概率论心得体会

概率论心得体会
概率论心得体会

概率论心得体会

【篇一:概率论与数理统计学习心得】

《概率论与数理统计》学习心得

材料01 薛飞 2010021023

随着学习的深入,我们在大二下学期开了《概率论与数理统计》这

一门课。概率论与数理统计是研究随机现象统计规律性的一门数学

学科,其理论与方法的应用非常广泛,几乎遍及所有科学技术领域、工农业生产、国民经济以及我们的日常生活。学习这门课,不仅能

培养我们的理论学习能力,也能在日后给科研及生活提供一种解决

问题的工具。

说实话,这门课给我的第一印象就是它可能很难很抽象,很难用于

实际生活中,并且对于这门课的安排与流程我并没有太确切的认识。但在第一节课上听了老师的讲解我才理出了一些头绪。这门课分为

概率论与数理统计两个部分,其中概率论部分又是数理统计的基础。我们所要课程就是围绕着这两大部分来学习的。

如今经过了一学期的学习,在收获了不少知识的同时也颇有些心得

体会。首先,它给我们提供了一种解决问题的的新方法。我们在解

决问题不一定非要从正面进行解决。在某些情形下,我们可以进行

合理的估计,然后再去解决有关的问题。并且,概率论的思维方式

不是确定的,而是随机的发生的思想。

其次,在这门课程学习中,我意识到其实概率论与数理统计才是与

生活紧密相连的。它用到高数的计算与思想,却并不像高数那样抽象。而且老师所讲例题均与日常生产和生活相关,

让我明白了日常生产中如何应用数学原理解决问题,我想假设检验

便是很好的诠释。

最后,概率论与数理统计应该被视为工具学科,因为它对其他学科

的学习是不可少的。它对统计物理的学习有重要意义,同时对于学

习经济学的人在探究某些经济规律也是十分重要的。

总之,通过学习这门课程,我们可以更理性的对待生活中的一些问题,更加谨慎的处理某些问题。

最后,感谢老师近半年来的辛苦教学与谆谆教导!

【篇二:概率论与数理统计学习体会】

《概率论与数理统计》

学习体会

院校北京化工大学

专业工商管理(人力资源方向)

姓名史伟

学号 011

时间2011年11月20日成绩

这学期学习《概率论与数理统计》这门课,在高中的时候,我们就

接触过简单的概率,知道事物的随机现象,即条件相同,事情的结

果却不确定,这种不确定现象就叫做随机现象。这个课程内容分为

两个部分:概率论和数理统计。这两部分有着紧密的联系。在概率

论中,我们研究的的随机变量,都是在假定分布已知的情况下研究

它的性质和特点;而在数理统计中,是在随机变量分布未知的前提

下通过对所研究的随机变量进行重复独立的观察,并对观察值对这

些数据进行分析,从而对所研究的随机变量的分布做出推断。因此,概率论可以说是数理统计的基础。

一、学习价值

通过简单的学习,我掌握到,概率统计是真正把实际为题转化为数

学问题的学问,因为它解决的并不是单纯的数学问题,而且不是给

你一个命题让你去解决,是让你去构思命题,进而构建模型来想法

设法解决实际问题。在实际应用中,就更加需要去想、去假设,对

问题需要有更深层次的思考,因此使概率论和数理统计这门课学起

来比微积分和线性代数更加吃力,但也比它们更加实用,更贴近实际。

概率论产生于十七世纪,本来是由保险事业的发展而产生的,但是

来自于赌博者的请求,却是数学家们思考概率论中问题的源泉。

早在1654年,有一个赌徒梅累向当时的数学家帕斯卡提出一个使

他苦恼了很久的问题:“两个赌徒相约赌若干局,谁先赢 m局就算赢,全部赌本就归谁。但是当其中一个人赢了 a (am)局,另一个人赢了

b(bm)局的时候,赌博中止。问:赌本应该如何分法才合理?”后者

曾在1642年发明了世界上第一台机械加法计算机。

三年后,也就是1657年,荷兰著名的天文、物理兼数学家惠更斯

企图自己解决这一问题,结果写成了《论机会游戏的计算》一书,

这就是最早的概率论著作。

近几十年来,随着科技的蓬勃发展,概率论大量应用到国民经济、

工农业生产及各学科领域。许多兴起的应用数学如信息论、对策论、排队论、控制论、等,都是以概率论作为基础的。

概率论和数理统计是一门随机数学分支,它们是密切联系的同类学科。但是应该指出,概率论、数理统计、统计方法又都各有它们自

己所包括的不同内容。概率论——是根据大量同类随机现象的统计

规律,对随机现象出现某一结果的可能性作出一种客观的科学判断,对这种出现的可能性大小做出数量上的描述;比较这些可能性的大小、研究它们之间的联系,从而形成一整套数学理论和方法。

数理统计——是应用概率的理论来研究大量随机现象的规律性;对

通过科学安排的一定数量的实验所得到的统计方法给出严格的理论

证明;并判定各种方法应用的条件以及方法、公式、结论的可靠程

度和局限性。使我们能从一组样本来判定是否能以相当大的概率来

保证某一判断是正确的,并可以控制发生错误的概率。

统计方法——是一上提供的方法在各种具体问题中的应用,它不去

注意这些方法的的理论根据、数学论证。

应该指出,概率统计在研究方法上有它的特殊性,和其它数学学科

的主要不同点有:

第一,由于随机现象的统计规律是一种集体规律,必须在大量同类

随机现象中才能呈现出来,所以,观察、试验、调查就是概率统计

这门学科研究方法的基石。但是,作为数学学科的一个分支,它依

然具有本学科的定义、公理、定理的,这些定义、公理、定理是来

源于自然界的随机规律,但这些定义、公理、定理是确定的,不存

在任何随机性。

第二,在研究概率统计中,使用的是“由部分推断全体”的统计推断

方法。这是因为它研究的对象——随机现象的范围是很大的,在进

行试验、观测的时候,

不可能也不必要全部进行。但是由这一部分资料所得出的一些结论,要全体范围内推断这些结论的可靠性。

第三,随机现象的随机性,是指试验、调查之前来说的。而真正得

出结果后,对于每一次试验,它只可能得到这些不确定结果中的某

一种确定结果。我们在研究这一现象时,应当注意在试验前能不能

对这一现象找出它本身的内在规律。

让我比较感兴趣的是,概率统计在实际中的应用。例如一个公司的

决策,就需要用到概率统计。一个公司如果投产,通过对设备生产

能力,对市场估计,与如果不投产,对设备生产能力和市场估计的

比较。最终做出公司是否投产的决策。

通过这种方法,可以很快的找到怎样投资怎么去决策利益最大。

二、学习方法和注意点

学习概率论与数理统计需要注意很多东西,以下就是我从其他参考

书上学习到的。

(一)、学习“概率论”要注意以下几个要点

1. 在学习“概率论”的过程中要抓住对概念的引入和背景的理解,例

如为什么要引进“随机变量”这一概念。这实际上是一个抽象过程。

正如小学生最初学数学时总是一个苹果加2个苹果等于3个苹果,

然后抽象为1+2=3.对于具体的随机试验中的具体随机事件,可以计

算其概率,但这毕竟是局部的,孤立的,能否将不同随机试验的不

同样本空间予以统一,并对整个随机试验进行刻画?随机变量x(即

从样本空间到实轴的单值实函数)的引进使原先不同随机试验的随机

事件的概率都可转化为随机变量落在某一实数集合b的概率,不同

的随机试验可由不同的随机变量来刻画。此外若对一切实数集合b,知道p(x∈b)。那么随机试验的任一随机事件的概率也就完全确定了。所以我们只须求出随机变量x的分布p(x∈b)。就对随机试验进行

了全面的刻画。它的研究成了概率论的研

究中心课题。故而随机变量的引入是概率论发展历史中的一个重要

里程碑。类似地,概率公理化定义的引进,分布函数、离散型和连

续型随机变量的分类,随机变量的数学特征等概念的引进都有明确

的背景,在学习中要深入理解体会。

2. 在学习“概率论”过程中对于引入概念的内涵和相互间的联系和差

异要仔细推敲,例如随机变量概念的内涵有哪些意义:它是一个从

样本空间到实轴的单值实函数x(w),但它不同于一般的函数,首先

它的定义域是样本空间,不同随机试验有不同的样本空间。而它的

取值是不确定的,

随着试验结果的不同可取不同值,但是它取某一区间的概率又能根

据随机试验予以确定的,而我们关心的通常只是它的取值范围,即

对于实轴上任一b,计算概率p(x∈b),即随机变量x的分布。只有

理解了随机变量的内涵,下面的概念如分布函数等等才能真正理解。又如随机事件的互不相容和相互独立两个概念通常会混淆,前者是

事件的运算性质,后者是事件的概率性质,但它们又有一定联系,

如果p(a)。p(b)>0,则a,b独立则一定相容。类似地,如随机变

量的独立和不相关等概念的联系与差异一定要真正搞懂。?

3. 搞懂了概率论中的各个概念,一般具体的计算都是不难的,如

f(x)=p(x≤x),ex,dx等按定义都易求得。计算中的难点有古典概型和几何概型的概率计算,二维随机变量的边缘分布fx(x)=∫-∞∞ f(x,y)dy,事件b的概率p((x,y)∈b)=∫∫bf(x,y)dxdy,卷积公式等的

计算,它们形式上很简单,但是由于f(x,y)通常是分段函数,真正

的积分限并不再是(-∞,∞)或b,这时如何正确确定事实上的积分限

就成了正确解题的关键,要切实掌握。?

4. 概率论中也有许多习题,在解题过程中不要为解题而解题,而应

理解题目所涉及的概念及解题的目的,至于具体计算中的某些技巧

基本上在高等数学中都已学过。因此概率论学习的关键不在于做许

多习题,而要把精力放在理解不同题型涉及的概念及解题的思路上去。这样往往能“事半功倍”。

(二)、学习“数理统计”要注意以下几个要点?

1. 由于数理统计是一门实用性极强的学科,在学习中要紧扣它的实

际背

论实验心得

实验心得

经过一个学期的学习,我大致明白了概率论与数理统计的一些基本

函数,意识到概率论与数理统计与生活的紧密结合。

通过本次试验,我初步了解用matlab软件处理概率与数理统计问

题的一些基本方法。掌握了一些基本函数,体会到了用软件处理大

量琐碎的数据的优越之处。

matlab作为一款十分实用的数学应用软件,用简洁明了的语句处理

相对复杂的问题,体现了数学的精妙所在。并且matlab绘制图形的

功能也做得比较齐全,可以通过图形来直观形象的表示出实验结果。编程过程中,有时花了很多时间才完成一个数据处理,到最后才发

现matlab自带函数用简单的几行程序就可以处理。这就要求我们对matlab的自带函数尽可能的熟悉,大抵有些“磨刀不误砍柴工”的意

味吧。

计算机是一个很斤斤计较的对象,编程过程中,可能因为一个简单

的符号的错误而导致整个程序运行不出来结果。因此,在编程过程中,我们要谨小慎微,不可急躁。由于时间有限,很难细细体味编

程的快乐,但是当程序结果运行出来的那一刻,之前所有的努力终

于换来了汇报,欣喜之情还是无以言表的。我相信,今天的所有付出明天都会换来

回报,就如一个正确的程序会运行得到所期望的结果一样。

在以后的生活学习中,我会尽量注重自己各方面能力的培养,不仅仅只是局限于教材所涉及到的知识,在努力掌握好自己专业知识的同时,还要抽空学习各种实用软件。注意理论与实际的结合,遇到问题多思考,勤动手,尝试将自己所掌握的理论运用到实际的生活中去,培养自己处理实际问题的能力。

概率论与数理统计及其应用第二版课后答案浙江大学

第1章 随机变量及其概率 1,写出下列试验的样本空间: (1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录 投掷的次数。 (2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次, 记录投掷的次数。 (3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。 (4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰 子,观察出现的各种结果。 解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =; (4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。 2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(___ ___AB B A P AB P B A P B A P ??。 解:625.0)()()()(=-+=?AB P B P A P B A P , 375.0)()(])[()(=-=-=AB P B P B A S P B A P , 875.0)(1)(___ --=AB P AB P , 5.0)(625.0)])([()()])([()])([(___=-=?-?=-?=?AB P AB B A P B A P AB S B A P AB B A P 3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。

解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=??,所以所求得概率为 72.0900 648= 4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。(1)求该数是奇数的概率;(2)求该数大于330的概率。 解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455=??个。(1)该数是奇数的可能个数为48344=??个,所以出现奇数的概率为 48.0100 48= (2)该数大于330的可能个数为48454542=?+?+?,所以该数大于330的概率为 48.0100 48= 5,袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率。 (1)4只中恰有2只白球,1只红球,1只黑球。 (2)4只中至少有2只红球。 (3)4只中没有白球。 解: (1)所求概率为338412 131425=C C C C ;

概率论与数理统计发展史

概率论与数理统计发展简史 姓名:苗壮学号:1110810513 班级:1108105 指导教师:曹莉 摘要:在这里,我们将简略地回顾一下概率论与数理统计的发展史,包括发展过程中所经历的一些大事,以及对这门学科的创立和发展有特别重大影响的那些学者的贡献. 关键词:概率论、数理统计、发展史 正文: 1.概率论的发展 17世纪,正当研究必然性事件的数理关系获得较大发展的时候,一个研究偶然事件数量关系的数学分支开始出现,这就是概率论. 早在16世纪,赌博中的偶然现象就开始引起人们的注意.数学家卡丹诺(Cardano)首先觉察到,赌博输赢虽然是偶然的,但较大的赌博次数会呈现一定的规律性, 卡丹诺为此还写了一本《论赌博》的小册子,书中计算了掷两颗骰子或三颗骰子时,在一切可能的方法中有多少方法得到某一点数.据说,曾与卡丹诺在三次方程发明权上发生争论的塔尔塔里亚,也曾做过类似的实验. 促使概率论产生的强大动力来自社会实践.首先是保险事业.文艺复兴后,随着航海事业的发展,意大利开始出现海上保险业务.16世纪末,在欧洲不少国家已把保险业务扩大到其它工商业上,保险的对象都是偶然性事件.为了保证保险公司赢利,又使参加保险的人愿意参加保险,就需要根据对大量偶然现象规律性的分析,去创立保险的一般理论.于是,一种专门适用于分析偶然现象的数学工具也就成为十分必要了. 不过,作为数学科学之一的概率论,其基础并不是在上述实际问题的材料上形成的.因为这些问题的大量随机现象,常被许多错综复杂的因素所干扰,它使难以呈“自然的随机状态”.因此必须从简单的材料来研究随机现象的规律性,这种材料就是所谓的“随机博弈”.在近代概率论创立之前,人们正是通过对这种随机博弈现象的分析,注意到了它的一些特性, 比如“多次实验中的频率稳定性”等,然后经加工提炼而形成了概率论. 荷兰数学家、物理学家惠更斯(Huygens)于1657年发表了关于概率论的早期著作《论赌博中的计算》.在此期间,法国的费尔马(Fermat)与帕斯卡(Pascal)也在相互通信中探讨了随机博弈现象中所出现的概率论的基本定理和法则.惠更斯等人的工作建立了概率和数学期望等主要概念,找出了它们的基本性质和演算方法,从而塑造了概率论的雏形.18世纪是概率论的正式形成和发展时期.1713年,贝努利(Bernoulli)的名著《推想的艺术》发表.在这部著作中,贝努利明确指出了概率论最重要的定律之一――“大数定律”,并且给出了证明,这使以往建立在经验之上的频率稳定性推测理论化了,从此概率论从对特殊问题的求解,发展到了一般的理论概括. 继贝努利之后,法国数学家棣谟佛(Abraham de Moiver)于1781年发表了《机遇原理》.书中提出了概率乘法法则,以及“正态分”和“正态分布律”的概念,为概率论的“中心极限定理”的建立奠定了基础. 1706年法国数学家蒲丰(Comte de Buffon)的《偶然性的算术试验》完成,他把概率和几何结合起来,开始了几何概率的研究,他提出的“蒲丰问题”就是采取概率的方法来求圆周率π的尝试.

概率论大数定律及其应用

概率论基础结课论文题目:独立随机序列的大数事件的定理与应用 作者 摘要:历史上第一个定理属于,后人称之为“”。概率论中讨论的向的定律。概率论与数理的基本定律之一,又称弱大数理论。 大数定律以严格的数学形式表达了随机现象最根本的性质—平均结果的稳定性,它是概率论中一个非常重要的定律,是随机现象统计规律性的具体表现,应用很广泛。本文介绍了几种常用的大数定律,并分析了它们在理论与实际中的应用。 关键词:弱大数定理伯努利大数定理随机变量数学期望概率 引言:“大数定律”本来是一个数学概念,又叫做“平均法则”。在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律,通俗的说,这个定律就是在试验不变的条件下,重复试验多次,随机事件的频率以概率为稳定值。比如,我们向上抛一枚硬币,硬币落下时哪一面朝上本身是偶然的,但当我们向上抛的硬币的次数足够多时,达到上万次甚至几十万几百万时之后,我们就会发现,硬币朝上的次数大约占总数的二分之一。偶然之中包含着必然。 从概率的统计定义中可以看出:一个事件发生的频率具有稳定性,即随着试验次数的增多,事件的频率逐渐稳定在某个常数附近,人们在实践中观察其他的一些随机现象时,也常常会发现大量随机个体的平均效果的稳定性。这就是说,无论个别随机个体以及它们在试验进行过程中的个别特征如何,大量随机个体的平均效果与每一个体的个别特征无关,而且结果也不再是随机的。深入考虑后,人们会提出这样的问题:稳定性的确切含义是什么?在什么条件下具有稳定性?这就是我们大数要研究的问题。 概率与统计是研究随机现象的统计规律的学科,而随机现象的统计规律性只有在相同条件下进行大量重复试验或观察才呈现出来。然而,在大量重复试验或观察中,我们会发现,一个事件发生的频率具有稳定性,它的稳定性会随着试验次数的增多表现得越来越明显。这种稳定性与它在在实验进行中的个别特征无关,且不再是随机的。大数定律给出了稳定性的确切含义,并且给出了什么条件下才具有稳定性。那么,这对于我们解决理论与实际问题有哪些实际意义呢?这就是我们在下面将要了解到的,大数定律的某些应用。即,大数定律及其在理论与实际生活中的一些应用。 一方面,在理论上,大数定律可以看作是求解极限、重积分以及级数的一种新思路,另一方面,在实际生活中,保险动机的产生、保险公司财政稳定和保费的确定,我们都将看到大数定律的重要作用。

大学概率论与数理统计复习资料

第一章 随机事件及其概率 知识点:概率的性质 事件运算 古典概率 事件的独立性 条件概率 全概率与贝叶斯公式 常用公式 ) ()()()()()2(加法定理AB P B P A P B A P -+= ) ,,() ()(211 1 有限可加性两两互斥设n n i i n i i A A A A P A P ∑===) ,(0 )()()()()(互不相容时独立时与B A AB P B A B P A P AB P ==) ()()()()5(AB P A P B A P B A P -==-) () ()()()(时当A B B P A P B A P B A P ?-==-))0(,,()()/()()()6(211 >Ω=∑=i n n i i i A P A A A A B P A P B P 且的一个划分为其中全概率公式 ) ,,()] (1[1)(211 1 相互独立时n n i i n i i A A A A P A P ∏==--=) /()()/()()()4(B A P B P A B P A P AB P ==) (/)()/()3(A P AB P A B P =) () /()() /()()/()7(1 逆概率公式∑== n i i i i i i A B P A P A B P A P B A P )(/)()(/)()1(S L A L A P n r A P ==

应用举例 1、已知事件,A B 满足)()(B A P AB P =,且6.0)(=A P ,则=)(B P ( )。 2、已知事件,A B 相互独立,,)(k A P =6.0)(,2.0)(==B A P B P ,则=k ( )。 3、已知事件,A B 互不相容,,3.0)(=A P ==)(,5.0)(B A P B P 则( )。 4、若,3.0)(=A P ===)(,5.0)(,4.0)(B A B P B A P B P ( )。 5、,,A B C 是三个随机事件,C B ?,事件()A C B - 与A 的关系是( )。 6、5张数字卡片上分别写着1,2,3,4,5,从中任取3张,排成3位数,则排成3位奇数的概率是( )。 某日他抛一枚硬币决定乘地铁还是乘汽车。 (1)试求他在5:40~5:50到家的概率; (2)结果他是5:47到家的。试求他是乘地铁回家的概率。 解(1)设1A ={他是乘地铁回家的},2A ={他是乘汽车回家的}, i B ={第i 段时间到家的},4,3,2,1=i 分别对应时间段5:30~5:40,5:40~5:50,5:50~6:00,6:00以后 则由全概率公式有 )|()()|()()(2221212A B P A P A B P A P B P += 由上表可知4.0)|(12=A B P ,3.0)|(22=A B P ,5.0)()(21==A P A P 35.05.03.04.05.0)(2=?+?=B P (2)由贝叶斯公式 7 4 35.04.05.0)()()|(22121=?== B P B A P B A P 8、盒中12个新乒乓球,每次比赛从中任取3个来用,比赛 后仍放回盒中,求:第三次比赛时取到3个新球的概率。 看作业习题1: 4, 9, 11, 15, 16

概率论习题及答案()

概率论习题 一、填空题 1、掷21n +次硬币,则出现正面次数多于反面次数的概率是 . 2、把10本书任意的放到书架上,求其中指定的三本书放在一起的概率. 3、一批产品分一、二、三级,其中一级品是二级品的两倍,三级品是二级品的一半,从这批产品中随机的抽取一件,试求取到二级品的概率 . 4、已知()0.7,()0.3,P A P A B =-= 则().P AB = 5、已知()0.3,()0.4,()0.5,P A P B P AB === 则(|).P B A B ?= 6、掷两枚硬币,至少出现一个正面的概率为.. 7、设()0.4,()0.7,P A P A B =?= 若,A B 独立,则().P B = 8、设,A B 为两事件,11()(),(|),36 P A P B P A B === 则(|).P A B = 9、设123,,A A A 相互独立,且2(),1,2,3,3i P A i == 则123,,A A A 最多出现一个的概率是. 10、某人射击三次,其命中率为0.8,则三次中至多命中一次的概率为 . 11、一枚硬币独立的投3次,记事件A =“第一次掷出正面”,事件B =“第二次掷出反面”,事件C =“正面最多掷出一次”。那么(|)P C AB = 。 12、已知男人中有5%是色盲患者,女人中有0.25%是色盲患者.今从男女人数相等的人群中随机地 表示为互不相容事件的和是 。15、,,A B C 中不多于两个发生可表示为 。 二、选择题 1、下面四个结论成立的是( ) 2、设()0,P AB =则下列说法正确的是( ) 3、掷21n +次硬币,正面次数多于反面次数的概率为( ) 4、设,A B 为随机事件,()0,(|)1,P B P A B >= 则必有( ) 5、设A 、B 相互独立,且P (A )>0,P (B )>0,则下列等式成立的是( ) .A P (AB )=0 .B P (A -B )=P (A )P (B ) .C P (A )+P (B )=1 .D P (A |B )=0 6、设事件A 与B 互不相容,且P (A )>0,P (B ) >0,则有( ) .A P (AB )=l .B P (A )=1-P (B ) .C P (AB )=P (A )P (B ) .D P (A ∪B )=1

概率论

一 1、若事件A 出现,事件B 和事件C 都不出现,则可表示为 。 2、已知,6.0)(,4.0)(,==?B P A P B A 则)(A B P -= 。 3、皮尔逊做掷一枚均匀硬币的试验,观察“正面朝上”这一事件A ,在12000次试验中,事件A 出现了6019次,则事件A 出现的频率是 。 4、已知随机变量A 的概率,5.0)(=A P 随机事件B 的概率,6.0)(=B P 条件概率 ,8.0)|(=A B P 则=?)(B A P 。 5、某工厂有甲、乙、丙三个车间生产同一种产品,每个车间的产量分别占全厂的%,40%,35%,25各个车间产品的次品率分别为%,2%,4%,5则该厂产品的次品率为 。 6、假设X 是连续型随机变量,其概率密度函数为???<<=. 030)(2其它,; ,x cx x f ,则 =c 。 7、设二维随机变量 ) ,(Y X 的联合分布函数为 ),arctan )(arctan (),(y C x B A y x F ++=则=A ,=B ,=C 。 8、设Y 服从)4,5.1(N ,则=>}2{X P 。 9、设随机变量)16,1(~),4,1(~N Y N X ,则=+)(Y X E 。 10、设X 和Y 是相互独立,X 服从标准正态分布,Y 服从自由度为n 的卡方分布,称随机变量:n Y X T = 的分布为自由度为 的 分布。 二、设有一批量为50的同型号产品,其中次品10件,现按以下两种方式随机抽取2件产品:(1)有放回抽取,即先任取一件,观察后放回批中,再从中任取一件;(2)不放回抽取,即先任取一件,观察后不放回批中,从剩余的产品中再任取一件。试分别按这两种抽取方式,求 (a)、两件都是次品的概率? (b)、第一件是次品,第二件是正品的概率?

概率论的那些事儿

概率论的那些事 院系:自动化测试与控制系姓名:XXX 学号:1130110XXX 导师:XXXX

摘要:概率史是一门研究随机现象规律的数学分支。它起源于十七世纪中叶,当时在误差分析、人口统计等范筹中,有大量的随机数据资料需要整理和研究,从而孕育出一种专门研究随机现象的规律性的数学。 关键字:概率论博弈发展生活 发展史 概率史是一门研究随机现象规律的数学分支。它起源于十七世纪中叶,当时在误差分析、人口统计等范筹中,有大量的随机数据资料需要整理和研究,从而孕育出一种专门研究随机现象的规律性的数学。另一方面,由于数学家参与讨论分赌本问题导致惠根斯完成了《论赌博中的计算》一书,由此奠定了古典概率论的基础。使概率论成为数学一个分支的另一奠基人是瑞士数学家雅各布伯努利。他的主要贡献是建立了概率论中的第一个极限定理《伯努利大数定理》。之后,法国数学家棣莫弗在他的著作《分析杂论》中提出了著名的《棣莫弗—拉普拉斯定理》。接着拉普拉斯在1812年出版了《概率的分析理论》,首先明确地对概率作了古典的定义。经过高斯和泊松等数学家的努力,概率论在数学中地位基本确立。到了20世纪的30年代,通过俄国数学家柯尔莫哥洛夫在概率论发展史上的杰出贡献,完全使概率论成为了一门严谨的数学分支。近代又出现了理论概率及应用概率论的分支,概率论被广泛的应用到了不同范筹和不同的学科。今天概率论已经成为一个非常庞大的数学分支。研究事物发生究数字重复的几率. 随着18、19世纪科学的发展,人们注意到在某些生物、物理和社会现象与机会游戏之间有某种相似性,从而由机会游戏起源的概率论被应用到这些领域中;同时这也大大推动了概率论本身的发展。使概率论成为数学的一个分支的奠基人是瑞士数学家j.伯努利,他建立了概率论中第一个极限定理,即伯努利大数定律,阐明了事件的频率稳定于它的概率。随后棣莫弗和p.s.拉普拉斯又导出了第二个 基本极限定理(中心极限定理)的原始形式。拉普拉斯在系统总结前人工作的基础上写出了《分析的概率理论》,明确给出了概率的古典定义,并在概率论中引入了更有力的分析工具,将概率论推向一个新的发展阶段。19世纪末,俄国数 学家p.l.切比雪夫、a.a.马尔可夫、a.m.李亚普诺夫等人用分析方法建立了大数定律及中心极限定理的一般形式,科学地解释了为什么实际中遇到的许多随机变量近似服从正态分布。20世纪初受物理学的刺激,人们开始研究随机过程。这方 面a·n·柯尔莫哥洛夫、n.维纳、a·a·马尔可夫、a·r·辛钦、p·莱维及w·费勒等人作了杰出的贡献。在总体上,概率论是一门研究事情发生的可能性的学问,但是最初概率论的起源与赌博问题有关。16世纪,意大利的学者吉罗拉莫·卡 尔达诺(Girolam oCardano,1501——1576)开始研究掷骰子等赌博中的一些 简单问题。17世纪中叶,当时的法国宫廷贵族里盛行着掷骰子游戏,游戏规则 是玩家连续掷4 次骰子,如果其中没有 6 点出现,玩家赢,如果出现一次 6 点,则庄家(相当于赌场)赢。按照这一游戏规则,从长期来看,庄家扮演赢家的角色,而玩家大部分时间是输家,因为庄家总是要靠此为生的,因此当时人们也就接受了这种现象。后来为了使游戏更刺激,游戏规则发生了些许变化,玩家这回用2 个骰子连续掷24 次,不同时出现2个6点,玩家赢,否则庄家赢。当时人们普遍认为,2 次出现 6 点的概率是一次出现 6 点的概率的 1 / 6 ,因此 6 倍于前一种规则的次数,也既是24 次赢或输的概率与以前是相等的。然而事实却刚好相反,从长期来看,这回庄家处于输家的状态,于是他们去请教当时的数

大学概率论与数理统计必过复习资料试题解析(绝对好用)

《概率论与数理统计》复习提要第一章随机事件与概率1.事件的关系 2.运算规则(1)(2)(3)(4) 3.概率满足的三条公理及性质:(1)(2)(3)对互不相容的事件,有(可以取)(4)(5) (6),若,则,(7)(8) 4.古典概型:基本事件有限且等可能 5.几何概率 6.条件概率(1)定义:若,则(2)乘法公式:若为完备事件组,,则有(3)全概率公式: (4) Bayes公式: 7.事件的独立 性:独立(注意独立性的应用)第二章随机变量与概率分 布 1.离散随机变量:取有限或可列个值,满足(1),(2)(3)对 任意, 2.连续随机变量:具有概率密度函数,满足(1)(2); (3)对任意, 4.分布函数,具有以下性质(1);(2)单调非降;(3)右连续;(4),特别;(5)对离散随机变量,; (6)为连续函数,且在连续点上, 5.正态分布的 概率计算以记标准正态分布的分布函数,则有(1);(2);(3) 若,则;(4)以记标准正态分布的上侧分位 数,则 6.随机变量的函数(1)离散时,求的值,将相同的概率相加;(2)连续,在的取值范围内严格单调,且有一阶连续导 数,,若不单调,先求分布函数,再求导。第三章随机向量 1.二维离散随机向量,联合分布列,边缘分布,有(1);(2 (3), 2.二维连续随机向量,联合密度,边缘密度,有 (1);(2)(4)(3);,3.二维均匀分布,其中为的面积 4.二维正态分布 且; 5.二维随机向量的分布函数有(1)关于单调非降;(2)关 于右连续;(3);(4),,;(5);(6)对 二维连续随机向量, 6.随机变量的独立性独立(1) 离散时独立(2)连续时独立(3)二维正态分布独立,且 7.随机变量的函数分布(1)和的分布的密度(2)最大最小分布第四章随机变量的数字特征 1.期望 (1) 离散时 (2) 连续 时, ;,; (3) 二维时, (4); (5);(6);(7)独立时, 2.方差(1)方差,标准差(2); (3);(4)独立时, 3.协方差 (1);;;(2)(3);(4)时, 称不相关,独立不相关,反之不成立,但正态时等价;(5) 4.相关系数;有, 5.阶原点矩,阶中心矩第五章大数定律与中心极限定理 1.Chebyshev不等式 2.大数定律 3.中心极限定理(1)设随机变量独立同分布, 或,或

概率论与数理统计浙大四版习题答案第七章

第七章参数估计 1.[ 一] 随机地取8只活塞环,测得它们的直径为(以 求总体均值卩及方差b 2的矩估计,并求样本方差 S 2。 n 2 6 (X i x) 6 10 i 1 S 2 6.86 10 6。 ln L(e ) nln(e ) n e inc (1 e ) In d 寫⑹ (1) f (x) e c e x (e 1},x c 0,其它 其中c >0为已知, e >1, e 为未知参数。 (2) f(x) 、e x e 1,0 x 1 0,其它. 其中e >0, e 为未知参数。 (5) P(X x) m p x (1 p)m x ,x 0,1,2, ,m,0 p 1, p 为未知参数。 解: ( 1) E(X) xf(x)dx c e c e x e dx e c e c e 1 e 1 e c 令 e c X e 1, 令 e 1 X X c (2) E(X) xf (x)dx e x e dx - 丄匚,令- '-e X ,We ( X )2 2.[二]设X , X ,…,X n 为准总体的一个样本。求下列各总体的密度函数或分布律 中的未知参数的矩估计量。 得e 1 e (5) -e 1 解:(1)似然函数 n L (e ) f (人)e n c n e (x 1 x 2 i 1 X n ) mm 计) 解:U,b 2的矩估计是 X 74.002 E (X ) = mp 令 mp = X ,解得?莖 m 3.[三]求上题中各未知参数的极大似然估计值和估计 量。 ln x i 0

(解唯一故为极大似然估计 量) In X i nln c i 1 ⑵ L(B ) n n _ f (X i ) e 2(X 1X 2 X n ) 0 1 ,ln L(B ) n 2~ n ln( 0) (0 1) In X i i 1 dI nL(0) n d 0 2 1 0 1 n In X i 0, i 1 ? (n In x i )2 0 (解唯一)故为极大似然 估 2.一 0 计量。 n m m n X i n mn 召 (5) L(p) P{X X i } p i1 (1 p) i1 , i - 1 X 1 X n n n n In L(p) In m X i x i In p (mn X i )l n(1 p), i 1 i 1 i 1 i 1 n mn x i i 1 0 1 p n X i d In L(p) i 1_ dp p n Xi - 解得 p q — —,(解唯一)故为极大似然估计量。 mn m 4.[四(2)]设X , X,…,X.是来自参数为入的泊松分布总体的一个样本,试求入 的极大似然估计量及矩估计量。 解:(1)矩估计 X ~ n 入),E ( X )=入,故*= X 为矩估计量。 (2)极大似然估计L (入) n P(X i ;入) 1 n X i *1 X 1 !X 2! X e n *, In L(入) i X i In In X i ! d In L(入) d 入 n X i i 1 入 0 ,解得* X 为极大似然估计 量。

概率论与数理统计概率历史介绍

概率论与数理统计概率历史介绍

一、概率定义的发展与分析 1.古典定义的历史脉络 古典定义中的“古典”表明了这种定义起源的古老,它源于赌博.博弈的形式多种多样,但是它们的前提是“公平”,即“机会均等”,而这正是古典定义适用的重要条件:同等可能.16世纪意大利数学家和赌博家卡尔丹(1501—1576)所说的“诚实的骰子”,即道明了这一点.在卡尔丹以后约三百年的时间里,帕斯卡、费马、伯努利等数学家都在古典概率的计算、公式推导和扩大应用等方面做了重要的工作.直到1812年,法国数学家拉普拉斯(1749—1827)在《概率的分析理论》中给出概率的古典定义:事件A的概率等于一次试验中有利于事件A的可能结果数与该事件中所有可能结果数之比. 2.古典定义的简单分析 古典定义通过简单明了的方式定义了事件的概率,并给出了简单可行的算法.它适用的条件有二:(1)可能结果总数有限;(2)每个结果的出现有同等可能.其中第(2)条尤其重要,它是古典概率思想产生的前提. 如何在更多和更复杂的情况下,体现出“同等可能”?伯努利家族成员做了这项工作,他们将排列组合的理论运用到了古典概率中.用排列(组合)体现同等可能的要求,就是将总数为P(n,r)的各种排列(或总数为C(n,r)的各种组合)看成是等可能的,通常用“随意取”来表达这个意思.即使如此,古典定义的方法能应用的范围仍然很窄,而且还有数学上的问题. “应用性的狭窄性”促使雅各布?伯努利(1654—1705)“寻找另一条途径找到所期待的结果”,这就是他在研究古典概率时的另一重要成果:伯努利大数定律.这条定律告诉我们“频率具有稳定性”,所以可以“用频率估计概率”,而这也为以后概率的统计定义奠定了思想基础.“古典定义数学上的问题”在贝特朗(1822—1900)悖论中表现得淋漓尽致,它揭示出定义存在的矛盾与含糊之处,这导致了拉普拉斯的古典定义受到猛烈批评. 3.统计定义的历史脉络 概率的古典定义虽然简单直观,但是适用范围有限.正如雅各布?伯努利所说:“……这种方法仅适用于极罕见的现象.”因此,他通过观察来确定结果数目的比例,并且认为“即使是没受过教育和训练的人,凭天生的直觉,也会清楚地知道,可利用的有关观测的次数越多,发生错误的风险就越小”.虽然原理简单,但是其科学证明并不简单,在古典概型下,伯努利证实了这一点,即“当试验次数愈来愈大时,频率接近概率”. 事实上,这不仅对于古典概型适用,人们确信“从现实中观察的频率稳定性”的事实是一个普遍规律.1919年,德国数学家冯?米塞斯(1883—1953)在《概率论基础研究》一书中提出了概率的统计定义:在做大量重复试验时,随着试验次数的增加,某个事件出现的频率总是在一个固定数值的附近摆动,显示出一定的稳定性,把这个固定的数值定义为这一事件的概率.

概率论的起源和发展

概率论的起源和发展 概率论是一门既古老又年轻的学科。说它古老,是因为产生概率的重要因素---赌博游戏已经存在了几千年,概率思想早在文明早期就己经开始萌芽了。而说它年轻,则是因为它在十八世纪以前的发展极为缓慢,现代数学家和哲学家们往往忽略了那段历史,他们更愿意把1654年帕斯卡(Pasac)l和费马(Fomrat)之间的七封通信看作是概率论的开端。这样,概率论的“年龄”就比数学大家族中的其它多数成员小很多。一般认为,概率论的历史只有短短的三百多年时间。虽然在早期概率论的发展非常缓慢,但是十八世纪以后,由于社会学,天文学等其它学科的研究需要,使得概率本身的理论得到了迅速发展,它的思想和方法也逐渐受到了其它学科的重视和借鉴。在当代,随着概率论本身的发展和学科之间的交叉融合,囊括了概率理论和统计理论两大部分的广义概率论已经成为一门应用非常广泛的学科,概率方法与统计方法逐渐渗透到了其它学科的研究工作当中。无论是在自然科学领域还是社会科学领域,各门学科中都能看到概率论的身影。概率论已经成为一种重要的工具,在社会发展中发挥着巨大的作用。 1、机会的早期计算 古希腊人从航海实践中发现了许多概率经验规律, 古犹太人在纪元之初就有概率加法定律和乘法定律的应用记录。但是由于结果不确定的特点, 人们一直认为随机现象好似运气都由天神决定, 其规则是世俗不可想象的。能够刺激人们思考概率的事情很多, 但最终孕育概率论的却是庸俗的骰子赌博。公元 960 年左右, 怀特尔德大主教计算出掷三个骰子时不计次序所能出现的不同组合有 56 种。十三世纪左右拉丁诗歌《维图拉》指出这 56 种组合出现的机会不是相同的: 3 枚骰子点数一样, 每个点数只有一种方式; 2 枚骰子点数一样而另一枚不一样, 则有 3 种方式; 如果 3 枚都不一样就有 6 种方式。但是这些经验并没有引起更多的思考, 机会的计算仍处于直觉的、散乱的经验水平上。 卡尔扎诺是一位医学博士, 曾在米兰讲授数学, 写过多部医学、数学等方面的著作。他认为赌博是一种社会病, 也有理由作为可以医治的疾病来研究。约在1564 年, 他集中了自己的智慧和赌博经验, 用拉丁文写出著名的《论机会游戏》, 揭示了赌博中的不确定性原理, 成为概率论前史的重要人物。书中, 卡尔扎诺强调赌博的基本原则是同等条件,“如果它们有利于对手, 那么你是傻瓜, 如果有利于自己, 那么你就不公平”。骰子应该是“诚实的”, 几个诚实的骰子联合起来仍然是诚实的, 下注应该根据这种诚实性。等可能思想的提出是卡尔扎诺的贡献之一, 为理解和解决复杂的赌博问题提供了依据。他定义了胜率(有利结果数与不利结果数之比) 表示机会的大小, 计算出了多种赌博的全部可能结果数和有利结果数, 由于当时组合数学还很贫乏, 他的计算在方法上与《维图拉》基本相同。卡尔扎诺还思考了独立事件的乘法法则, 在一番错误推理后他发现了正确方法, 例如一次的胜率是 3:1, 连续两次的胜率是 9:7。卡尔扎诺是第一个深入讨论概率问题的人, 他提出了考虑随机问题的基本原则, 建立了胜率概念和一些运算法则, 对概率理论的形成具有开创性贡献。但是他也犯了不少错误, 例如他认为在掷两个骰子时, 36 次投掷有 1 次机会出现双 6, 平均起来 18次投掷中, 出现双 6 的机会是 50%。这种推理意味着36 次投掷中必定出现一次双 6, 他没有意识到自己的错误。由于该书只有很少部分讨论机会计算, 其等可能思想

概率论与数理统计第五章 大数定律及中心极限定理

概率论与数理统计作业 班级 姓名 学号 任课教师 第五章 大数定律及中心极限定理 教学要求: 一、了解大数定律的直观意义; 二、掌握Chebyshev 不等式; 三、了解Chebyshev 大数定理和贝努里大数定理; 四、会用中心极限定理估算有关事件的概率. 重点:中心极限定理. 难点:切比雪夫不等式、大数定律、中心极限定理. 综合练习题 一、选择题 1.设12,,,n X X X 是独立同分布的随机变量序列,且 1,2,,i n = .令∑==n i i n X Y 1 ,1,2,,i n = ,()x Φ为标准正态分布函数,则 ()=?? ????????≤--∞ →11lim p np np Y P n n (B ). (A )0 ; (B )()1Φ; (C )()11Φ-; (D )1.6 . 2.设()x Φ为标准正态分布函数,0,1,i A X A ?=? ?事件不发生, 事件发生, ()100,,2,1 =i ,且 ()8.0=A P ,10021,,,X X X 相互独立.令∑==100 1 i i X Y ,则由中心极限定理知Y 的分布函 数()y F 近似于(B ). (A )()y Φ; (B )?? ? ??-Φ480y ; (C )()8016+Φy ; (D )()804+Φy . 3.设随机变量 ,,,,21n X X X 相互独立,且i X () ,,,2,1n i =都服从参数为 2 1

的指数分布,则当n 充分大时,随机变量∑==n i i n X n Z 1 1的概率分布近似服从(B ). (A )()4,2N ; (B )??? ??n N 4,2; (C )?? ? ??n N 41,21; (D )()n n N 4,2. 二、填空题 1.设随机变量 ,,,,21n X X X 相互独立且同分布,它们的期望为μ,方差为2 σ, 令∑==n i i n X n Z 1 1,则对任意正数ε,有{}=≤-∞→εμn n Z P lim 1 . 2.设 ,,,,21n X X X 是独立同分布的随机变量序列,且具有相同数学期望和方差 ()μ=i X E ,()02>=σi X D ,() ,2,1=i , 则对任意实数x , =??? ? ??? ???????≤-∑=∞ →x n n X P n i i n σμ1lim ()x Φ. 3.设()1-=X E ,()4=X D ,则由切比雪夫不等式估计概率{}42P X -<<≥ 9 5 . 4.设随机变量[]1,0~U X ,由切比雪夫不等式可得≤??????≥- 3121X P 4 1. 5.设随机变量() 2.0,100~B X ,应用中心极限定理可得{}≈≥30X P 0062.0.(其中 ()()9938.05.2=Φ) 三、应用题 1. 100台车床彼此独立地工作着,每台车床的实际工作时间占全部工作时间的80%, 求任一时刻有70至86台车床在工作的概率. 解:设?? ?=台车床没有工作 第台车床正在工作 第i i X i .0.1(100,,2,1 =i ),且()8.0,1~B X i , 则100台车床中在任一时刻正在工作的机床台数为10021X X X X +++= ,且()80=X E ,()16=X D ,(其中10021,,,X X X 独立同分布),于是由德莫弗-拉普拉斯中心极限定理近似可得 ()???? ??-≤-≤-=≤≤168086168016 80708670X P X P

浙大版概率论与数理统计答案---第五章

第五章 大数定律及中心极限定理 注意: 这是第一稿(存在一些错误) 1、 解(1)由于{0}1P X ≥=,且()36E X =,利用马尔科夫不等式,得 () {50}0.7250 E X P X ≥≤ = (2)2 ()2D X =,()36E X =,利用切比雪夫不等式,所求的概率为: 223 {3240}1(364)10.75164 P X P X <<=--≥≥-== 2、解:()500,0.1i X B :, 500500121 1500111610%5%192.8%5000.05125i i i i D X P X ==?? ???? ?-<≥-==???? ∑∑ 3、 解 ξ服从参数为的几何分布,1 1(),(2,3,4)2n P n n ξ-?? === ? ?? L 可求出2 ()()3,()2n E nP n D ξξξ∞ == ===∑ 于是令 ()2 a b E ξ+=,2b a ε-=,利用切比雪夫不等式,得 有2 () ()1(())175%D P a b P E ξξξξεε <<=--≥≥-= 从而可以求出()3()3a E b E εξεξε==-=-=+=+4、解:()()()() ()() () 1,,n n n X n n n x F x P X x P X x X x F x a =≤=≤≤==L ,()0,x a ∈。 则() ()()() ()1 1 n n n X n nx p x n F x p x a --==,()0,x a ∈。 ()()10 1 n n a X n nx n E x x dx a a n -=?=+? , ()()()() 2 12 22 121n n a X n nx n n D x x dx a a a n n n -??=?-= ?+??++? 。

概率论中的大数定律及中心极限定理

概率论中的大数定律及中心极限定理 唐南南 摘要 概率论是从数量上研究随机现象的规律的学科,概率论的特点是先提出数学模型,然后去研究它的性质,特点和规律。它在自然科学,技术科学和社会科学等科学中有广泛的应用。而大数定律和中心极限定理的内容是概率论中极限理论极为重要的一部分内容。在这篇文章中,我们从贝努力试验中的频率出发,讨论了独立随机变量和分布的极限问题。在一定条件下,这些分布弱收敛于退化分布,这就是大数定律。在另一些条件下,这些分布弱收敛于N(0,1)分布,这一类收敛于N(0,1)分布的定理统称为中心极限定理.大数定律说明了随机现象都具有稳定性而中心极限定理是研究相互独立随机变量序列{}i x 的部分和∑== n i i n x S 1 的分布,在适当条件下向正态分布收放的问题。在这篇文章 里,我们只介绍了一些定理的提出,内容以证明以及在其他学科上的应用,而大数定律和中心极限定理还有许多更深入,更广泛的内容,限于篇幅这里就不再介绍了。掌握定理的结论是重要的,这些结论一方面使频率稳定于概率,n 次观察的算术平均值稳定于数学期望都有了明确的含义和理论依据;另一方面,又将给数理统计中大样本的统计推断等提供理论依据。 关键词 大数定律 中心极限定理 随机现象 随机变量 引言 大数定律和中心极限定理是概率论中重要的一部分内容,但对读者来说,多数人对于这部分内容感到很难掌握,这篇文章就是对这部分内容进行浅入的分析,但对其内容进行详细的说明,而且进行了归纳性的总结,指出了各定律之间的联系及其差别,希望通过本篇文章内容的介绍,能使读者对于这部分知识有一个清晰的印象,能整体地把握这部分内容。 一 、大数定律 (一)、问题的提法(大数定律的提法) 重复实验中事件的频率的稳定性,是大量随机现象的统计规律性的典型表现。人们在实践中认识到频率具有稳定性,进而由频率的稳定性预见概率的存在;由频率的性质推断概率的性质,并在实际应用中(当n

概率论与数理统计中的三种重要分布

概率论与数理统计中的三种重要分布 摘要:在概率论与数理统计课程中,我们研究了随机变量的分布,具体地研究了离散型随机变量的分布和连续型随机变量的分布,并简单的介绍了常见的离散型分布和连续型分布,其中二项分布、Poisson 分布、正态分布是概率论中三大重要的分布。因此,在这篇文章中重点介绍二项分布、Poisson 分布和正态分布以及它们的性质、数学期望与方差,以此来进行一次比较完整的概率论分布的学习。 关键词:二项分布;Poisson 分布;正态分布;定义;性质 一、二项分布 二项分布是重要的离散型分布之一,它在理论上和应用上都占有很重要的地位,产生 这种分布的重要现实源泉是所谓的伯努利试验。 (一)泊努利分布[Bernoulli distribution ] (两点分布、0-1分布) 1.泊努利试验 在许多实际问题中,我们感兴趣的是某事件A 是否发生。例如在产品抽样检验中,关心的是抽到正品还是废品;掷硬币时,关心的是出现正面还是反面,等。在这一类随机试验中,只有两个基本事件A 与A ,这种只有两种可能结果的随机试验称为伯努利试验。 为方便起见,在一次试验中,把出现A 称为“成功”,出现A 称为“失败” 通常记(),p A P = () q p A P =-=1。 2.泊努利分布 定义:在一次试验中,设p A P =)(,p q A P -==1)(,若以ξ记事件A 发生的次数, 则??? ? ??ξp q 10 ~,称ξ服从参数为)10(<

概率论与生活中的概率现象

Harbin Institute of Technology 概率论与数理统计 期末论文 论文名称:概率论与生活中的随机事件院系: 班级: 作者: 学号:

概率论与生活中的随机事件 哈工大XX学院 XXXX班 XXX 摘要:概率论是研究随机现象数量规律的数学分支。随机现象则是指在基本条件不变的情况下,每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。事件的概率是衡量该事件发生的可能性的量度。虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律。在日常生活中经常碰到概率问题,人们凭经验和直觉也能做出判断,但在某些情况下,如果不利用概率理论经过缜密的分析和精确的计算,人们的结论可能会与事实大相径庭。生活中随机事件值得进一步分析。 关键词:概率论统计随机事件日常生活 概率论产生于十七世纪,本来是有保险事业的发展而产生的,但是来自于赌博者的请求,却是数学家们思考概率论中问题的源泉。 在自然界,在生产、生活中,随机现象十分普遍,也就是说随机现象是大量存在的。比如:每期体育彩票的中奖号码、同一条生产线上生产的灯泡的寿命等,都是随机现象。 随机现象从表面上看,似乎是杂乱无章的、没有什么规律的现象。但实践证明,如果同类的随机现象大量重复出现,它的总体就呈现出一定的规律性。大量同类随机现象所呈现的这种规律性,随着我们观察的次数的增多而愈加明显。比如掷硬币,每一次投掷很难判断是那一面朝上,但是如果多次重复的掷这枚硬币,就会越来越清楚的发现它们朝上的次数大体相同。我们把这种由大量同类随机现象所呈现出来的集体规律性,叫做统计规律性。概率统计就是研究大量同类随机现象的统计规律性的数学学科。 在日常生活中经常碰到概率问题,人们凭经验和直觉也能做出判断,但在某些情况下,如果不利用概率理论经过缜密的分析和精确的计算,人们的结论可能会与事实大相径庭,错得离谱。在社会和自然界中,人们把事件发生的情况分为三大类:在一定条件下必然发生的事件,叫做必然事件;在一定条件下不可能发生的事件,叫做不可能事件;在一定条件下可能发生也可能不发生的事件,叫做随机事件。数学上把随机事件产生的可能性称为概率。以下为生活中几个随机事件的概率分析。 1.彩票是否中奖的概率分析 目前我国定期出售福利彩票,虽然各城市的游戏规则不完全相同,有的是35选7、有的是30选、有的是36选6等等,但其基本原理是一样的。人们在购买彩票时总是只看到那些中了大奖的故事,而不愿去考虑中大奖其实是个最典型的小概率事件,其概率低到根本不值得去买。数学家认为,概率低于1/1000就可以忽略不计了。如大英帝国彩票中特等奖的概率只有1/1400万,即使是选号范围小一些的彩票,中到特等奖的概率一般也要1/500万,这样小的概率居然还有这么多人趋之若鹜。有笑话说全世界的数学家都不会去买彩票,因为他们知道,在买彩票的路上被汽车撞死的概率远高于中大奖的概率。 一张彩票的中奖机会有多少呢?现以活动彩票的“36选6”“49选6”为

相关文档
最新文档