单相变压器实验报告 (2)

单相变压器实验报告 (2)
单相变压器实验报告 (2)

单相变压器实验报告

学院:电气工程学院班级:电气1204班

姓名:卞景季

学号:12291099

组号:22

一、实验目的

通过空载和短路实验测定变压器的变比和参数。

通过负载实验测取变压器的运行特性。

二、实验预习

1、变压器的空载和短路实验有什么特点?实验中电源电压一般加在哪一方较合适?

答:空载试验的电压一般加在低压侧,因为低压侧电压低,电流大,方便测量。短路试验就是负载实验,高压加额定电流,低压短路,得到试验数据。

2、在空载和短路实验中,各种仪表应怎样联接才能使测量误差最小?

答:在量程范围内,按实验要求电流表串联、电压表并联、功率表串联(同相端短接)。

3、如何用实验方法测定变压器的铁耗及铜耗。

答:空载实验所测得的功率为铁耗,短路实验所测得的功率为铜耗。

三、实验项目

1、空载实验

测取空载特性U0=f(I0),P0=f(U0) , cosφ0=f(U0)。

2、短路实验

测取短路特性U K=f(I K),P K=f(I K), cosφK=f(I K)。

四、实验方法

1、实验设备

2、屏上排列顺序

D33、DJ11、D32

图3-1 空载实验接线图

3、空载实验

(1)在三相调压交流电源断电的条件下,按图3-1接线。被测变压器选用三相组式变压器DJ11中的一只作为单相变压器,其额定容量P N=77V·A,U1N/U2N=220/55V,I1N/I2N=0.35/1.4A。变压器的低压线圈a、x接电源,高压线圈A、X开路。

(2)选好所有测量仪表量程。将控制屏左侧调压器旋钮向逆时针方向旋转到底,即将其调到输出电压为零的位置。

(3)合上交流电源总开关,按下“启动”按钮,便接通了三相交流电源。调节三相调压器旋钮,使变压器空载电压U0=1.2U N,然后逐次降低电源电压,在1.2~0.3U N的范围内,测取变压器的U0、I0、P0。

(4)测取数据时,U=U N点必须测,并在该点附近测的点较密,共测取数据7-8组。记录于表3-1中。

(5)为了计算变压器的变比,在U N以下测取原方电压的同时测出副方电压数据也记录于表3-1中。

4、短路实验

(1)按下控制屏上的“停止”按钮,切断三相调压交流电源,按图3-2接线(以后每次改接线路,都要关断电源)。将变压器的高压线圈接电源,低压线圈直接短路。

图3-2 短路实验接线图

(2)选好所有测量仪表量程,将交流调压器旋钮调到输出电压为零的位置。

(3)接通交流电源,逐次缓慢增加输入电压,直到短路电流等于1.1I N为止,在(0.2~1.1)I N范围内测取变压器的U K、I K、P K。

(4)测取数据时,I K=I N点必须测,共测取数据6-7组记录于表3-2中。实验时记下周围环境温度(℃)。

五、数据处理

1.变比

K=UAX/U ax=220/55=4

2.绘出空载特性曲线和计算激磁参数

(1)绘出空载特性曲线U0=f(I0),P0=f(U0),cosφ0=f(U0)。

(2)计算激磁参数

从空载特性曲线上查出对应于U0=UN 时的I0 和P0 值,并由下式算出激磁参数。可知U0=55V I0=0.054A P0=1.5W

R m =P0/I02=514.40Ω Z M =UO/I0 =1018.51Ω 22m m m R Z X -==951.34Ω

3、绘出短路特性曲线和计算短路参数

(1)绘出短路特性曲线U K=f(I K) 、P K=f(I K)、cosφK=f(I K)。

(2)计算短路参数

从短路特性曲线上查出对应于短路电流IK=IN 时的UK 和PK 值,由下式算出实验环境温度为θ(℃)时的短路参数。IK=0.353A UK=25.2V P0=4.7W

k

k k I U Z /'==71.39

Ω

2

'/k k k I P r ==37.72

Ω

2

'2

''

k

k k r Z X -==60.61Ω

折算到低压侧需要除以变比的平方。

Zk=17.85Ω rk=9.43Ω Xk=15.15Ω

由于短路电阻 rK 随温度变化,因此,算出的短路电阻应按国家标准换算到基准工作温度75℃时的阻值。

r=11.42Ω z=18.97Ω 六,实验总结

分工:我主要负责数据的记录处理和线路的检查纠错。

感想与收获:熟悉了变压器各个量之间的关系和变化规律,熟练了对实验的操作。

单相变压器 实验报告

单相变压器 实验报告 1610900 杨凤妍 物理伯苓班 一、变压器空载特性 E 型 220V 110V 55V U1初级线圈电压/V 222.8 111.3 55.03 U2次级线圈电压/V 10.7 5.3 2.67 I1初级线圈电流/ mA 32 10.2 7.2 P1初级线圈功率/W 2.7 0.8 0.23 初级功率因数 0.384 0.709 0.609 计算初级视在功率/W 7.03125 1.12835 0.377668 环型 220V 110V 55V U1初级线圈电压/V 220.1 121.2 54.9 U2次级线圈电压/V 11.34 6.26 2.84 I1初级线圈电流/ mA 4.2 1.7 0 P1初级线圈功率/W 0.55 0.15 0 初级功率因数 0.6 0.753 计算初级视在功率/W 0.916667 0.199203 输入电压 测量参数

二、初级220V变压器负载特性 E型 环型

三、变压器为双路输出,在空载时测U1,U 1’ 同向串联或反相串联时的输出电压。(所用变压器为环型变压器)数据表格如下: 调压器 22V U2电压 1.522 U2‘电压 1.518 U2,U2’同向串联电压 3.029 U2,U2’反向串联电压 四、图像绘制 1、变压器带负载时,初级输入功率与负载R 的关系图。 024******** 10 20 30 40 50 60 P 1初级线圈功率/W P1-R 图(E 型变压器) R/Ω 024681012 140 10 20 30 40 50 60 P 1初级线圈功率/W P1-R 图(环型变压器) R/Ω

实验二 单相变压器的特性

实验实训老师: 实验实训地点: 实验实训日期: 2020年5月25日 实验实训题目: 单相变压器的特性 一、实验目的 通过变压器的空载实验和短路实验,确定变压器的参数、运行特性和技术性能。 二、主要仪器设备 三相调压器、实验工作台。 三、 实验内容与步骤 1. 实验内容 (1) 空载实验 a) 测取空载特性I 0、P 0、cos 0 =f (U 0) b) 测定变比 (2) 测取短路特性:U K =f (I K ),P K =f (I K ) 2. 实验步骤 1) 单相变压器空载实验 (1) 测空载特性 图 2-1为单相变压器空载实验原理图,高压侧线圈开路,低压侧线圈经调压器接电源。本实验采用测量电路中的电压、电流和功率。接线时,多能表 A 相电流测量线圈串接在主回路中,多能表 U a 接到三相调压器输出端 a 端上,多能表 U b 、U c 和 U n 短接后接到三相调压器输出端 n 端上。 操纵步骤: ① 参照图 2-1 正确接线 ② 合上“总电源”开关,对应总电源指示灯亮,再合上“操作电 源”空开,对应操作电源指示灯亮。按下“操作电源开关”合闸按钮,对应的红色指示灯亮;检查台面上所有的按钮处于断开位置,均为绿灯亮;所有数字表显示无错误。 ③ 检查三相调压器在输出电压为零的位置,然后按下实验台上调压器的合闸按钮,逐渐升高调压器的输出电压,使 U 0 (低压侧空载电压)由 0.7U 2N (U 2N =127V )变到 1.1U 2N ,(即 从 88.9V ~139.7V )分数次(至少 7 次)读取空载电压 U 0,空载电流 I 0 及空载损耗 P 0,在额定电压附近多做几点(包括 U 0= U 2N 点),测量数据记入表 2-1。 调压器 a b c n V 4 A 4 图2-1单相变压器空载实验接线 原理图

电力变压器交接试验标准

第六章电力变压器 第6.0.1条电力变压器的试验项目,应包括下列内容:一、测量绕组连同套管的直流电阻;二、检查所有分接头的变压比;三、检查变压器的三相接线组别和单相变压器引出线的极性;四、测量绕组连同套管的绝缘电阻、吸收比或极化指数;五、测量绕组连同套管的介质损耗角正切值tgδ;六、测量绕组连同套管的直流泄漏电流;七、绕组连同套管的交流耐压试验;八、绕组连同套管的局部放电试验;九、测量与铁芯绝缘的各紧固件及铁芯接地线引出套管对外壳的绝缘电阻;十、非纯瓷套管的试验;十一、绝缘油试验;十二、有载调压切换装置的检查和试验;十三、额定电压下的冲击合闸试验;十四、检查相位;十五、测量噪音。注:①1600kVA以上油浸式电力变压器的试验,应按本条全部项目的规定进行。②1600kVA及以下油浸式电力变压器的试验,可按本条的第一、二、三、四、七、九、十、十一、十二、十四款的规定进行。③干式变压器的试验,可按本条的第一、二、三、四、七、九、十二、十三、十四款的规定进行。④变流、整流变压器的试验,可按本条的第一、二、三、四、七、九、十一、十二、十三、十四款的规定进行。⑤电炉变压器的试验,可按本条的第一、二、三、四、七、九、十、十一、十二、十三、十四款的规定进行。 ⑥电压等级在35kV及以上的变压器,在交接时,应提交变压器及非纯瓷套管的出厂试验记录。 第6.0.2条测量绕组连同套管的直流电阻,应符合下列规定:一、测量应在各分接头的所有位置上进行;二、1600kVA及以下三相变压器,各相测得值的相互差值应小于平均值的4%,线间测得值的相互差值应小于平均值的2%;1600kV A以上三相变压器,各相测得值的相互差值应小于平均值的2%;线间测得值的相互差值应小于平均值的 1%;三、变压器的直流电阻,与同温下产品出厂实测数值比较,相应变化不应大于2%;四、由于变压器结构等原因,差值超过本条第二款时,可只按本条第三款进行比较。

变压器实验报告

专业:电子信息工程: 实验报告 课程名称:电机与拖动指导老师:卢琴芬成绩: 实验名称:单相变压器同组学生姓名:刘雪成李文鑫 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1.通过空载和短路实验测定变压器的变比和参数。 2.通过负载实验测取变压器的运行特性。 二、预习要点 1.变压器的空载和短路实验有什么特点实验中电源电压一般加在哪一方较合适 2.在空载和短路实验中,各种仪表应怎样联接才能使测量误差最小 3.如何用实验方法测定变压器的铁耗及铜耗。 三、实验项目 1.空载实验 测取空载特性U0=f(I0), P0=f(U0)。 2.短路实验 测取空载特性U K=f(I K), P K=f(U K)。 3.负载实验 (1)纯电阻负载 保持U1=U1N, cos φ2=1的条件下,测取U2=f(I2)。 四、实验线路及操作步骤 1.空载试验

实验线路如图3-1所示,被试变压器选用DT40三相组式变压器,实验用其中的一相,其额定容量P N=76W,U1N/ U2N=220/55V,I1N/I2N=0.345/1.38A。变压器的低压线圈接电源,高压线圈开路。接通电源前,选好所有电表量程,将电源控制屏DT01的交流电源调压旋钮调到输出电压为零的位置,然后打开钥匙开头,按下DT01面板上“开”的按钮,此时变压器接入交流电源,调节交流电源调压旋钮,使变压器空载电压U0=1.2 U N,然后,逐次降低电源电压,在1.2~0.5U N的范围内,测取变压器的U0、I0、 P0共取6-7组数据,记录于表2-1中,其中U=U N的点必测,并在该点附近测的点应密些。为了计算变压器的变化,在U N 以下测取原方电压的同时,测出副方电压,取三组数据记录于表3-1中。 图3-1 空载实验接线图 COSφ2=1 U1= U N= 220 伏

#电力电子技术实验报告答案

实验一锯齿波同步移相触发电路实验 一、实验目的 (1)加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。 (2)掌握锯齿波同步移相触发电路的调试方法。 三、实验线路及原理 锯齿波同步移相触发电路的原理图如图1-11所示。锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其工作原理可参见1-3节和电力电子技术教材中的相关内容。 四、实验内容 (1)锯齿波同步移相触发电路的调试。 (2)锯齿波同步移相触发电路各点波形的观察和分析。 五、预习要求 (1)阅读本教材1-3节及电力电子技术教材中有关锯齿波同步移相 触发电路的内容,弄清锯齿波同步移相触发电路的工作原理。 (2)掌握锯齿波同步移相触发电路脉冲初始相位的调整方法。 六、思考题 (1)锯齿波同步移相触发电路有哪些特点? (2)锯齿波同步移相触发电路的移相范围与哪些参数有关? (3)为什么锯齿波同步移相触发电路的脉冲移相范围比正弦波同步移相触发电路的移相范围要大? 七、实验方法 (1)将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V 10%,而“交流调速”侧输出的线电压为240V。如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察锯齿波同步触发电路各观察孔的电压波形。 ①同时观察同步电压和“1”点的电压波形,了解“1”点波形形成的原因。 ②观察“1”、“2”点的电压波形,了解锯齿波宽度和“1”点电压波形的关系。 ③调节电位器RP1,观测“2”点锯齿波斜率的变化。 ④观察“3”~“6”点电压波形和输出电压的波形,记下各波形的幅值与宽度,并比较“3”点电压U3和“6”点电压U6的对应关系。 (2)调节触发脉冲的移相范围

变压器实验报告汇总

四川大学电气信息学院 实验报告书 课程名称:电机学 实验项目:三相变压器的空载及短路实验专业班组:电气工程及其自动化105,109班实验时间:2014年11月21日 成绩评定: 评阅教师: 电机学老师:曾成碧 报告撰写:

一、实验目的: 1 用实验方法求取变压器的空载特性和短路特性。 2 通过空载及短路实验求取变压器的参数和损耗。 3 计算变压器的电压变化百分率和效率。 4掌握三相调压器的正确联接和操作。 5 复习用两瓦特法测三相功率的方法。 二.思考题的回答 1.求取变压器空载特性外施电压为何只能单方向调节?不单方向调节会出现什么问题? 答:因为当铁磁材料处于交变的磁场中时进行周期性磁化时存在磁滞现象。如果不单方向调节变压器外施电压,磁通密度并不会沿原来的磁化曲线下降,所以会影响实验结果的准确性。 2.如何用实验方法测定三相变压器的铜、铁损耗和参数?实验过程中作了哪些假定? 答:变压器的空载实验中认为空载电流很小,故忽略了铜耗,空载损耗近似等于变压器铁耗Fe P P ≈0,同时忽略了绕组的电阻和漏抗。空载时的铁耗可以直接用两瓦特法测得,根据公式2 003/I P r m ≈可以求得励磁电阻,由003/I U Z m ≈可以求得励磁阻抗,由2 2 k m m r Z X -=可以求得励磁电抗值。 在变压器的短路实验中,由于漏磁场分布十分复杂,故在T 形等效电路计算时,可取k x x x 5.0'21==σσ,且k r r r 5.0'21==。同时由于外加电压低,忽略了铁耗,故假设短路损耗等于变压器铜耗。短路损耗k P 可直接由两瓦特法测得,有公式k k k I P r 2/=可得k r ,k k k I U Z 3/=,故k k k r Z x 22-=。 3.空载和短路实验中,为减小测量误差,应该怎样联接电压接线?用两瓦特表法测量三相功率的原理。 答:变压器空载实验中应当采用电流表内接法。因为空载实验测量的是励磁阻抗,阻抗值较大,若采用电流表外接法,电压表会有明显的分流作用,从而产生较大的误差。 变压器短路实验应当采用电流表外接法。因为短路实验中测量的是漏阻抗,

电力系统实验报告

成绩 课程作业 课程名称电力系统分析 院部名称机电工程学院 专业电气工程及其自动化 班级13级2班 学生姓名祥 学号1304102047 课程考核地点2234 任课教师静 金陵科技学院教务处制

实验一电力系统分析计算 一.实验目的 1.掌握用Matlab软件编程计算电力系统元件参数的方法. 2.通过对不同长度的电力线路的三种模型进行建模比较,学会选取根据电路要求选取模 型。 3.掌握多级电力网络的等值电路计算方法。 4.理解有名制和标幺制。 二.实验容 1.电力线路建模 有一回220kV架空电力线路,导线型号为LGJ-120,导线计算外径为15.2mm,三相导线水平排列,两相邻导线之间的距离为4m。试计算该电力线路的参数,假设该线路长度分别为60km,200km,500km,作出三种等值电路模型,并列表给出计算值。 2.多级电力网络的等值电路计算 部分多级电力网络结线图如图1-1所示,变压器均为主分接头,作出它的等值电路模型,并列表给出用有名制表示的各参数值和用标幺制表示的各参数值。 线路额定电压电阻 (欧/km) 电抗 (欧/km) 电纳 (S/km) 线路长度 (km) L1(架空线)220kv 0.08 0.406 2.81*10-6 200 L2(架空线)110kV 0.105 0.383 2.81*10-6 60 L3(架空线)10kV 0.17 0.38 忽略15 变压器额定容量P k(kw) U k% I o% P o(kW) T1 180MVA 893 13 0.5 175 T2 63MVA 280 10.5 0.61 60 三.实验设备 1.PC一台 2.Matlab软件 四.实验记录 1.电力线路建模 画出模型图,并标出相应的参数值。将计算结果填入下表

电力变压器试验项目和标准说明

电力变压器试验项目及标准说明 1 绝缘油试验或SF6气体试验; 2 测量绕组连同套管的直流电阻; 3 检查所有分接头的电压比; 4 检查变压器的三相接线组别和单相变压器引出线的极性; 5 测量与铁心绝缘的各紧固件(连接片可拆开者)及铁心(有外引接地线的)绝缘电阻; 6 非纯瓷套管的试验; 7 有载调压切换装置的检查和试验; 8 测量绕组连同套管的绝缘电阻、吸收比或极化指数; 9 测量绕组连同套管的介质损耗角正切值 tanδ ; 10 测量绕组连同套管的直流泄漏电流; 11 变压器绕组变形试验; 12 绕组连同套管的交流耐压试验; 13 绕组连同套管的长时感应电压试验带局部放电试验; 14 额定电压下的冲击合闸试验; 15 检查相位; 16 测量噪音。 注:除条文内规定的原因外,各类变压器试验项目应按下列规定进行: 1 容量为1600kVA 及以下油浸式电力变压器的试验,可按本条的第1、2、3、4、5、6、7、8、12、14、15款的规定进行; 2 干式变压器的试验,可按本条的第2、3、4、5、7、8、12、14、15款的规定进行; 3 变流、整流变压器的试验,可按本条的第1、2、3、4、5、7、8、12、14、15款的规定进行; 4 电炉变压器的试验,可按本条的第1、2、3、4、5、6、7、8、12、14、15款的规定进行;

5 穿芯式电流互感器、电容型套管应分别按本标准第9章互感器、第16章的试验项目进行试验。 6 分体运输、现场组装的变压器应由订货方见证所有出厂试验项目,现场试验按本标准执行。 7.0.2油浸式变压器中绝缘油及SF6气体绝缘变压器中SF6气体的试验,应符合下列规定: 1 绝缘油的试验类别应符合本标准中表20.0. 2 的规定;试验项目及标准应符合本标准中表20.0.1 的规定。 2 油中溶解气体的色谱分析,应符合下述规定:电压等级在66kV 及以上的变压器,应在注油静置后、耐压和局部放电试验24h后、冲击合闸及额定电压下运行24h后,各进行一次变压器器身内绝缘油的油中溶解气体的色谱分析。试验应按《变压器油中溶解气体分析和判断导则》GB/T 7252进行。各次测得的氢、乙炔、总烃含量,应无明显差别。新装变压器油中H2 与烃类气体含量(μL/L)任一项不宜超过下列数值: 总烃:20, H2:10, C2H2:0, 3 油中微量水分的测量,应符合下述规定:变压器油中的微量水分含量,对电压等级为 110kV 的,不应大于 20mg/L;220kV 的,不应大于 15mg/L ;330~500kV 的,不应大于 10mg/L 。 4 油中含气量的测量,应符合下述规定:电压等级为330 ~500kV 的变压器,按照规定时间静置后取样测量油中的含气量,其值不应大于1%(体积分数)。 5 对SF6气体绝缘的变压器应进行SF6气体含水量检验及检漏:SF6气体含水量(20℃的体积分数)一般不大于250μL/L。变压器应无明显泄漏点。 7.0.3测量绕组连同套管的直流电阻,应符合下列规定: 1 测量应在各分接头的所有位置上进行; 2 1600kVA 及以下电压等级三相变压器,各相测得值的相互差值应小于平均值的 4%,线间测得值的相互差值应小于平均值的2%;1600kVA 以上三相变压器,各相测得值的相互差值应小于平均值的 2%;线间测得值的相互差值应小于平均值的1%; 3 变压器的直流电阻,与同温下产品出厂实测数值比较,相应变化不应大于 2%;不同温度下电阻值按照式7.0.3换算: R2=R1(T+t2)/( T+t1) (7.0.3) 式中 R1、R2——分别为温度在t1、t2时的电阻值; T——计算用常数,铜导线取235,铝导线取225。 4 由于变压器结构等原因,差值超过本条第2款时,可只按本条第3款进行比较。但应说明原因。

变压器实验报告汇总

变压器实验报告汇总

四川大学电气信息学院 实验报告书 课程名称:电机学 实验项目:三相变压器的空载及短路实验专业班组:电气工程及其自动化105,109班实验时间:2014年11月21日 成绩评定: 评阅教师: 电机学老师:曾成碧 报告撰写:

一、实验目的: 1 用实验方法求取变压器的空载特性和短路特性。 2 通过空载及短路实验求取变压器的参数和损耗。 3 计算变压器的电压变化百分率和效率。 4掌握三相调压器的正确联接和操作。 5 复习用两瓦特法测三相功率的方法。 二.思考题的回答 1.求取变压器空载特性外施电压为何只能单方向调节?不单方向调节会出现什么问题? 答:因为当铁磁材料处于交变的磁场中时进行周期性磁化时存在磁滞现象。如果不单方向调节变压器外施电压,磁通密度并不会沿原来的磁化曲线下降,所以会影响实验结果的准确性。 2.如何用实验方法测定三相变压器的铜、铁损耗和参数?实验过程中作了哪些假定? 答:变压器的空载实验中认为空载电流很小,故忽略了铜耗,空载损耗近似等于变压器铁耗Fe P P ≈0,同时忽略了绕组的电阻和漏抗。空载时的铁耗可以直接用两瓦特法测得,根据公式2 003/I P r m ≈可以求得励磁电阻,由003/I U Z m ≈可以求得励磁阻抗,由2 2 k m m r Z X -=可以求得励磁电抗值。 在变压器的短路实验中,由于漏磁场分布十分复杂,故在T 形等效电路计算时,可取k x x x 5.0'21==σσ,且k r r r 5.0'21==。同时由于外加电压低,忽略了铁耗,故假设短路损耗等于变压器铜耗。短路损耗k P 可直接由两瓦特法测得,有公式k k k I P r 2/=可得k r ,k k k I U Z 3/=,故k k k r Z x 22-=。 3.空载和短路实验中,为减小测量误差,应该怎样联接电压接线?用两瓦特

实验一:单相变压器的特性实验

实验一单相变压器的特性实验 一、实验目的 通过变压器的空载实验和短路实验,确定变压器的参数、运行特性和技术性能。 二、实验内容 1.空载实验 (1)测取空载特性I0、P0、cos 0=f(U0) (2)测定变比 2.测取短路特性:U K=f(I K),P K=f(I K) 三、实验说明 1.实验之前请仔细阅读附录中交流功率表(ZDL-565)的使用说明。 2.实验所用单相变压器的额定数据为:S N=1KVA,U1N/U2N=380/127V。 1) 单相变压器空载实验 (1)测空载特性 图1-1为单相变压器空载实验原理图,高压侧线圈开路, 低压侧线圈经调压器接电源。本实验采用交流功率表测量电 路中的电压、电流和功率。接线时,功率表A相电流测量线 圈串接在主回路中,功率表U a接到三相调压器输出端a端上, 功率表U b、U c和U n短接后接到三相调压器输出端n端上, 调压器的n端和电网的n端短接。 实验步骤: ①请参照图2-1正确接线 ②检查三相调压器在输出电压为零的位置,然后合上实 验台上调压器开关,逐渐升高调压器的输出电压,使U0(低 压侧空载电压)由0.7U2N变到1.1U2N ,分数次(至少7次) 读取空载电压U0,空载电流I0及空载损耗P0,在额定电压 (127V)附近多做几点,测量数据记入表2-1。 * U0,I0,P0 可以从三相多功率表直接读取。 * 注意实验时空载电压只能单方向调节。 ③实验完毕后,调压器归零,断开调压器开关。 (2)测定变比 变压器副线圈开路,原线圈(此时一般用低压线圈作为原线圈)接至电源,经调压器调到额定电压,用万用表测出原、副边的端电压,从而可确定变比。

2014国家电网变压器试验标准

变压器试验项目清单 10kV级 例行试验 绕组直流电阻互差:线间小于2%,相间小于4%; 电压比误差:主分接小于0.5%,其他分接小于1%; 绝缘电阻测试:2500V摇表高压绕组大于或等于1000MΩ,其他绕组大雨或等于500 MΩ; 局部放电测量(适用于干式变压器) 工频耐压试验 感应耐压试验 空载电流及空载损耗测试 短路阻抗及负载损耗测试 绝缘油试验 噪声测试 密封性试验(适用于油浸式变压器) 附件和主要材料的试验(或提供试验报告) 现场试验:按GB50150相关规定执行 绝缘油试验 绕组连同套管的直流电阻 变压比测量 联结组标号检定

铁心绝缘电阻 绕组连同套管的绝缘电阻 绕组连同套管的交流工频耐压试验 额定电压下的合闸试验 抽检试验 绕组电阻测量 变压比测量 绝缘电阻测量 雷电全波冲击试验 外施耐压试验 感应耐压试验 空载电流及空载损耗测试 短路阻抗及负载损耗测试 绝缘油试验 温升试验 油箱密封性试验(适用于油浸式变压器)容量测试 变压器过载试验 联结组标号检定 突发短路试验 长时间过载试验

35kV级 应提供变压器和附件相应的型式试验报告和例行试验报告 例行试验 绕组电阻测量 电压比测量和联结组标号检定 短路阻抗及负载损耗测量 1.短路阻抗测量:主分接、最大、最小分接、主分接低电流(例如5A 2负载损耗:主分接、最大、最小分接 3短路阻抗及负载损耗均应换算到75℃ 空载损耗和空载电流测量 1.10%-115%额定电压下进行空载损耗和空载电流测量,并绘制出励磁曲线 2.空载损耗和空载电流进行校正 3.提供380V电压下的空载损耗和空载电流 绕组连同套管的绝缘电阻测量:比值不小于1.3,或高于5000MΩ绕组的介质损耗因数(tanδ)和电容测量 1.油温10-40℃之间测量 2.报告中应有设备的详细说明 3.每一绕组对地及绕组之间的tanδ不超过0.5(20℃),同时提供电容实测值 铁心和夹件绝缘电阻测量:不小于500MΩ 短时感应耐压试验

单相变压器实验报告

单相变压器实验报告 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

单相变压器实验报告学院:电气工程学院 班级:电气1204班 姓名:卞景季 学号: 组号: 22 一、实验目的 通过空载和短路实验测定变压器的变比和参数。 通过负载实验测取变压器的运行特性。 二、实验预习 1、变压器的空载和短路实验有什么特点实验中电源电压一般加在哪一方较合适 答:空载试验的电压一般加在低压侧,因为低压侧电压低,电流大,方便测量。短路试验就是负载实验,高压加,低压短路,得到试验数据。 2、在空载和短路实验中,各种仪表应怎样联接才能使测量误差最小 答:在量程范围内,按实验要求电流表串联、电压表并联、功率表串联(同相端短接)。 3、如何用实验方法测定变压器的铁耗及铜耗。 答:空载实验所测得的功率为铁耗,短路实验所测得的功率为铜耗。 三、实验项目 1、空载实验 测取空载特性U 0=f(I ),P =f(U ) , cosφ =f(U )。 2、短路实验 测取短路特性U K =f(I K ),P K =f(I K ), cosφ K =f(I K )。 四、实验方法1

2、屏上排列顺序 D33、DJ11、 3、空载实验 (1相组式变压器DJ11U 1N /U 2N =220/55V ,I 路。 (2 (3范围内,测取变压器的U 0、I 0、P 0。 (4)测取数据时,U=U N 点必须测,并在该点附近测的点较密,共测取数据7-8组。记录于表3-1中。 (5)为了计算变压器的变比,在U N 以下测取原方电压的同时测出副方电压数据也记录于表3-1中。 表4、短路实验 (1)按下控制屏上的“停止”按钮,切断三相调压交流电源,按图3-2接线(以后每次改接线路,都要关断电源)。将变压器的高压线圈接电源,低压线圈直接短路。 图3-2 短路实验接线图 (2)选好所有测量仪表量程,将交流调压器旋钮调到输出电压为零的位置。 (3)接通交流电源,逐次缓慢增加输入电压,直到短路电流等于 为止,在~I N 范围内测取变压器的U K 、I K 、P K 。 (4)测取数据时,I K =I N 点必须测,共测取数据6-7组记录于表3-2中。实验时记下周围环境温度(℃)。 X

实验四 单相变压器的参数测定 (4)

实验四 单相变压器的参数测定 一、实验目的 通过空载和短路实验测定变压器的变比和参数。 二、实验项目 1. 空载实验 测取空载特性U 0=f(I 0),P 0=f(U 0) , cosφ0=f(U 0)。 2. 短路实验 测取短路特性U K =f(I K ),P K =f(I K ), cosφK =f(I K )。 三、实验方法 1. 实验设备 D33、D32、D34-3、DJ11 图1 空载实验接线图 2. 空载实验 1)在三相调压交流电源断电的条件下,按图1接线。I 0选用0.3A 档,U 0选用100V 档。被测变压器选用三相组式变压器DJ11中的一只作为单相变压器,其额定容量 P N =77W ,U 1N /U 2N =220/55V ,I 1N /I 2N =0.35/1.4A 。变压器的低压线圈a 、x 接电源,高压线圈A 、X 开路。 2)选好所有电表量程。将控制屏左侧调压器旋钮向逆时针方向旋转到底,即将其调到输出电压为零的位置。 A X

3)合上交流电源总开关,按下“开”按钮,便接通了三相交流电源。调节三相调压器旋钮,使变压器空载电压U 0=1.2U N ,然后逐次降低电源电压,在1.2~0.2U N 的范围内,测取变压器的U 0、I 0、P 0。 4)测取数据时,U=U N 点必须测,并在该点附近测的点较密,共测取数据7-8组。记录于表1中。 5)为了计算变压器的变比,在U N 以下测取原方电压的同时测出副方电压数据也记录于表1中。 3. 短路实验 1)按下控制屏上的“关”按钮,切断三相调压交流电源,按图2接线(以后每次改接线路,都要关断电源)。将变压器的高压线圈接电源,低压线圈直接短路。I k 选用1A 档,U k 选用100V 档。

单相变压器短路实验及负载实验

实验题目类型:设计型 《电机与拖动》实验报告实验题目名称:单相变压器短路实验及负载实验实验室名称:电机及自动控制 实验组号:指导教师: 报告人:学号: 实验地点:实验时间: 指导教师评阅意见与成绩评定

一、实验目的 按预先设计的实验方案完成短路实验,求出有关参数。 掌握负载实验方法,测取变压器的运行特性。 提交实验成果。 二、实验设备 三、实验技术路线 1.实验前预习要点: 设备功能及使用操作规范;变压器短路实验和负载实验的目的;两个实验直接测得的相关数据(电流、电压、功率,测取空载特性U0=f(I0),P0=f(U0) , cosφ0=f(U0)),间接获取的数值(铜损、励磁参数、变比);变压器空载实验原理图、接线图,仪表正确选择。 短路实验: 1)在实验中各仪表量程的选择依据是什么? 答:依据电压、电流及功率度的最大值选取仪表量程; 2)选好电表量程后,为什么要从0逐渐增大输入电压? 答:防止烧坏。短路情况下,配电变压器在额定的电压的4%~6%时,其 短路电流将达到正常时的额定电流,如果全压,那么电流将是额定电流 额17-25倍,将导致变压器线圈烧毁。 3)为什么要尽快测量? 答;实验要尽快进行,以免绕组发热,电阻增加,影响实验的准确性 4)为什么在高压侧进行? 答:低压电压易采样,若在高压侧进行,还要通过中间变压器。短路实 验在高压侧进行,因为变压器阻抗很小,若在低压侧进行,几乎测不出 阻抗电压。

负载试验: 1)为什么每次实验时都要强调将调压器恢复到起始零位时方可合上电源开 关或断开电源开关? 答:主要是为了使输出电压为零,防止设备过电压。主要是为了防止 在高压下合闸产生产生较大的冲击损坏设备。其次是因为既然需要调压 器对负载进行调压,那么调压器后面的负载情况就是一个不确定因素, 就不能事先预料在较高电压下负载可能情况。因此,就需要从低电压慢 慢调高电压,观察负载的情况。而断开电源时,如果负载时隔较大的感 性负载,那么在高压状况下突然停电会产生很高的感应电势。 2.实验原理图 图1-1 短路实验 图1-2 负载实验

研究报告单相变压器的参数测定实验

研究报告单相变压器的参数测定实验单相变压器实验设计方案 系别:工学院 专业:智能检测 姓名:关济凯 学号:2010016011 单相变压器实验 一、实验目的 1、通过空载试验确定单相变压器的励磁阻抗、励磁电阻和励磁电抗参数。 2、通过短路试验确定单相变压器的短路阻抗、短路电阻和短路电抗参数。 二、实验线路 单相变压器的空载试验和短路试验的接线图分别为图一、图二,功率表的内部等效结构如图三。 图一单相变压器空载试验 图二单相变压器短路试验

图三功率表内部等效结构图 三、实验内容 1、测定变比 接线如图一所示,电源经调压器Ty接至低压绕组,高压绕组开路,合上电源闸刀K,将低压绕组外加电压,并逐渐调节Ty,当调至额定电压U的50%附近N 时,测量低压绕组电压Uax及高压绕组电压U。调节调压器,增大U记录三,AXN 组数据填入表一中。 表一测变比数据 UAX 变比K=序号 U ( V ) Uax ( V ) AXUax 2、空载实验 接线如图一所示,电源频率为工频,波形为正弦波,空载实验一般在低压侧进行,即:低压绕组(ax)上施加电压,高压绕组(AX)开路,变压器空载电流Io = ( 2.5,10%)IN,据此选择电流表及功率表电流线圈的量程。变压器空载运行的功率因素甚低,一般在0.2以下,应选用低功率因素瓦特表测量功率,以减小测量误差。 变压器接通电源前必须将调压器输出电压调至最小位置,以避免合闸时,电流表功率电流线圈被冲击电流所损坏,合上电源开关K后,调节变压器从0.5UN到1.2UN,测量空载电压Uo,空载电流Io,空载功率Po,读取数据6,7组,记录到表二中。 表二空载试验数据

华北电力大学实验报告

华北电力大学 实验报告 实验名称:超外差收音机安装与调试 一、实验目的 1.了解常用电子器件的类别、型号、规格、性能及其使用范围,能查阅有关的 电子器件图书。能够正确识别和选用常用的电子器件,并且能够熟练使用万用表。 2.学习并掌握超外差收音机的工作原理 3.了解超外差式收音机的调试方法。

4.熟悉手工焊锡的常用工具的使用及其维护与修理,基本掌握手工电烙铁的焊 接技术。 二、实验原理图 三、元器件清单 元件型号数量位号元件型号数量位号 三极管9013 2只V6、V7 电阻56Ω1只R5 三极管9014 1只V5 电阻100KΩ2只R7、R10 三极管9018 4只V1、V2、V3、V4 电阻120KΩ1只R1 发光二极管红色1只LED 瓷片电容103 1只C2 磁棒及线圈4x8x80mm 1套T1 瓷片电容C1、C4、C5 振荡线圈TF10(红色)1只T2 瓷片电容223 7只C6、C7、C10 中频变压器TF10(黄色)1只T3 瓷片电容C11 中频变压器TF10(白色)1只T4 电解电容 4.7uF 2只C3、C8 中频变压器TF10(绿色)1只T5 电解电容100uF 3只C12、C13、C9 输入变压器蓝色1只T6 双联电容CBM-223PF 1只CA 扬声器0.5W 8Ω1只BL 耳机插座?3.5mm 1只CK 电位器10KΩ1只RP 装配说明书1分 电阻51Ω1只R8 机壳上盖1个 电阻100Ω2只R13、R15 机壳下盖1个 电阻120Ω2只R12、R14 刻度面板1块 电阻150Ω1只R3 调谐拨盘1只 电阻220Ω1只R11 电位器拨盘1只 电阻510Ω1只R16 磁棒支架1只

单相变压器实验报告 (2)

单相变压器实验报告 学院:电气工程学院班级:电气1204班 姓名:卞景季 学号:12291099 组号:22

一、实验目的 通过空载和短路实验测定变压器的变比和参数。 通过负载实验测取变压器的运行特性。 二、实验预习 1、变压器的空载和短路实验有什么特点?实验中电源电压一般加在哪一方较合适? 答:空载试验的电压一般加在低压侧,因为低压侧电压低,电流大,方便测量。短路试验就是负载实验,高压加额定电流,低压短路,得到试验数据。 2、在空载和短路实验中,各种仪表应怎样联接才能使测量误差最小? 答:在量程范围内,按实验要求电流表串联、电压表并联、功率表串联(同相端短接)。 3、如何用实验方法测定变压器的铁耗及铜耗。 答:空载实验所测得的功率为铁耗,短路实验所测得的功率为铜耗。 三、实验项目 1、空载实验 测取空载特性U0=f(I0),P0=f(U0) , cosφ0=f(U0)。 2、短路实验 测取短路特性U K=f(I K),P K=f(I K), cosφK=f(I K)。 四、实验方法 1、实验设备 2、屏上排列顺序 D33、DJ11、D32

图3-1 空载实验接线图 3、空载实验 (1)在三相调压交流电源断电的条件下,按图3-1接线。被测变压器选用三相组式变压器DJ11中的一只作为单相变压器,其额定容量P N=77V·A,U1N/U2N=220/55V,I1N/I2N=0.35/1.4A。变压器的低压线圈a、x接电源,高压线圈A、X开路。 (2)选好所有测量仪表量程。将控制屏左侧调压器旋钮向逆时针方向旋转到底,即将其调到输出电压为零的位置。 (3)合上交流电源总开关,按下“启动”按钮,便接通了三相交流电源。调节三相调压器旋钮,使变压器空载电压U0=1.2U N,然后逐次降低电源电压,在1.2~0.3U N的范围内,测取变压器的U0、I0、P0。 (4)测取数据时,U=U N点必须测,并在该点附近测的点较密,共测取数据7-8组。记录于表3-1中。 (5)为了计算变压器的变比,在U N以下测取原方电压的同时测出副方电压数据也记录于表3-1中。 4、短路实验 (1)按下控制屏上的“停止”按钮,切断三相调压交流电源,按图3-2接线(以后每次改接线路,都要关断电源)。将变压器的高压线圈接电源,低压线圈直接短路。

变压器实验报告

实验报告 课程名称: 电机与拖动指导老师: 实验名称:单相变压器同组学生姓名:刘雪成李文鑫 一、实验目得与要求(必填)????二、实验内容与原理(必填) 三、主要仪器设备(必填)??????四、操作方法与实验步骤 五、实验数据记录与处理??六、实验结果与分析(必填) 七、讨论、心得 一、实验目得 1.通过空载与短路实验测定变压器得变比与参数。 2.通过负载实验测取变压器得运行特性。 二、预习要点 1.变压器得空载与短路实验有什么特点?实验中电源电压一般加在哪一方较合适? 2。在空载与短路实验中,各种仪表应怎样联接才能使测量误差最小? 3.如何用实验方法测定变压器得铁耗及铜耗。 三、实验项目 1.空载实验 测取空载特性U0=f(I0),P0=f(U0)。 2.短路实验 测取空载特性UK=f(I K),P K=f(UK)。 3.负载实验 (1)纯电阻负载 保持U1=U1N, cosφ2=1得条件下,测取U2=f(I2)。 四、实验线路及操作步骤 1、空载试验 实验线路如图3-1所示,被试变压器选用DT40三相组式变压器,实验用其中得一相,其额定容量PN=76W,U1N/ U2N=220/55V,I1N/I2N=0。345/1。38A.变压器得低压线圈接电源,高压线圈开路。接通电源前,选好所有电表量程,将电源控制屏DT01得交流电源调压旋钮调到输出电压为零得位置,然后打开钥匙开头,按下DT01面板上“开”得按钮,此时变压器接入交流电源,调节交流电源调压旋钮,使变压器空载电压U0=1.2 UN,然后,逐次降低电源

电压,在1。2~0.5U N得范围内,测取变压器得U0、I0、P0共取6-7组数据,记录于表2-1中,其中U=U N得点必测,并在该点附近测得点应密些。为了计算变压器得变化,在U N以下测取原方电压得同时,测出副方电压,取三组数据记录于表3-1中.

单相铁心变压器特性的测试

实验十八单相铁心变压器特性的测试 一、实验目的 1. 通过测量,计算变压器的各项参数。 2. 学会测绘变压器的空载特性与外特性。 二、原理说明 1. 图18-1为测试变压器参数的电路。由各仪表读得变压器原边(AX,低压侧)的 图18-1 U1、I1、P1及付边(ax,高压侧)的U2、I2,并用万用表R×1档测出原、副绕组的电阻R1和R2,即可算得变压器的以下各项参数值: U1I2 电压比Ku=──,电流比K I=──, U2I1 U1U2 原边阻抗Z1=──,副边阻抗Z2=──, I1 I2 Z1 阻抗比=──,负载功率P2=U2I2cosφ2, Z2 损耗功率P o=P1-P2, P1 功率因数=───,原边线圈铜耗P cu1=I21R1, U1I1 副边铜耗P cu2=I22R2,铁耗P Fe=P o-(P cu1+P cu2) 2. 铁芯变压器是一个非线性元件,铁心中的磁感应强度B决定于外加电压的有效值U。当副边开路(即空载)时,原边的励磁电流I10与磁场强度H成正比。在变压器中,副边空载时,原边电压与电流的关系称为变压器的空载特性,这与铁芯的磁化曲线(B-H曲线)是一致的。 空载实验通常是将高压侧开路,由低压侧通电进行测量,又因空载时功率因数很低,故测量功率时应采用低功率因数瓦特表。此外因变压器空载时阻抗很大,故电压表应接在电流表外侧。 3. 变压器外特性测试。 为了满足三组灯泡负载额定电压为220V的要求,故以变压器的低压(36V)绕组作为原边,220V 的高压绕组作为副边,即当作一台升压变压器使用。 在保持原边电压U1(=36V)不变时,逐次增加灯泡负载(每只灯为15W),测定U1、●

变压器试验项目及标准

变压器试验项目和标准 测试仪表的精度要求;测量电压、电流和电阻均应使用准确度不低于0.5级的仪表和仪用互感器;测量功率应使用不低于1.0级的低功率因数功率表 (1)变压器试验项目。变压器试验项目见表3—39 表3—39 变压器试验项目 序号试验项目 试验类别 备注出厂试验交接试验更换绕组 的大修 不更换绕组的 大修 例行型式安装前安装后 1 测量绕组绝缘电阻及干燥前后必 需 打开前及投入 运用前必需 包括 额定 电压 下合 闸 2 套管介质损失角试验 3 高压试验主绝缘 4 测定电容比干燥前 后必需 干燥前后必 需 检修前后必需 5 测定电容比 建议在下列情况下采用;即当 及试值偏高或无法 进行 6 测量介质损失角可用以 4。5项 干燥前后必 需 7 测量绕组直流电阻 8 变压比试验无设备履历卡则需要

序号试验项目 试验类别 备注出厂试验交接试验更换绕组 的大修 不更换绕组的 大修 例行型式安装前安装后 9 校定绕组联结组无设备 履历卡 则需要 包括 额定 电压 下合 闸 10 空载试验 11 短路试验 12 穿心螺栓耐压试验 13 定相试验如果一次或二次接线改接则 必需 14 油的分析试验 15 油箱严密性试验 16 温升试验 ①容量为630KVA及以下变压器无需进行。 ②容量为630KVA及以下变压器仅需测量空载电流。 注表中的表示必需,。

(2)变压器试验项目、周期和标准。变压器在供电部门及用户的试验项目、周期和标准,见表3—40 表3—40 变压器在供电部门、用户的试 验项目、周期和标准 序号项目周期标准说明 1 测量绕组的 绝缘电阻和吸 收比 (1)交接时 (2)大修时 (3)1~3年 一次 (1)交接标准绝缘电 阻见标准;吸收比在 10~30时,35KV级以下者 不应低于1.2 (2)大修和运行标准 自行规定,参考值见上条 (1)额定电压为1000V 以上的绕组用2500V兆欧表, 其量程一般不低于10000M Ω,1000V以下者用1000V兆 欧表 (2)测量时,非被试绕组 接地 2 测量绕组连同 套管一起的介 质损耗因数 (1)交接 时 (2)大修时 (3)必要时 (1)交接标准见规定 (2)大修及运行中的 值不大于规定 (3)值与历年的 数值比较不应有显著变化 (1)容量为3150KW及 以上的变压器应进行 (2)非被测绕组应接地 (采用M型试验器时 应屏蔽) 3 绕组连同套管 一起的交流耐 压试验 (1)交接时 (2)大修后 (3)更换绕 组后 (1)全部更换绕组绝 缘后,一般应按表3-41中 出厂标准进行;局部更换 绕组后,按表3—41中大 修标准进行 (2)非标准系列产 品,标准不明的且未全部 更换绕组的变压器,交流 耐压试验电压标准应按过 去的试验电压,但不得低 于表3—41(对1965年前 产品的标准) (1)大修后绕组额定电 压为110KV以下且容量为 800KW及以下的变压器应进 行,其他根据条件自行规定 (2)充油套管应在内部 充满油后进行耐压试验

电力系统分析 实验报告 南昌大学

实验报告 实验课程:电力系统分析 学生姓名:李瑞欣 学号:6101113078 专业班级:电气工程及其自动化132 指导老师:徐敏 2015年 12月日

南昌大学实验报告 学生姓名:李瑞欣学号:610113078 专业班级:电气132 实验类型:□验证□综合□设计□创新实验日期:实验成绩: 一、实验项目名称 电力网数学模型模拟实验 二、实验目的与要求: 本实验通过对电力网数学模型形成的计算机程序的编制与调试,获得形成电力网数学模型:节点导纳矩阵的计算机程序,使数学模型能够由计算机自行形成,即根据已知的电力网的接线图及各支路参数由计算程序运行形成该电力网的节点导纳矩阵。通过实验教学加深学生对电力网数学模型概念的理解,学会运用数学知识建立电力系统的数学模型,掌握数学模型的形成过程及其特点,熟悉各种常用应用软件,熟悉硬件设备的使用方法,加强编制调试计算机程序的能力,提高工程计算的能力,学习如何将理论知识和实际工程问题结合起来。 三、主要仪器设备及耗材 计算机、软件(已安装,包括各类编程软件C语言、C++、VB、VC等、应用软件MATLAB等)、移动存储设备(学生自备,软盘、U盘等) 四、实验步骤 1、将事先编制好的形成电力网数学模型的计算程序原代码由自备移动存储设备导入计算机。 2、在相应的编程环境下对程序进行组织调试。 3、应用计算例题验证程序的计算效果。 4、对调试正确的计算程序进行存储、打印。 5、完成本次实验的实验报告。 五、实验数据及处理结果 运行自行设计的程序,把结果与手工计算结果相比较,验证所采用方法及所编制程序运行的正确性。 实验数据 见《电力系统分析》(上册)72页例4-1

相关文档
最新文档