飞机结构重要知识点

飞机结构重要知识点
飞机结构重要知识点

1,航线结构损伤维修特点

?数量多——雷击,冰雹,鸟撞,勤务车辆、工作梯撞击等?修理周期较长

?时间紧迫——需要保障航班正常运营,

2.结构维修基本原则

安全性原则——结构持续适航影响结构持续适航性的损伤,必须立即停场进行结构修理

经济性原则——降低维修成本有计划地进行结构修理:不影响结构持续适航性的损伤,不一定立即进行结构修理

3.目前制约航线结构维修的主要因素

航线技术支援基本上为非结构修理专业人员,普遍缺乏基本结构工程技术支援技能,AOG技术支援基本上依靠结构工程师提供,耽误抢修进度。具体表现在:不能正确应用SRM有效过滤允许损伤极限范围内的结构损伤

不能正确报告结构损伤:提供给结构工程师的结构损伤信息不符合要求,难以满足损伤评估以及修理方案制定需要4.结构种类及其含义

飞机结构分为主要结构(primary structure)和次要结构(secondary structure)两大类

主要结构:传递飞行、地面或者增压载荷的结构。

主要结构包含重要结构(PSE/SSI)和其它主要结构。

重要结构指传递飞行、地面或者增压载荷的关键结构

件或者关键结构组件。重要结构件一旦失效,将导致

飞机灾难性事故

次要结构:仅传递局部气动载荷或者自身质量力载荷的结构。

次要结构失效不影响结构持续适航性/飞行安全。大多

数次要结构主要作用为保证飞机气动外形、降低飞行

时空气阻力。例如翼-身整流罩。

5.门的种类及用途

登机门/勤务门:登机门和勤务门分别为旅客和机组和勤务人员接近客舱内部的通道口。

应急门:紧急出口指紧急情况下的撤离出口

货舱门:用以接近货舱内部区域。

登机梯门:放出后,该梯能形成通道供旅客和机组进入或离开飞机

前设备舱门(Forward access) 电子设备舱门(Electronic equipment compartment)

各种检查盖板(Access Doors)各种勤务盖板(Service Doors)驾驶舱门(Fixed Interior Doors)

6.门的主要/重要结构和次要结构、作用

主要/重要结构:门的蒙皮、结构、止动座和止动销

次要结构:各种检查盖板,各种勤务盖板,驾驶舱门门的蒙皮和结构:

7.机身结构总体布局

机身为典型的板杆组合加筋薄壁结构(也称为“半硬壳式”结构),由蒙皮、前后增压端框腹板等增压边界结构以及长桁、纵梁、龙骨梁、主起落架阻力梁等纵向结构和隔框、加强框、客舱地板梁等横向结构等重要结构组成。

蒙皮为机身增压边界的主要组成部分,除了直接承受机身增压载荷之外,还承受并传递机身扭矩、剪力以及轴力、弯矩等总体载荷。

长桁是机身轴力及弯矩的主要承受及传递结构。此外,长桁还将部分机身环向增压载荷通过clip传递给隔框并通过隔框自平衡。此外,长桁还为蒙皮提供了纵向支撑,提高了蒙皮抗扭矩及弯矩失稳能力。

隔框不仅将乘客、货物等有效载荷以及机载设备等飞机本身质量力通过shear tie传递给机身蒙皮,还通过隔框自身平面刚度使部分机身增压载荷得以自平衡。此外,隔框还为机身蒙皮、长桁以及纵梁提供了横向支撑,提高了蒙皮、长桁以及纵梁结构的抗失稳能力。

机身纵梁(CREASE BEAM)为传递客舱纵向质量力及机身蒙皮皱折区域(crease )集中载荷的重要结构。

客舱地板梁(floor beam)不仅是将客舱内部质量力通过隔框传递给机身蒙皮的主要结构,还使得机身上下部分交界皱折区域(crease )绝大部分环向附加载荷在地板梁得到

自平衡。机身蒙皮大开口区域的地板梁,更是机身下部蒙皮增压载荷的主要承受结构。

龙骨梁是恢复机身下部机翼中央段以及主轮舱段蒙皮壁板大开口弯矩传递通路的机身重要结构,主要传递机身总体弯矩导致的挤压载荷。

整个机身结构根据破损-安全,或者损伤容限设计要求设计,以确保单个重要结构元件失效、或者结构系统存在一定损伤之后,机身结构还能承受预期的破损-安全载荷。这种预期的破损-安全载荷一般为限制载荷(limit load)

制造分离面:主要包括机身蒙皮和长桁两类结构对接

机身上下区域:以客舱地板为界,整个机身分为上半部分及下半部分两个半径不同的圆形截面。机身上下部分交界区域位于客舱地板梁两端。机身增压载荷导致蒙皮及隔框的环向拉伸载荷,将在皱折区域产生集中载荷,通过机身纵梁传递给客舱地板梁并通过客舱地板梁自平衡。

机身上半区域:客舱及驾驶舱、登机门、勤务门等机身蒙皮壁板中型开口以及应急舱门、客舱旅客观察窗户。

机身下半区域:雷达罩、前货舱、后货舱以及电子/设备舱前起落架舱、主起落架舱、中央翼段

机身增压边界:机身前起落架舱、主起落架舱、中央翼大开口区域以及机身尾段之外,驾驶舱、客舱、前/后货舱以及电子设备舱区域

机身增压边界结构:直接承受机身交变增压载荷的结构称为。机身增压边界结构为疲劳敏感结构,容易产生疲劳裂纹非增压区域: 机身前增压端框前部,后球形增压端框后部包含了APU舱区域

8.机身的重要结构、其它主要结构和次要结构

机身重要结构: (1)机身蒙皮、蒙皮对接带、门开口区域结构、窗开口加强带

(2) 隔框, 长桁, 加强件, 隔间支撑件

(3) 加强框

(4) 纵梁,龙骨梁

(5) 起落架支撑结构

(6) 机翼-机身连接结构

机身其它主要结构:

(1) 客舱地板和地板梁组件

(2)座椅滑轨

(3)货舱地板和地板支撑结构组件

机身次要结构:(1) 雷达罩 (2)

翼-身整流罩

(3) 机身背鳍结构 (4)机身尾椎及尾撬

9.机身蒙皮的作用及构型

作用:1、机身蒙皮形成了乘客、货物以及机载设备装载空

间并保证机身具有良好的气动外形。

2、机身、尾翼、机翼和起落架产生的弯矩、扭矩、剪力和轴力,绝大部分通过机身蒙皮传递并最终得到平衡。

3、直接承受并传递机身内部增压载荷

机身蒙皮材料一般为抗疲劳性能较好的铝铜合金(例如2024)蒙皮通过长桁与隔框连接,将大部分环向增压载荷传递给机身隔框并通过隔框自平衡。另一方面,隔框通过shear tie 与机身蒙皮连接,将机身内部乘客、货物以及机载设备等质量力以分布剪流型式传递给机身蒙皮形成机身剪力。加强框也通过shear tie与机身蒙皮连接,将剪力、扭矩等集中载荷以分布剪流形式加载到机身蒙皮。

10.蒙皮止裂带的作用及止裂原理

机身蒙皮加强件包括加强板和止裂带两大类。

加强板目的是为了提高蒙皮局部区域的强度或者刚度,以承受其它构件传来的集中载荷或者增强蒙皮局部区域抗气动载荷变形能力

止裂带(TEAR STRAP)目的是为了满足机身蒙皮的破损-安全或者损伤容限设计要求,通过铆钉等永久性紧固件、金属粘接或者蒙皮整体化铣等方式固定在机身蒙皮内表面

止裂带作用:止裂带可以将疲劳裂纹长度限制在临界裂纹

长度范围内,确保机身蒙皮满足破损-安全或

者损伤容限要求。

止裂带的止裂原理:止裂带增加了止裂带区域机身

蒙皮的承载面积,从而降低了蒙皮应力水平。当疲

劳裂纹扩展到止裂带边缘时,就会因为应力水平大

大降低停止扩展,或者沿着止裂带边缘改变扩展方

向,从而将裂纹长度控制在可接受长度内,避免其

失稳扩展带来灾难性后果。

机身内部增压还可能使裂纹区域的机身蒙皮向外掀开,让客舱压力适当下降。这样也会降低蒙皮的应力水平,终止或者减缓裂纹的继续扩展,从而将裂纹长度控制在可接受长度内。

止裂带分布规律:除机身底部区域的蒙皮外,止裂带广泛分部于机身隔框、长桁下部区域

11.蒙皮的连接方式(搭接和对接)

搭接:用于机身蒙皮的纵向连接,以保证机身外表的气动光滑性。

搭接区域的蒙皮一般包括上层蒙皮及止裂带、下层蒙皮及止裂带。

搭接需要满足机身蒙皮环向拉伸载荷的传递。由于机身蒙皮环向拉伸载荷一般远高于纵向拉伸载荷,故搭接域传递的载荷要比对接高。搭接区域上层蒙皮最上排紧固件及下层蒙皮最下排紧固件孔的应力水平较高,为疲劳敏感部位。

对接:机身蒙皮对接指前、后机身蒙皮通过对接带

连接的连接方式。对接由前蒙皮/止裂带、后

蒙皮/止裂带以及对接带三部分组成。蒙皮与

对接带搭接面采用涂密封胶湿安装连接方

式,以保持机身增压边界密封性

对接区域内表面,一般有

机身隔框。

对接区域蒙皮内表面均有止裂带,不仅可以满

足破损-安全设计要求,还可以防止埋头紧固

件划窝后导致“毛边”(FEATHER EDGE)现象

对接需要满足机身蒙皮纵向拉伸载荷的传递。由于机

身蒙皮环向拉伸载荷一般远高于纵向拉伸载荷,故搭

接区域传递的载荷要比对接高。

12吊架的重要结构

主要结构:吊架主要结构为框、梁和蒙皮等结构组成的扭力盒段。吊架扭力盒的PSE包括蒙皮、梁、框、加强框、反推装置安装接头以及吊架与机翼之间的连接件。其中,梁为吊架的纵向承载结构,包括上梁、中梁和下梁。框/加强框为梁的横向支持结构。

13短舱的组成部分

短舱由发动机罩和排气组件两部分组成。

141号、2号、3号、4号和5号驾驶舱风挡构型及其差异,

各部分功能

1、3、4和5号驾驶窗风挡采用螺杆直接固定在驾驶舱窗框结构上,为固定式风挡。2号风挡安装在导轨上,为可滑动开启的活动式风挡,以便通风和与地面联系。2号驾驶窗在紧急情况下还可用作紧急撤离通道。

风挡均采用破损-安全结构设计原理设计,由两层主要承载结构组成:一层直接承受机身内部增压载荷,另外一层承受破损-安全载荷。

1号风挡:分别位于正驾驶和副驾驶正前方

中间层乙烯树脂有机玻璃层和内、外两层无机玻

璃结构叠压而成。

风挡的内层无机玻璃结构和中间层乙烯树脂有机玻璃结构为1号风挡的主要承载结构。其中,内层无机玻璃结构直接承受客舱增压载荷。中间乙烯树脂有机玻璃层为破损-安全结构,用于防鸟撞并承受破损-安全载荷

1号风挡带有电加温防冰防雾系统

1号风挡通过飞机内部用螺杆固定在机身驾驶舱窗框结构上

2号风挡构型与1号风挡相同,也带有电加温防冰防雾系统3号风挡一般没有电加温防冰除雾系统,3号风挡采用破损-安全结构设计,由内、外两层丙烯酸树脂有机玻璃组成。4号风挡位于机身前面、正驾驶和副驾驶头顶上方。部分机

型4号风挡内表面还有一层乙烯树脂有机玻璃层,用以避免内层无机玻璃结构破裂后碎片伤害驾驶员并承受客舱内部增压载荷。4号风挡也带有电加温防冰防雾系统

5号风挡位于正驾驶和副驾驶头顶上方的机身两侧。5号风挡带有电加温防冰防雾系统

15风挡有机玻璃和无机玻璃的典型开裂特征

无机玻璃开裂的裂纹较长,碎块大小、形状不

规则,开裂往往局限于玻璃部分区域。

有机玻璃一般整块同时开裂,裂纹较短。碎块

较小,大小基本相等且形状基本相同。

16旅客窗风挡构型

旅客窗风挡采用破损-安全结构设计,由内、外丙烯酸树脂有机玻璃层组成。内、外丙烯酸树脂均为风挡的主要承载结构。其中,外层丙烯酸树脂有机玻璃结构直接承受增压载荷。内层丙烯酸树脂有机玻璃在70F下能够承受1.5倍正常增压载荷,为旅客窗风挡的破损-安全结构

内层有机玻璃下方正中有一个保持长开的小孔,确保内、外两层玻璃之间空腔内气压与机舱平衡并防止风挡内层玻璃起雾

17机翼的功用和组成部分

功用:1、产生升力 2、主操纵面——副翼,提供横向操纵

3、机翼前、后缘装有各种形式的襟翼、缝翼等增升装置,提高飞机的起降性能

4、安装起落架、发动机等部件。机翼内部贮存燃油

组成部分

现代客机机翼一般由左外大翼、右外大翼以及中央翼三部分组成。

机翼内部大部分空间为整体油箱,用于装载飞机执行航班任务所需燃油.

18机翼外载荷种类

机翼主要外载荷:分布载荷:空气动力,机翼结构、燃油质量力

集中载荷:发动机、起落架等部件传递19机翼的主要结构和作用

蒙皮:保持良好的气动外形,直接承受局部气动载荷、传递机翼总体弯矩引起的拉、压载荷、与翼梁组成封闭盒

段,传递机翼总体扭矩

桁条:一般为铝合金挤压型材。与蒙皮一起承受由弯矩引起的轴向力、支持蒙皮,防止它在承受局部空气动力时

产生过大的局部变形,并与蒙皮一起将局部空气动力传给翼肋、提高蒙皮的抗剪切和挤压稳定性,使它能

更好地承受机翼的扭矩和弯矩

翼梁:传递剪力(腹板)、传递少部分弯矩引起的拉、压载

荷(上下缘条)、与翼梁组成封闭盒段,传递扭矩

翼肋:可分为普通翼肋和加强翼肋两种。构成并保持设计翼型、把蒙皮和桁条传给它的局部空气动力传递给翼梁

腹板,而把局部空气动力导致的扭矩,通过铆钉以

剪流的形式传给机翼扭力盒段、支持蒙皮、桁条、翼

梁腹板,提高它们的稳定性

20结构损伤种类(AD、ED、FD)

意外损伤(AD):由于环境因素或者人为差错等偶然因素导

致的结构损伤。一般会导致结构表面明

显损伤迹象

?环境因素导致的意外损伤:鸟击、雷击、冰雹等其它气候因素、跑道外来物。

?人为因素导致的意外损伤:运营差错。维护差错。制造差错

环境损伤(ED):?金属结构:电偶腐蚀、应力腐蚀

?非金属结构:老化

疲劳损伤(FD)结构在交变载荷作用下出现的开裂。

21金属结构意外损伤形式及其典型特征

?开裂:金属结构开裂,一般伴随着凹坑、折痕等损伤。如果没有凹坑、折痕等其它损伤形式,金属结构的开

裂一般为疲劳裂纹。

?豁口:结构件边缘材料局部缺损。豁口的长度、宽度和深度尺寸相近。

?擦伤:较为尖锐或者表面粗糙物体挤压结构表面导致的深度和长度不等线状损伤,使得构件表面变得粗糙,

表面材料缺失、横截面积略有减小。擦伤的长度方

向尺寸远大于宽度和深度。宽度尺寸大于深度尺寸。?划伤:锋利工具划过结构表面后,在结构表面留下的一种深度和长度不等线状损伤。划伤宽度很窄,小于深

度尺寸。深度一般不会不超过0.006英寸。飞机维修

过程中拆除部件时,如果采用截纸刀等切除密封胶,

就很容易导致结构表面划伤。划伤应力集中系数很

高,容易导致疲劳裂纹。

?凿伤:料局部缺损形成的连续、尖锐或者光滑槽状损伤。

豁口长度尺寸大于宽度和深度尺寸,宽度尺寸略大

于深度尺寸。采用金属铲刀或者螺丝刀等工具铲胶

时,容易在结构表面留下凿伤

?穿孔:外来物冲击载荷作用下或者雷击等,导致构件整个厚度材料缺失形成的孔洞

?凹坑:表面形状较钝的外来物冲击或挤压构件表面造成的构件表面局部区域变形。构件变形区域截面形状并

未发生改变且变形区域边界光滑

?折痕:部件表面局部变形区域存在明显的折痕线,但构件变形区域截面面积并未发生改变。折痕往往与凹坑伴

随出现

?失稳:结构在挤压载荷作用下失去原有稳定状态、造成构件结构形状急剧改变

?过热或雷击:过热指雷击导致的金属结构局部退火、烧蚀

或熔解,或者着火等高温导致金属结构热处

理状态发生改变导致强度性能下降

22复合材料结构意外损伤形式及其典型特征

?脱胶:复合材料构件面板与蜂窝芯、面板与面板之间的胶膜或者胶粘剂粘结面,由于外来物撞击、过载,或者

受潮、进水等原因导致脱离的损伤形式。

?分层:复合材料层合板各铺层胶结面之间脱离。分层可能发生在复合材料构件的内部、边缘以及孔周边。分层

的主要形成原因为外来物撞击或者过载

?凹陷:外形光滑的钝型外来物撞击或挤压复合材料结构表面造成的表面局部区域原有形状变化。变形区域边

界光滑

层合板构件变形区域截面的横截面积一般不会发生改

变。夹芯结构表面凹陷往往伴随着内部蜂窝芯的塌陷

损伤

?穿孔:坚硬或锐利外来物撞击作用下,或者雷击等,造成的复合材料结构部分或者整个截面厚度的材料缺

?擦伤:表面粗糙外来物挤压复材结构表面导致深度和长度不等的线状表面损伤。擦伤一般会导致深度不等的

复材构件表层纤维断裂

?磨损、风蚀:飞行过程中气流中尘埃、雨点等长期作用下,或者相对运动构件长期接触、摩擦作用下,复合材

料构件表面出现的材料缺损。

?开裂:复合材料结构件在外来物冲击作用下,或者在交变载荷作用下,树脂基体出现的开裂或者增强纤维出

现的断裂

?过热:雷击或失火等高温导致的复合材料结构材料烧蚀?夹芯损伤:夹芯损伤包括外来物撞击、挤压导致的蜂窝芯塌陷,水、液压油等导致的蜂窝芯软化、电化

腐蚀等。

23电偶腐蚀、氧浓差电池、闭塞电池原理以及氯离子对腐蚀的自催化作用原理

电偶腐蚀:两种相互接触的导电材料存在电位差,在电解液中由于原电池效应,导致电位较低的阳极失去电

子被氧化腐蚀溶解、电位较高的阴极得到电子被

还原保护的电化学反应过程

电偶腐蚀三要素(充要条件)

?阴极与阳极之间存在电位差?阴极与阳极之间存在电通路?阴极和阳极与电解溶液直接接触

电偶腐蚀速度影响因素

?阴极和阳极之间的电位差、面积比和电解液的导电率,是影响电偶腐蚀速度的主要因素。阴极和阳极之间的电位差、面积比越大,或者电解液的导电率越高,电偶腐蚀速度越快。氧浓差电池

氧浓差电池指金属表面不同区域因为电解液中氧气浓度不

同导致腐蚀电位不同形成的电偶腐蚀:贫氧区域电位较低,为阳极被腐蚀溶解。富氧区域电位较高,为阴极被保护。

闭塞电池

闭塞电池根源为氧浓差电池:腐蚀通道口被电解液或者腐蚀产物堵住之后,氧气难以进入腐蚀通道底部。腐蚀通道内氧气在腐蚀初期很快消耗掉。腐蚀通道内阴极反应所需氧气不得不通过在电解液中扩散补充。由于氧气在电解液中的扩散比较缓慢,到达腐蚀通道底部很困难。这就迫使腐蚀通道内金属表面阴极的还原反应终止。腐蚀通道内金属表面贫氧区和腐蚀通道外金属表面富氧区就形成了宏观电偶腐蚀电池:腐蚀通道内贫氧区域电位较低为阳极被腐蚀,腐蚀通道外金属表面富氧区域电位较高为阴极被保护。

氯离子对腐蚀的自催化作用原理

由于闭塞电池效应,腐蚀通道内阳离子(铝离子)将不断增多。如果腐蚀通道外电解液中存在负离子(氯离子),腐蚀通道内阳离子(铝离子)将吸引氯离子向腐蚀通道内移动以维持电荷平衡。

24丝状腐蚀典型特征、敏感位置、形成和扩展机理

丝状腐蚀是在结构漆层下部铝合金表面或者包铝层与铝合金交界处,由于氧浓差电池产生的电偶腐蚀。丝状腐蚀一般起始于紧固件头部以及漆层划伤区域,外观呈蜘蛛网状或者条纹状

形成和扩展机理:氧浓差电池和闭塞电池效应、Cl离子等特殊离子的自催化作用,会保持合金结构表面丝状腐蚀持续扩展并逐渐加快腐蚀进程。随着丝状腐蚀的进一步扩展,会逐渐转化为均匀腐蚀,最终可能会转化为晶间腐蚀/剥蚀、应力腐蚀等严重腐蚀形态。

处理方法:丝状腐蚀为结构表面常见的一种轻微腐蚀形态,可采用结构表面吹沙等方式去除

25缝隙腐蚀典型特征、敏感位置、形成和扩展机理、检查方法

缝隙腐蚀:指金属结构与其它结构之间搭接面存在缝隙之后,在缝隙内部金属结构表面由于氧浓差电池产

生的电偶腐蚀

形成和扩展机理:氧浓差电池和闭塞电池效应、Cl离子等特

殊离子的自催化作用,会保持铝合金结构

缝隙腐蚀持续扩展并逐渐加快腐蚀进程。腐蚀检查方法:

缝隙腐蚀产物挤压结构,会在结构表面形成鼓包区域,可以

通过目视检查发现。

修理缝隙腐蚀之前最好通过中、低频涡流阻抗法检查判断腐蚀程度及腐蚀范围。

26点蚀典型特征、形成和扩展机理

?点蚀是金属表面钝化膜局部破坏后,金属基体由于氧浓差电池等原因在结构表面形成的一种点状或者坑状电偶腐蚀。

?点蚀与结构材料种类、热处理状态以及所含杂质特性相关,往往起源于结构表面晶界或者杂质区域。

?氯离子是铝合金点蚀形成和扩展的必要条件。

形成机理:氯离子竞争吸附理论:铝合金表面存在含氯离子电解液时,氯离子与氧将在铝合金氧化膜表面竞

争吸附。当氧化膜表面上的氧吸附点被氯离子替

代后,氯离子将选择性吸附在氧化膜表面铝离子

晶格周围。这样,氯离子就有一定几率和氧化

膜中的铝离子结合形成可溶性络合物(AlCl3),

使金属离子溶入电解液溶液中,从而导致金属基

体局部裸露。金属基体与氧化膜存在电位差。与

氧化膜相比,金属基体电位低为阳极。裸露的金

属基体与电解液直接接触后与氧化膜形成电偶

腐蚀电池。这种大阴极、小阳极腐蚀电池,使金

属基体裸露点快速腐蚀生成小蚀坑并进一步发

展成为点蚀核。

氯离子穿透理论:氯离子半径非常小,可直接穿

过铝合金氧化膜表面进入氧化膜内并产

生强烈的感应离子导电,使氧化膜特定

点维持较高的电流密度并使阳离子杂乱

移动。当氧化膜/电解液界面的电场电压

达到临界值时,氧化膜将被击穿并导致

金属基体裸露形成电偶腐蚀电池。金属

基体为阳极被腐蚀并形成点蚀核。

扩展机理:氧浓差电池和闭塞电池效应、Cl离子等特殊离子的自催化作用,会保持铝合金结构腐蚀持续扩展

并逐渐加快腐蚀进程

后果:1、点蚀往往会进一步发展成为剥蚀(EFC)和应力腐蚀(SCC)等严重腐蚀形式。2、应力集中——诱导疲

劳裂纹

3、修理困难——点蚀蚀坑一般较深。按照结构修理手

册的要求打磨去除点蚀,会导致结构有效承载面积

急剧减少、剩余强度不能满足承载要求。因此,点

蚀容易导致结构加强修理或者构件报废。

27均匀腐蚀典型特征、形成和扩展机理

特征:均匀腐蚀的腐蚀深度基本相同。

形成和扩展机理:合金基体内部或者晶界区域微观组织之间存在电位差,导致结构表面存在的电化学腐蚀。腐蚀根源:金属热处理导致合金基体内部或者晶界区域存在电位不同的微观组织

28剥蚀典型特征、形成必要条件

铝合金剥蚀指辊压轧制的板材或者挤压成型的型材,沿拉长晶粒平面连续晶界产生的分层状腐蚀。剥蚀是一个电化学和力学共同作用的过程,本质上属于晶界区域电位不同组织之间电化学腐蚀导致的晶间腐蚀。

?剥蚀可以同时沿着平行于材料辊压或者挤压表面的多个沿晶通道扩展,导致材料表面层层剥离

剥蚀必要条件:(1)与电解液直接接触。(2)拉长状晶粒

(3)沿晶界连续分布、优先腐蚀溶解

的阳极通道

重要影响因素:

(1)合金成分:不同合金成分决定了铝合金时效后晶界微

观组织结构。因此,不同合金成分铝合金

具有不同的抗剥蚀性能

(2)时效状态:以7150铝合金为例:T77时效态抗剥蚀性能

结构力学知识点复习过程

建筑物和工程设施中承受、传递荷载而起骨架作用的部分称为工程结构,简称为结构。 从几何角度来看,结构可分为三类,分别为:杆件结构、板壳结构、实体结构。 结构力学中所有的计算方法都应考虑以下三方面条件: ①力系的平衡条件或运动条件。 ②变形的几何连续条件。 ③应力与变形间的物理条件(或称为本构方程)。 结点分为:铰结点、刚结点。 铰结点:可以传递力,但不能传递力矩。 刚结点:既可以传递力,也可以传递力矩。 支座按其受力特质分为:滚轴支座、铰支座、定向支座、固定支座。 在结构计算中,为了简化,对组成各杆件的材料一般都假设为:连续的、均匀的、各向同性的、完全弹性或弹塑性的。 荷载是主动作用于结构的外力。 狭义荷载:结构的自重、加于结构的水压力和土压力。 广义荷载:温度变化、基础沉降、材料收缩。 根据荷载作用时间的久暂,可以分为:恒载、活载。 根据荷载作用的性质,可以分为:静力荷载、动力荷载。 结构的几何构造分析 在几何构造分析中,不考虑这种由于材料的应变所产生的变形。 杆件体系可分为两类: 几何不变体系------在不考虑材料应变的条件下,体系的位置和形状是不能改变的。 几何可变体系------在不考虑材料应变的条件下,体系的位置和形状是可以改变的。 自由度:一个体系自由度的个数,等于这个体系运动时可以独立改变的坐标的个数。 一点在平面内有两个自由度(横纵坐标)。 一个刚片在平面内有三个自由度(横纵坐标及转角)。 凡是自由度的个数大于零的体系都是几何可变体系。 一个支杆(链杆)相当于一个约束。可以减少一个自由度。 一个单铰(只连接两个刚片的铰)相当于两个约束。可以减少两个自由度。一个单刚结(刚性结合)相当于三个约束,可以减少三个自由度。 如果在一个体系中增加一个约束,而体系的自由度并不因而减少,则此约束称为多余约束。增加了约束,计算自由度会减少。因为w=s-n . 瞬变体系:本来是几何可变、经微小位移后又成为几何不变的体系称为瞬变体系。 实铰:两个刚片(地基也算一个刚片),如果用两根链杆给链接上,并且两根链杆能在其中一个刚片上交于一点,所构成的铰就叫实铰。 瞬铰:两个刚片(地基也算一个刚片),如果用两根链杆给链接上,两根链杆在两刚片间没有交于一点,而是在两根链杆的延长线上交于一点,从瞬时微小运动来看,这就是瞬铰了。两根链杆所起的约束作用等效于在链杆交点处上面放了一个单铰的约束作用。通常所起作用为转动。 截面上应力沿杆轴切线方向的合力,称为轴力。轴力以拉力为正。 截面上应力沿杆轴法线方向的合力称为剪力。剪力以绕微段隔离体顺时针转者为正。 截面上应力对截面形心的力矩称为弯矩。在水平杆件中,当弯矩使杆件下部受拉时,弯矩为正。 作轴力图和剪力图要注明正负号。作弯矩图时,规定弯矩图的纵坐标应画在受拉纤维一边,不注明正负号。 通常在桁架的内力计算中,采用下列假定: ①桁架的结点都是光滑的铰结点; ②各杆的轴线都是直线并通过铰的中心; ③荷载和支座反力都作用在结点上。 根据几何构造的特点,静定平面桁架可分为三类:简单桁架,联合桁架,复杂桁架。 在单杆的前提下,当结点无荷载作用时,单杆的内力必为零。此单杆称为零杆。 由链杆和梁式杆组成的结构,称为组合结构。 链杆只受轴力作用;梁式杆除受轴力作用外,还受弯矩和剪力作用。 三铰拱受力特点: ①在竖向荷载作用下,梁没有水平反力,而拱则有推力。 ②由于推力的存在,三铰拱截面上的弯矩比简支梁的弯矩小。弯矩的降低,使拱能更充分地发挥材料的作用。 ③在竖向荷载作用下,梁的截面内没有轴力,而拱的截面内轴力较大,且一般为压力。 合理拱轴线:在固定荷载作用下使拱处于无弯矩、无剪力、而只有轴力作用的轴线。 合理轴线:通常指具有不同高跨比的一组抛物线。 影响线 内力影响线:表示单位移动荷载作用下内力变化规律的图形。无论在剪力、弯矩、支座反力的影响线图中都需要标上正负号。影响线是研究移动荷载最不利位置和计算内力最大值(或最小值)的基本工具。 荷载:特定单位移动荷载P=1 固定、任意荷载最不利位置:如果荷载移动到某个位置,使某量Z达到最大值,则此荷载位置称为最不利位置。 影响线的一个重要作用,就是用来确定荷载的最不利位置。 定出荷载最不利位置判断的一般原则是:应当把数量大、排列密的荷载放在影响线竖距较大的部位。 计算结构的位移目的有两个: ①一个目的是验算结构的刚度,即验算结构的位移是否超过允许的位移限值。 ②另一个目的是为超静定结构的内力分析打下基础。 产生位移的原因主要有下列三种: ①荷载作用②温度变化和材料胀缩③支座沉降和制造误差 一组力可以用一个符号P表示,相应的位移也可用一个符号Δ表示,这种夸大了的力和位移分别称为广义力和广义位移。 图乘法的应用条件:①杆段应是等截面直杆段。②两个图形中至少应有一个是直线,标距y0 应取自直线图中。 互等定理包括四个普遍定理:①功的互等定理②位移互等定理 ③反力互等定理④位移反力互等定理。 3、对称结构就是指: ①结构的几何形式和支承情况对某轴对称。 ②杆件截面和材料性质也对此轴对称。(因而杆件的截面刚度EI对此轴对称) 4、对称荷载:对称荷载绕对称轴对折后,左右两部分的荷载彼此重合(作用点相对应、数值相等、方向相同) 反对称荷载:反对称荷载绕对称轴对折后,左右两部分的荷载正好相反(作用点相对应、数值相等、方向相反) 超静定结构有一个重要特点,就是无荷载作用时,由于其他因素(如:支座移动、温度改变、材料收缩、制造误差)的作用也可以产生内力。 超静定结构:由于其他因素(如:支座移动、温度改变、材料收缩、制造误差)的作用可以产生位移也可以产生内力。 静定结构:由于其他因素(如:支座移动、温度改变、材料收缩、制造误差)的作用可以产生位移但不能产生内力。 力法:多余未知力静定结构变形协调(位移相等) 位移法:结构独立结点位移(角、线位移)超静定单杆(是用位移表示的)平衡方程 2、系数EAi /Li是使杆端产生单位位移时所需施加的杆端力,称为杆件的刚度系数。 体系的自由度指的是确定物体位置所需要的最少坐标数目。 拱的基本特点是在竖向荷载作用下会产生水平支座反力。 .静定结构的特性:(1)静定结构的全部约束反力与内力都可以用静力平衡方程求得。(2)温度变化、支座位移不引起静定结构的内力。3)当一个平衡力系作用在静定结构的某一自身几何不变的杆上时,静定结构只在该力系作用的杆段内产生内力。(4).作用在静定结构的某一自身为几何不变的杆 段上的某一荷载,若用在该段上的一个等效 力系来代替,则结构仅在该段上的内力发生 变化,其余部分内力不变。 1.平面杆件结构分类? 梁、刚架、拱、桁架、组合结构。 2.请简述几何不变体系的俩刚片规则。 两刚片用一个铰和一根不通过该铰链中心的链杆或不全交于一点也不全平行的三根链杆相联,则组成的体系是几何不变的,并且没有多余约束。 3.请简述几何不变体系的三刚片规则。 三刚片用不共线的三个铰两两相联或六根链杆两两相联,则组成的体系是几何不变体系,且没有多余约束。 4.从几何组成分析上来看什么是静定结构,什么是超静定结构?(几何特征) 无多余约束的几何不变体系是静定结构,有多余约束的几何不变体系是超静定结构,有几个多余约束,即为几次超静定。 5.静定学角度分析说明什么是静定结构,什么是超静定结构? 只需要利用静力平衡条件就能计算出结构全部支座反力和构件内力的结构称为静定结构;全部支座反力和构件内力不能只用静力平衡条件确定的结构称为超静定结构。 6.如何区别拱和曲梁 杆轴为曲线且在竖向荷载作用下能产生水平推力的结构,称为拱;杆轴为曲线,但在竖向荷载作用下无水平推力产生,称为曲梁。 7.合理拱轴的条件? 在已知荷载作用下,如所选择的三铰拱轴线能使所有截面上的弯矩均等于零,则此拱轴线为合理拱轴线。 仅供学习与参考

飞机结构重要资料

单选 1. 直升机尾浆的作用是B A:提供向前的推力B:平衡旋翼扭矩并进行航向操纵 C:提供直升机主升力D:调整主旋翼桨盘的倾斜角 2. 正常飞行中,飞机高度上升后,在不考虑燃油消耗的前提下,要保持水平匀速飞行,则需要采取的措施为D A:降低飞行速度B:开启座舱增压设备C:打开襟翼D:提高飞行速度 3. 2.飞机高速小迎角飞行时,机翼蒙皮的受力状态是A A:上下蒙皮表面均受吸(易鼓胀)B:上下蒙皮表面均受压(易凹陷) C:上表面蒙皮受吸,下表面受压D:上表面蒙皮受压,下表面受吸 4. 3.飞机低速大迎角飞行时,蒙皮的受力状态为C A:蒙皮上表面受压,下表面受吸B:蒙皮上下表面都受吸 C:蒙皮上表面受吸,下表面受压D:蒙皮上下表面都受压 5. 4.垂直突风对飞机升力具有较大的影响主要是因为它改变了C A:飞机和空气的相对速度B:飞机的姿态C:飞机的迎角D:飞机的地速 6. 水平尾翼的控制飞机的A A:俯仰操纵和俯仰稳定性B:增升C:偏航操纵和稳定性D:减速装置 7. 2.飞机低速飞行时要作低角加速度横滚操纵一般可使用C A:飞行扰流板B:内侧高速副翼C:机翼外侧低速副翼D:飞行扰流板和外侧低速副翼 多选 1. 飞机转弯时,可能被操纵的舵面有BCD A:襟翼B:副翼C:飞行扰流板D:方向舵 2. 地面扰流板的作用有AD A:飞机着陆时减速B:横滚操纵C:俯仰操纵D:飞机着陆时卸除升力 3. 对飞机盘旋坡度具有影响的因素有A,B,C,D A:发动机推力B:飞机的临界迎角C:飞机的强度D:飞机的刚度 4. 飞机的部件过载和飞机重心的过载不相等是因为A,C,D A:飞机的角加速度不等于零B:飞机的速度不等于零 C:部件安装位置不在飞机重心上D:飞机的角速度不等于零 5. 梁式机翼主要分为A,C,D A:单梁式机翼B:整体式机翼C:双梁式机翼D:多梁式机翼 6. 从结构组成来看,翼梁的主要类型有B,C,D A:复合材料翼梁B:腹板式C:整体式D:桁架式 7. 机身的机构形式主要有A,C,D A:构架式B:布质蒙皮式C:硬壳式D:半硬壳式 8. 飞机表面清洁的注意事项有A,B,C,D A:按规定稀释厂家推荐的清洁剂与溶剂B:断开与电瓶相连的电路 C:遮盖规定部位,保证排放畅通D:防止金属构件与酸、碱性溶液接触 9. 飞机最易直接受到雷电击中的部位包括A,C,D A:雷达整流罩B:机翼上表面C:机翼、尾翼的尖端和后缘D:发动机吊舱前缘 10. 胶接的优点有: BC A:降低连接件承压能力B:减轻重量、提高抗疲劳能力 C:表面平整、光滑,气动性与气密性好D:抗剥离强度低、工作温度低

737NG飞机结构与起落架复习资料

737NG飞机结构与起落架复习资料 一、填空题 1、可用下列标注尺寸在机身上查找部件:机身站位线、机身纵剖线、水线。 2、垂直安定面有四个基准尺寸:垂直安定面站位、垂直安定面前缘站位、方向舵站位、垂直安定面水线 3、飞机有八个主要分区帮助查找并识别飞机部件和零件:100-下半机 身、200-上半机身、300-机尾、400-动力装置和吊舱支柱、500-左机翼、600-右机翼、700-起落架和起落架舱门、800-舱门 4、发动机工作时周围的危险:进气吸力、排气热量、排气速度、发动机噪音。 5、飞行操纵系统包括:主操纵系统、辅助操纵系统。 6、驾驶舱内的主要面板:P1机长仪表板、P2中央仪表板、P5前顶板、 P5后顶板、P7遮光板、P3副驾驶仪表板、P9前电子面板、控制台、P8后电子面板。 7、在控制台上的操纵和指示装置包括以下部件:前油门杆、反推油 门杆、速度刹车手柄、水平安定面配平轮和指示器、停留刹车手柄和指标灯、襟翼手柄、安定面配平切断电门、起动手柄。 8、737NG飞机液压动力系统由:主液压系统、地面勤务系统、辅助 液压系统、液压指示系统组成。 9、备用液压系统是一个必备系统,为以下部件提供备用液压动力:方向舵、前缘襟翼和缝翼、两个反推装置 10、备用油箱低油量电门在油箱内油液少于50%时,向位于驾驶舱内飞行操纵面板上的琥珀色备用液压低油量灯发送信号,使灯点亮。 11、当飞行控制面板上的任一盏琥珀色灯亮时,主警告灯和位于系统通告面板(P7)上的飞行控制灯也会点亮。 12、当油泵压力低于1300 psi时,液压系统A和B的发动机驱动泵(EDP)和电动马达驱动泵(EMDP)的琥珀色油泵低压指示灯会点亮。当液压压力高于1600psi时,琥珀色低压指示灯熄灭 13、利用地面勤务车为系统增压时,首先必须卸掉液压油箱的压力 14、在起落架上安装下位锁销可确保外力不使起落架开锁。

飞机起落架结构及其系统设计

本科毕业论文题目:飞机起落架结构及其故障分析 专业:航空机电工程 姓名: 指导教师:职称: 完成日期: 2013 年 3 月 5 日

飞机起落架结构及其故障分析 摘要:起落架作为飞机在地面停放、滑行、起降滑跑时用于支持飞机重量、吸收撞击能量的飞机部件。为适应飞机起飞、着陆滑跑和地面滑行的需要, 起落架的最下端装有带充气轮胎的机轮。为了缩短着陆滑跑距离,机 轮上装有刹车或自动刹车装置。同时起落架又具有空气动力学原理和 功能,因此人们便设计出了可收放的起落架,当飞机在空中飞行时就 将起落架收到机翼或机身之内,以获得良好的气动性能,飞机着陆时 再将起落架放下来。本文重点介绍了飞机的起落架结构及其系统。对起落 架进行了系统的概述,对起落架的组成、起落架的布置形式、起落架的收 放形式、起落架的收放系统、以及起落架的前轮转弯机构进行了系统的论 述。并且给出了可以借鉴的起落架结构及其相关结构的图片。 关键词:起落架工作系统凸轮机构前轮转弯收放形式

目录 1. 引言 (1) 2. 起落架简述 (1) 2.1 减震器 (1) 2.2 收放系统 (1) 2.3 机轮和刹车系统 (2) 2.4 前三点式起落架 (2) 2.5 后三点式起落架 (3) 2.6 自行车式起落架 (5) 2.7 多支柱式起落架 (5) 2.8 构架式起落架 (6) 2.9 支柱式起落架 (6) 2.10 摇臂式起落架 (7) 3 起落架系统 (7) 3.1 概述 (7) 3.2 主起落架及其舱门 (7) 3.2.1 结构 (8) 3.2.2 保险接头 (8) 3.2.3 维护 (8) 3.2.4 主起落架减震支柱 (8) 3.2.5 主起落架阻力杆 (9) 3.2.6 主起落架耳轴连杆 (10) 3.3 前起落架和舱门 (10) 3.4 起落架的收放系统 (10) 3.4.1起落架收放工作原理 (10) 3.4.2 起落架收放过程中的的液压系统 (11) 3.4.3 主起落架收起时的液压系统工作过程 (12) 3.4.4 主起落架放下时的液压系统工作原理 (13) 3.4.5 在液压系统发生故障时应急放起 (14) 3.4.6 起落架收放的工作电路 (15) 3.5 前轮转弯系统 (17) 3.5.1 功用 (17) 3.5.2 组成 (17) 3.5.3 工作原理 (17) 3.6 机轮和刹车系统 (17) 4 歼8飞机主起落架机轮半轴裂纹故障分析 (17) 4.1 主起落架机轮半轴故障概况 (17) 4.2 主起落架机轮半轴失效分析 (18) 4.3 机轮半轴裂纹检测及断口分析 (20) 4.3.1 外场机轮半轴断裂检查 (20) 4.3.2 大修厂机轮半轴裂纹检查 (21) 4.4 主起落架机轮半轴疲劳试验结果 (22) 4.4.1 机轮半轴疲劳试验破坏部位 (22)

结构力学主要知识点归纳(骄阳教育)

结构力学主要知识点 一、基本概念 1、计算简图:在计算结构之前,往往需要对实际结构加以简化,表现其主要特点,略去其次要因素,用一个简化图形来代替实际结构。通常包括以下几个方面: A 、杆件的简化:常以其轴线代表 B 、支座和节点简化: ①活动铰支座、固定铰支座、固定支座、滑动支座; ②铰节点、刚节点、组合节点。 C 、体系简化:常简化为集中荷载及线分布荷载 D 、体系简化:将空间结果简化为平面结构 2、结构分类: A 、按几何特征划分:梁、拱、刚架、桁架、组合结构、悬索结构。 B 、按内力是否静定划分: ①静定结构:在任意荷载作用下,结构的全部反力和内力都可以由静力平衡条件确定。 ②超静定结构:只靠平衡条件还不能确定全部反力和内力,还必须考虑变形条件才能确定。 二、平面体系的机动分析 1、体系种类 A 、几何不变体系:几何形状和位置均能保持不变;通常根据结构有无多余联系,又划分为无多余联系的几何不变体系和有多余联系的几何不变体系。 B 、几何可变体系:在很小荷载作用下会发生机械运动,不能保持原有的几何形状和位置。常具体划分为常变体系和瞬变体系。 2、自由度:体系运动时所具有的独立运动方程式数目或者说是确定体系位置所需的独立坐标数目。 3、联系:限制运动的装置成为联系(或约束)体系的自由度可因加入的联系而减少,能减少一个自由度的装置成为一个联系 ①一个链杆可以减少一个自由度,成为一个联系。②一个单铰为两个联系。 4、计算自由度:)2(3r h m W +-=,m 为刚片数,h 为单铰束,r 为链杆数。 A 、W>0,表明缺少足够联系,结构为几何可变; B 、W=0,没有多余联系; C 、W<0,有多余联系,是否为几何不变仍不确定。 5、几何不变体系的基本组成规则: A 、三刚片规则:三个刚片用不在同一直线上的三个单铰两两铰联,组成的体系是几何不变的,而且没有多余联系。 B 、二元体规则:在一个刚片上增加一个二元体,仍未几何不变体系,而且没有多余联系。 C 、两刚片原则:两个刚片用一个铰和一根不通过此铰的链杆相联,为几何不变体系,而且没有多余联系。 6、虚铰:连接两个刚片的两根链杆的作用相当于在其交点处的一个单铰。虚铰在无穷远处的体系分析可见结构力学P20,自行了解。 7、静定结构的几何构造为特征为几何不变且无多余联系。 三、静定梁与静定钢架 1、内力图绘制:

(完整word版)飞机起落架基本结构

起落架 起落架就是飞机在地面停放、滑行、起飞着陆滑跑时用于支撑飞机重力,承受相应载荷的装置。任何人造的飞行器都有离地升空的过程,而且除了一次性使用的火箭导弹和不需要回收的航天器之外,绝大部分飞行器都有着陆或回收阶段。对飞机而言,实现这一起飞着陆(飞机的起飞与着陆过程)功能的装置主要就是起落架。 基本介绍 起落架就是飞机在地面停放、滑行、起降滑跑时用于支持飞机重量、吸收撞击能量的飞机部件。简单地说,起落架有一点象汽车的车轮,但比汽车的车轮复杂的多,而且强度也大的多,它能够消耗和吸收飞机在着陆时的撞击能量。 概括起来,起落架的主要作用有以下四个:承受飞机在地面停放、滑行、起飞着陆滑跑时的重力;承受、消耗和吸收飞机在着陆与地面运动时的撞击和颠簸能量;滑跑与滑行时的制动;滑跑 与滑行时操纵飞机。 2结构组成 为适应飞机起飞、着陆滑跑和地面滑行的需要,起落架的最下端装有带充气轮胎的机轮。为了缩短着陆滑跑距离,机轮上装有刹车或自动刹车装置。此外还包括承力支柱、减震器(常用承力支柱作为减震器外筒)、收放机构、前轮减摆器和转弯操纵机构等。承力支柱将机轮和减震器连接在机体上,并将着陆和滑行中的撞击载荷传递给机体。前轮减摆器用于消除高速滑行中前轮的摆振。前轮转弯操纵机构可以增加飞机地面转弯的灵活性。对于在雪地和冰上起落的飞机,起落架上的机轮用滑橇代替。 2.1减震器 飞机在着陆接地瞬间或在不平的跑道上高速滑跑时,与地面发生剧烈的撞击,除充气轮胎可起小部分缓冲作用外,大部分撞击能量要靠减震器吸收。现代飞机上应用最广的是油液空气减震器。当减震器受撞击压缩时,空气的作用相当于弹簧,贮存能量。而油液以极高的速度穿过小孔,吸收大量撞击能量,把它们转变为热能,使飞机撞击后很快平稳下来,不致颠簸不止。 2.2收放系统 收放系统一般以液压作为正常收放动力源,以冷气、电力作为备用动力源。一般前起落架向前收入前机身,而某些重型运输机的前起落架是侧向收起的。主起落架收放形式大致可分为沿翼展方向收放和翼弦方向收放两种。收放位置锁用来把起落架锁定在收上和放下位置,以防止起落架在飞行中自动放下和受到撞击时自动收起。对于收放系统,一般都有位置指示和警告系统。 2.3机轮和刹车系统 机轮的主要作用是在地面支持收飞机的重量,减少飞机地面运动的阻力,吸收飞机着陆和地面运动时的一部分撞击动能。主起落架上装有刹车装置,可用来缩短飞机着陆的滑跑距离,并使飞机在地

第一章 飞机结构

第一章- 飞机结构 摘要:飞机结构是第一章,主要讲述了飞机的机身,机翼,尾翼,起落架,和发动机这几个主要结构部分。 根据美国联邦法规全书(CFR)第14篇第一部分的定义和缩写,飞行器(Aircraft)是一种用于或者可用于飞行的设备。飞行员执照的飞行器分类包括飞机(Airplane),直升机,气球类(lighter-than-air),动力升力类(powered-lift),以及滑翔机。还定义了飞机(Airplane)是由引擎驱动的,比空气重的固定翼飞行器,在飞行中由作用于机翼上的空气动态反作用力支持。本章简单介绍飞机和它的主要组成部分。主要组成部分 尽管飞机可以设计用于很多不同的目的,大多数还是有相同的主要结构。它的总体特性大部分由最初的设计目标确定。大部分飞机结构包含机身,机翼,尾翼,起落架和发动机。 机身

机身包含驾驶舱和/或客舱,其中有供乘客使用的坐位和飞机的控制装置。另外,机身可能也提供货舱和其他主要飞机部件的挂载点。一些飞行器使用开放的桁架结构。桁架型机身用钢或者铝质管子构造。通过把这些管子焊接成一系列三角形来获得强度和刚性,成为桁架结构。图1-2就是华伦桁架。 华伦桁架结构中有纵梁,斜管子和竖直的管子单元。为降低重量,小飞机一般使用铝合金管子,可能是用螺钉或者铆钉通过连接件铆成一个整体。 随着技术进步,飞行器设计人员开始把桁架单元弄成流线型的飞机以改进性能。在最初使用布料织物来实现的,最终让位于轻金属比如铝。在某些情况下,外壳可以支持所有或者一主要部分的飞行载荷。大多数现代飞机使用称为单体横造或者半单体构造的加强型外壳结构。单体横造设计使用加强的外壳来支持几乎全部的载荷。这种结构非常结识,但是表面不能有凹痕或者变形。这种特性可以很容易的通过一个铝的饮料罐来演示。你可以对饮料罐的两头施加相当的力量管子不受什么损坏。然而,如果罐壁上只有一点凹痕,那么这个罐子就很容易的被扭曲变形。实际的单体造型结构主要由外壳,隔框,防水壁组成。隔框和防水壁形成机身的外形。如图1-3 由于没有支柱,外壳必须足够的坚固以保持机身的刚性。这样,单体造型结构有一个重要的问题,在保持重量在允许的范围内同时要维持足够的力量。由于单体设计的限制,今天的大多数飞机使用半单体造型结构。 半单体造型结构使用飞机外壳可以贴上去的亚结构,亚结构由隔框和不同尺寸的防水隔壁以及桁条组成,通过来自机身的弯曲应力来加固加强的外壳。机身的主要部分也包括机翼挂载

NG飞机结构与起落架复习资料

NG飞机结构与起落架复习资 料

作者: 日期:

737NG飞机结构与起落架复习资料 一、填空题 1、可用下列标注尺寸在机身上查找部件:机身站位线、机身纵剖线、水线。 2、垂直安定面有四个基准尺寸:垂直安定面站位、垂直安定面前缘站位、方向舵站位、垂直安定面水线 3、飞机有八个主要分区帮助查找并识别飞机部件和零件:100 -下半机身、200 —上半机 身、300 —机尾、400 —动力装置和吊舱支柱、 500 —左机翼、600 —右机翼、700 —起落架和起落架舱门、800 —舱门 4、发动机工作时周围的危险:进气吸力、排气热量、排气速度、发动机噪音。 5、飞行操纵系统包括:主操纵系统、辅助操纵系统。 6、驾驶舱内的主要面板:P宜机长仪表板、PZ中央仪表板、P5前顶板、P5后顶板、P 乙遮光板、P3副驾驶仪表板、P9前电子面板、控制台、P8后电子面板。 7、在控制台上的操纵和指示装置包括以下部件:前油门杆、反推油门杆、速度刹车手 柄、水平安定面配平轮和指示器、停留刹车手柄和指标灯、襟翼手柄、安定面配平切断 电门、起动手柄。 & 737NG 飞机液压动力系统由:主液压系统、地面勤务系统、辅助液压系统、液压指 示系统组成。 9、备用液压系统是一个必备系统,为以下部件提供备用液压动力:方向舵、前缘襟翼和缝翼、两个反推装置 10、备用油箱低油量电门在油箱内油液少于50%时,向位于驾驶舱内飞行操纵面板上的琥珀色备用液压低油量灯发送信号,使灯点亮。 11、当飞行控制面板上的任一盏琥珀色灯亮时,主警告灯和位于系统通告面板( P7) 上的飞行控制灯也会点亮。 12、当油泵压力低于1300 psi时,液压系统A和B的发动机驱动泵(EDP )和电动马达驱动泵(EMDP )的琥珀色油泵低压指示灯会点亮。当液压压力高于1600psi时,琥珀色 低压指示灯熄灭 13、利用地面勤务车为系统增压时,首先必须卸掉液压油箱的压力

结构力学的知识点

双筋计算方法: 一As与As' 1、截面计算 1)假设a s=65mm,a s'=35mm,求得h0=h-a s 2)验算是否需要双筋。Mu= f cd bh02§b(1-0.5§b) 3)取§=§b,求As'=【M- f cd bh02§(1-0.5§)】/【f sd'(h0- a s')】 4)求As=【f cd bx+f sd'As'】/ f sd 其中x=§b h0 下面选钢筋,钢筋层净距,钢筋间净距(大于30mm和直径d),保护层厚度,再计算a s和a s' 二、已知As',求As 5)假设a s,求得h0=h-a s 6)求受压区高度x= h0-√h02-2【M- f sd'As'(h0- a s')】/f cd b 7)当x﹤§b h0且x﹤2 a s'时,As=M/【f sd(h0- a s')】 当x≤§b h0且x≥2 a s'时,As=【f cd bx+f sd'As'】/ f sd 8)选择受拉钢筋直径的数量,布置截面钢筋(同上) 2、截面复核 1)检查钢筋布置是否符合规要求 2)将As=?As'=?h0=?f cd f sd' f sd 若带入x=【f sd As- f sd'As'】/f cd b ≤§b h0 ﹤2 a s' 用Mu= f sd As(h0- a s')计算正截面承载力 若2 a s'≤x≤§b h0,矩形截面抗弯承载力 Mu= f cd bx(h0-x/2)+ f sd'As'(h0- a s')

一、As与As'均未知 1、截面设计 1)求偏心距e0=M/N 长细比l0/h﹥5,考虑偏心增大系数η(l0/h≤5时,取η=1)假设a s= a s'=45.当ηe0﹥0.3 h0时,为大偏心,反之, ξ1=0.27+2.7 e0/ h0 ξ2=1.15-0.01l0/h η=1+1/【1400(e0/ h0)】(l0/h)2ξ1ξ2 2)令§=§b,求As'=【Ne s- f cd bh02§b(1-0.5§b)】/ f sd'(h0- a s') ≥ρmin bh (ρmin=0.2%)取σs= f sd 求As=【f cd bh0§b+ f sd'As'-N】/ f sd≥ρmin bh 二、已知As',求As 1)求偏心距e0=M/N 长细比l0/h﹥5,考虑偏心增大系数η(l0/h≤5时,取η=1)假设a s= a s'=45.当ηe0﹥0.3 h0时,为大偏心,反之,2)计算受压区高度x= h0-√h02-2【Ne s - f sd'As'(h0- a s')】/f cd b 当2 a s'﹤x≤§b h0时,取σs= f sd 求As=【f cd bx+ f sd'As'-N】/ f sd 当x≤§b h0 x≤2 a s'时,As=Ne s'/ f sd(h0- a s') 3)选钢筋,看配筋率是否符合ρ+ρ'≥0.5%,纵筋最小净距(一般为30mm),重取a s= a s'=?,计算保护层厚度是否满足要求,最小截面宽度b min 2、截面复核 1)垂直于弯矩作用平面

飞机结构和组成

飞行的主要组成部分及功用 到目前为止,除了少数特殊形式的飞机外,大多数飞机都由机翼、机身、尾翼、起落装置和动力装置五个主要部分组成: 1. 机翼——机翼的主要功用是产生升力,以支持飞机在空中飞行,同时也起到一定的稳定和操作作用。在机翼上一般安装有副翼和襟翼,操纵副翼可使飞机滚转,放下襟翼可使升力增大。机翼上还可安装发动机、起落架和油箱等。不同用途的飞机其机翼形状、大小也各有不同。 2. 机身——机身的主要功用是装载乘员、旅客、武器、货物和各种设备,将飞机的其他部件如:机翼、尾翼及发动机等连接成一个整体。 3. 尾翼——尾翼包括水平尾翼和垂直尾翼。水平尾翼由固定的水平安定面和可动的升降舵组成,有的高速飞机将水平安定面和升降舵合为一体成为全动平尾。垂直尾翼包括固定的垂直安定面和可动的方向舵。尾翼的作用是操纵飞机俯仰和偏转,保证飞机能平稳飞行。 4.起落装置——飞机的起落架大都由减震支柱和机轮组成,作用是起飞、着陆滑跑,地面滑行和停放时支撑飞机。 5.动力装置——动力装置主要用来产生拉力和推力,使飞机前进。其次还可为飞机上的其他用电设备提供电源等。现在飞机动力装置应用较广泛的有:航空活塞式发动机加螺旋桨推进器、涡轮喷气发动机、涡轮螺旋桨发动机和涡轮风扇发动机。除了发动机本身,动力装置还包括一系列保证发动机正常工作的系统。 飞机上除了这五个主要部分外,根据飞机操作和执行任务的需要,还装有各种仪表、通讯设备、领航设备、安全设备等其他设备。 二、飞机的升力和阻力 飞机是重于空气的飞行器,当飞机飞行在空中,就会产生作用于飞机的空气动力,飞机就是靠空气动力升空飞行的。在了解飞机升力和阻力的产生之前,我们还要认识空气流动的特性,即空气流动的基本规律。流动的空气就是气流,一种流体,这里我们要引用两个流体定理:连续性定理和伯努利定理: 流体的连续性定理:当流体连续不断而稳定地流过一个粗细不等的管道时,由于管道中任何一部分的流体都不能中断或挤压起来,因此在同一时间内,流进任一切面的流体的质量和从另一切面流出的流体质量是相等的。 连续性定理阐述了流体在流动中流速和管道切面之间的关系。流体在流动中,不仅流速和管道切面相互联系,而且流速和压力之间也相互联系。伯努利定理就是要阐述流体流动在流动中流速和压力之间的关系。 伯努利定理基本内容:流体在一个管道中流动时,流速大的地方压力小,流速小的地方压力

飞机结构重要知识点(word文档物超所值)

1,航线结构损伤维修特点 ?数量多——雷击,冰雹,鸟撞,勤务车辆、工作梯撞击等?修理周期较长 ?时间紧迫——需要保障航班正常运营, 2.结构维修基本原则 安全性原则——结构持续适航影响结构持续适航性的损伤,必须立即停场进行结构修理 经济性原则——降低维修成本有计划地进行结构修理:不影响结构持续适航性的损伤,不一定立即进行结构修理 3.目前制约航线结构维修的主要因素 航线技术支援基本上为非结构修理专业人员,普遍缺乏基本结构工程技术支援技能,AOG技术支援基本上依靠结构工程师提供,耽误抢修进度。具体表现在:不能正确应用SRM有效过滤允许损伤极限范围内的结构损伤 不能正确报告结构损伤:提供给结构工程师的结构损伤信息不符合要求,难以满足损伤评估以及修理方案制定需要4.结构种类及其含义 飞机结构分为主要结构(primary structure)和次要结构(secondary structure)两大类 主要结构:传递飞行、地面或者增压载荷的结构。 主要结构包含重要结构(PSE/SSI)和其它主要结构。 重要结构指传递飞行、地面或者增压载荷的关键结构

件或者关键结构组件。重要结构件一旦失效,将导致 飞机灾难性事故 次要结构:仅传递局部气动载荷或者自身质量力载荷的结构。 次要结构失效不影响结构持续适航性/飞行安全。大 多数次要结构主要作用为保证飞机气动外形、降低飞 行时空气阻力。例如翼-身整流罩。 5.门的种类及用途 登机门/勤务门:登机门和勤务门分别为旅客和机组和勤务人员接近客舱内部的通道口。 应急门:紧急出口指紧急情况下的撤离出口 货舱门:用以接近货舱内部区域。 登机梯门:放出后,该梯能形成通道供旅客和机组进入或离开飞机 前设备舱门(Forward access) 电子设备舱门(Electronic equipment compartment) 各种检查盖板(Access Doors)各种勤务盖板(Service Doors)驾驶舱门(Fixed Interior Doors) 6.门的主要/重要结构和次要结构、作用 主要/重要结构:门的蒙皮、结构、止动座和止动销 次要结构:各种检查盖板,各种勤务盖板,驾驶舱门门的蒙皮和结构:

A380飞机结构的先进材料和工艺

A380飞机结构的先进材料和工艺 A380的寿命要达到40-50年,因此必须选用先进且新型材料和工艺技术,为未来飞机搭建技术平台。这些技术不仅经过了大量全尺寸试验验证而且经过了航空公司维修专家的评审(符合检查和维修标准)。 A380结构设计准则(见图1)。重复的拉伸载荷加上载荷的变化将会在金属结构内产生微小的疲劳裂纹。裂纹增长速度以及残余强度(当裂纹产生时)将指导选择何种材料。为了防止结构由外物损伤,需要考虑 材料的损伤容限性能。 压力载荷需要考虑采用屈服强度和刚度好的材料,以增加稳定性。抗腐蚀能力是选择材料和工艺的另一个重要准则,尤其是在机身下部。选择材料和工艺目标的一部分是使结构轻量化。因此,复合材料是很好的选择,但必须了解设计准则和维修需要。材料的选择不仅仅是考虑设计准则,同时还要考虑生产成本和采 购问题。 1. 新型且先进的金属材料 从A380选材的分布来看(见图2),铝合金占的比重最大,达机体结构重量的61%,因此要实现性能改进,必须开发创新的铝合金材料和工艺技术,具体是提高强度和损伤容限,加强稳定性并提高抗腐蚀能力。 尤其是在A380机翼部位(机翼的80%以上是铝合金材料)要提高性能。

A380-800飞机在铝合金结构上取得的主要成就包括: ·在机身壁板上引用了很宽的钣金材料,减少了连接件从而减轻了重量; ·在主地板横梁上采用了先进的铝锂合金挤压件,在这一部位的应用可与碳纤维增强塑料相媲美; ·在机翼大梁和翼肋上选择了新型7085合金,这种合金在很薄的板材和很大锻件上性能优于通常的高强度合金;钛合金由于具有高强度、低密度,高损伤容限和抗腐蚀能力使其代替钢而广泛应用,但是它的高价格使其应用受到限制。在A380的结构中,钛合金用量较空中客车其它机型有所增加,达到10%。仅仅挂 架和起落架的钛合金用量就增加了2%。 ·A380挂架的主要结构是空中客车公司第一次采用全钛设计。在A380飞机上采用最广泛的钛合金是Ti-6Al-4V,在B退火状态下最大的断裂韧性和最小的裂纹增长速度。 ·在A380上第一次采用了新型钛合金VST55531,这种新的钛合金是空中客车公司与俄罗斯制造商共同开发的,能够为设计者提供良好的断裂韧性和高强度综合性能。这种合金目前用于A380飞机的机翼和挂架 之间的连接件,进一步的应用还在研究当中。 2. A380复合材料的应用 A380复合材料的主要应用见下图3。

飞机结构定义

飞机结构 4. Definitions 4. 定义 A. The definitions of primary and secondary structures are as follows: A. 定义基本的和次级的结构依下列各项: WARNING: THE FAILURE OF PSE’S COULD RESULT IN THE CATASTROPHIC FAILURE OF THE AIRPLANE. 警告: PSE (主要构件)的失效可以造成飞机灾难性的故障。 (1) Primary Structure: Structure which carries flight, ground, or pressure loads. Primary structure is classified into two categories: Principal Structural Elements (PSE) and Other Structure. Most of the primary structures on the airplane are Principal Structural Elements (PSE). PSEs are also known as Structural Significant Items (SSI). (1) 基本结构:承传受飞行, 地面, 或压力载荷的结构。基本的结构又分为两类: 主要构件 (PSE) 和其他构件。飞机上的大部分基本结构是主要构件(PSE). PSEs (主要构件)也是被作为结构的重要项目(SSI). (a) Principal Structural Elements (PSE): Primary structure which contribute significantly to carrying flight, ground, and pressurization loads, and whose failure could result in the catastrophic failure of the airplane. (1) 主要构件 (PSE):主要承受飞行, 地面, 和压力载荷的基本结构,这些构件 的失效将造成飞机的灾难性故障。 (b) Other Structure: Primary structure that is not a Principal Structural Element (PSE). (b) 其他的结构: 基本结构中不是主要构件的部分 (PSE). (2) Secondary Structure: Structure which carries only air or inertial loads generated on or within the secondary structure. Most secondary structures are important to the aerodynamic performance of the airplane. (2) 次级结构:承受空气或次级结构本身产生的惯性载荷的结构。大部分次级结构对飞行的气动性能很重要。 修理定义 1. Applicability A. This subject gives the definitions related to repair classification and inspection for damage-tolerant and non-damage tolerant primary and secondary structures as applicable. 2. References Reference Title 51-10-02 INSPECTION AND REMOVAL OF DAMAGE SOPM 20-20-01 Magnetic Particle Inspection

飞机结构与系统复习资料:飞机结构基础

1.载荷系数的定义 用倍数的概念来表示飞机实际外力同重力之间的关系,是一个相对值。 表示飞机质量力与重力的比率。 2.飞行状态下和起飞着陆状态下载荷系统的区别 3.什么是疲劳载荷?飞机上典型疲劳载荷有哪些? 飞机长期使用---所受载荷多次重复---形成疲劳载荷。这种作用会导致结构的疲劳破坏。 主要类型:1)突风载荷2)机动载荷3)增压载荷4)着陆撞击载荷5)地面滑行载荷6)发动机动力装置的热反复载荷7)地-空-地循环载荷8)其他 4.什么是载荷谱? 飞机在使用过程中结构承受载荷随时间的变化历程。 5.机身功用及外载,什么是增压载荷 1)安置空勤组人员、旅客、装载燃油、武器、设备和货物; 2)将机翼、尾翼、起落架及发动机连接在一起,形成一架完整的飞机。 增压载荷:增压舱内的空气压力与周围大气空气压力之差。 6.机身结构设计首要要求 1) 需满足众多使用要求(最主要); 2) 总体协调性要好,这样有利于飞机减重; 3) 保证结构完整性前提下的最小重量要求; 4) 合理使用机身的有效容积,保证飞机性能; 5) 气动力要求主要是减小阻力; 6) 装载多,本身结构复杂,故对开敞性(便于维修)要求更高; 7) 良好的工艺性、经济性要求; 7.机身主要构件及其受力特性 8.机身典型受力型式及其特点 桁梁式:结构特点:有若干桁梁(如四根),桁梁强;长桁少且弱,甚至可以不连续;蒙皮薄。 受力特点:机身弯曲引起的轴向力主要由桁梁承担;剪力由蒙皮承担。在桁梁间布置大开口而不会显著影响机身抗弯强度和刚度。 桁条式:结构特点:无桁梁;长桁密且强;蒙皮较厚。 受力特点:机身弯曲引起的轴向力主要由桁条和较厚蒙皮组成的壁板承担;剪力由蒙皮承担。不宜大开口,抗弯、扭刚度大;蒙皮局部变形小,有利于改善气动性能。 硬壳式:结构特点:无桁梁,无桁条;蒙皮厚,与少数隔框组成机身。 受力特点:机身总体弯、剪、扭引起的全部轴力和剪力由厚蒙皮承担;隔框用于维持机身截面形状,支持蒙皮、承担框平面内的集中力。不宜大开口,机身实际应用很少,只适于局部气动载荷较大,要求蒙皮局部刚度大的部位,如机头、尾锥等。 9.开口与口盖的分类 开口的分类:通常按尺寸分为:大开口、中开口和小开口。 口盖的分类(1)按使用特性:快卸口盖;一般口盖 (2)按受力特性:不受力口盖;只承受口盖上局部气动载荷,并传给基体结构;受剪口盖;受轴向力口盖。 10.飞机上常用的材料有哪些 铝合金;镁合金;钛合金;刚。

广西大学《结构力学》复习提纲

《结构力学》复习大纲 要求:试题要涉及结构力学的主要知识点,并注重力学基本概念和计算方法的掌握。以《结构力学(I)》作为考核的重点,分值占70%左右,内容包括:几何组成分析、静定结构的内力及位移计算、力法和位移法对超静定结构的计算、影响线及其应用;《结构力学(II)》占30%左右,内容包括:矩阵位移法(杆系有限元法)对结构的静力计算、动力计算。试题分填空(基本概念)和计算两种题型,达到本科中等以上难度水平。 一、平面杆系结构的几何组成分析 考核几何不变体系组成的三个基本规律,能灵活利用几何组成规律对平面杆系的几何构成做出正确判断。瞬变体系的判断,静定结构及超静定结构的几何构成。 二、静定结构 1. 静定结构的内力计算:利用截面法及平衡条件计算静定结构任意截面的内力,能根据内力图的规律和控制截面的内力,快速做出多跨静定梁、静定刚架、桁架及组合结构的内力图。基本概念包括三铰拱、平面静定桁架、刚架、组合结构等指定截面的内力,利用节点平衡条件及对称性对桁架的零杆做出判断。 2. 静定结构的位移计算:利用单位荷载法计算静定梁、刚架、组合结构、桁架等在荷载、温度作用及支座移动时的位移。基本概念包括虚功原理及其应用,结构位移计算的一般公式,三个互等定理及其适用范围。 三、超静定结构 1. 力法的基本原理及应用。重点考核用力法求解超静定结构(包括超静定梁、刚架、排架、桁架及组合结构)在荷载、温度及支座移动作用下的内力,并能用对称性对结构进行简化。力法的基本概念包括基本未知量的确定、力法基本结构的选择、基本方程的建立及含义、各系数项的含义及计算、根据弯矩图快速做出剪力图及轴力图。 2. 位移法的基本原理及其应用。重点考核用位移法求解超静定结构(包括超静定梁、刚架、排架)在荷载作用下的内力,并能用对称性对结构进行简化。基本概念包括位移法基本未知量的确定、基本结构的选择、基本方程及系数项的含义、对称性的应用。要求记忆等截面直杆的刚度方程及在均布荷载、跨中集中力、支座位移作用下超静定梁的杆端内力。 3. 超静定结构的位移计算。在用力法或位移法计算出超静定结构的内力后,或在给定某超静定结构的弯矩图的条件下,利用虚功原理计算出指定截面的位移;如果所求位移为结点位移,也可以考虑用位移法直接求解。 四、影响线 静定多跨梁、静定桁架等的支座反力或指定截面的内力的影响线,并利用影响线求在给定静荷载作用的影响量及移动荷载作用下某一截面内力的最大值。基本概念包括:影响线的概念、影响线的特征及做法、影响线的应用。 五、矩阵位移法 矩阵位移法对平面桁架、刚架静力计算的步骤及结构刚度方程的建立。基本概念包括:单元刚度方程及刚度系数含义及具体值,单元杆端力与内力、荷载向量的计算,总刚度矩阵的集成,边界条件的处理(包括先处理法和后处理法);根据单元及总刚度矩阵中每个系数的含义计算刚度矩阵中的指定元素值;定位向量的应用,根据结构位移向量计算各单元的内力。 六、动力计算 重点考核单自由度体系在简谐荷载作用下的强迫振动及两个自由度体系的自由振动计算。基本概念包括结构动力微分方程的建立、自振频率和振型的计算,主振型的正交性,阻尼对振动的影响,对称性的应用,结构动力响应(包括结构最大位移和内力、动位移和动内力幅值)计算。 参考教材: 龙驭球主编《结构力学》上、下册,《结构力学教程》 包世华主编《结构力学》上、下册 阳日主编《结构力学II》、《结构力学II》 杨天祥主编《结构力学》上、下册 注:考试可携带计算器; 试卷不附给任何参数(单元刚度矩阵、超静定梁的固端力等),考试需要自己记忆或求解。

相关文档
最新文档