【高中数学】解三角形的知识总结和题型归纳

【高中数学】解三角形的知识总结和题型归纳
【高中数学】解三角形的知识总结和题型归纳

解三角形的知识总结和题型归纳

一、知识必备:

1.直角三角形中各元素间的关系:

在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。(1)三边之间的关系:a 2+b 2=c 2。(勾股定理)(2)锐角之间的关系:A +B =90°;(3)边角之间的关系:(锐角三角函数定义)

sin A =cos B =c a ,cos A =sin B =c b ,tan A =b

a 。

2.斜三角形中各元素间的关系:

在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。(1)三角形内角和:A +B +C =π。

(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等

R C

c

B b A a 2sin sin sin ===(R 为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos

C 。

3.三角形的面积公式:

(1)?S =

21ah a =21bh b =21

ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高);(2)?S =21ab sin C =21bc sin A =2

1

ac sin B ;

4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面

【高中数学】

积等等.主要类型:

(1)两类正弦定理解三角形的问题:

第1、已知两角和任意一边,求其他的两边及一角.第2、已知两角和其中一边的对角,求其他边角.(2)两类余弦定理解三角形的问题:

第1、已知三边求三角.

第2、已知两边和他们的夹角,求第三边和其他两角.5.三角形中的三角变换

三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。

(1)角的变换

因为在△ABC 中,A+B+C=π,所以sin(A+B)=sinC ;cos(A+B)=-cosC ;tan(A+B)=-tanC 。

2

sin 2cos ,2cos 2sin

C

B A

C B A =+=+;(2)判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.

6.求解三角形应用题的一般步骤:(1)分析:分析题意,弄清已知和所求;

(2)建模:将实际问题转化为数学问题,写出已知与所求,并画出示意图;

(3)求解:正确运用正、余弦定理求解;(4)检验:检验上述所求是否符合实际意义。

二、典例解析题型1:正、余弦定理

例1.(1)在?ABC 中,已知0

32.0=A ,0

81.8=B ,42.9=a cm ,解三角形;

(2)在?ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到0

1,边长精确到1cm )。解:(1)根据三角形内角和定理,

0180()=-+C A B 000180(32.081.8)=-+066.2=;

根据正弦定理,0

sin 42.9sin81.880.1()sin sin32.0=

=≈a B b cm A ;根据正弦定理,0

sin 42.9sin66.274.1().

sin sin32.0==≈a C c cm A (2)根据正弦定理,0

sin 28sin40sin 0.8999.20

==≈b A B a 因为0

0<B <0180,所以0

64≈B ,或0116.

≈B ①当0

64≈B 时,

00000180()180(4064)76=-+≈-+=C A B ,

0sin 20sin7630().

sin sin40==≈a C c cm A ②当0116≈B 时,

180()180(40116)24=-+≈-+=C A B ,0

sin 20sin2413().sin sin40

==≈a C c cm A 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形;(2)对于解三角形中的复杂运算可使用计算器题型2:三角形面积

例2.在?ABC 中,sin cos A A +=22

,AC =2,3=AB ,求A tan 的值和?ABC

的面积。

解法一:先解三角方程,求出角A 的值。

.

2

1

)45cos(,2

2)45cos(2cos sin =-∴=-=+ A A A A 又0180 <

A A ∴-==

tan tan(4560)2A ∴=+=

=-- .4

6

260sin 45cos 60cos 45sin )6045sin(105sin sin +=

+=+==

A S AC A

B A AB

C ?=

?=???+=+12122326434

26sin ()。解法二:由sin

cos A A +计算它的对偶关系式sin cos A A +的值。

sin cos A A +=

2

2

21(sin cos )2

12sin cos 2

0180,sin 0,cos 0.1

(sin 2)

2

A A A A A A A A ∴+=∴=-

<<∴><=- 另解2

3cos sin 21)cos (sin 2=

-=-A A A A ,∴-=

sin cos A A 62

①+②得sin A =

+26

4

。①-②得cos A =-264

从而sin tan 2cos A A A =

==-。

以下解法略去。

点评:本小题主要考查三角恒等变形、三角形面积公式等基本知识,着重数学考查运算能力,是一道三角的基础试题。两种解法比较起来,你认为哪一种解法比较简单呢?

题型3:三角形中的三角恒等变换问题

例3.在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边长,已知a 、b 、

c 成等比数列,且a 2

-c 2

=ac -bc ,求∠A 的大小及c

B

b sin 的值。

分析:因给出的是a 、b 、c 之间的等量关系,要求∠A ,需找∠A 与三边的

关系,故可用余弦定理。由b 2=ac 可变形为c b 2=a ,再用正弦定理可求c

B

b sin 的

值。

解法一:∵a 、b 、c 成等比数列,∴b 2=ac 。又a 2-c 2=ac -bc ,∴b 2+c 2-a 2=bc 。

在△ABC 中,由余弦定理得:cos A =bc

a c

b 22

22-+=bc bc 2=21,

∴∠A =60°。

在△ABC 中,由正弦定理得sin B =

a

A

b sin ,∵b 2=a

c ,∠A =60°,∴ac b c B b ?=60sin sin 2=sin60°=2

3

。解法二:在△ABC 中,由面积公式得2

1bc sin A =2

1ac sin B 。

∵b 2=ac ,∠A =60°,∴bc sin A =b 2sin B ,∴c B b sin =sin A =

2

3

评述:解三角形时,找三边一角之间的关系常用余弦定理,找两边两角之间的关系常用正弦定理。

题型4:正、余弦定理判断三角形形状

例4.在△ABC 中,若2cos B sin A =sinC ,则△ABC 的形状一定是()

A.等腰直角三角形

B.直角三角形

C.等腰三角形

D.等边三角形

答案:C

解析:2sin A cos B =sin C =sin (A +B )=sinAcosB+cosAsinB ∴sin (A -B )=0,∴A =B 另解:角化边

点评:本题考查了三角形的基本性质,要求通过观察、分析、判断明确解题思路和变形方向,通畅解题途径题型5:三角形中求值问题

例5.ABC ?的三个内角为A B C 、、,求当A 为何值时,cos 2cos 2

B C

A ++取得最大值,并求出这个最大值。

解析:由A+B+C=π,得

B+C 2=π2-A 2,所以有cos B+C 2=sin A

2

。cosA+2cos B+C 2=cosA+2sin A 2=1-2sin 2A 2+2sin A 2=-2(sin A 2-12)2+3

2;

当sin A 2=12,即A=π3时,cosA+2cos B+C 2取得最大值为32。

点评:运用三角恒等式简化三角因式最终转化为关于一个角的三角函数的形式,通过三角函数的性质求得结果。题型6:正余弦定理的实际应用

例6.(2009辽宁卷文,理)如图,A,B,C,D 都在同一个与水平面垂直的平面内,

B ,D 为两岛上的两座灯塔的塔顶。测量船于水面A 处测得B 点和D 点的

仰角分别为0

75,030,于水面C 处测得B 点和D

点的仰角均为0

60,AC=0.1km 。试探究图中B ,D 间距离与另外哪两点间

距离相等,然后求B ,D 的距离(计算结果精确到0.01km ,

≈1.414,

≈2.449)

解:在△ABC 中,∠DAC=30°,∠ADC=60°-∠DAC=30,所以CD=AC=0.1又∠BCD=180°-60°-60°=60°,故CB 是△CAD 底边AD 的中垂线,所以BD=BA ,

在△ABC 中,

,ABC

sin C

BCA sin ∠=∠A AB

即AB=,206

2315sin ACsin60+=

因此,BD=。

km 33.020

6

23≈+故B ,D 的距离约为0.33km 。

点评:解三角形等内容提到高中来学习,又近年加强数形结合思想的考查和对三角变换要求的降低,对三角的综合考查将向三角形中问题伸展,但也不可太难,只要掌握基本知识、概念,深刻理解其中基本的数量关系即可过关。三、思维总结

1.解斜三角形的常规思维方法是:

(1)已知两角和一边(如A 、B 、C ),由A +B +C =π求C ,由正弦定理求a 、b ;

(2)已知两边和夹角(如a 、b 、c ),应用余弦定理求c 边;再应用正弦定理先求较短边所对的角,然后利用A +B +C =π,求另一角;

(3)已知两边和其中一边的对角(如a 、b 、A ),应用正弦定理求B ,由A +B +C =π求C ,再由正弦定理或余弦定理求c 边,要注意解可能有多种情况;

(4)已知三边a 、b 、c ,应余弦定理求A 、B ,再由A +B +C =π,求角C 。2.三角学中的射影定理:在△ABC 中,A c C a b cos cos ?+?=,…3.两内角与其正弦值:在△ABC 中,B A B A sin sin

1.若△ABC 的三个内角满足

sin :sin :sin 5:11:13A B C =,则△ABC

()

(A )一定是锐角三角形.(B )一定是直角三角形.

(C )一定是钝角三角形.

(D)可能是锐角三角形,也可能是钝角三角

形.解析:由sin

:sin :sin 5:11:13A B C =及正弦定理得a:b:c=5:11:13

由余弦定理得011

5213115cos 2

22

c ,所以角C 为钝角

2.在△ABC 中,内角A,B,C 的对边分别是a,b,c ,若22

a b -=,

sin C B =

,则A=(

)(A )0

30(B )0

60(C )0

120(D )0

150【答案】A

【解析】本题主要考查正弦定理与余弦定理的基本应用,属于中等题。由正弦定理得

23

22c c R R

=?=,

所以cosA=2222+c -a 22b bc c bc bc

+==22bc +=,所以A=300

【温馨提示】解三角形的基本思路是利用正弦、余弦定理将边化为角运算或将角化为边运算。

3.在ABC ?中,a=15,b=10,A=60°,则cos B =

A -

3

B

3C -3

D 3

【答案】D

【解析】根据正弦定理sin sin a b A B =可得1510sin 60sin B = 解得sin 3

B =,又因为

b a <,则B A <,故B 为锐角,所以cos 3

B ==

,故D 正确.4.已知a,b,c 分别是△ABC 的三个内角A,B,C 所对的边,若a=1,b=A+C=2B,

则sinC=

.

解:由A +C =2B 及A +B+C =180°知,B =60°.由正弦定理知,1sin sin 60A =

,即1sin 2

A =

.由a b <知,60A B <= ,则30A = ,180180306090C A B =--=--= ,sin sin 901C == 5.在锐角ABC ?中,1,2,BC B A ==则

cos AC

A

的值等于,AC 的取值范

围为.

解析

设,2.A B θθ∠=?=由正弦定理得

,1 2.sin 2sin 2cos cos AC BC AC AC

θθθθ

=∴=?=由锐角ABC ?得0290045θθ<

又01803903060θθ<-

故23

3045cos 22

θθ<

<<

,2cos AC θ∴=∈6.(2009全国卷Ⅰ理)在ABC ?中,内角A 、B 、C 的对边长分别为a 、b 、c ,已知2

2

2a c b -=,且sin cos 3cos sin ,A C A C =求b

分析::此题事实上比较简单,但考生反应不知从何入手.对已知条件(1)2

22a

c b -=左侧是二次的右侧是一次的,学生总感觉用余弦定理不好处

理,而对已知条件(2)sin cos 3cos sin ,A C A C =过多的关注两角和与差的正弦公式,甚至有的学生还想用现在已经不再考的积化和差,导致找不到突破口而失分.

解法:在ABC ?中则sin cos 3cos sin ,A C A C = 由正弦定理及余弦定理

有:2222223,22a b c b c a a

c ab bc

+-+-=(角化边)化简并整理得:222

2()a c b -=.又由已知2

2

2a c b -=24b b ∴=.

解得40(b b ==或舍).

7.在△ABC 中,已知A 、B 、C 成等差数列,求2

tan 2

tan 32

tan 2

tan C A C A ++的值。

解析:因为A 、B 、C 成等差数列,又A +B +C =180°,所以A +C =120°,从而

2C A +=60°,故tan 32

=+C

A .由两角和的正切公式,得32

tan

2tan 12tan 2tan

=-+C A C

A 。所以,

2

tan 2

tan 332

tan 2

tan C A C A -=+32

tan 2tan 32tan 2tan

=++C

A C A 。点评:在三角函数求值问题中的解题思路,一般是运用基本公式,将未知角

变换为已知角求解,同时结合三角变换公式的逆用。8.在ABC ?中,

A B 、为锐角,角A B C 、、所对的边分别为a b c 、、,且

510sin 510

A B =

=(I )求A B +的值;(II )若21a b -=-,求a b c 、、的值。解(I )∵

A B 、为锐角,510

sin ,sin 510

A B =

=∴2225310

cos 1sin 1sin 510

A A

B B =-=

=-=253105102

cos()cos cos sin sin .5105102

A B A B A B +=-?-?∵0A B π<+<,∴4A B π

+=

(II )由(I )知34

C π=,∴

2sin C =

sin sin sin a b c

A B C

==

5102a b c ==,即2,5a b c b ==又∵21

a b -∴

221

b b -=-∴

1

b =∴2,5

a c ==9.

在△ABC 中,已知B=45°,D 是BC 边上的一点,AD=10,AC=14,DC=6,求AB 的长.解在△ADC 中,AD=10,AC=14,DC=6,由余弦定理得

cos ∠

222

2AD DC AC AD DC

+-=1003619612106

2

+-=-??,

∴∠ADC=120°,∠ADB=60°

在△ABD 中,AD=10,∠B=45°,∠ADB=60°,由正弦定理得

sin sin AB AD

ADB B

=

∠,

AB=10sin 10sin 60sin sin 45AD ADB

B

∠?

=

=?

10.在ABC ?中,a b c 、、分别为内角A B C 、、的对边,

且2sin (2)sin (2)sin a A b c B c b C =+++(Ⅰ)求A 的大小;

(Ⅱ)若sin sin 1B C +=,试判断ABC ?的形状.

解:(Ⅰ)由已知,根据正弦定理得c

b c b c b a )2()2(22

+++=即bc

c b a ++=2

22由余弦定理得A

bc c b a cos 22

22-+=故?

=-=120,2

1cos A A (Ⅱ)由(Ⅰ)得.

sin sin sin sin sin 2

22C B C B A ++=又1sin sin =+C B ,得2

1sin sin ==C B 因为?<

=所以ABC ?是等腰的钝角三角形。

11.在△ABC 中,a,b,c 分别为内角A,B,C 的对边,且

2sin (2)sin (2)sin .a A a c B c b C =+++(Ⅰ)求A 的大小;

(Ⅱ)求sin sin B C +的最大值.

解:(Ⅰ)由已知,根据正弦定理得2

2(2)(2)a b c b c b c

=+++即

222a b c bc

=++由余弦定理得

2222cos a b c bc A

=+-

1

cos 2

A =-,A=120°

……6分

(Ⅱ)由(Ⅰ)得:

sin sin sin sin(60)

B C B B +=+?-31sin 22sin(60)B B B +=?+故当B=30°时,sinB+sinC 取得最大值1。

解三角形知识点归纳总结

第一章 解三角形 一.正弦定理: 1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外 接圆的直径,即 R C c B b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 2.变形:1)sin sin sin sin sin sin a b c a b c C C ++=== A + B +A B . 2)化边为角: C B A c b a sin :sin :sin ::=; ;sin sin B A b a = ;sin sin C B c b = ;sin sin C A c a = 3)化边为角:C R c B R b A R a sin 2,sin 2,sin 2=== 4)化角为边: ;sin sin b a B A = ;sin sin c b C B =;sin sin c a C A = 5)化角为边: R c C R b B R a A 2sin ,2sin ,2sin = == 3. 利用正弦定理可以解决下列两类三角形的问题: 4. ①已知两个角及任意—边,求其他两边和另一角; 例:已知角B,C,a , 解法:由A+B+C=180o ,求角A,由正弦定理 ;sin sin B A b a = ;sin sin C B c b = ;sin sin C A c a =求出b 与c ②已知两边和其中—边的对角,求其他两个角及另一边。 例:已知边a,b,A, 解法:由正弦定理B A b a sin sin =求出角B,由A+B+C=180o 求出角C ,再使用正弦定理C A c a sin sin =求出c 边 4.△ABC 中,已知锐角A ,边b ,则 ①A b a sin <时,B 无解; ②A b a sin =或b a ≥时,B 有一个解; ③b a A b <

高中解三角形题型大汇总

解三角形题型总结 题型一:正选定理的应用 1. ABC ?的三内角A 、B 、C 的对边边长分别为a b c 、、,若,2a A B ==, 则cos _____B = B. C. D. 2. 如果111A B C ?的三个内角的余弦值分别等于222A B C ?的三个内角的正弦值,则( ) A .111A B C ?和222A B C ?都是锐角三角形 B .111A B C ?和222A B C ?都是钝角三角形 C .111A B C ?是钝角三角形,222A B C ?是锐角三角形 D .111A B C ?是锐角三角形,222A B C ?是钝角三角形 3. 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若 ( ) C a A c b cos cos 3=-,则 =A cos _________________。 4.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =a 2,则=a b A . B . C D 5.ABC ?中,3 π = A ,BC =3,则ABC ?的周长为( ) A . 33sin 34+??? ? ?+πB B . 36sin 34+??? ??+πB C .33sin 6+??? ??+πB D .36sin 6+??? ? ? +πB 6. 在ABC ?中,已知3,1,60===?ABC S b A o ,则=++++C B A c b a sin sin sin 7.设ABC ?的内角,,A B C 的对边分别为,,a b c ,且35 cos ,cos ,3,513 A B b = ==则c =______

解三角形知识点归纳总结

第一章解三角形 .正弦定理: 2)化边为角: a : b: c sin A : sin B : sin C ? 7 a si nA b sin B a sin A b sin B ' c sin C J c sin C ' 3 )化边为角: a 2Rsin A, b 2Rsin B, c 2Rsin C 4 )化角为边: sin A sin B a ; sin B J b sin C b sin A a c' sin C c ' a b 5 )化角为边:si nA , si nB , si nC 2R 2R 3. 利用正弦定理可以解决下列两类三角形的问题: ① 已知两个角及任意一边,求其他两边和另一角; 例:已知角B,C,a , 解法:由 A+B+C=180,求角A,由正弦定理a 竺A, 竺B b sin B c sin C b 与c ②已知两边和其中一边 的对角,求其他两个角及另一边。 例:已知边a,b,A, 解法:由正弦定理旦 血 求出角B,由A+B+C=180求出角C,再使用正 b sin B 弦定理a 泄求出c 边 c sin C 4. △ ABC 中,已知锐角A ,边b ,贝U ① a bsin A 时,B 无解; ② a bsinA 或a b 时,B 有一个解; ③ bsinA a b 时,B 有两个解。 如:①已知A 60 ,a 2,b 2 3,求B (有一个解) ②已知A 60 ,b 2,a 2.3,求B (有两个解) 注意:由正弦定理求角时,注意解的个数 .三角形面积 各边和它所对角的正弦的比相等, 并且都等于外 接圆的直径, 即 a b c sin A sin B sinC 2.变形:1) a b c a sin sin si sin 2R (其中R 是三角形外接圆的半径) b c sin sinC c 2R 沁;求出 sin C 1.正弦定理:在一个三角形中, bsin A

最新解三角形知识点归纳(附三角函数公式)

高中数学必修五 第一章 解三角形知识点归纳 1、三角形三角关系:A+B+C=180°;C=180°—(A+B); 2、三角形三边关系:a+b>c; a-b,则90C <;③若2 2 2 a b c +<,则90C >. 11、三角形的四心: 垂心——三角形的三边上的高相交于一点 重心——三角形三条中线的相交于一点(重心到顶点距离与到对边距离之比为2:1) 外心——三角形三边垂直平分线相交于一点(外心到三顶点距离相等) 内心——三角形三内角的平分线相交于一点(内心到三边距离相等) 12同角的三角函数之间的关系 (1)平方关系:sin2α+cos2α=1 (2)倒数关系:tanα·cotα=1 (3)商的关系:α α ααααsin cos cot ,cos sin tan ==

高中数学-解三角形知识点汇总及典型例题1

解三角形的必备知识和典型例题及详解 一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。 (1)三边之间的关系:a 2 +b 2 =c 2 。(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B = c a ,cos A =sin B =c b ,tan A =b a 。 2.斜三角形中各元素间的关系: 在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。 (1)三角形内角和:A +B +C =π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C c B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍 a 2= b 2+ c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。 3.三角形的面积公式: (1)?S = 21ah a =21bh b =21 ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)?S =21ab sin C =21bc sin A =2 1 ac sin B ; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型: (1)两类正弦定理解三角形的问题: 第1、已知两角和任意一边,求其他的两边及一角. 第2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题: 第1、已知三边求三角.

(完整版)解三角形知识点及题型总结

基础强化(8)——解三角形 1、①三角形三角关系:A+B+C=180°;C=180°-(A+B); ②. 三角形三边关系:a+b>c; a-bB>C 则6090,060A C ?≤

高中数学-解三角形知识点汇总情况及典型例题1

实用标准

—tanC。

例 1 ? (1 )在 ABC 中,已知 A 32.00 , B 81.80 因为 00 v B v 1800,所以 B 640,或 B 1160. c as nC 空啤 30(cm). sin A s in400 ②当B 1160时, 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形; 对于解三角形中的复杂运算可使用计算器 题型2 :三角形面积 2 , AC 2 , AB 3,求tan A 的值和 ABC 的面积。 2 (2 )在 ABC 中,已知 a 20 cm , b 28 cm , 40°,解三角形(角度精确到 10,边长精确 到 1cm ) o 解:(1 )根据三角形内角和定理, C 1800 (A B) 1800 (32.00 81.80) 66.20 ; 根据正弦定理,b asinB 42.9sin81.80 si nA 眾厂 80.1(cm); 根据正弦定理,c 聲C 丝9也彰 74.1(cm). sin 32.0 (2 )根据正弦定理, s"B 舸 A 28sin4°0 a 20 0.8999. ,a 42.9 cm ,解三角形; ①当 B 640 时, C 1800 (A B) 1800 (40° 640) 760, C 1800 (A B) 1800 (400 116。)240 , c asinC si nA 呼 13(cm). sin 40 (2) 解法一:先解三角方程,求出角 A 的值。 例2 ?在ABC 中, sin A cos A

si nA cos A j2cos(A 45 )-—, 2 1 cos(A 45 )-. 又 0 A 180 , A 45o 60o , A 105.° o o 1 \/3 L tan A tan(45 60 ) 一字 2 J3, 1 73 42 si nA sin105 sing5 60) sin4 5 co$60 cos45 si n60 ——-—. 1 1 /2 洽 n S ABC AC AB si nA 2 3 近 46)。 2 2 4 4 解法二:由sin A cos A 计算它的对偶关系式 si nA cos A 的值。 v 2 — si nA cos A —— ① 2 2 1 (si nA cos A)2 2 1 2sin Acos A — 2 Q0o A 180o , si nA 0,cos A 0. 1 另解(si n2A —) 2 2 3 (s in A cos A) 1 2 sin Acos A —, *'6 _ si nA cos A — ② 2 $2 J6 ①+②得sin A --------------- 。 4 ①-②得 cosA <6 。 4 u 而丄 A si nA J 2 J 6 4 c 匚 从而 tan A l l 2 ~3。 cosA 4 v2 v 6

高中数学必修五第一章解三角形知识点总结及练习题

第一章 解三角形 1、正弦定理: 在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ?AB 的外接圆的半径,则有: 2sin sin sin a b c R C ===A B . 2、正弦定理的变形公式: ①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A = ,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ; ④ sin sin sin sin sin sin a b c a b c C C ++=== A + B +A B . 注意:正弦定理主要用来解决两类问题:1、已知两边和其中一边所对的角,求其余的量。 2、已知两角和一边,求其余的量。 ⑤对于已知两边和其中一边所对的角的题型要注意解的情况。(一解、两解、无解三中情况)如:在三角形ABC 中,已知a 、b 、A (A 为锐角)求B 。具体的做法是:数形结合思想 画出图:法一:把a 扰着C 当无交点则B 无解、 当有一个交点则B 有一解、 当有两个交点则B 有两个解。 法二:是算出CD=bsinA,看a 的情况: 当ab 时,B 有一解

注:当A 为钝角或是直角时以此类推既可。 3、三角形面积公式: 111 sin sin sin 222 C S bc ab C ac ?AB =A ==B . 4、余弦定理: 在C ?AB 中,有2222cos a b c bc =+-A , 2222cos b a c ac =+-B , 2222cos c a b ab C =+-. 5、余弦定理的推论: 222 cos 2b c a bc +-A =, 222 cos 2a c b ac +-B =, 222 cos 2a b c C ab +-=. (余弦定理主要解决的问题:1、已知两边和夹角,求其余的量。2、已知三边求角) 6、如何判断三角形的形状: 设a 、b 、c 是C ?AB 的角A 、B 、C 的对边,则: ①若222a b c +=,则90C =; ②若222a b c +>,则90C <; ③若222a b c +<,则90C >. 7、正余弦定理的综合应用: 如图所示:隔河看两目标A 、B, C 并测得∠ACB=75O , ∠BCD=45O , ∠ADC=30O ,

解三角形专题题型归纳

解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 一、知识点归纳(★☆注重细节,熟记考点☆★) 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-=+-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??=?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22 A B C += 7.实际问题中的常用角 (1)仰角和俯角

解三角形知识点归纳

解三角形知识点归纳 1、三角形三角关系:A+B+C=180°;C=180°—(A+B); 2、三角形三边关系:a+b>c; a-b,则90C o .

【高中数学】解三角形基本题型

解三角形 解三角形 正弦定理的基本运用 1、 △A BC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为 。 2、 在△ABC 中,b cos A =a cos B ,则三角形为 。 3、 已知△ABC 中,a =10,B =60°,C =45°,则c = 。 4、 在△ABC 中,已知150,350,30==?=c b B ,那么这个三角形是 。 5、 在ABC ?中,?===452232B b a ,,,则A 为 。 6、 在△ABC 中,A =60°,C =45°,b =2,则此三角形的最小边长为 。

余弦定理的基本运用 1、 在△ABC 中,a 2=b 2+c 2+bc ,则A 等于 。 2、 已知△ABC 的面积2,32,3===b a S ,解此三角形。 3、 在△ABC 中,1326+===c b a ,,,求A 、B 、C 。 4、 在△ABC 中,化简b cos C +c cos B = 。 5、 在△ABC 中,化简 ) cos cos cos (222c C b B a A c b a abc ++++。 正余弦定理的综合运用 1、已知在△ABC 中,c =10,A =45°,C =30°,求a 、b 和 B 。 2、在△ABC 中,c =22,tan A =3,tan B =2,试求a 、b 及此三角形的面积。 3、在△ABC 中,a =2,A =30°,C =45°,则△ABC 的面积S △ABC 等于 。

4、已知在△ABC中,sin A:sin B:sin C=3:2:4,那么cos C的值为。 5、△ABC中,A=60°,b=1,这个三角形的面积为3,则△ABC外接圆的直径 为。 6、在△ABC中,BC=3,AB=2,且 )1 6 ( 5 2 sin sin + = B C ,A=。

解三角形知识点归纳总结

解三角形知识点归纳总 结 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

第一章 解三角形 一.正弦定理: 1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于 外接圆的直径,即 R C c B b A a 2sin sin sin ===(其中R 是三角形外接圆的半 径) 2.变形:1)sin sin sin sin sin sin a b c a b c C C ++=== A + B +A B . 2)化边为角: C B A c b a sin :sin :sin ::=; 3)化边为角:C R c B R b A R a sin 2,sin 2,sin 2=== 4)化角为边: ;sin sin b a B A = ;sin sin c b C B =;sin sin c a C A = 5)化角为边: R c C R b B R a A 2sin ,2sin ,2sin = == 3. 利用正弦定理可以解决下列两类三角形的问题: 4. ①已知两个角及任意—边,求其他两边和另一角; 例:已知角B,C,a , 解法:由A+B+C=180o ,求角A,由正弦定理;sin sin B A b a = ;sin sin C B c b = ;sin sin C A c a =求出b 与c ②已知两边和其中—边的对角,求其他两个角及另一边。 例:已知边a,b,A, 解法:由正弦定理B A b a sin sin =求出角B,由A+B+C=180o 求出角C ,再使用 正弦定理C A c a sin sin =求出c 边 4.△ABC 中,已知锐角A ,边b ,则 ①A b a sin <时,B 无解; ②A b a sin =或b a ≥时,B 有一个解; ③b a A b <

三角函数与解三角形知识点总结

1. 任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异 于原点),它与原点的距离是 0r =>,那么 sin ,cos y x r r αα= =, () tan ,0y x x α=≠ 三角函数值只与角的大小有关,而与终边上点P 的位置无关。 2.三角函数在各象限的符号: (一全二正弦,三切四余弦) + + - + - + - - - + + - sin α cos α tan α 3. 同角三角函数的基本关系式: (1)平方关系: 22221sin cos 1,1tan cos αααα+=+= (2)商数关系: sin tan cos α αα= (用于切化弦) ※平方关系一般为隐含条件,直接运用。注意“1”的代换 4.三角函数的诱导公式 诱导公式(把角写成α π±2k 形式,利用口诀:奇变偶不变,符号看象限) Ⅰ)?????=+=+=+x x k x x k x x k tan )2tan(cos )2cos(sin )2sin(πππ Ⅱ)?????-=-=--=-x x x x x x tan )tan(cos )cos(sin )sin( Ⅲ) ?????=+-=+-=+x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅳ)?????-=--=-=-x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅴ)???????=-=-ααπααπsin )2cos(cos )2sin( Ⅵ)???????-=+=+ααπααπsin )2cos(cos )2sin(

高中数学解三角形题型完整归纳

高中数学解三角形题型目录一.正弦定理 1.角角边 2.边边角 3.与三角公式结合 4.正弦定理与三角形增解的应对措施 5.边化角 6.正弦角化边 二.余弦定理 1.边边边 2.边角边 3.边边角 4.与三角公式结合 5.比例问题 6.余弦角化边 7.边化余弦角 三.三角形的面积公式 1.面积公式的选用 2.面积的计算 3.正、余弦定理与三角形面积的综合应用 四.射影定理 五.正弦定理与余弦定理综合应用 1.边角互化与三角公式结合 2.与平面向量结合 3.利用正弦或余弦定理判断三角形形状 4.三角形中的最值问题 (1)最大(小)角 (2)最长(短)边 (3)边长或周长的最值

(4)面积的最值 (5)有关正弦或余弦或正切角等的最值 (6)基本不等式与余弦定理交汇 (7)与二次函数交汇 六.图形问题 1.三角形内角之和和外角问题 2.三角形角平分线问题 3.三角形中线问题 4.三角形中多次使用正、余弦定理 5.四边形对角互补与余弦定理的多次使用 6.四边形与正、余弦定理 六.解三角形的实际应用 1.利用正弦定理求解实际应用问题 2.利用余弦定理求解实际应用问题 3.利用正弦和余弦定理求解实际应用问题 一.正弦定理 1.角角边 ?=?=?= 例.在中,解三角形 ABC A B a 30,45,2,. ?=?=?== 练习1.在中则 ABC A B a c ,30,45, . 练习2.在中,已知45,,求 ?=?=?= 30. ABC C A a b 2.边边角 例中,解这个三角形?===? ABC a .45,. 练习1中,则 ?==+== . 1,2,sin ABC a b A C B C 练习2.中则 ?===?= ,3,60,_____ ABC c b C A

三角函数及解三角形知识点总结

三角函数及解三角形知识点 总结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

1. 任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意 一点(异于原点),它与原点的距离是0r =>,那么 sin ,cos y x r r αα= =,()tan ,0y x x α=≠ 三角函数值只与角的大小有关,而与终边上点P 的位置无关。 2.三角函数在各象限的符号: (一全二正弦,三切四余弦) + + - + - + - - - + + - sin α cos α tan α 3. 同角三角函数的基本关系式: (1)平方关系:22221 sin cos 1,1tan cos αααα +=+= (2)商数关系:sin tan cos α αα = (用于切化弦) ※平方关系一般为隐含条件,直接运用。注意“1”的代换 4.三角函数的诱导公式 诱导公式(把角写成 απ ±2 k 形式,利用口诀:奇变偶不变,符号看象限) Ⅰ)??? ??=+=+=+x x k x x k x x k tan )2tan(cos )2cos(sin )2sin(πππ Ⅱ)?????-=-=--=-x x x x x x tan )tan(cos )cos(sin )sin( Ⅲ) ?? ???=+-=+-=+x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅳ)?????-=--=-=-x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅴ)???????=-=-ααπααπsin )2cos(cos )2sin( Ⅵ)??? ????-=+=+α απααπsin )2cos(cos )2sin(

【高中数学】解三角形的知识总结和题型归纳

解三角形的知识总结和题型归纳 一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。(1)三边之间的关系:a 2+b 2=c 2。(勾股定理)(2)锐角之间的关系:A +B =90°;(3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =b a 。 2.斜三角形中各元素间的关系: 在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。(1)三角形内角和:A +B +C =π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C c B b A a 2sin sin sin ===(R 为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C 。 3.三角形的面积公式: (1)?S = 21ah a =21bh b =21 ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高);(2)?S =21ab sin C =21bc sin A =2 1 ac sin B ; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面 【高中数学】

必修五-解三角形-题型归纳

一. 构成三角形个数问题 1.在ABC ?中,已知,2,45a x b B === ,如果三角形有两解,则x 的取值范围是( ) A .. D.02x << 2.如果满足 60=∠ABC ,12=AC ,k BC =的△ABC 恰有一个,那么k 的取值范围是__________. 3.在ABC ?中,根据下列条件解三角形,其中有两个解的是( ) 二. 求边长问题 4.在ABC ?中,角,,A B C 所对边,,a b c ,若03,120a C ==,ABC ?的面积则c =( ) A .5 B .6 C .7 5.在△ABC 中,01,45,2ABC a B S ?===,则b =_______________. 三. 求夹角问题 6.在ABC ?中,,则=∠BAC sin ( ) A

7.在△ABC 中,角A ,B ,C 所对的边分别S c b a ,,,为表示△ABC 的面积,若 ,sin cos cos C c A b B a =+ B=( ) A .90° B .60° C .45° D .30° 四. 求面积问题 8.已知△ABC 中,内角A ,B ,C 所对的边长分别为c b a ,,.若2cos ,,13 a b A B c π ===,则 △ABC 的面积等于 ( ) 9.锐角ABC ?中,角C B A 、、的对边分别是c b a 、、,已知 (Ⅰ)求C sin 的值; (Ⅱ)当2=a ,C A sin sin 2=时,求b 的长及ABC ?的面积. 10.如图,在四边形ABCD 中, (1)求AD 边的长; (2)求ABC ?的面积.

解三角形知识点归纳总结归纳

欢迎阅读 第一章 解三角形 一.正弦定理: 1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即 R C c B b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 2.变形:1)sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . 2)化边为角:C B A c b a sin :sin :sin ::=; ;sin sin B A b a = ;sin sin C B c b = ;sin sin C A c a = 3)化边为角:C R c B R b A R a sin 2,sin 2,sin 2=== 4)化角为边: ;sin sin b a B A = ;sin sin c b C B =;sin sin c a C A = 5)化角为边: R c C R b B R a A 2sin ,2sin ,2sin === 3. 利用正弦定理可以解决下列两类三角形的问题: 4. ①已知两个角及任意—边,求其他两边和另一角; 例:已知角B,C,a , 解法:由A+B+C=180o ,求角A,由正弦定理;sin sin B A b a = ;sin sin C B c b = ;sin sin C A c a =求出b 与c ②已知两边和其中—边的对角,求其他两个角及另一边。 例:已知边a,b,A, 解法:由正弦定理B A b a sin sin =求出角B,由A+B+C=180o 求出角C ,再使用正弦定理C A c a sin sin =求出c 边 4.△ABC 中,已知锐角A ,边b ,则 ①A b a sin <时,B 无解; ②A b a sin =或b a ≥时,B 有一个解; ③b a A b <

三角函数及解三角形知识点

三角函数知识点 ?? ??? 正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{} 36036090,k k k αα?<,则sin y r α= ,cos x r α=,()tan 0y x x α=≠.

三角函数和解三角形知识点

三角函数和解三角形知识点 ?? ??? 正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 2、角α的顶点及原点重合,角的始边及x 轴的非负半轴重合,终边落在第几象限,则称α 为第几象限 角.第一象限角的集合为 {}360 36090,k k k αα?<,则,,. 9、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正, 第三象限正切为正,第四象限余弦为正. 11 、 角 三 角 函 数 的基本关系:()221sin cos 1 αα+=() 2 222sin 1cos ,cos 1sin αααα=-=-;

解三角形练习题及答案

第一章 解三角形 一、选择题 1.己知三角形三边之比为5∶7∶8,则最大角与最小角的和为( ). A .90° B .120° C .135° D .150° 2.在△ABC 中,下列等式正确的是( ). A .a ∶b =∠A ∶∠B B .a ∶b =sin A ∶sin B C .a ∶b =sin B ∶sin A D .a sin A =b sin B 3.若三角形的三个内角之比为1∶2∶3,则它们所对的边长之比为( ). A .1∶2∶3 B .1∶3∶2 C .1∶4∶9 D .1∶2∶3 4.在△ABC 中,a =5,b =15,∠A =30°,则c 等于( ). A .25 B .5 C .25或5 D .10或5 5.已知△ABC 中,∠A =60°,a =6,b =4,那么满足条件的△ABC 的形状大小 ( ). A .有一种情形 B .有两种情形 C .不可求出 D .有三种以上情形 6.在△ABC 中,若a 2+b 2-c 2<0,则△ABC 是( ). A .锐角三角形 B .直角三角形 C .钝角三角形 D .形状不能确定 7.在△ABC 中,若b =3,c =3,∠B =30°,则a =( ). A .3 B .23 C .3或23 D .2 8.在△ABC 中,a ,b ,c 分别为∠A ,∠B ,∠C 的对边.如果a ,b ,c 成等差数列,∠B =30°,△ABC 的面积为 2 3 ,那么b =( ). A . 2 3 1+ B .1+3 C . 2 3 2+ D .2+3 9.某人朝正东方向走了x km 后,向左转150°,然后朝此方向走了3 km ,结果他离出发点恰好3km ,那么x 的值是( ).

相关文档
最新文档