求曲率半径例题

求曲率半径例题

求曲率半径例题

1. 求椭圆12222=+b

y a x 。(a>b>0)在P 1(a,0)和P 2(0,b)及P 3(54,53b a )三点处的曲率半径。 2. 一半径为R 的圆柱表面画有一等距螺旋线,螺距为h 。求:螺旋线上任一点的曲率半径。

3. 一曲线可表示为参数方程。

x=R ?-Rsin?。

y =R (1-cos?)

求:?1=600,?2=900时的曲率半径,及该曲线的曲率半径的最大值

4. 一细杆绕定轴匀速转动,一虫子自转轴处沿杆爬行,若虫子相对地面的速度大小不变,

试证明虫子相对地面运动的路径为一圆弧。

5. 三只蜗牛自边长为L 的正三角形三个顶点开始以相同大小的速度爬行,爬行中,A 始终

朝着B ,B 朝着C ,C 朝着A 。求:(1)当它们运动到彼此相隔距离为

2L 时,每只蜗牛经历的路程?(2)每只蜗牛路径均为曲线,当它们彼此间距离为

2L 时,曲线在这一点的曲率半径为多大?

曲率与挠率

曲率与挠率 摘要:三维欧氏空间中的曲线中的曲率与挠率是空间曲线理论中最基本、最重要的两个概念,分别刻画空间曲线在一点邻近的弯曲程度和离开密切平面的程度,本文中给出了曲率与挠率的定义及其计算公式,并根椐公式 实例进行计算,以及曲率和挠率关于刚性运动及参数变换的不变性. 关键词:曲率与挠率 平面特征 刚性运动 1. 曲率与挠率的定义及其几何意义 1.1曲率的解析定义 设曲线C 的自然参数方程为()s r r =,且()s r 有二阶连续的导矢量r ,称()s r 为曲线C 在弧长为s 的点处的曲率,记为()()s r s k =,并称()s r 为C 的曲率向量,当 ()0≠s k 时,称()() s k s p 1 = 为曲线在该点处的曲率半径. 1.2 挠率的解析定义 空间曲线不但要弯曲,而且还要扭曲,即要离开它的密切平面,为了能刻画这一扭曲程度,等价于去研究密切平面的法矢量(即曲线的副法矢量)关于弧长的变化率,为此我们先给出如下引理. 引理:设自然参数曲线C :()s r r =本向量为βα ,和γ ,则0=?α r ,即r r 垂直于α . 另一方面由于1=r ,两边关于弧于s 求导便得 0=?r r , 即r 垂直于r ,这两方面说明r 与γα ?共线,即r 与β 共线. 由()βτ s r -=(负号是为了以后运算方便而引进的)所确定的函数()s r 称为曲线C

的挠率.当()0≠s τ时,它的倒数 () 1 s τ称为挠率半径. 1.3曲率与挠率的几何意义 1.3.1 曲率的几何意义 任取曲线C :()s r r =上的一点()p s 及其邻近点()Q s s +?,P 和Q 点处的单位 切向量分别为()()s r s =α和()()s s r s s ?+=?+ α,它们的夹角设为θ?,将()s s ?+α 的起点移到()p s 点,则()()2 sin 2θ αα?=-?+s s s ,于是 ()() s s s s s s ?????=??= ?-?+θθθ θαα2 2sin 2sin 2 故 ()()s r s k = ()() s s s s s s s s ??=?????=?-?+=→?→?→?→?θθθθ ααθθ000 lim lim 2 2sin lim lim 这表明曲线在一点处的曲率等于此点与邻近点的切线向量之间的夹角关于弧长的变化率,也就是曲线在该点附近切线方向改弯的程度,它反映了曲线的弯曲程度.如果曲线在某点处的曲率愈大,表示曲线在该点附近切线方向改变的愈快,因此曲线在该点的弯曲程度愈大. 1.3.2挠率的几何意义 由挠率的定义和()γ τ =s ,因此挠率的绝对值表示曲线的副法向量关于弧长的变化率,换句话说,挠率的绝对值刻画了曲线的密切平面的变化程度.所以曲线的挠率就绝对值而言其几何意义是反映了曲线离开密切平面的快慢,即曲线的扭曲程度. 1.4 直线与平面曲线的特征

如何计算抛物线点处的曲率和曲率半径

用物理方法计算抛物线某点处的曲率和曲率半径 对于一般的弧来说,各点处曲率可能不同,但当弧上点A处的曲率不为零时,我们可以设想在弧的凹方一侧有一个圆周,它与弧在点A相切(即与弧有公切线),这样的圆就称为弧上A点处的曲率圆。 对于函数图形某点的曲率和曲率半径,在数学上我们需要用到求二阶导数的方法。 今天我想简单说一种有趣的方法,将该问题用物理的思维来解决,无需求导便能够知道抛物线某点处的曲率和曲率半径。这种方法不属于主流方法,因此不能用它代替常规方法。介绍此方法的目的,只是为了让大家对抛物线及抛体运动和圆周运动乃至整个曲线运动本质上的联系有更加深刻的认识。 举一个最简单的例子:y=-x2,我们作出它的图像 设图像上存在一点A(a,-a2),求该点的曲率和曲率半径。 我们假设一质点从顶点O开始做平抛运动,恰经过A(a,-a2)。 接下来,我们可以算出该点处质点的速度大小:先得到下落时间,接着算出水平速度和竖直速度分量,再合成。质点在该点处速度大小为v=√(g/2+2a2g)。 接下来,我们利用角度关系,将A处的加速度(即重力加速度g)沿速度方向和垂直于速度方向分解,如下图:

令A点处质点速度方向与水平方向的夹角为θ,可得垂直于速度方向的加速度分量为gcosθ。我们可以求出cosθ=v0/v=1/√(1+4a2),那么垂直于速度方向的加速度分量就等于g/√(1+4a2)。 我们想象一下在A点处有个圆与抛物线切于A,且该圆为抛物线A点处的曲率圆,半径为r。 根据圆周运动向心加速度计算式a=v2/r,得到gcosθ=g/√(1+4a2)=(g/2+2a2g)/r。 从而可以求出r=(1/2+2a2)√(1+4a2) 我们用微积分可求出该函数图象某点处曲率半径为:R=|{1+[y’(x)]2}3/2/y”|(x)。 在A点,导数为-2a,二阶导数为-2,所以上式就等于(1+4a2)3/2/2=(1/2+2a2)√(1+4a2)。 与上面算出的半径相等! 因而,曲率半径K=1/r=2/(1+4a2)3/2 抛体运动和圆周运动都是曲线运动,但在高中课本里它们是分开学习的,大家或许曲线运动学得都不错,但或许很少有人想过抛体运动和圆周运动的内在联系。 高中阶段数学还没有曲率半径的概念,写本文的目的并不在于提前灌输曲率知识,也并不代表这种求法能够替代微积分。表面上看,这是一种新的数学求法,但实质上是以数学的形式为物理服务,目的是让大家看到抛体运动和圆周运动这两种曲线运动并不是割裂开的,它们内部有着非常大的联系,甚至可以说本质是相同的,我们甚至可以将抛体运动视为由无数个圆周运动组合而成!

空间曲线的主法线曲面的几何性质

空间曲线的主法线曲面的几何性质 目录 第一章绪论 (1) 第二章空间曲线的主法线曲面的曲率 (1) 2.1 第一基本形式 (1) 2.2 第二基本形式 (2) 2.3 法曲率 (2) 2.4 主曲率 (2) 2.5 高斯曲率 (3) 2.6 平均曲率 (3) 第三章空间曲线的主法线曲面上的特殊曲线族 (3) 3.1 渐近线 (3) 3.1.1 空间曲线的主法线曲面的渐近线方程 (3) 3.1.2 空间曲线的主法线曲面的曲纹坐标网是渐近网的充要条件 (4) 3.2 曲率线 (5) 3.2.1空间曲线的主法线曲面的曲率线方程 (5) 3.2.2空间曲线的主法线曲面的曲纹坐标网是曲率线网的充要条件 (5) 3.3 测地线 (6) 3.3.1空间曲线的主法线曲面的测地线方程 (6) 3.3.2空间曲线的主法线曲面的曲纹坐标网是半测地网的充要条件 (7) 3.3.3空间曲线的主法线曲面的曲纹坐标网是测地网的充要条件 (7) 第四章主法线曲面是常曲率或极小曲面的充要条件 (8) 4.1 空间曲线的主法线曲面是常曲率曲面的充要条件 (8) 4.2 空间曲线的主法线曲面是极小曲面的充要条件 (8) 第五章特殊曲线的主法线曲面的性质 (9) 5.1 曲率和挠率均为常数的特殊曲线的主法线曲面的几何性质 (9) 5.2正螺面的几何性质 (10) 致谢: (11) 参考文献: (12)

附录:.......................................................................................... 错误!未定义书签。

缓和曲线曲率半径 的计算

所谓完整缓和曲线就是某段缓和曲线的一端与直线连接点的曲率半径必须是无穷大(可用10的45次方代替,有时也可用“0”表示,具体情况具体分析),而缓和曲线两端无论在什么情况下与圆曲线相接时,其两端的曲率半径必须与对应连接圆曲线的半径相等。 现在我们来谈谈非完整缓和曲线,从上面的话知道,如果某段缓和曲线的一端与直线连接点曲率半径不是无穷大,而是一个实数,那么这段缓和曲线就是非完整缓和曲线。 设计图中遇到这种情况,一般会告诉这段缓和曲线的长度(我们把这段缓和曲线的长度记作L2,缺少的一段缓和曲线长度记作L1,L1+L2=完整缓和曲线长度L),如果没告诉这段缓和曲线的长度,也可以通过两端的桩号计算出来、设计参数A及缓和曲线另一端的曲率半径R2(应该是与一个圆曲线相接,也就是说R2等于这个圆曲线的半径)。 我们在输入匝道程序时必须要知道R1(起点曲率半径),怎么办呢?那就通过计算把R1计算出来不就行了,下面就是计算过程: 由公式:R=A2÷L 推出 R1= A2÷L1 => A2=R1*L1 ……………………………………………………① R2= A2÷(L1+L2) => A2=R2*(L1+L2) ……………………………………………………② R2= A2÷(L1+L2) => R2= A2÷L => L=A2÷ R2 …………………………………………③ 由公式①②推出 R1*L1=R2*(L1+L2) => R1=R2*(L1+L2)÷ L1 …………………………………………④ L=L1+L2 => L1=L-L2 ……………………………………………⑤ 由公式③④⑤推出 R1=R2*L÷(L-L2) => R1= A2÷(A2÷ R2-L2) …………………………………………⑥ 公式⑥就是我们要找的曲率半径公式,计算得到结果计算完毕。 现在我们在编制非完整缓和曲线程序时就清楚的知道起点和终点的曲率半径了。还要说明一点就是,计算出来的曲率半径既是起点也是终点,既是终点也是起点,关键是看线路前进方向了,只要大家细心,分清起点终点输入程序,计算出来的准没错。

曲率和挠率对空间曲线形状的影响要点

曲率和挠率对空间曲线形状的影响 摘 要:曲率和挠率是空间曲线的特性,不同的曲率和挠率函数决定不同形状的 曲线,研究常曲率和挠率的空间曲线有特别重要的意义。 本文对曲率和挠率的形 成及意义进行了探讨,并对常曲率和挠率的空间曲线进行了一定的研究. 给出了 常曲率和挠率的空间曲线特性? 关键词:曲率 挠率 空间曲线形状 我们知道,空间曲线的形状完全由曲率和挠率决定 ?而当一个空间曲线的曲 率或挠率为常数时,这种曲线具有很强的特性,对这种曲线的特性的研究有利于 对空间曲线这部分内容的掌握和理解? 一曲率的概念和几何意义 1曲率的概念 我们首先研究空间曲线的曲率的概念。在不同的曲线或者同一条曲线的不同 点处,曲线弯曲的程度可能不同。例如半径较大的圆弯曲程度较小, 而半径较小 的圆弯曲程度较大(图1-1)又如图1-2中所示,当沿着曲线从左向右移动时, 曲线弯曲的程度变大。为了准确地刻画曲线的弯曲程度,我们引进曲率的概念。 要从直观的基础上引出曲率的确切的定义, 我们首先注意到,曲线弯曲的程 度越大,则从点到点变动时,其切向量的方向改变得越快。所以作为曲线在已知 线段PQ 的平均弯曲程度可取为曲线在 P,Q 间切向量关于弧长的平均旋转角。 图1-1

设空间中c3类曲线(c)的方程为 曲线(C)上一点P,其自然参数为S,另一邻近点p i,其自然参数为S + A S。在P, P1两 点各作曲线(c)的单位切向量*is和〉s ?厶s。两个切向量间的夹角是丄(图1-3),也就是把点p的切向量〉s平移到点P后,两个向量〉s 和::i is: =s的夹角为「。 图1-3 定义空间曲线(C)在P点的曲率为 3豐忑, 其中厶S为P点及其邻近点p间的弧长,二!'为曲线在点P和p」勺的切向量的夹角。2曲率的几何意义 利用“一个单位变向量"((即卩(t)| = 1)的微商的模A '(t)的几何意义是丫(t)对于t的旋转速度”。把这个结果应用到空间曲线(C)的切向量〉上去,则有 '■ s 八。 由于「所以曲率也可表示为 由上述空间曲线的曲率的定义可以看出,它的几何意义是曲线的切向量对于弧长的旋转速度。当曲线在一点的弯曲程度越大,因此曲率刻画了曲线的弯曲程度。

空间曲线的曲率、挠率和Frenet公式

空间曲线的曲率、挠率和Frenet公式摘要:本文研究了刻画空间曲线在某点邻近的弯曲程度和离开平面程度的量—曲率和挠率以及空间曲线论的基本公式--Frenet公式,并且举例有关曲率、挠率的计算和证明. 关键词:空间曲线;曲率;挠率;Frenet公式 Spatial curvature,torsion and Frenet formulas Abstract:This paper studies space curves depict a point near the bend in the degree and extend of the amount of leave plane-the curvature and torsion and the basic formula of space curves-Frenet formulas,and for example the curvature and torsion of the calculation and proof. Key Words: space curves; curvature; torsion; Frenet formulas 前言 空间曲线的曲率、挠率和Frenet公式是空间曲线基本理论的一部分,它是以空间曲线的密切平面和基本三棱形的知识作为基础的.空间曲线的曲率、挠率和Frenet公式在空间曲线的基本理论中占有重要位置,是空间曲线的一些基本性质和基本公式.曲线的曲率和挠率完全决定了曲线的形状.当曲线的曲率和挠率之间满足多种不同的关系时,就会得到不同类型的曲线.例如:0 k>时为直线,0 τ=时为平面曲线. 本文将从定义、公式推导和具体举例三方面逐步解析空间曲线的曲率、挠率和Frenet公式.本文第一部分讲述曲率和挠率的定义,第二部分讲述Frenet公式和曲率、挠率的一般参数表示的推导,第三部分具体举例有关曲率、挠率的计算和证明. 1.空间曲线的曲率和挠率的定义 1.1准备知识—空间曲线的伏雷内标架 给出2c类空间曲线()c和()c上一点p.设曲线()c的自然参数表示是

曲率和挠率对空间曲线形状的影响要点

曲率和挠率对空间曲线形状的影响 摘 要:曲率和挠率是空间曲线的特性,不同的曲率和挠率函数决定不同形状的曲线,研究常曲率和挠率的空间曲线有特别重要的意义。本文对曲率和挠率的形成及意义进行了探讨,并对常曲率和挠率的空间曲线进行了一定的研究.给出了常曲率和挠率的空间曲线特性. 关键词:曲率 挠率 空间曲线形状 我们知道,空间曲线的形状完全由曲率和挠率决定.而当一个空间曲线的曲率或挠率为常数时,这种曲线具有很强的特性,对这种曲线的特性的研究有利于对空间曲线这部分内容的掌握和理解. 一 曲率的概念和几何意义 1曲率的概念 我们首先研究空间曲线的曲率的概念。在不同的曲线或者同一条曲线的不同点处,曲线弯曲的程度可能不同。例如半径较大的圆弯曲程度较小,而半径较小的圆弯曲程度较大(图1-1)又如图1-2中所示,当沿着曲线从左向右移动时,曲线弯曲的程度变大。为了准确地刻画曲线的弯曲程度,我们引进曲率的概念。 图1-1 图1-2 要从直观的基础上引出曲率的确切的定义,我们首先注意到,曲线弯曲的程度越大,则从点到点变动时,其切向量的方向改变得越快。所以作为曲线在已知线段PQ 的平均弯曲程度可取为曲线在P,Q 间切向量关于弧长的平均旋转角。

设空间中c 3 类曲线(c )的方程为 ()s γγ= 曲线(C )上一点P ,其自然参数为S,另一 邻近点p 1 ,其自然参数为s s ?+。 在p, p 1 两点各作曲线(c )的单位切向量()s α和()s s ?+α。两个切向量间的夹 角是??(图1-3),也就是把点p 1 的切向量()s s ?+α平移到点P 后,两个向量() s α和()s s ?+α的夹角为??。 图1-3 定义 空间曲线(C )在P 点的 曲率为 ()s s s ??=→?? κ0lim , 其中s ?为P 点及其邻近点p 1 间的弧长, ??为曲线在点P 和p 1 的的切向量 的夹角。 2曲率的几何意义 利用“一个单位变向量()t γ(即()t γ1=)的微商的模)(' t γ的几何意义是()t γ对于t 的旋转速度”。把这个结果应用到空间曲线(C )的切向量α上去,则有 ()? =ακs 。 由于? α=? ?γ,所以曲率也可表示为

空间曲线的曲率、挠率和Frenet公式

空间曲线的曲率、挠率和Frenet 公式 前言 空间曲线的曲率、挠率和Frenet 公式是空间曲线基本理论的一部分,它是以空间曲线的密切平面和基本三棱形的知识作为基础的.空间曲线的曲率、挠率和Frenet 公式在空间曲线的基本理论中占有重要位置,是空间曲线的一些基本性质和基本公式.曲线的曲率和挠率完全决定了曲线的形状.当曲线的曲率和挠率之间满足多种不同的关系时,就会得到不同类型的曲线.例如:0k >时为直线,0τ=时为平面曲线. 本文将从定义、公式推导和具体举例三方面逐步解析空间曲线的曲率、挠率和Frenet 公式.本文第一部分讲述曲率和挠率的定义,第二部分讲述Frenet 公式和曲率、挠率的一般参数表示的推导,第三部分具体举例有关曲率、挠率的计算和证明. 1. 空间曲线的曲率和挠率的定义 1.1准备知识—空间曲线的伏雷内标架 给出2c 类空间曲线()c 和()c 上一点p .设曲线()c 的自然参数表示是 (),r r s = 其中s 是自然参数,得 dr ds r == α 是一单位向量.α 称为曲线()c 上p 点的单位切向量. 由于1=α,则 ⊥αα , 即 r r ⊥ . 在α 上取单位向量

= = αr βα r , (1) β称为曲线()c 上p 点的主法向量. 再作单位向量 =?γαβ, γ称为曲线()c 上p 点的副法向量. 我们把两两正交的单位向量,,αβγ称为曲线上p 点的伏雷内(Frenet)标架. 1.2 空间曲线的曲率 我们首先研究空间曲线的曲率的概念.在不同的曲线或者同一条曲线的不同 点处,曲线弯曲的程度可能不同.例如半径较大的圆弯曲程度较小,而半径较小的圆弯曲程度较大.为了准确的刻画曲线的弯曲程度,我们引进曲率的概念. 要从直观的基础上引出曲率的确切定义,我们首先注意到,曲线弯曲的程度越大,则从点到点变动时,其切向量的方向改变的越快.所以作为曲线在已知一曲线段PQ 的平均弯曲程度可取为曲线在P 、Q 间切向量关于弧长的平均旋转角. 设空间中3c 类曲线()c 的方程为 ().r r s = 曲线()c 上一点p ,其自然参数为s ,另一邻近点1p ,其自然参数为s s +?.在p 、 1p 两点各作曲线()c 的单位切向量()s α和()s s +?α.两个切向量的夹角是??,也 就是把点1p 的切向量()s s +?α平移到点p 后,两个向量()s α和()s s +?α的夹角为??. 我们把空间曲线在p 处的切向量对弧长的旋转速度来定义曲线在点p 的曲率. 定义[]1 空间曲线()c 在p 点的曲率为 ()lim s k s s ? ?→?=?, 其中s ?为p 点及其邻近点1p 间的弧长,??为曲线在点p 和1p 的切向量的夹角. 再利用命题“一个单位变向量()t r (即()1t =r )的微商的模,()r t 的几何意

关于不同类型缓和曲线 的判断及起点、终点曲率半径的计算方法

关于不同类型缓和曲线的判断及起点、终点曲率半径的计算方法 目前在匝道或线路施工坐标计算中经常遇到缓和曲线,实际中相信有很多测友选择用积木法或叫线元法正反算程序进行线路坐标计算,这就牵涉到线元的起点终点曲率半径判断的问题,一般的直线元,圆曲线元的起点终点半径判断,比较容易,可能令大家感觉麻烦的就是缓和曲线起点终点半径判断问题,缓和曲线有时候判断算对了,有时候却坐标算不对,究其原因,其实问题出于该缓和曲线是否是完整缓和曲线引起的。关于这点,相关的课本教材上没有明确的讲述,网上对此问题的解释也是散见于不同的论文著作中,对于测量新手来说,线元法程序是非常适用上手的,但却往往因为遇到不完整缓和曲线的起点或终点的半径判断计算不出来导致坐标计算错误,的确是件令人恼火的事情,在此我就把自己的判断经验做一论述,给用线元法程序的测友们一同分享,当然高手们请一笑而过,也可留下你的经验与大家一起分享交流学习。第一:先说说完整缓和曲线和不完整缓和曲线以及不对称缓和曲线与对称缓和曲线的概念问题,以免混为一谈. 1.当对于单独一段缓和曲线从其完整与否来讲是分为完整与不完整两类;当对于一个单交点内的两段缓和曲线(即常说的第一缓和曲线和第二缓和曲线而言)又有对称缓和曲线与不对称缓和曲线之分。由此看来,完整与对称与否是针对缓和曲线两个方面来看待区分的。 2.缓和曲线我们的测量教材上讲述的其实就是完整缓和曲线,也可以知道缓和曲线上:各个点的半径是不同的,起点到终点的半径值过度是从正无穷大到所接圆曲线半径之过度如从ZH向HY方向;或者是从所接圆曲线半径值向正无穷大过度的,如从YH向HZ方向。那么由此可以不难判断出来,完整缓和曲线就是符合上述特征的,那么不完整的缓和曲线就是不符合上述特征的,但是线路上的平曲线设计时候一般缓和曲线不单独存在的,整体上缓和曲线前或后一般都是要连接一个圆曲线的,那么不完整缓和曲线其实就是在完整缓和曲线上截取的一段,一般就是去掉了半径无穷大的那端而是从某个点开始的半径值向所接圆曲线半径值过度的。 3.对称与不对称缓和曲线是相对于一个单交点内的两段缓和曲线(即常说的第一缓和曲线和第二缓和曲线而言),当两个缓和曲线长度相等时候则称之为对称缓和曲线,自然此时的切线长、缓和曲线参数A值都是相等的,反之不相等就称为不对称缓和曲线,自然切线长、缓和曲线是不相等的。第二:由此可以看出对于缓和曲线而言,对称与否很容易分辨判断无需赘述,完整与否不易区分,也是这里重点要说的问题. 1.完整与不完整缓和曲线的区别判断方法:综上所述,完整缓和曲线与不完整缓和曲线的判断其实就在于验证完整缓和曲线参数方程A^2=R*Ls这个等式成立与否就可。(A为已知的缓和曲线参数,R为缓和曲线所接圆曲线的半径,Ls为该段缓和曲线的长度)理论上,当该式子成立时候,那就是完整缓和曲线无疑,当不成立时候那就可判断为不完整缓和曲线了。实际工作操作时候验证方法如下:先把R*Ls的乘积进行开平方然后看所得到的结果是否与所提供的缓和曲线参数A值相等。 2.完整缓和曲线与不完整缓和曲线起点终点的曲率半径的判断与计算:线路设计上的缓和曲线一般不会单独存在的,连续的缓和曲线起点或终点必定有一端都是要接圆曲线的,那么缓和曲线一端的半径值必定就是圆曲线的半径值了,求半径的问题就变成只需求出另外一端半径就可以了.上面说过首先判断出该缓和曲线是否是完整的办法,那么当是完整缓和曲线时候,起点或终点两端的半径,必定一端是无穷大,一端就是圆曲线半径了;那么当判断是不完整缓和曲线时,一端半径就是圆曲线半径,另一端的半径就绝对不能是无穷大了的,理论上应该是该端点的半径值要小于无穷大而大于所接圆曲线的半径值,那么该怎么求出来呢?此时就牵涉到了不完整缓和曲线的参数方程:A^2=[(R大*R小)÷(R大-R小)]*Ls 由上方程可以看出,R大就是我们所需要求的这端半径了,R小自然就是该不完整缓和曲线所接的圆曲线半径了。A为该不完整缓和曲线参数,R小为所接圆曲线半径,Ls为该不完整缓和曲线的长度,这些图纸都提供的有了,只需按照上面的不完整缓和曲线的参数方程进行解方程就可得到另一端的半径值了,也就是R大=(A^2*R小)÷(A^2-R小*Ls)就可以

空间曲线曲率计算公式及推导

1.4 空间曲线的曲率定义及 计算公式 引理 设)(s a → 是单位圆周上的向量,即1||)(||=→ s a , 设)(s s a ?+→ 与)(s a → 之间的夹角记 为θ?,则有 ||lim ||)(||0s s a s ??='→? → θ 。 证明 因为 s s a s s a s a s ?-?+='→ → →?→ ) ()(lim )(0, 所以| ||| )()(||lim ||)(||0s s a s s a s a s ?-?+='→ →→?→ |||2 2sin 2|lim |2sin 2|lim 00s s s s ?????=??=→?→?θθθ θ | |lim 0s s ??=→?θ 。 (用解等腰三角形或用余弦定理,得 θ ????-+=-?+→ → cos 11211||)()(||22s a s s a

|2 sin |2)2sin 21(222 θ θ?=?--=。) 定理1.2 设曲线Γ:)(s r r → →=(s 是弧长参数)上的每一点有一个单位向量)(s a →,)(s s a ?+→ 与)(s a → 之间的夹角记为θ?,那么 || lim ||)(||0 s s a s ??='→?→ θ 。 设曲线Γ:)(s r r → → =,这里参数s 是曲线自身的弧长,我们知道,)(s r '是曲线的切向量, 1||)(||='→ s r ,即)(s r → '是单位向量。 记)(s r T →→'=,)()(s r s T → →''=', )(s T → 与)(s s T ?+→ 的夹角 θ?, ||lim 0s s ??→?θ度量了曲线的弯曲程度。 || lim ||)(||||)(||0 s s r s T s ??=''='→?→ →θ ,我们称之为曲线)(s r → 的 曲率,用)(s k 来表

最新利用空间曲线的一般方程计算其曲率和挠率

利用空间曲线的一般方程计算其曲率和挠 率

利用空间曲线的一般方程计算其曲率和挠率 殷璞 (西北师范大学数学与信息科学学院甘肃兰州 730070) 摘要空间曲线由一般方程由 ?Skip Record If...? 给出时,本文给出了计算曲线曲率和挠率的公式. 关键词曲率挠率曲线的一般方程 Determine the Curvature and Torsion of a Space Curve by the General Equation Yin Pu (College of Mathematics and Information Science, Northwest Normal University, Lanzhou730070,Gansu) Abstract : In this paper, give the general equation of a space curve ?Skip Record If...?, we calculate the formulas of the curvature and torsion. Key words: curvature; torsion; the general equation of a space curve 曲线的曲率描述的是曲线的切向量对于弧长的旋转速度,即曲线的弯曲程度;曲线的挠率其绝对值描述的是曲线的副法向量(或密切平面)对于弧长的旋转速度,即曲线的扭曲程度.计算曲线的曲率和挠率一般是利用曲线的自然(弧长)参数方程进行推导的,所以曲线的方程由一般方程给出时,首先要改写成参数方程,然后再计算曲线的曲率和挠率.但是有些方程不容易改写成自然参数方程,本文就从曲线的一般方程出发直接推导计算曲线的曲率和挠率的公式. 下面,设曲线?Skip Record If...?是两光滑曲面?Skip Record If...?的交线,且 ?Skip Record If...? 是满秩的. 一、计算曲线的曲率

平面曲线的曲率

知识点:平面曲线的曲率(MC20306) 1 背景知识与引入方法 在微分几何学中,与平面曲线有关的是三个基本概念:长度、切线和曲率. 瑞士数学家L ?欧拉在1736年首先引进了平面曲线内在坐标这一概念.从而开始了曲线内在几何的研究.欧拉将曲率描述为曲线的切线方向和一固定方向的交角相对于弧长的变化率,这也成为一些教材引入曲率概念的方法之一. 1847年弗雷内得出了曲线的基本微分方程,亦即统称弗雷内公式.后来,G ?达布创造了空间曲线的活动标架概念,完整地建立起曲线理论.所以有些教材把空间的弗雷内标架改造为平面弗雷内公式而导出带有正负号平面曲线曲率公式,它既表示曲线的弯曲程度,又表示曲线的弯曲方向.(如:萧树铁、居余马主编的《高等数学》第Ⅲ卷,或马知恩、王锦森主编的《工科数学分析基础》). 大多教材通常在直角坐标系下,在曲线上相邻两点的切向量()t s 和()t s s +?之间夹角 α?关于弧长s ?的变化率|| lim 0 s s ??→?α引出曲率公式. 由实际问题先引出曲率圆、曲率半径概念,由曲率半径概念自然给出曲率定义,我们认为方法简洁省事(如章栋恩等人编写《高等数学》上册). 2 该知识点讲解方法 2.1讲解方法一: 曲率是一个构造型的定义,通常由解决某一具体实际问题的方法来讲清其构造的道理,再引出曲率概念其教法更为简捷,例如力学问题中质点做曲线运动,在某点局部情形的研究,可用圆周曲线来代替,而此圆周曲线(曲率圆)的建立仅仅使用了一阶导、二阶导的简单应用,却以最好的方式接近已知曲线,进而引出了曲率半径定义. 2.1.1曲率圆 1、实际问题: 一质点作曲线运动,考察此运动在某点))(,(00x f x M 局部情形时,可用圆周曲线来替代这点附近的曲线L, 这样就可以用圆周运动的知识来分析

如何计算抛物线某点处的曲率和曲率半径

用物理方法计算抛物线某点处的曲率和曲率半径对于一般的弧来说,各点处曲率可能不同,但当弧上点A处的曲率不为零时,我们可以设想在弧的凹方一侧有一个圆周,它与弧在点A相切(即与弧有公切线),这样的圆就称为弧上A点处的曲率圆。 对于函数图形某点的曲率和曲率半径,在数学上我们需要用到求二阶导数的方法。 今天我想简单说一种有趣的方法,将该问题用物理的思维来解决,无需求导便能够知道抛物线某点处的曲率和曲率半径。这种方法不属于主流方法,因此不能用它代替常规方法。介绍此方法的目的,只是为了让大家对抛物线及抛体运动和圆周运动乃至整个曲线运动本质上的联系有更加深刻的认识。 举一个最简单的例子:y=-x2,我们作出它的图像 设图像上存在一点A(a,-a2),求该点的曲率和曲率半径。 我们假设一质点从顶点O开始做平抛运动,恰经过A(a,-a2)。 接下来,我们可以算出该点处质点的速度大小:先得到下落时间,接着算出水平速度和竖直速度分量,再合成。质点在该点处速度大小为v=√(g/2+2a2g)。 接下来,我们利用角度关系,将A处的加速度(即重力加速度g)沿速度方向和垂直于速度方向分解,如下图:

令A点处质点速度方向与水平方向的夹角为θ,可得垂直于速度方向的加速度分量为gcosθ。我们可以求出cosθ=v0/v=1/√(1+4a2),那么垂直于速度方向的加速度分量就等于g/√(1+4a2)。 我们想象一下在A点处有个圆与抛物线切于A,且该圆为抛物线A点处的曲率圆,半径为r。 根据圆周运动向心加速度计算式a=v2/r,得到gcosθ=g/√(1+4a2)=(g/2+2a2g)/r。 从而可以求出r=(1/2+2a2)√(1+4a2) 我们用微积分可求出该函数图象某点处曲率半径为:R=|{1+[y’(x)]2}3/2/y”|(x)。 在A点,导数为-2a,二阶导数为-2,所以上式就等于(1+4a2)3/2/2=(1/2+2a2)√(1+4a2)。 与上面算出的半径相等! 因而,曲率半径K=1/r=2/(1+4a2)3/2 抛体运动和圆周运动都是曲线运动,但在高中课本里它们是分开学习的,大家或许曲线运动学得都不错,但或许很少有人想过抛体运动和圆周运动的内在联系。 高中阶段数学还没有曲率半径的概念,写本文的目的并不在于提前灌输曲率知识,也并不代表这种求法能够替代微积分。表面上看,这是一种新的数学求法,但实质上是以数学的形式为物理服务,目的是让大家看到抛体运动和圆周运动这两种曲线运动并不是割裂开的,它们内部有着非常大的联系,甚至可以说本质是相同的,我们甚至可以将抛体运动视为由无数个圆周运动组合而成!

相关文档
最新文档