备和分系统电磁发射和敏感度测量

辐射骚扰整改方法.

辐射骚扰整改方法 辐射骚扰主要是指能量以电磁波形式由源发射到空间或能量以电磁波形式在空间传播的现象。辐射骚扰是电磁兼容的重要内容,也是测试最不容易通过且最难整改的项目,谈到电磁兼容测试不合格令人首先想到的就是辐射骚扰超标(Re F);辐射骚扰超标的产品可能引起周围装置、设备或系统性能降低或者对有生命或无生命物质产生损害,一定要整改合格、符合有关法规标准要求,产品才能顺利走向市场。 部分企业重视EMC ,开发出来的产品能够一次通过测试;但多见的情况是样品经过艰辛整改才勉强合格;有相当多IT 数码产品本来就容易发生辐射骚扰超标(Re F),要依靠EMC 设计才能有效解决问题的,可企业在产品开发阶段根本没有考虑EMC 设计,也没有进行相应EMC 测试以验证设计方案就投入量产,致使大量产品最终检验不合格而需要整改。 (二)整改要求和整改方法概述 如果产品辐射骚扰容易超标、整改不可避免,就要有负责整改的工程师;如整改工程师掌握无线电基础知识,了解辐射骚扰概念,能看懂电路和辐射骚扰测试图,兼有电子设计经验或EMC 行业工作经验,就容易形成一套解决问题的办法。 辐射骚扰整改的一般要求:对于已经材料齐套的批次产品、半成品或完成品,电路板不能改排版,成本要低,要能批量改进或生产;整改措施对下批次或类似产品设计具有指导意义。实施整改,通常要准备样品两台、说明书、电路图、结构图各一份;最好有一名熟练工人辅助操作。 > Re F整改方法:首先,初步了解产品特点,尽量多地了解当前产品辐射骚扰超标具体情况;其次,针对整改要求,了解产品电路原理,根据客户提供的信息判断是何种类型的超标(工作所需要的振荡信号谐波超标还是其它问题)以及可能的骚扰源;再次,结合电路分析,通过产品内部检查和近场探头探查,具体确定辐射骚扰源和主要的辐射发射途径;为确保入手正确,安排必要的排查测试作问题症结

杂散

电磁兼容整改分析之辐射杂散 2009-11-27 16:11:34 来源:摩尔实验室浏览次数:1839 文字大小:【大】【中】【小】关键字:电磁兼容整改辐射杂散EMC测试 辐射杂散(简称RSE)是指当移动台与非辐射性纯阻负载相连接或者在接收机状态时,由移动台产生或放大的通过移动台机壳、电源、控制设备、音频各电缆辐射的工作频率外上的发射。在目前的国际标准中“辐射杂散”基本都将其划分在了射频项目(RF)里面,而国内标准(以YD1032为典型)则将其划分在电磁兼容(E MC)的测试内容内。 相信接触过无线发射产品认证的朋友都对辐射杂散比较了解,也许还会带点感情色彩认为这个项目比较讨厌,因为无论是在做国内或国际认证中,任何的无线发射产品都逃不掉此项测试要求。从设计及整改角度来讲,对工程人员来说辐射杂散的整改也是其最为头痛的工作内容之一,尤其针对高功率发射产品,如2G,3G设备跟是如此。本文根据摩尔实验室(MORLAB)日常工作经验,以典型的手机产品为例,在此抛砖引玉与大家一起分享一下手机在辐射杂散方面的整改心得。 一.测试场地的布局: 标准辐射杂散的布局如下,其中图一为原理图,图二为摩尔实验室辐射杂散的实景图。 图一:辐射杂散实验布置图

图二:辐射杂散实景图 二.辐射杂散的测试方法: 辐射杂散骚扰的功率点是通过“置换测试法”来确定的。用电波暗室先进行预校正(由信号源和基准天线组成)再置换移动台来进行发射,通过测试接收机得到相同的功率后,则此时预校正器的发射功率就是EUT(被测物)辐射杂散骚扰的功率电平。 三.辐射杂散的指标: 根据不同的产品所对应的标准,辐射杂散的相关指标要求也有所差别,但大体可归纳如下: 发射机的辐射杂散测试要求:

EMI辐射发射测试

辐射发射测试 辐射发射(Radiated Emission)测试,是测量EUT通过空间传播的辐射骚扰场强。可以分为磁场辐射、电场辐射,前者针对灯具和电磁炉,后者则应用普遍。另外,家电和电动工具、AV产品的辅助设备有功率辐射的要求(称为骚扰功率)。 1. 辐射发射测试标准: a) 电场辐射:CISPR22,CISPR13,CISPR11,CISPR14-1,CISPR15(特定类别的玩具); b) 磁场辐射:CISPR15(工作电流频率超过100Hz的灯具),CISPR11(电磁炉); c) 骚扰功率:CISPR14-1(工作频率不超过9kHz的一部分设备除外),CISPR13(只对辅助设备)。 2. 辐射发射测试方法 1) 辐射发射测试仪器和设备: a) 电场辐射:接收机(1G以下)、频谱仪(1G以上)、电波暗室、天线(1G以下一般用双 锥和对数周期的组合或用宽带复合天线,1G以上喇叭天线); b) 磁场辐射:接收机、三环天线或单小环远天线; c) 骚扰功率:接收机、功率吸收钳。 接收机遵循CISPR16-1-1的要求,天线、场地遵循CISPR16-1-4的要求,吸收钳遵循CISPR16-1-3的要求。 2) 辐射发射测试测试布置: a)电场辐射:也是分台式与落地式,与传导发射相同(因为辐射发射结果与产品布置的关系 尤为密切,因此需要严格按照标准布置包括产品、辅助设备、所有电缆在内的受试样品); b)磁场辐射:不同尺寸的三环天线对能够测试的EUT最大尺寸是有限制的,以2m直径的环形三环天线为例,长度小于1.6m的EUT能够放在三环天线中心测试;在CISPR11中,超过1.6m的电磁炉用0.6m直径的单环远天线在3m外测量,最低高度1m; c)骚扰功率:分台式与落地式,台式设备放在0.8m的非金属桌子上,离其他金属物体至少0.8m(通常是屏蔽室的金属内墙,这个距离要求在CISPR14-1中是至少0.4m);落地式设备放在0.1m的非金属支撑上;被测线缆(LUT)布置在高0.8m、长6m的功率吸收钳导轨上,吸收钳套在线缆上,电流互感器端朝向被测设备。如果被测设备有其他线缆,在不影响功能的情况下能断开的断开,不能断开的用铁氧体吸收钳隔离。 3) 辐射发射测试频段:电场辐射一般是30MHz-1GHz(有些产品需要测超过1G,根据具体标准的规定),磁场9kHz-30MHz,骚扰功率30-300MHz。 4) 辐射发射测试限值:随不同标准,场地是3m、10m或其他尺寸,不同的产品分类(Group 1/2, Class A/B)而限值不同。 5) 辐射发射测试过程: a)30MHz-1GHz电场辐射:在半电波暗室中进行,EUT随转台360度转动,天线在1-4m高度 上下升降,寻找辐射最大值。结果用QP值表示。垂直、水平两种天线极化方向都测。 b)大于1G的电场辐射:工作频率超过108MHz的ITE设备、超过400MHz的ISM设备需要测试,是在3m场地,使用频谱仪测。ITE设备测试方法基本同30MHz-1GHz,结果用Peak与AV值表示。ISM的产品有点不同,需要在全电波暗室中测,天线同产品同高度,不升降,转台仍然转动以寻找辐射最大值; c)替代法:采用ERP(有效发射功率)来代替,再换算成场强数值。这个在RF测试中经常用到,常规EMC很少使用。替代法测试的目的是测试EUT的壳体辐射,需要拆除所有可拆卸电缆,不可拆卸的电缆上套铁氧体磁环。首先用天线A和接收机测量出EUT的最大骚扰值,然后用天线B替代EUT,调节信号发生器输出功率,直至测量接收机达到同样的值。记录替代天线B的输入端功率,即为EUT的壳体辐射功率。天线的选则根据测试频率来定; d)磁场辐射:采用三环天线的磁场辐射测试没啥好说的,样品放置在天线中心,X/Y/Z三个方向各测一组磁场辐射的结果。采用单小环天线时,天线垂直地面放置,最低部分高于地面1m,因为是近场测量,又考虑到了地面的反射,测量所得的值反映了EUT的水平和垂直的磁场分量; e)骚扰功率:对设备的所有长度超过25cm的电缆(也包括辅助设备的线缆)都需进行。因为在30-300MHz内不同频点的骚扰在被测线缆中呈驻波形式分布。因此在测量中需要沿导轨拉功率吸收钳以寻找每个终测频点骚扰功率最大的位置(大致在离设备半波长的距离处)。3. 辐射发射测试结果判定: 仍然是与限值线比较。低于PASS,高出FAIL。

EMC整改方案

篇一:emc实用整改方案 emc的分类及标准: emc = emi + ems emi : 電磁干擾ems : 電磁相容性 (免疫力) emi可分为传导conduction及辐射radiation两部分,conduction规范一般可分为: fcc part 15j class b;cispr 22(en55022, en61000-3-2, en61000-3-3) class b;国标it类(gb9254,gb17625)和av类(gb13837,gb17625)。fcc测试频率在450k-30mhz,cispr 22测试频率在150k--30mhz,conduction可以用频谱分析仪测试,radiation则必须到专门的实验室测试。 en55011辐射测试标准是:有的频率段要求较高,有的频率段要求较低。传导 (150khz-30mhz) lisn主要是差模电流, 其共模阻抗为100欧姆(50 + 50); lisn主要是共模电流, 其总的电路阻抗为25欧姆(50 // 50)。 4线 av 60db/uv150khz-2mhzstart 9khz 5线 peak100db/uv150khz-3mhz 6线 peak100db/uv2mhz-30mhz 7线 qp 70db/uv 150khz-500khz radiated (30mhz-1ghz): add 4n7/250v y cap 90db/uv 30mhz-300mhz emi为电磁干扰,emi是emc其中的一部分,emi(electronic magnetic interference) 电磁干扰, emi包括传导、辐射、电流谐波、电压闪烁等等。电磁干扰是由干扰源、藕合通道和接收器三部分构成的,通常称作干扰的三要素。 emi线性正比于电流,电流回路面积以及频率的平方即:emi = k*i*s*f。i是电流,s是回路面积,f是频率,k是与电路板材料和其他因素有关的一个常数。 2 emi是指产品的对外电磁干扰。一般情况下分为 class a & class b 两个等级。 class a为工业等级,class b 为民用等级。民用的要比工业的严格,因为工业用的允许辐射稍微大一点。同样产品在测试emi中的辐射测试来讲,在30-230mhz下,b类要求产品的辐射限值不能超过40dbm 而a类要求不能超过50dbm(以三米法电波暗室测量为例)相对要宽松的多,一般来说class a是指在emi测试条件下,无需操作人员介入,设备能按预期持续正常工作,不允许出现低于规定的性能等级的性能降低或功能损失。 emi是设备正常工作时测它的辐射和传导。在测试的时候,emi的辐射和传导在接收机上有两个上限,分别代表class a和class b,如果观察的波形超过b的线但是低于a的线,那么产品就是a类的。ems是用测试设备对产品干扰,观察产品在干扰下能否正常工作,如果正常工作或不出现超过标准规定的性能下降,为a级。能自动重启且重启后不出现超过标准规定的性能下降,为b级。不能自动重启需人为重启为c级,挂掉为d级。国标有d级的规定,en只有a,b,c。emi在工作頻率的奇数倍是最不好过的。 ems(electmmagnetic suseeptibilkr) 电磁敏感度一般俗称为“电磁免疫力”, 是设备抗外界骚扰干扰之能力,emi是设备对外的骚扰。 ems中的等级是指:class a,测试完成后设备仍在正常工作;class b,测试完成或测试中需要重启后可以正常工作;class c,需要人为调整后可以正常重启并正常工作;class d,设备已损坏,无论怎样调整也无法启动。严格程度emi是b>a,ems是a>b>c>d。回复1帖2帖 xiangyi旅长 常用的emc标准及试验配置 19262010-07-10 20:45ems部份为en55024包含7项测试:en61000-4-2:1998; en61000-4-3:1998; en61000-4-4:1995, en61000-4-5:1995; en61000-4-6:1996;

TDD-LTE-杂散干扰

1.1.1杂散干扰 1.1.1.1杂散干扰定义 由于发射机中的功放、混频器和滤波器等非线性器件在工作频带以外很宽的范围内产生辐射信号分量,包括热噪声、谐波、寄生辐射、频率转换产物和互调产物等落入受害系统接收频段内,导致受害接收机的底噪抬升,造成灵敏度损失,称之为杂散干扰。 1.1.1.2OMC频域特征 LTE杂散干扰小区PRB波形特点:PRB特征波形前高后低,呈现整体下降的趋势,如下图: 1.1.1.3干扰排查流程 步骤一、基站的数据库的核查 确定是否有共站的DCS1800M基站、OFDM基站等信息,以及相关的天线型号、设备类型以及天面安装规划图,初步确定杂散干扰源。如果有共站的DCS1800M基站、OFDM 基站,那么它们是杂散干扰源的可能性很强。 步骤二、杂散干扰源的现场排查确定 确定有共站的DCS1800M基站、OFDM基站信息后,可以安排进行现场勘查。确认是否共站的DCS1800M基站、OFDM基站安装隔离度是否存在问题,还可以通过现场关闭共站的DCS1800M基站、OFDM基站电源、加装施扰基站带通滤波器的方法,观察杂散干扰是否消失,最终确定杂散干扰源。 步骤五、整改方案的确定及实施 工程、网优、厂家、设计院联合会审、确定整改方案并实施,网优评估实施效果。 1.1.1.4干扰整治措施 LTE系统的杂散干扰,主要是F频段的设备受到的杂散干扰。目前淮安现场发现的

杂散干扰源,主要是共站DCS1800M产生的杂散干扰,另外也有少量共站OFDM基站产生的杂散干扰。 1.1.1.4.1DCS1800杂散干扰案例—更换滤波器 问题描述:城东花园1根据PRB统计为干扰小区,其PRB特征波形存在明显的前高后低的杂散干扰特征,如下: 问题分析:根据基站数据核查,城东花园1为2通道LTE基站设备,并且存在共站的DCS1800设备,城东花园1与DCS1800M小区配置成合路共天馈系统;为确认城东花园1的杂散干扰是否来自1800M小区,现场对1800M小区进行了现场闭站处理,观察干扰是否消失。关闭DCS小区后(闭站时间为15::45~16:15),城东花园1杂散的干扰波形消失,确认杂散干扰来自1800M小区。 解决验证:由于不能通过调整水平隔离、垂直隔离及方位角调整进行有效隔离,我们采用在城东花园1小区共天馈的DCS1800M的1小区上加装滤波器,虑除1800M带外杂散,如下: 对城东花园1共站1800M小区加装滤波器后,杂散干扰得到抑制。

辐射功率和场强测试

应用笔记3815 UHF ISM 波段发射器的辐射功率和场强测试 Oct 23, 2007 摘要:工作在工业、科学及医疗(ISM)波段,频率范围为260MHz 至470MHz 的近距离无线通信已广泛用于遥控无钥匙门禁系统(RKE)、家庭安防和遥控装置。无线发射器的一个关键参数是通过天线发射的功率,该功率必须足够大,以保证发射到接收链路的可靠性,但是,这个功率还必须限制在FCC 规范15.231部分规定的辐射功率以内。本文讨论了在260MHz 到470MHz 频率范围内,FCC 规范对场强的要求和接收机测试的典型指标,表格中列出了现场测试的数据。 概述 通常,工作在260MHz 至470MHz 工业、科学和医疗频段(ISM )的发射天线都非常小,只能辐射发射机功率放大器输出功率的一小部分。由此看来,对于发射功率的测量非常重要。具体的测量工作十分复杂,因为FCC 规范的15.231部分规定了距离发射器3米处的场强(V/m)限制。另外,接收天线的放置以及测量中使用的接收单元都会影响辐射功率的测量。 本文将解释辐射功率与场强以及测量接收器的关系。表格中给出了260MHz 至470MHz 频段的FCC 场强要求与辐射功率的对应关系,并给出了接收机测量的典型参数。通过上述关系可以了解一些转换因数,用户能够确定对接收器的测量结果是否表明发射器已接近其辐射功率的限制。 场强与辐射功率的关系 天线发射功率向四周(球形)扩展,如果天线具有方向性,功率沿着传播方向的变化符合其增益G(Θ, Φ)。表达式,在半径为R 的球体上的任意一点,以瓦/平方米为单位的功率密度(PD)由式1 给出: 这个等式简单地表示为发射功率除以半径为R 的球面面积。增益符号,GT ,没有角度变化。因为在260MHz 至470MHz ISM 频段使用的绝大多数天线与工作波长相比非常小,其模板不会随方向急剧变化。因为天线是效率很低的辐射体,增益非常小,基于这种原因,PT 和GT 相乘用来表示发射器和天线结合后的等效全向辐射功率(EIRP)。EIRP 表示可以从理想的全向天线发射的功率。 距离发射器R 处的功率密度同样可以表示为辐射信号场强E 的平方除以η0表示的自由空间的阻抗(式2),η0的大小为120πΩ,或377Ω。 从上述两个等式可以得出EIRP ,PTGT 与场强E 的关系,以V/m 为单位。 重新整理式3,用场强形式表示EIRP : 在FCC 要求的3 米距离处,这个关系为: 假设FCC 对315MHz 的平均场强限制是6mV/m ,利用式5,可以得到平均辐射功率的限制为10.8μW ,UHF ISM 波段发射器的辐射功率和场强测试-Maxim 2012年1月13日11:00

杂散发射的测试及抑制方法.

关于杂散发射 Auhq 2005-06-15 杂散发射可以理解为谐波分量,比如GSM900的2次谐波分量在1.8G,3次谐波分量在2.7G, 等等。杂散发射的测量通常在0-6GHz之间测量,在1GHz到4GHz处应小于30dBm,GSM 规范里有相应的规定。 杂散发射在两种模式下测量,一种是传导模式,一种是辐射模式。而每一种模式下又分为信 道模式(Traffic)和空闲模式(Idle),通常信道模式的值会大于空闲模式。 标准 以下四张表是在四种模式下GSM标准规定的杂散发射功率限值: 功率电平(dBm) 频率范围 GSM 900MHz DCS 1800MHz 100KHz~1GHz -36 -36 1GHz~12.75GHz -30 1000MHz ~1710MHz -30 1710MHz ~1785MHz -36 1785MHz ~12.75GHz -30 图表 1 传导型杂散发射,MS被分配一个信道(Traffic,通常是62信道,902.4MHz)频率范围功率电平(dBm) 100KHz~880MHz -57 880MHz~915MHz -59 915MHz~1000MHz -57 1000MHz ~1710MHz -47 1710MHz ~1785MHz -53 1785MHz ~12.75GHz -47 图表 2 传导型杂散发射,MS处于空闲模式(Idle)

功率电平(dBm) 频率范围 GSM 900MHz DCS 1800MHz 30MHz~1GHz -36 -36 1GHz~4GHz -30 1000MHz ~1710MHz -30 1710MHz ~1785MHz -36 1785MHz ~4GHz -30 图表 3 辐射型杂散发射,MS被分配一个信道(Traffic,通常是62信道,902.4MHz)频率范围功率电平(dBm) 30MHz~880MHz -57 880MHz~915MHz -59 915MHz~1000MHz -57 1000MHz ~1710MHz -47 1710MHz ~1785MHz -53 1785MHz ~4GHz -47 图表 4 辐射型杂散发射,MS处于空闲模式(Idle) 杂散发射的产生通常有以下几个方面: 1.电路Layout过程中EMC考虑不够(主要指射频部分); 2.天线失配; 3.PA不正常工作; 4.结构设计造成的杂散过大。 抑制杂散发射的方法: 1.用柔性铜皮将射频电路部分全部包裹起来; 2.换不同的天线形式; 3.将结构件上尽可能多的地方贴上柔性铜皮。 以上处理方法中有一点要特别注意,就是包裹铜皮时要将天线露出来,因为杂散发射测试时 是远场测试,必须要手机发射,在微波暗室里几米外无线接收,特别是信道模式,如果铜皮 将天线都包住了,信号无法发射出来,就无法连接注册了。 杂散发射在谐波阶数越高的地方越不容易抑制。

五种高精度ADC中杂散问题分析及应对方法

五种高精度ADC中杂散问题分析及应对方法 虽然目前的高分辨率SAR ADC和Σ-ΔADC可提供高分辨率和低噪声,但系统设计师们可能难以实现数据手册上的额定SNR性能。而要达到最佳SFDR,也就是在系统信号链中实现无杂散的干净噪底,可能就更加困难了。杂散信号可能源于ADC周围的不合理电路,也有可能是因恶劣工作环境下出现的外部干扰而导致。 针对高分辨率、精密ADC应用中的杂散问题,本文将介绍几种判断其根本原因的方法,并提出相应的解决方案。这些技术和方法将有助于提高终端系统的EMC能力和可靠性。本文将针对五种不同的应用情况阐述用于降低杂散的特定设计解决方案: 1、由控制器板上的DC-DC电源辐射而导致的杂散问题。 2、由AC-DC适配器噪声通过外部基准源而导致的杂散问题。 3、由模拟输入电缆而导致的杂散问题。 4、由模拟输入电缆上的耦合干扰而导致的杂散问题。 5、由室内照明设备导致的杂散问题。 6、杂散与SFDR 众所周知,无杂散动态范围(SFDR)表示可从大干扰信号分辨出的最小功率信号。对于目前的高分辨率、精密ADC,SFDR一般主要由基波频率与目标基波频率的第二或第三谐波之间的动态范围构成。然而,由于系统其他方面的因素,可能会导致杂散产生并限制系统的性能。 这些杂散可分为输入频率相关杂散和固定频率杂散。输入频率相关杂散与谐波或非线性特性有关。本文将重点分析由电源、外部基准源、数字连接、外部干扰等造成的固定频率杂散。根据应用情况,可降低或完全避免这些类型的杂散,以助于实现最佳的信号链性能。由ADC周围DC-DC电源而导致的杂散问题 由于DC-DC开关稳压器会产生较高的纹波噪声,通常建议将LDO作为在精密测量系统中为精密ADC生成低噪声电源轨的解决方案。固定频率或脉宽调制开关稳压器会产生开关纹波,该纹波一般位于几万至几兆赫兹固定频率处。固定频率噪声可能会通过ADC的

LTE杂散及部分接收项测试

LTE 复杂项测试指导书

修订记录Revision record

摘要: 本文详细描述了LTE复杂项测试方法,结合协议,包括了各个指标测试的目的、影响、测试配置、协议要求、组网环境等内容,能够帮助刚刚上手学习LTE射频测试的同事,很快掌握LTE的复杂项目测试方法。 缩略语清单:

发射机指标 一、发射机杂散(6.6.3.1) 1. 指标含义 杂散是指发射机产生的一些有害的、无用的辐射信号,包括谐波辐射、互调产物及变频产物等。 2. 测试目的 衡量UE对频段外的频谱干扰,它会成为其他频段的干扰信号,为了评估出这种干扰信号的强度大小,看会对其他频段产生多大的干扰,是否满足协议要求,所以进行该项测试。 3. 测试配置 杂散测试的范围是距离中心工作频率BW/2+Δf OOB +MBW/2以外的频段,该频段以内的频谱测量由ACLR 和频谱模板两个指标进行测量,这样,从9k到12.75M的频带内我们都进行了频谱覆盖测试。 Table 6.6.3.1.3-1: Δf OOB boundary between E-UTRA channel and spurious emission domain Δf OOB 是指:距离信道边缘的频率间隔,是边缘,不是距离上行发射中心频点的频率间隔

Table 6.6.3.1.4.1-1: Test Configuration Table 4. 协议要求 Table 6.6.3.1.3-2: Spurious emissions limits 5. 环境及组网

测试仪表配置: ●综合测试仪R&S CMW500 ●频谱分析仪R&S FSQ ●带阻滤波器主要作用是衰减工作频带内的发射信号,降低输入到频谱分析仪的 混频器的输入端口信号强度,防止输入到频谱仪中的信号过大,导致频谱仪过载 (overload,频谱仪动态范围不够),进而失真导致结果出错;同时防止输入到频 谱仪中的信号强度大,将频谱仪的底噪抬高将杂散信号淹没,导致的测试结果不正 确;还可以防止大的发射信号与频谱仪产生交调,引入额外的频谱杂散分量,影响 测试结果的真实性。 ●衰减器10dB,DC TO 10G (Agilent),降低从手机发射出来的功率和提 高阻抗匹配。 ●功分器 ●屏蔽盒 综测仪 CMW500 10dB 6. 测试步骤 1.按照上图搭建测试环境。 2.在CMW 500上按照Table 6.6. 3.1. 4.1-1,设置RB数目和调制方式,并让UE以最大发射功率 发射。 3.使用频谱仪进行杂散测试 1)根据不同的测试频段,设置起始与终止频率,并设置相应的RBW 和VBW。

辐射发射(RE)测试

辐射发射(RE) 1.辐射发射(RE)测试概述 辐射发射(Radiated Emission)测试是测量EUT通过空间传播的辐射骚扰场强。可以分为磁场辐射、电场辐射,前者针对灯具和电磁炉,后者则应用普遍。另外,家电和电动工具、AV产品的辅助设备有功率辐射发射的要求(称为骚扰功率)。 2. 辐射发射(RE)测试标准: a) 电场辐射:CISPR22/EN55022(信息技术产品),CISPR13/EN55013(音频类产品),CISPR11/EN55011(工科医),CISPR14-1,CISPR15/EN55015(灯具); b) 磁场辐射:CISPR15(工作电流频率超过100Hz的灯具),CISPR11(电磁炉); c) 骚扰功率:CISPR14-1(工作频率不超过9kHz的一部分设备除外),CISPR13(只对辅助设备)。 3. 辐射发射(RE)测试方法: 1) 辐射发射测试仪器和设备: a) 电场辐射:接收机(1G以下)、频谱仪(1G以上)、电波暗室、天线(1G以下一般用双 锥和对数周期的组合或用宽带复合天线,1G以上喇叭天线); b) 磁场辐射:接收机、三环天线或单小环远天线; c) 骚扰功率:接收机、功率吸收钳。 接收机遵循CISPR16-1-1的要求,天线、场地遵循CISPR16-1-4的要求,吸收钳遵循CISPR16-1-3的要求。 2) 辐射发射测试场地布置:

b)磁场辐射:不同尺寸的三环天线对能够测试的EUT最大尺寸是有限制的,以2m直径的环形三环天线为例,长度小于1.6m的EUT能够放在三环天线中心测试;在CISPR11中,超过1.6m的电磁炉用0.6m直径的单环远天线在3m外测量,最低高度1m; c)骚扰功率:分台式与落地式,台式设备放在0.8m的非金属桌子上,离其他金属物体至少0.8m(通常是屏蔽室的金属墙,这个距离要求在CISPR14-1中是至少0.4m);落地式设备放在0.1m的非金属支撑上;被测线缆(LUT)布置在高0.8m、长6m的功率吸收钳导轨上,吸收钳套在线缆上,电流互感器端朝向被测设备。如果被测设备有其他线缆,在不影响功能的情况下能断开的断开,不能断开的用铁氧体吸收钳隔离。 3) 辐射发射测试频段:电场辐射一般是30MHz-1GHz(有些产品需要测超过1G,根据具体标准的规定),磁场9kHz-30MHz,骚扰功率30-300MHz。 4) 辐射发射测试限值:随不同标准,场地是3m、10m或其他尺寸,不同的产品分类 (Group 1/2, Class A/B)而限值不同。 5) 辐射发射测试过程: a)30MHz-1GHz电场辐射:在半电波暗室中进行,EUT随转台360度转动,天线在1-4m高度 上下升降,寻找辐射最大值。结果用QP值表示。垂直、水平两种天线极化方向都测。 b)大于1G的电场辐射:工作频率超过108MHz的ITE设备(信息技术类设备)、超过400MHz的ISM 设备(工科医类设备)需要测试,是在3m场地,使用频谱仪测。ITE设备测试方法基本同30MHz-1GHz,结果用Peak与AV值表示。ISM的产品有点不同,需要在全电波暗室中测,天线同产品同高度,不升降,转台仍然转动以寻找辐射最大值; c)替代法:采用ERP(有效发射功率)来代替,再换算成场强数值。这个在RF(射频)测试中经常用到,常规EMC很少使用。替代法测试的目的是测试EUT的壳体辐射,需要拆除所有可拆卸电缆,不可拆卸的电缆上套铁氧体磁环。首先用天线A和接收机测量出EUT的最大骚扰值,然后用天线B替代EUT,调节信号发生器输出功率,直至测量接收机达到同样的值。记录替代天线B的输入端功率,即为EUT的壳体辐射功率。天线的选则根据测试频率来定; d)磁场辐射:采用三环天线的磁场辐射测试没啥好说的,样品放置在天线中心,X/Y/Z三个方向各测一组磁场辐射的结果。采用单小环天线时,天线垂直地面放置,最低部分高于地面1m,因为是近场测量,又考虑到了地面的反射,测量所得的值反映了EUT的水平和垂直的磁场分量; e)骚扰功率:对设备的所有长度超过25cm的电缆(也包括辅助设备的线缆)都需进行。因为在 30-300MHz不同频点的骚扰在被测线缆中呈驻波形式分布。因此在测量中需要沿导轨拉功率吸收钳以寻找每个终测频点骚扰功率最大的位置(大致在离设备半波长的距离处)。 4. 辐射发射(RE)测试结果判定: 检波测量仪测量值与限值线比较。低于PASS,高出FAIL。 5. 辐射发射(RE)测试注意事项: 测试布置仍然是测试最需要的环节。另外,因为是高频测试,场地、设备等都是很重要的会影响最终结果的因素。 6. 辐射发射(RE)测试围: 30MHz-18.5GHz

辐射骚扰整改方法

辐射骚扰整改方法与案例The technique to Re F and one case 深圳电子产品质量检测中心李思雄CQC 深圳分中心徐毅敏文章通过案例清楚说明了一摘要辐射骚扰超标通常是电磁兼容测试中最常见也是最难对付的;般整改思路及每一步骤,特别强调超标原因的正确分析;并就此指出几个关键注意事项。关键词辐射骚扰超标整改思路案例Abstract Radiation emission test frequently fail and it is very difficult to mend usually. In this article, technique and process to solve Re F (Radiation emission test fail) are introduced clearly by one case that accentuated to research problem exactly. The key to Re F was indicated. Keywords Re F mend technique case (一)引言辐射骚扰主要是指能量以电磁波形式由源发射到空间或能量以电磁波形式在空间传播的现象。辐射骚扰是电磁兼容的重要内容,也是测试最不容易通过且最难整改的项目,谈到电磁兼容测试不合格令人首先想到的就是辐射骚扰超标(Re F);辐射骚扰超标的产品可能引起周围装置、设备或系统性能降低或者对有生命或无生命物质产生损害,一定要整改合格、符合有关法规标准要求,产品才能顺利走向市场。部分企业重视EMC,开发出来的产品能够一次通过测试;但多见的情况是样品经过艰辛整改才勉强合格;有相当多IT 数码产品本来就容易发生辐射骚扰超标(Re F),要依靠EMC 设计才能有效解决问题的,可企业在产品开发阶段根本没有考虑EMC 设计,也没有进行相应EMC 测试以验证设计方案就投入量产,致使大量产品最终检验不合格而需要整改。(二)整改要求和整改方法概述如果产品辐射骚扰容易超标、整改不可避免,就要有负责整改的工程师;如整改工程师掌握无线电基础知识,了解辐射骚扰概念,能看懂电路和辐射骚扰测试图,兼有电子设计经验或EMC 行业工作经验,就容易形成一套解决问题的办法。辐射骚扰整改的一般要求:对于已经材料齐套的批次产品、半成品或完成品,电路板不能改排版,成本要低,要能批量改进或生产;整改措施对下批次或类似产品设计具有指导意义。实施整改,通常要准备样品两台、说明书、电路图、结构图各一份;最好有一名熟练工人辅助操作。Re F 整改方法:首先,初步了解产品特点,尽量多地了解当前产品辐射骚扰超标具体情况;其次,针对整改要求,了解产品电路原理,根据客户提供的信息判断是何种类型的超标(工作所需要的振荡信号谐波超标还是其它问题)以及可能的骚扰源;再次,结合电路分析,通过产品内部检查和近场探头探查,具体确定辐射骚扰源和主要的辐射发射途径;为确保入手正确,安排必要的排查测试作问题症结的进一步确认;第四步,综合分析结果,采取措施,进行整改;如果超标严重(6dB 以上),必须从源头开始治理(超标12dB 以上时往往还要同时采取其他办法);如果超标不严重(不超过6dB),可以直接从较易处理的主要问题点(可能是骚扰源也可能是传播途径)开始着手;第五步,验证整改效果;第六步,效果不理想则返回检查,效果好则可以考虑方案简化和综合验证,以找出最方便、经济的达标办法;第七步,做个笔记,小结经验。(三)整改方法案例讲解这里详细介绍一款医疗产品Re F 整改的每一步骤,基于保密和篇幅原因,但凡可以不提的信息全部略去。整改第一步,初步了解产品、整改第一步,初步了解产品、了解辐射骚扰超标具体情况案例产品为医疗电子设备,塑料外壳,有两对输出长线连接作为电极的金属棒,电极用于连接人体不同部位,工作频率(10Hz~1MHz)可单一设定或程控交替变换。客户称该产品八月份在美国做FDA 测试时Re F,三个多月来一直努力改进,始终未获通过。客户提供了此前每次整改前后的测试情况,简述如下:①第一次,水平和垂直测试曲线(August 17 First Scan);②第二次,线缆加铁氧体材料后改进不大;③第三次用近场探头查找骚扰源;④第四次把样机内外的线缆去除,没有负载状态时,测试曲线除了基底降低外几乎无变化;⑤第五次箱体、线缆屏蔽后测试,结果改进不大;⑥第六次24MHz 和6MHz 晶体振荡器接0.33Pf 到地,电极和电源线上增加磁珠串接,测试结果没有明显改进。⑦第七次采取样品内部屏蔽、电极和电源线上增加磁珠串接,晶振接地等措施,测试结果没有明显改进。⑧第八次测试(Nov 09, 2005 Re with pads removed and 160

相关文档
最新文档