十二烷基苯磺酸钠物料衡算资料

十二烷基苯磺酸钠物料衡算资料
十二烷基苯磺酸钠物料衡算资料

湖南化工职业技术学院

毕业设计

毕业设计题年产1万吨十二烷基苯磺酸钠合成工艺

流程设计

毕业设计类型□产品设计□工艺设计□方案设计

姓名高远才

班级化工1311

所属系部(院) 化学工程学院

专业应用化工技术

校内指导教师吴永健

完成时间 2015 年 11 月 23 日

2015年11 月24日

目录

摘要 (3)

1.产品介绍 (4)

1.1应用领域 (4)

1.1.1洗涤作用 (4)

1.1.2乳化分散剂 (4)

1.1.3抗静电剂 (5)

1.1.4其他作用 (5)

1.2理化性质 (5)

1.2.1物理性质 (5)

1.2.2化学性质 (6)

2.制备方法 (7)

2.1工业制法 (7)

3.制备制备理论及相关过程 (8)

3.1三氧化硫的制备 (8)

3.2十二烷基苯的制备(傅-克反应) (8)

3.3磺化反应 (9)

3.4中和反应 (9)

3.物料衡算 (9)

3.1生产所需物料表 (9)

3.2理论衡算 (10)

3.3实际衡算 (10)

结语 (13)

参考文献 (14)

摘要

本文简述了表面活性剂的发展历史和现状,以及在未来的发展势。介绍了表面活性剂十二烷基苯磺酸的性质、用途、原料选择及常见的合成方法。描述了三氧化硫磺化法的技术发展、磺化器的分布情况和磺化新技术的开发利用。重点对以硫磺为原料在过量空气中直接燃烧成二氧化硫,

二氧化硫再在五氧化二钒催化作用下与氧气反应

生成三氧化硫,最后三氧化硫磺化烷基苯制备十二烷基苯磺酸做了比较详细的工艺设计。对整个生产过程进行了物料衡算和热量衡算,对磺化器的相关参数进行了计算。

关键词:十二烷基苯磺酸;三氧化硫;物料衡算和热量衡算;磺化工艺

Abstract

Chapter one of this text has comparatively explained history of surface-active ag ent development and current situation of the development exhaustivly, and the tren d of the futureit Introduced the properties, applications and material selection and c ommon synthesis method of the dodecylbenzenesulfonic acid. It described the meth od of preparing sulphonated sulphur trioxide technology progress, the distribution of sulphonated device and the development of new sulphonation technology ; Chapter two introduced the sulfonic acid common synthetic method of 12 alkyl benzene of su rface-active agent. Oxidize on three sulphur sulphonating alkyl benzene legal system prepare against 12 alkyl benzene sulfonic acid make exhaustive technological design , especially the entire production process of materials and energy balance, of sulfonati on calculated parameters,sulfonation plant equipment layout plan and a rendering, t he hight and diameter of the reactor are 9000mm and 550mm,there are 90 tube that are arranged with equilateral triangle in this reator .

Keywords: alkyl benzene sulfonic acid; sulphur trioxide; material calculation a nd energy calculation sulphonation technology

1.产品介绍

十二烷基苯磺酸钠,英文名sodium dodecyl benzene sulfonate,简称SDBS,白色或淡黄色粉状或片状固体。难挥发,易溶于水,溶于水而成半透明溶液。对碱,稀酸,硬水化学性质稳定,微毒。是常用的阴离子型表面活性剂。

十二烷基苯磺酸钠是由十二烷基苯与发烟硫酸或三氧化硫磺化,再用碱中和制得。用发烟硫酸磺化的缺点是反应结束后总有部分废酸存在于磺化物料中。中和后生成的硫酸钠带入产品中,影响了它的纯度。目前,工业上均采用三氧化硫-空气混合物磺化的方法。三氧化硫可由60%发烟硫酸蒸出,或将硫磺和干燥空气在炉中燃烧,得到含SO34%~8%体积分数的混合气体。将该混合气体,通入装有烷基苯的磺化反应器中进行磺化。磺化物料进入中和系统用氢氧化钠溶液进行中和,最后进入喷雾干燥系统干燥。得到的产品为流动性很好的粉末。

1.1应用领域

1.1.1洗涤作用

烷基苯磺酸钠是黄色油状体,经纯化可以形成六角形或斜方形强片状结晶,具有微毒性,已被国际安全组织认定为安全化工原料。可在水果和餐具清洗中应用烷基苯磺酸钠,在洗涤刑中使用的量最大,由于采用了大规模自动化生产,价格低廉,在洗涤剂中使用的烷基苯磺酸钠有支链结构(ABS)和直链结构(LAS)两种,支链结构生物降解性小,会对环境造成污染,而直链结构易生物降解生物降解性可大于90%,对环境污染程度小。

十二烷基苯磺酸钠是中性的,对水硬度较敏感,不易氧化,起泡力强,去污力高,易与各种助剂复配,成本较低,合成工艺成熟,应用领域广泛,是非常出色的阴离子表面活性剂。十二烷基苯磺酸纳对颗粒污垢,蛋白污垢和油性污垢有显著的去污效果,对天然纤维上颗粒污垢的洗涤作用尤佳,去污力随洗涤温度的升高而增强,对蛋白污垢的作用高于非离子表面活性剂,且泡沫丰富。但十二烷基苯磺酸钠存在两个缺点,一是耐硬水较差,去污性能可随水的硬度而降低,因此以其为主活性剂的洗涤剂必须与适量螯合剂配用。二是脱脂力较强,手洗时对皮肤有一定的刺激性,洗后衣服手感较差,宜用阳离子表面活性剂作柔软剂漂洗。近年来为了获得更好的综合洗涤效果,十二烷基苯磺酸钠常与脂肪醇聚氧乙烯醚(AEO)等非离子表面活性剂复配使用。十二烷基苯磺酸钠最主要用途是配制各种类型的液体、粉状、粒状洗涤剂,擦净剂和清洁剂等。]

1.1.2乳化分散剂

乳化剂是一种改善乳浊液中各种构成相之间的表面张力,使之形成均匀稳定的分散体系或乳浊液的物质。乳化剂是表面活性物质,分子中同时具有亲水基和亲油基,它聚集在油/水界面上,可以降低界面张力和减少形成乳状液所需要的能量,从而提高乳状液的能量。而十二烷基苯磺酸钠作为一种阴离子表面活性剂,具有良好的表面活性,亲水性较强,有效

降低油-水界面的张力,达到乳化作用。因此十二烷基苯磺酸钠在化妆品、食品、印染助剂、农药等乳状液配制中得到较广泛的应用。

1.1.3抗静电剂

任何物体都带有本身的静电荷,这种电荷可以是负电荷也可以是正电荷,静电荷的聚集使到生活或者工业生产受到影响甚至危害,将聚集的有害电荷导引、消除使其不对生产、生活造成不便或危害的化学品称为抗静电剂。十二烷基苯磺酸钠是一种阴离子表面活性剂,可使织物,塑料等表面亲合水分,同时离子型表面活性剂还有导电作用,因而可以使静电及时泄漏,从而降低因静电造成的危险及不便。

1.1.4其他作用

十二烷基苯磺酸钠产品用途十分广泛,除了上述几个方面的应用外,在纺织助剂方面还常作为棉织物精炼剂,退浆助剂,染色时的匀染剂,在金属电镀过程中用作金属脱脂剂;在造纸工业中用作树脂分散剂,毛毡洗涤剂,脱墨剂;在皮革工业上用作渗透脱脂剂;在肥料工业中用作防结块剂;在水泥工业中用作加气剂等诸多方面或单独使用或作配合成分使用。

1.2理化性质

1.2.1物理性质

十二烷基苯磺酸钠

NaO3S

分子式:C

18H29

分子量:348.48

亲水亲油平衡值(HLB值):10.638

分解温度为450℃,失重率达60%。

性状:固体,白色或淡黄色粉末

溶解性:易溶于水,易吸潮结块

临界胶束浓度(CMC值):1.2mmol·L-1

红外光谱:

1.2.2化学性质

1、十二烷基苯磺酸钠对碱,稀酸,硬水化学性质稳定

2、能与强酸建立平衡体系:

R12-Ph-SO3Na+HCl?R12-Ph-SO3H+NaCl

3、磺基中的羟基也可被氯原子取代,生成磺酰氯:

3R12-Ph-SO3Na+PCl3-----→R12-Ph-SO3H+NaCl(~200℃)

4、水解反应是磺化反应的逆反应。在强酸催化下,十二烷基硫酸钠与水共热,可脱去磺基,反应的实质是H+作为亲电试剂进攻芳环的亲电取代反应。

3R12-Ph-SO3Na+H2O----→R12-Ph+NaHSO4(~200℃,H2SO4)

2.制备方法

2.1工业制法

十二烷基苯磺酸钠是由十二烷基苯与发烟硫酸或三氧化硫磺化,再用碱中和制得。用发烟硫酸磺化的缺点是反应结束后总有部分废酸存在于磺化物料中。中和后生成的硫酸钠带入产品中,影响了它的纯度。目前,工业上均采用三氧化硫-空气混合物磺化的方法。三氧化硫可由60%发烟硫酸蒸出,或将硫磺和干燥空气在炉中燃烧,得到含SO34%~8%体积分数的混合气体。将该混合气体,通入装有烷基苯的磺化反应器中进行磺化。磺化物料进入中和系统用氢氧化钠溶液进行中和,最后进入喷雾干燥系统干燥。得到的产品为流动性很好的粉末。

反应机理:

生产方框图:

生产工艺流程:

直馏煤油经脱氢后,十二烯烃和苯由供料泵进入烷化器,再将生成的十二烷基苯(LAB )送入磺化器1,与进入磺化器的三氧化硫(3%~5%),瞬间发生磺化反应,产物经气液分离器2、循环泵3、冷却器4处理之后,部分回到反应器底部,用于磺酸的急冷,部分反应产物被送入老化器5,调整反应保持时间再进入水化器6成酸,最后经中和器7制得烷基苯磺酸钠(LAS )。尾气经除雾器8去酸雾,再经吸收塔9吸收后放空。

3.制备制备理论及相关过程

3.1三氧化硫的制备

----------------------------------(1)

--------------------------(2)

3.2十二烷基苯的制备(傅-克反应)

38222lCl 2823)()(3

CH CH CH CH Ph CH CH CH CH H Ph A -???→?=+-无水-------(3) HCl CH CH CH CH Ph Cl CH CH CH H Ph C A +-???→?+-38222l l 2923)()(3无水----(4)

3.3磺化反应

382223382223)()(CH CH CH CH Ph Ph HSO CH CH CH CH Ph SO ---→-+--(5)

3.4中和反应

O

H CH CH CH CH Ph Ph NaSO CH CH CH CH Ph Ph HSO NaOH 2382223382223)()(+---→---+-------(6)

3.物料衡算

3.1生产所需物料表

名称

项目 化学式

熔点)(C o

沸点)(C o

相对分子质量(g/mol) 相对密度

)/(3cm g

转化率(%)

硫磺 S

114 445 32.06 2.36 — 氧气 2O

-218.8 -183.1 32.00 — — 二氧化硫 2SO -75.5 -10 64.06 2.26 — 三氧化硫 3SO

16.8 44.8 80.06 1.97 90 氢氧化钠 NaOH

318.4 1390 40.00 2.13 十二烯 2412H C -33.6 92-95(2Kp

a) 168.32 0.76 — 苯 66H C

5.5 80.1 78.11 0.88 — 十二烷基苯 3018H C

-7 331 246.43 0.86

98 十二烷基苯磺酸 33018SO H C

10

315 326.49 1?

95 十二烷基苯磺酸钠 Na SO H C 32918—

348.48

1?

98

3.2理论衡算

已知年生产十二烷基苯磺酸钠产品10000吨,年生产天数300天;设每天生产十二烷基苯磺酸钠产品为A 吨,则: A=10000/300=33.34吨

在每天生产出33.34吨产品的情况下,分别需要十二烷基苯磺酸和烧碱的量为B 、C : 根据化学方程式(6)列出计算式:

48.34834.3349.326=B 48

.24834

.3300.40=C

B=31.24吨;C=3.83吨

设生产十二烷基苯磺酸所需的十二烷基苯为D ;三氧化硫为E ; 根据化学方程式(5)计算出D 和E:

49.32624.3143.246=D 49

.32624

.3106.80=E

D=23.60吨 ;E=7.66吨

设生产十二烷基苯所需的十二烯为F ;苯为G ; 根据化学方程式(4)计算出F 和G:

43.24660.2332.168=F 43

.24660

.2311.78=G

F=16.12吨;G=7.48吨

设生产三氧化硫所需的氧气为H;硫磺为I; 根据化学方程式(1)、(2)计算H 和I:

06.8066.700.48=H 06

.8066

.700.48=I H=4.59吨;I=6.13吨

理论所需物料的量见下表:

物料 硫磺 氧气 三氧 化硫

氢氧化钠

十二烯

十二烷基苯

十二烷基苯磺酸

十二烷基苯磺酸钠

所需量(吨) 6.13 4.59 7.66 3.83 7.48 16.12 23.60 31.24 33.34

3.3实际衡算

物料 三氧化硫

十二烷基苯

十二烷基苯磺酸

十二烷基苯磺酸

钠 转化率(%)

90 98 95

98

已知生产天数为300天,每天生产24个小时,则每年生产的时间为7200个小时。

(1)知道十二烷基苯磺酸钠的转化率为98%,那么实际所得产品质量为:

h kg m /89.1388720010000000==

h kg m /23.141798

.089

.1388==实

h kmol M m n /07.448.34823.1417===

(2)已知三氧化硫的转化率为90%,那么实际所得产品质量为:

kg m 63.35490

.0247660

1=?=

h kmol M m n /43.406

.8063.354111===

由于反应是使用三氧化硫气体,那么所需的三氧化硫气体理论值:

3123.994.2243.4m V n V S =?==

又知道进入反应的三氧化硫气体的体积分数为4%-6%,则输入的空气体积为:

318.248004.023.99m V ==

3283.165306

.023

.99m V == 硫磺所需的量为:

h kmol n /97.706

.32246130

2=?=

氧气所需的量为:

h kmol n /98.500

.32244590

3=?=

33395.1334.2298.5m V n V S =?==

则输入的空气为:

387.63721

.095

.133m V ==

空 (3)十二烷基苯磺酸实际的量为:

h kmol n /20.449

.32695.02431240

5=??=

(4)生产十二烷基苯实际的量为:

h

kmol n /94.295.098.043.2462416120

4=???=

十二烯所需的量为:

h kmol n /49.332

.16895.098.02413120

6=???=

苯实际所需的量为:

h kmol n /29.411

.7895.098.0247480

7=???=

氢氧化钠所需的量为:

h kmol n /07.400

.4098.0243830

8=??=

各物料所需表

产品 所需量

含氧空气 395.133m 含三氧化硫的空气

383.1653m -38.2480m

氢氧化钠 4.07kmol/h 硫磺 7.97kmol/h 十二烯 3.49kmol/h 苯 4.29kmol/h 十二烷基苯 2.94kmol/h 十二烷基苯磺酸 4.20kmol/h 十二烷基苯磺酸钠

4.07kmol/h

结语

此次毕业设计我虽然在设计之初有一些迷茫,但很快就调整过来,在两个月的设计过程中,我学到很多东西,也查阅了大量的资料,最终成功的做出了一万吨的十二烷基苯磺酸钠的生产物料衡算,通过此次毕业设计,让我在专业课知识中得到了知识的巩固,以前对计算不是很懂,但现在因为设计中所含计算量较大,从中使我在对物料衡算的过程有了更深刻的理解,也让我了解到很多之前所不知道的知识,并将理论知识应用于实践中有了一定的帮助。并且也使我的查阅水平提高了不少,在这之中所运用了很多表与图,在这个基础上还提高了处理数据及处理能力和运用计算机作图及用word打印文章的速度水平,对CAD作图也更加熟悉了。

这次设计由于能力有限,准备不充分,查阅的资料也不详细,因而存在许多问题,比如衡算的方法过于简单,并且计算方法由于能力问题无法使用更好的方法,另外,我的查阅能力也不是特别好。

每次在设计时都感到获益匪浅,我能够成功的设计出来,除了自己的努力外,还应该感谢老师的指导,我的每一步设计都得到了老师的指导,并解答了我很多的疑惑,同时,与同组的同学合作愉快,也

从他们那里得到很多的帮助,这才使这次设计能顺利完成。此次设计不当之处还请多多指出,我一定会努力完善。

参考文献

[1]米镇涛编,《化学工艺学》化学工业出版社2008,1

[2]刘振河编《化工生产技术》高等教育出版社

[3]薛叙明编《精细有机合成技术》化学工业出版社

[4]何灏彦禹练英谭平编《化工单元操作》化学出版社

[5]刘德铮黄艳芹王颖编《精细化工生产技术》化学工业出版社

[6]曹咏梅熊放鸣编《化工制图与测绘》化学工业出版社

物料衡算与能量衡算

物料衡算与能量衡算 5.1概述 工艺通过甲苯和甲醇采用纳米ZSM-5分子筛催化下通过烷基化反应制得对二甲苯,得到了高纯度的对二甲苯,并且在工艺流程中实现了甲苯和甲醇的循环利用,达到了经济环保的要求。 设计过程中利用Aspen Plus 对全流程进行模拟,并在此基础上完成物料衡算、能量衡算。以工段为单位进行物流衡算,全流程分为甲苯甲醇烷基化反应工段、闪蒸——倾析工段、脱甲苯工段、对二甲苯提纯工段。 5.2物料衡算 5.2.1物料衡算基本原理 系统的物料衡算以质量守恒为理论基础,研究某一系统内进出物料量及组成的变化,即: 系统累计的质量=输入系统的质量-输入系统的质量+反应生成的质量-反应消耗的质量 假设系统无泄漏: R R O U T IN C G F F dt dF -+-=/ 当系统无化学反应发生时: O U T IN F F dt dF -=/ 在稳定状态下: 0/=-=O U T IN F F dt dF ,O U T IN F F = 注:IN F —进入系统的物料流率; OUT F —流出系统的物料流率; R G —反应产生物料速率; R C —反应消耗物料速率。

5.2.2 物料衡算任务 通过对系统整体以及部分主要单元的详细物料衡算,得到主、副产品的产量、原料的消耗量、“三废”的排放量以及最后产品的质量指标等关键经济技术指标,对所选工艺路线、设计流程进行定量评述,为后阶段的设计提供依据。 5.2.3系统物料衡算 详见附录,物料衡算一览表。 5.3能量衡算 5.3.1基本原理 系统的能量衡算以能量守恒为理论基础,研究某一系统内各类型的能量的变化,即: 输入系统的能量=输出系统的能量+系统积累的能量 对于连续系统: ∑∑-=+IN O U T H H W Q 注:Q —设备的热负荷; W —输入系统的机械能; ∑OUT H —离开设备的各物料焓之和; ∑IN H —进入设备的各物料焓之和。 本项目的能量衡算以单元设备为对象,计算由机械能转换、化学反应释放能量和单纯的物理变化带来的热量变化。 5.3.2能量衡算任务 (1) 、确定流程中机械所需的功率,为设备设计和选型提供依据。 (2) 、确定精馏各单元操作中所需的热量或冷量及传递速率,确定加热剂和冷剂的用量,为后续换热和公用工程的设计做准备。 (3) 、确定反应过程中的热交换量,指导反应器的设计和选型。

物料衡算

物料衡算的目的有以下几点: ⑴确定物系,并找出该物系物料衡算的界限; ⑵解释开放与封闭物系之间的差异; ⑶写出一般物料衡算所用的反应式、进出物料量等相关内容; ⑷引入的单元操作不发生累积,不生成或消耗,不发生质量的进入或流出的情况; ⑸列出输入==输出等式,利用物料衡算确定各物质的量; ⑹解释某一化合物进入物系的质量和该化合物离开物系的质量的情况。 物料衡算的类型: 在医药生产中,按照物质的变化过程,可将物料衡算分为两类。 一类是物理过程的物料衡算。即在生产系统中,物料没有发生化学反应的过程,它所发生地只是相态和浓度的变化。这类物理过程在医药工业中主要体现为混合和分离过程。如流体输送、吸附、结晶、过滤、干燥、粉碎、蒸馏、萃取等单元操作。 另一类是化学过程的物料衡算。即由于化学反应、原子与分子之间形成新的化学键,从而形成完全不同的新物质的过程。在进行计算时候,经常用到组分平衡和化学元素平衡,特别是当化学反应计量系数未知或很复杂以及只有参加反应的各物质的化学分析数据时,用元素平衡最方便,有时甚至只能用该方法才能解决。同时,在化学反应中,还涉及化学反应速率、转化率、产物收率等因素。 此外,物料衡算还可以按照操作方式的不同分为两类。 一类是连续操作的物料衡算。如生产枸橼酸铋钾的喷雾干燥操作,需要向干燥器中输送具有一定速度、湿度和温度的空气,同时湿物料从反方向以速度通过干燥器,尽管物料在干燥器中不断被加热,所处的状态在不断改变,但对某一具体部位而言,其所处的状态是不随时间的改变而改变。 另一类是间歇操作的物料衡算。在过程开始时原料一次性进入体系,经过一段时间以后立即一次性移出所有的产物,其间没有物质进出体系。在生物制药中,经常会用到有机溶剂沉淀的方法来分离,该方法是很典型的间歇操作。如硫酸软骨素的制备即是一例。在经过提取后的滤液中,加入95%乙醇搅拌,沉淀析出,取出即得产品,这种操作的特点是操作过程的状态随时间的变化而改变。 物料衡算的基本理论 物料衡算是物料的平衡计算,是制药工程计算中最基础最重要的内容的之一,是进行药物生产工艺设计、物料查定、过程经济评估以及过程控制、过程优化的基础。它以质量守恒定律和化学计量关系为基础。简单地讲,它是指“在一个特定物系中,进入物系的全部物料质量加上所有生成量之和必定等于离开该系统的全部产物质量加上消耗掉得和积累起来的物料质量之和”用式表示为: ∑G进料+∑G生成==∑G出料+∑G累积+∑G消耗 式中∑G进料------- 所有进入物系质量之和; ∑G生成------- 物系中所有生成质量之和; ∑G出料------- 所有离开物系质量之和 ∑G累积------- 物系中所有消耗质量之和(包括损伤); ∑G消耗------- 物系中所有积累质量之和。 物料衡算的基本方法和步骤 1.收集计算所必须的基本数据 在进行物料衡算前,要尽可能收集足够的符合实际情况的准确数据,通常称为原始数据这些数据时整个计算的基本数据与基础。应根据不同计算性质来确定原始数据的收集方法。

物料衡算与热量衡算讲解

第4章物料衡算与热量衡算 4.1 物料衡算 物料衡算即是利用物料的能量守恒定律对其进行前后操作后物料总量与产品以及物料损失状况的计算方法,也就是进入设备用于生产的物料总数恒等于产物与物料损失的总量。物料衡算与生产经济效益有着直接的关系。 物料衡算需要在知道产量和产品规格的前提下进行所需的原、辅材料量、废品量以及消耗量的计算。 物料衡算的意义: (1)知道生产过程中所需的热量或冷量; (2)实际动力消耗量; (3)能够为设备选型、台数、决定规格等提供依据; (4)在拟定原料消耗定额基础上,进一步计算日消耗量、时消耗量,能够为所需设备提供必要的基础数据。 4.1.1 年工作日的选取 (1)年工作时间365-11(法定节假日)=354×24=8496(小时) (2)设备大修 25天/年=600小时/年 (3)特殊情况停车 15天/年=360小时/年 (4)机头清理、换网过滤 6次/年 8小时/次 [354-(25+15)]×1/6次/天×8小时/次=396小时=16.5天=17天 (5)实际开车时间 365-11-25-15-17=297天 8496-600-360-396=7140小时 (6)设备利用系数 K=实际开车时间/年工作时间=7140/8496=0.84 4.1.2 物料衡算的前提及计算 (1)挤出成型阶段 物料衡算的前提是应在已知产品规格和产量的前提下进行许多原辅材料量、废品量及消耗量的计算。 1 已知:PVC片材的年生产量为28500吨,其中物料自然消耗率为0.1%,产品合格率为94%,回收率为90%。每年生产297天,二班轮流全天24小时生产。物料衡算如下: 年需要物料量 M=合格产品量/合格率=28500/0.94≈30319.15t 1年车间进料量 M= M/(1-物料自然消耗率)=30319.15t /(1-0.1%)≈30349.50t 12年自然消耗量M=M-M=30349.50-30319.15=30.35t 132年废品量 M=M-合格产品量=30319.15-28500=1819.15t 14每小时车间处理物料量 M=30319.15/297/24h≈4.25t 5年回收物料量

第四章 物料衡算

第四章物料衡算 1.教学目的与要求 掌握化工过程物料衡算的基本方法,包括无化学反应的物料衡算、有化学反应的物料衡算。 2.主要教学内容 物料衡算式、物料衡算的基本方法、无化学反应的物料衡算、有化学反应的物料衡算以及物料衡算的计算机解题。 3.重点与难点: 重点:无化学反应及有化学反应的物料衡算方法 难点:具有循环、排放及旁路过程的物料衡算 4.学时分配: 8+6S 学时 物料衡算是化工计算中最基本、也是最重要的内容之一,它是能量衡算的基础。 通常,物料衡算有两种情况,一种是对已有的生产设备或装置,利用实际测定的数据,算出另—些不能直接测定的物料量。用此计算结果,对生产情况进行分析、作出判断、提出改进措施。另一种是设计一种新的设备或装置,根据设计任务,先作物料衡算,求出进出各设备的物料量,然后再作能量衡算,求出设备或过程的热负荷,从而确定设备尺寸及整个工艺流程。 物料衡算的理论依据是质量守恒定律,即在—个孤立物系中,不论物质发生任何变化,它的质量始终不变(不包括核反应,团为核反应能量变比非常大,此定律不适用)。

第一节物料衡算式 4-1 化工过程的类型 化工过程根据其操作方式可以分成间歇操作、连续操作以及半连续操作三类。或行将其分为稳定状态操作和不稳定状态操作两类。在对某个化工过程作物料或能量衡算时,必须先了解生产过程的类型。 间歇操作过程: 4-2 物料衡算式 物料衡算是研究某一个体系内进、出物料量及组成的变化。根据质量守恒定律,对某一个体系,输入体系的物料量应该等于输出物料量与体系内积累量之和。所以,物料衡算的基本关系式应该表示为; 如果体系内发生化学反应,则对任一个组分或任一种元素作衡算时,必须把由反应消耗或生成的量亦考虑在内。所以(4—1)式成为: 上式对反应物作衡算时.由反应而消耗的量,应取减号,对生成物作衡算时,由反应而生成的量,应取加号。 但是,列物料衡算式时应该注意,物料平衡是指质量平衡,不是体积或物质的量(摩尔数)平衡。若体系内有化学反应,则衡算式中各项用摩尔/时为单位时,,必须考虑反应式中的化学计量系数。出为反应前后物料中的分子数不守恒。 第二节物料衡算的基本方法 进行物料衡算时,为了能顺利地解题,避免错误,必须掌握解题技巧,

物料衡算与热量衡算讲解

第 4 章物料衡算与热量衡算 4.1物料衡算物料衡算即是利用物料的能量守恒定律对其进行前后操作后物料总量与产品以及物料损失状况的计算方法,也就是进入设备用于生产的物料总数恒等于产物与物料损失的总量。物料衡算与生产经济效益有着直接的关系。 物料衡算需要在知道产量和产品规格的前提下进行所需的原、辅材料量、废品量以及消耗量的计算。 物料衡算的意义: (1)知道生产过程中所需的热量或冷量; (2)实际动力消耗量; (3)能够为设备选型、台数、决定规格等提供依据; (4)在拟定原料消耗定额基础上,进一步计算日消耗量、时消耗量,能够为所需设备提供必要的基础数据。 4.1.1 年工作日的选取 (1)年工作时间365-11 (法定节假日)=354×24=8496(小 时) (2)设备大修25 天/ 年=600 小时/ 年 (3)特殊情况停车15 天/年=360 小时/ 年 (4)机头清理、换网过滤6次/年8 小时/次 [354-(25+15)] ×1/6 次/天×8 小时/次=396小时=16.5 天=17 天(5 )实际开车时间 365-11-25-15-17=297 天8496-600-360-396=7140 小 时 (6 )设备利用系数 K= 实际开车时间/ 年工作时间=7140/8496=0.84 4.1.2 物料衡算的前提及计算 (1)挤出成型阶段物料衡算的前提是应在已知产品规格和产量的前提下进行许多原辅材 料量、废品量及消耗量的计算

已知:PVC 片材的年生产量为28500 吨,其中物料自然消耗率为 0.1% ,产品合格率为94%,回收率为90% 。每年生产297 天,二班轮流全天24 小时生产。物料衡算如下: 年需要物料量 M 1=合格产品量/合格率=28500/0.94 ≈30319.15t 年车间进料量 M2= M 1/(1-物料自然消耗率)=30319.15t / (1-0.1% ) ≈30349.50t 年自然消耗量 M3=M 2-M 1=30349.50-30319.15=30.35t 年废品量 M4=M 1-合格产品量=30319.15-28500=1819.15t 每小时车间处理物料量M 5=30319.15/297/ 24h≈4.25t 年回收物料量 M6=M 4×回收率=1819.15 ×90%≈1637.23t 新料量 M7=M 2-M 6=30349.50-1637.23=28712.27t 2)造粒阶段 ① 确定各岗位物料损失率塑化造粒工段物料损耗系数

物料衡算

物料衡算 物料衡算是化工计算中最基本、也是最重要的内容之一,它是能量衡算的基础。一般在物料衡算之后,才能计算所需要提供或移走的能量。通常,物料衡算有两种情况,一种是对已有的生产设备或装置,利用实际测定的数据,算出另一些不能直接测定的物料量。用此计算结果,对生产情况进行分析、作出判断、提出改进措施。另一种是设计一种新的设备或装置,根据设计任务,先作物料衡算,求出进出各设备的物料量,然后再作能量衡算,求出设备或过程的热负荷,从而确定设备尺寸及整个工艺流程。 物料衡算的理论依据是质量守恒定律,即在一个孤立物系中,不论物质发生任何变化,它的质量始终不变(不包括核反应,因为核反应能量变化非常大,此定律不适用)。 3-1物料衡算式 1、化工过程的类型 化工过程操作状态不同,其物料或能量衡算的方程亦有差别。 化工过程根据其操作方式可以分成间歇操作、连续操作以及半连续操作三类。或者将其分为稳定状态操作和不稳定状态操作两类。在对某个化工过程作物料或能量衡算时,必须先了解生产过程的类别。 闻歇操作过程:原料在生产操作开始时一次加入,然后进行反应或其他操作,一直到操作完成后,物料一次排出,即为间歇操作过程。此过程的特点是在整个操作时间内,再无物料进出设备,设备中各部分的组成、条件随时间而不断变化。

连续操作过程:在整个操作期间,原料不断稳定地输入生产设备,同时不断从设备排出同样数量(总量)的物料。设备的进料和出料是连续流动的,即为连续操作过程。在整个操作期间,设备内各部分组成与条件不随时间而变化。 半连续操作过程:操作时物料一次输入或分批输入,而出料是连续的,或连续输入物料,而出料是一次或分批的。 稳定状态操作就是整个化工过程的操作条件(如温度、压力、物料量及组成等)如果不随时间而变化,只是设备内不同点有差别,这种过程称为稳定状态操作过程,或称稳定过程。如果操作条件随时间而不断变化的,则称为不稳定状态操作过程,或称不稳定过程。 间歇过程及半连续过程是不稳定状态操作。连续过程在正常操作期间,操作条件比较稳定,此时属稳定状态操作多在开、停工期间或操作条件变化和出现故障时,则属不稳定状态操作。 2、物料衡算式 物料衡算是研究某一个体系内进、出物料量及组成的变化。所谓体系就是物料衡算的范围,它可以根据实际需要人为地选定。体系可以是一个设备或几个设备,也可以是一个单元操作或整个化工过程。 进行物料衡算时,必须首先确定衡算的体系。根据质量守恒定律,对某一个体系,输入体系的物料量应该等于输出物料量与体系内积果量之和。所以,物料衡算的基本关系式应该表示为: ???? ?????? ?????? ??物料量积累的+物料量输出的=物料量输入的

化工中的物料衡算和能量衡算

化工中的物料衡算和能量衡算 化72 王琪2007011897 在化工原理的绪论课上,戴老师曾强调过化工原理的核心内容是“三传一反” 即传质、传动、传热和反应,而物理三大定律——质量守恒、动量守恒、能量守 恒正是三传的核心与实质,因此这三大定律在化工中统一成一种核心的方法:衡 算。正是衡算,使原本复杂的物理定律的应用变得简单,实用性强,更符合工程 学科的特点。为此化工中的物料衡算和能量衡算很重要,本文将分别从物料衡算、 能量衡算讨论化工中的衡算问题,然后将讨论二者结合的情况。 物料衡算在台湾的文献中称为“质量平衡”,它反映生产过程中各种物料 之间量的关系,是分析生产过程与每个设备的操作情况和进行过程与设备设计的 基础。一般来说物料衡算按下列步骤进行,为表示直观,做成流程图。 绘制流程图时应注意: 1.用简洁的长方形来表达一个单元,不必画蛇添足; 2.每一条物质流线代表一个真实的流质流动情况; 3.区别开放与封闭的物质流 4.区别连续操作与分批操作(间歇生产) 5.不必将太复杂的资料写在物质流线上 确定体系也比较重要,对于不同体系,衡算基准和衡算关系会有不同。 合适的基准对于衡算问题的简化很重要,根据过程特点通常有如下几种: 1.时间基准:连续生产,选取一段时间间隔如1s,1min,1h,1d;间歇生产以一釜或一批料的生产周期为基准,对于非稳态操作,通常以时间微元dt为基准。 2.质量基准,对于固相、液相体系,常采用此基准,如1kg,100kg,1t,1000lb

等。 3.体积基准(质量基准衍生):适用于气体,但要换成标准体积;适用于密度无变化的操作。 4.干湿基准:水分算在内和不算在内是有区别的,惯例如下: 烟道气:即燃烧过程产生的所有气体,包括水蒸气,往往用湿基; 奥氏分析:即利用不同的溶液来相继吸收气体试样中的不同组分从而得到气体组分,往往用干基。 化肥、农药常指湿基,而硝酸、盐酸等则指干基。 选取基准后,就要确定着眼物料了。通常既可从所有物料出发,也可根据具体情况,从某组分或某元素着眼。对于有化学反应的过程,参加反应的组分不能被选作着眼物料。 列物料衡算方程式时计算中要注意单位一致。列方程时,要注意:物料平衡是关于质量的平衡,而不是关于体积或者摩尔数的平衡。只有密度相同时才可列关于体积的方程,根据元素守恒可列相应的关于摩尔数的方程。 物料衡算方程的基本形式为:(以下均为质量,若密度不变,也可用体积或体积流速) 输入+产生=输出+积累+消耗。 对于无反应的物理过程,没有产生和消耗,所以输入=输出+积累,如果是稳态过程,积累=0,则方程变为:输入=输出。以下分别对特定的单元操作讨论物料衡算关系。 1.输送:连续性方程,进管液体=出管液体;进泵液体=出泵液体 2.过滤:总平衡:输入的料浆=输出的滤液+输入的滤饼; 液体平衡:料浆中的液体=滤液中的液体+滤饼中的液体 3.蒸发:原料液=积累+母液+晶体+水蒸气 其他过程类似。值得注意的是,如果对于每个组分列物料衡算方程,则总衡算方程不用列出,因为其不独立。一般来说,对于无反应的物理过程,如果有n 个组分,就可以列出n个方程。 对于有化学反应的过程,物料衡算要更复杂一些,因为反应中原子重新组合,消耗旧物质,产生新物质,所以每一个物质的摩尔量和质量流速不平衡。此外,在化学反应中,还涉及化学反应速率、转化率、产物的收率等因素。为了有利于反应的进行,往往一种反应物要过量。因此在进行反应过程的物料衡算时,应考虑以上因素。对于不参加反应的惰性物质列衡算方程通常比较方便。通常来讲,总质量衡算和元素衡算用得较多,组分衡算对于有化学反应的过程不可以用。 有化学反应的过程物料衡算通常有以下几种方法:直接计算法、利用反应速率进行物料衡算、元素衡算法、化学平衡常数法、结点衡算法、联系组分衡算法等。

物料衡算

第一节物料衡算式 4-1 化工过程的类型 化工过程根据其操作方式可以分成间歇操作、连续操作以及半连续操作三类。或行将其分为稳定状态操作和不稳定状态操作两类。在对某个化工过程作物料或能量衡算时,必须先了解生产过程的类型。 间歇操作过程: 4-2 物料衡算式 物料衡算是研究某一个体系内进、出物料量及组成的变化。根据质量守恒定律,对某一个体系,输入体系的物料量应该等于输出物料量与体系内积累量之和。所以,物料衡算的基本关系式应该表示为; 如果体系内发生化学反应,则对任一个组分或任一种元素作衡算时,必须把由反应消耗或生成的量亦考虑在内。所以(4—1)式成为: 上式对反应物作衡算时.由反应而消耗的量,应取减号,对生成物作衡算时,由反应而生成的量,应取加号。 但是,列物料衡算式时应该注意,物料平衡是指质量平衡,不是体积或物质的量(摩尔数)平衡。若体系内有化学反应,则衡算式中各项用摩尔/时为单位时,,必须考虑反应式中的化学计量系数。出为反应前后物料中的分子数不守恒。 第二节物料衡算的基本方法 进行物料衡算时,为了能顺利地解题,避免错误,必须掌握解题技巧,按正确的解题方法和步骤进行。尤其是对复杂的物料衡算题,更应如此,这样才能获得准确的计算结果。 4-3 画物料流程简图方法

求解物料衡算问题,首先应该根据给定的条件画出流程简图。图中用简单的方框表示过程中的设备,用线条和箭头表示每个流股的途径和流向。并标出每个流股的已知变量(如流量、组成)及单位。对一些未知的变量,可用符号表示。4—4 计算基准及其选择 进行物料、能虽衡算时,必须选择一个计算基准。从原则上说选择任何一种计算基准,都能得到正确的解答。但是,计算基准选择得恰当,可以使计算简化,避免错误。 对于不同化工过程,采用什么基准适宜,需视具体情况而定,不能什硬性规定。 根据不同过程的特点,选样计算基准时,应该注意以下几点: 1. 应选择已知变量数最多的流股作为计算基准。 2.对液体或固体的体系,常选取单位质量作基准。 3. 对连续流动体系,用单位时间作计算基准有时较方便。 4. 对于气体物料,如果环境条件(如温度、压力)已定,则可选取体积作基准。

物料衡算和热量衡算

3 物料衡算 依据原理:输入的物料量=输出的物料量+损失的物料量 3.1 衡算基准 年生产能力:2000吨/年 年开工时间:7200小时 产品含量:99% 3.2 物料衡算 反应过程涉及一个氧化反应过程,每批生产的产品相同,虽然有原料对叔丁基甲苯和溶剂甲苯的循环,第一批以后循环的物料再次进入反应,但每批加料相同。在此基础上,只要计算第一个批次的投料量,以后加料一样。 反应釜内加热时间2h、正常的反应时间18h、冷却时间1h。加上进料和出料各半个小时,这个生产周期一共2+18+1+1=22h。所以在正常的生产后,每22小时可以生产出一批产品。每年按300天生产来计算,共开工7200小时,可以生产327个批次。要求每年生产2000吨对叔丁基苯甲酸,则每批生产2000÷327=6.116吨。产品纯度99 %( wt %) 实际过程中为了达到高转化率和高反应速率,需要加入过量对叔丁基甲苯做溶剂,反应剩余的原料经分离后循环使用。 3.2.1 各段物料 (1) 原料对叔丁基甲苯的投料量 设投料中纯的对叔丁基甲苯为X kg,则由 C11H16C11H14O2 M 148.24 178.23 m x 6054.8 得x=6054.8×148.24÷178.23=5036.0 kg 折合成工业原料的对叔丁基甲苯质量为5036.0÷0.99=5086.9kg 实际在第一批生产过程加入的对叔丁基甲苯为6950.3kg (2)氧气的通入量 生产过程中连续通入氧气,维持釜内压力为表压0.01MPa,进行氧化反应。实

际生产过程中,现场采集数据结果表明,通入的氧气量为1556.8 kg,设反应消耗的氧气量为x kg 3/2O2C11H14O2 M 31.99 178.23 m x 6054.8 得x= 3/2×6054.8×31.99÷178.23=1630.1kg 此时采用的空气分离氧气纯度可达99%,因此折合成通入的氧气为1630.1÷0.99=1646.6 kg即在反应过程中,需再连续通入1646.6kg氧气。 (3)催化剂 催化剂采用乙酰丙酮钴(Ⅲ),每批加入量10.4 kg (4)水的移出量 设反应生产的水为x kg H2O C11H14O2 M 18.016 178.23 m x 6054.8 得x=6054.8×18.016÷178.23=612 kg 产生的水以蒸汽的形式从反应釜上方经过水分离器移出。 3.2.2 设备物料计算 (1)计量槽 对叔丁基甲苯计量槽: 一个反应釜每次需加入的对叔丁基甲苯质量为3475.1÷2=3475.15 kg 对叔丁基甲苯回收计量槽:每批反应结束后产生母液1834.8kg 甲苯计量槽:每批需加入甲苯做溶剂,加入量为396.1 kg (2)反应釜:反应结束后,经过冷却、离心分离后,分离出水612kg,剩余的对叔丁基甲苯1834.8kg循环进入下一批产品的生产。分离出来的固体质量为:6950.3+10.4+1646.6-612-1834.8=6160.5 kg 。 (3)进入离心机的物料:6950.3+10.4+1646.6-1834.8-612=6160.5kg (4)脱色釜:分离机分离出来的粗产品移入脱色釜,加入甲苯做溶剂,加入量为396.1 kg,搅拌升温将产品溶解,再加入76.5 kg活性碳进行脱色。进入

化工原理(天大版)干燥过程的物料衡算与热量衡算

1 8.3干燥过程的物料衡算与热量衡算 干燥过程是热、质同时传递的过程。进行干燥计算,必须解决干燥中湿物料去除的水分量及所需的热空气量。湿物料中的水分量如何表征呢? 湿物料中的含水量有两种表示方法 1.湿基含水量w 湿物料总质量 湿物料中水分的质量= w kg 水/kg 湿料 2.干基含水量X 量 湿物料中绝干物料的质湿物料中水分的质量= X kg 水/kg 绝干物料 3.二者关系 X X w +=1w w X -=1 说明:干燥过程中,湿物料的质量是变化的,而绝干物料的质量是不变的。因此,用干基含 水量计算较为方便。 图8.7 物料衡算 符号说明: L :绝干空气流量,kg 干气/h ; G 1、G 2:进、出干燥器的湿物料量,kg 湿料/h ; G c :湿物料中绝干物料量,kg 干料/h 。 产品 G 2, w 2, (X 2), θ2 G 1, w 1, (X 1), θ1 L, t 2 , H 2

目的:通过干燥过程的物料衡算,可确定出将湿物料干燥到指定的含水量所需除去的水分量及所需的空气量。从而确定在给定干燥任务下所用的干燥器尺寸,并配备合适的风机。 1.湿物料的水分蒸发量W[kg 水/h] 通过干燥器的湿空气中绝干空气量是不变的,又因为湿物料中蒸发出的水分被空气带 走,故湿物料中水分的减少量等于湿物料中水分汽化量等于湿空气中水分增加量。即: [])]([][)(1221221121H H L W X X G w G w G G G c -==-=-=- 所以:1212221 1 2111w w w G w w w G G G W --=--=-= 2.干空气用量L[kg 干气/h] 1212) (H H W L H H L W -=∴-=Θ 令121H H W L l -== [kg 干气/kg 水] l 称为比空气用量,即每汽化1kg 的水所需干空气的量。 因为空气在预热器中为等湿加热,所以H 0=H 1,0 21211H H H H l -=-=,因此l 只与空气的初、终湿度有关,而与路径无关,是状态函数。 湿空气用量:)1(0'H L L += kg 湿气/h 或)1(0'H l l += kg 湿气/kg 水 湿空气体积:H s L V υ= m 3湿气/h 或H s l V υ=' m 3湿气/kg 水 通过干燥器的热量衡算,可以确定物料干燥所消耗的热量或干燥器排出空气的状态。作为计算空气预热器和加热器的传热面积、加热剂的用量、干燥器的尺寸或热效率的依据。 1.流程图 温度为,湿度为H 0,焓为的新鲜空气,经加热后的状态为t 1、H 1、I 1,进入干燥器与湿物料接触,增湿降温,离开干燥器时状态为t 2、H 2、I 2,固体物料进、出干燥器的流量为G 1、G 2,温度为θ1、θ2,含水量为X 1、X 2。通过流程图可知,整个干燥过程需外加热量有两处,预热器内加入热量Q p ,干燥器内加入热量Q d 。外加总热量Q =Q p +Q d 。将Q 折合

物料衡算

三.工艺设计计算 3.1 物料横算 3.1.1物料衡算的意义 物料横算,是在已知产品规格和产量前提下算出所需原料量、废品量及消耗量。同时,还可拟定出原料消耗定额,并在此基础上做能量平衡计算。通过物料横算可算出: (1)实际动力消耗量 (2)生产过程所需热量或冷量 (3)为设备选型、决定规格、台数(或台时产量)提供依据 (4)在拟定原料消耗定额的基础上,可进一步计算日消耗量,每小时消耗量 等设备所需的基础数据。 综上所述,物料衡算是紧密配合车间生产工艺设计而进行的,因此,物料衡算是工艺设计过程的一项重要的计算内容。 3.1.2物料横算的方法 塑料制品的生产过程多采用全流程、连续操作的形式。 物料衡算的步骤如下: (1)确定物料衡算范围,画出物料衡算示意图,注上与物料衡算有关的数据。 物料衡算示意图如下:

(2)说明计算任务。如:年产量、年工时数等。 (3)选定计算基准。生产上常用的计算基准有:①单位时间产品数量或单位 时间原谅投入量,如:kg/h,件/h,t/h(连续操作常采用此种基准);②加入设备的原料量(间歇操作常采用此种基准)。 (4)由已知数据,根据下列公式进行物料衡算: ΣG1=ΣG1+ΣG3 式中:ΣG1——进入设备的物料量总和 ΣG2——离开设备的正品量和次品量总和 ΣG3——加工过程中物料损失量总和 (5)收集数据资料。一般包括以下方面: ①年生产时间:连续生产300~350 d 间歇生产200~250 d 连续生产时,年生产的天数较多,在300d左右,其他时间将考虑全长检修,车间检修或5%~10%意外停机。当间歇生产时,就要减去全年的休息日,目前为双休日加上法定假日全年约为110d,所以间歇生产比连续生产少110个工作日。 总之,确定了每年有效地工作时数后就能正确定出物料衡算的时间基准,算出每小时的生产任务,进而在以后的计算中选定设备的规格。 具体的选择天数要通过分析得出。 ②有关定额、合格率、废品率、消耗率、回收率等。在任何一个产品加 工过程中,合格产品都不是百分之百。由于设备原因、原材料原因以及人为原因都可能造成废品的出现。加工不同的产品出现废品的几率有差异,要具体情况具体分析。才外还应考虑车间管理水平、设备先进水平等,取高值与低值都应有充分的论据。经过电铲研究后发现:塑料制品合格率为85%~95%、自然损耗率为0.1%~0.15%,这主要是贮存、运输、

物料衡算

物料衡算 1.教学目的与要求 掌握物料衡算的基本方法,学会对无化学反应的物料衡算及有化学反应的物料衡算进行计算。 2.主要教学内容 掌握物料衡算式、画物料流程简图的方法;计算基准的选择;无化学反应的物料衡算,有化学反应的物料衡算。 3.重点与难点: 重点:无化学反应及有化学反应物料衡算的计算方法 难点:有化学反应物料衡算的计算方法 4.学时分配:8+6S 学时 物料衡算是化工计算中最基本、也是最重要的内容之一,它是能量衡算的基础。一般在物料衡算之后,才能计算所需要提供或移走的能量。通常,物料衡算有两种情况,一种是对已有的生产设备或装置,利用实际测定的数据,算出另一些不能直接测定的物料量。用此计算结果,对生产情况进行分析、作出判断、提出改进措施。另一种是设计一种新的设备或装置,根据设计任务,先作物料衡算,求出进出各设备的物料量,然后再作能量衡算,求出设备或过程的热负荷,从而确定设备尺寸及整个工艺流程。 物料衡算的理论依据是质量守恒定律,即在一个孤立物系中,不论物质发生任何变化,它的质量始终不变(不包括核反应,因为核反应能量变化非常大,此定律不适用)。 第一节物料衡算式 1 物料衡算式 1、化工过程的类型 化工过程操作状态不同,其物料或能量衡算的方程亦有差别。 化工过程根据其操作方式可以分成间歇操作、连续操作以及半连续操作三类。或者将其分为稳定状态操作和不稳定状态操作两类。在对某个化工过程作物料或能量衡算时,必须先了解生产过程的类别。 闻歇操作过程:原料在生产操作开始时一次加入,然后进行反应或其他操作,一直到操作完成后,物料一次排出,即为间歇操作过程。此过程的特点是在整个操作时间内,再无物料进出设备,设备中各部分的组成、条件随时间而不断变化。

啤酒糖化车间物料衡算与热量衡算

# 30000t/a12°淡色啤酒糖化车间物料衡算与热量衡算) 二次煮出糖化法是啤酒生产常用的糖化工艺,下面就以此工艺为基准进行糖化车间的热量衡算。由于没有物料数量等基础数据,因此,从物料计算开始。 已知物料定额的基础数据如表,绝对谷物的比热容为1.55Kj/kg*K, 12°麦汁在20℃时的相对密度为1.084,100℃时热麦汁的体积是20℃时的1.04倍;煮沸温度下(常压100℃)水的气化潜热为I=2257.2 Kj/kg,加热过程热损失取15%,0.3MPa的饱和水蒸气I=2725.2 Kj/kg,相应冷凝水的焓为561.47 Kj/kg,蒸汽热效率为0.95, I物料衡算 啤酒厂糖化车间的物料衡算主要项目为原料(麦芽、大米)和酒花用量,热麦汁和冷麦汁量,废渣量(糖化糟和酒花糟)等。 1.糖化车间工艺流程示意图 2.工艺技术指标及基础数据 我国啤酒生产现况决定了相应的指标,有关生产原料的配比、工艺指标及生产过程的损失等数据如上表所示。 根据基础数据,首先进行100kg原料生产12°淡色啤酒的物料计算,然后进行100L12°淡色啤酒的物料衡算,最后进行30000t/a啤酒厂糖化车间的物料平衡计算。 3. 100kg原料(75%麦芽,25%大米)生产12°淡色啤酒的物料计算 (1)热麦汁量 麦芽收率为:0.75(100-6)÷100=70.5% 大米受率为:0.92(100-13)÷100=80.04% 混合原料受得率为: (0.75×70.5%+0.25×80.04%)98.5%=71.79% 由此可得100kg混合原料可制得的12°热麦汁量为: (71.79÷12)×100=598.3kg 12°麦汁在20℃时的相对密度为1.084,而100℃热麦汁的体积是20℃时的1.04倍,故热麦汁(100℃)的体积为: (598.3÷1.084)×1.04=574 (L) (2)冷麦汁量为 574×(1-0.075)=531 (L) (3)发酵液量为: 531×(1-0.016)=522.5 (L) (4)过滤酒量为:

物料衡算

5 物料衡算 本设计是目标为年产1000吨苦荞抛光米的生产加工工艺,主要加工原料为苦荞麦,加工过程中的副产物为苦荞壳、废料肥料壳粉、黄粉等。对该工艺流程进行物料衡算,能较为直观清楚地了解各个工艺环节的物料流向,为苦荞企业生产和苦荞产业的发展提供一定的借鉴指导作用。 5.1 生产加工工艺流程 苦荞麦粒去杂蒸煮烘干脱壳精碾(添加植物油炒制)苦荞精米包装成品米 苦荞麦粒蒸煮烘干后脱壳产生苦荞糙米和苦荞壳,脱壳后产生的苦荞壳用于制作特色保健养生枕头。脱壳苦荞粒进过精碾工艺产生抛光米与黄粉,黄粉常用作其他食品加工基料。 5.2 加工过程中的各项基料计算 5.2.1 苦荞原料的需求量计算 由实际测取的苦荞抛光米的产出得率C1为46.88%,则年产T1为1000吨苦荞抛光米所需要的苦荞麦粒原料为W1吨: T1= W1*C1 W1= T1 C1 =1000 46.88% =2133.11 (吨) 5.2.2 副产物苦荞壳、黄粉的产量计算 由表3.1可知,脱壳工艺产生的苦荞壳的得率C2为29.76%;精碾抛光工艺产生的黄粉得率为C314.02%,则该年产1000吨精米生产线每年可产生副产物苦荞壳W2、黄粉W3吨: W2 = W1*C2 = 2133.11×29.76%=634.81 (吨)

W3 = W1*C3 = 2133.11×14.02% = 299.06 (吨) 5.2.3 废料壳粉的计算 废料壳粉是由脱壳工艺产生苦荞壳的同时产生的,大多未加二次利用,造成损失。废料壳粉的得率C4由表3.1可知为9.34%,则年产1000吨苦荞抛光米所产生的废料壳粉量为W4吨: W4 = W1*C4 = 2133.11×9.34% = 199.23 (吨) 通过物料计算可知,年产1000吨苦荞精米的生产线需要投入原料苦荞麦2133.11吨,产生苦荞壳、苦荞黄粉分别为634.81吨、299.06吨,产生未加利用的废料壳粉为199.23吨。

物料衡算基本理论

物料衡算基本理论 四、衡算方法和步骤 1,明确衡算目的通过物料衡算确定生产能力、纯度、收率 2,明确衡算对象划定衡算范围,绘出物料衡算示意图 3,对有化学反应的体系应写出化学反应方程式 4,收集与物料衡算有关的计算数据 ○1生产规模;原辅材料、中间体及产品规格; ○2有关定额和消耗指标(产品单耗、配料比、回收率、提取率、收率)○3有关的物理化学常数(密度、蒸汽压、相平衡常数) 5,选定衡算基准 6,列出物料衡算方程式 7,根据物料横算结果,编制物料平衡表 物料衡算举例 一、物理过程物料衡算 实例6-1 硝化混酸配制过程物料衡算。已知混酸组成为硫酸46%(质量百分比,下同)、硝酸46%、水8%,配制混酸用的原料%的工业硫酸、98%的硝酸以及含硫酸69%的硝化废酸。试通过物料衡算确定配制1000kg混酸时各原料的用量。为简化计算,设原料中除水外的其他杂质可忽略不计。 明确衡算目的明确衡算对象 以搅拌釜为衡算范围,绘制混酸配制过程物料衡算示意图

G H2SO4 G HNO3 G 废 图中共有4股物料,3个未知数,需3个独立方程 对硝酸进行物料衡算 对硫酸进行物料衡算 对水进行物料衡算 联立方程解得 混酸过程物料衡算表 3 0.980.461000HNO G =?240.9250.690.461000 H SO G G +=?废2430.0750.020.310.081000 H SO HNO G G G ++=?废243399.5469.4131.1H SO HNO G kg G kg G kg ===废

二,化学过程的物料衡算 1,化学过程的几个概念 转化率 收率(产率) 选择性 例6-2 甲苯用浓硫酸磺化制备对甲苯磺酸。已知甲苯的投料量为1000kg ,反应产物中含有对甲苯磺酸1460kg ,未反应的甲苯20kg 。试分别计算甲苯的转化率、对甲苯磺酸的收率和选择性。 则甲苯的转化率为 则甲苯磺酸的收率为 100% A x A =?反应物A 的反应消耗量反应物的投料量 100% y A =?按目标产物收得量折算的反应物A 的量反应物的投料量 100% A ?=?按目标产物收得量折算的反应物A 的量反应物的反应消耗量 CH 3 + H 2SO 4 CH 3 SO 3H + H 2O 110-140 100020100%98% 1000 A x -=?=146092100%78.1% 1000172 y ?=?=?

第四章 物料衡算

第四章物料衡算 第一节概述 第二节物料衡算基本理论 第三节物料衡算举例 4.1 概述 4.1.1.物料衡算的重要性 求出各种物料的数量和组成,设计由定性转入定量。 设计中,物料衡算是最先进行的计算项目,其结果是后续各单项设计的依据,物料衡算结果的直接关系到整个工艺设计可靠程度。 4.1.2.物料衡算的依据 工艺流程示意图以及为物料衡算收集的有关资料。 4.1.3.物料衡算的作用 将工艺流程示意图进一步深化,可绘制出物料流程图。 在物料衡算的基础上,可进行能量衡算、设备的选型或工艺设计,以确定设备的容积、台数和主要工艺尺寸、确定消耗定额、进行车间布臵设计和管道设计。 对已投产的设备、装臵、车间或工厂进行物料衡算,以寻找薄弱环节,为改进生产、完善管理提供可靠的依据 可作为判断工程项目是否达到设计要求以及检查原料利用率和三废处理完善程度的一种手段。 4.1.4.物料衡算的类型 按物质变化分为: 物理过程的物料衡算 化学过程的物料衡算 按操作方式分为: 连续过程的物料衡算 间歇过程的物料衡算 按衡算目的分为: 4.2 物料衡算的基本理论 4.2.1物料平衡方程式

理论基础是质量守恒定律。 1.物理过程 稳态过程,物料在体系内没有累积 2.化学过程 对于稳态过程 使用上述各式时要注意以下几点: 4.2.2 衡算基准 1、时间基准 对连续稳定流动体系,以单位时间作基准。该基准可与生产规模直接联系 对间歇过程,以处理一批物料的生产周期作基准。 2、质量基准 对于液、固系统,因其多为复杂混合物选择一定质量的原料或产品作为计算基准。 若原料产品为单一化合物或组成已知,取物质量(mol)作基准更方便。 3、体积基准 对气体选用体积作基准。通常取标况下体积Nm3(Hm3) 在进行物料衡算或热量衡算时,均须选择相应的衡算基准。合理地选择衡算基准,不仅可以简化计算过程,而且可以缩小计算误差 基准选取中几点说明: (1)上面几种基准具体选哪种(有时几种共用)视具体条件而定,难以硬性规定。 (2)通常选择已知变量数最多的物料流股作基准较方便。 (3)取一定物料量作基准,相当于增加了一个已知条件(当产物和原料的量均未知时,使隐条件明朗化)。 (4)选取相对量较大的物流作基准,可减少计算误差。

物料衡算和热量衡算

物料衡算和热量衡算 以下计算部分将对石灰石-石膏法的脱硫工艺进行物料衡算、热量衡算、反应器的设计和换热器的设计等具体的步骤 物料衡算简化运算条件:物料衡算主要针对脱硫装置系统(即喷淋塔)和制浆系统(石灰石浆液)来进行的,两个系统之间来联系的纽带是在脱硫塔内进行的脱硫反应,即钙硫比(Ca/S)(选择为1.02,下面将详细论述)。以下条件在计算方法中被简化 (1)不包括吸收塔的损失 (2)假设烟气带入的粉尘为零 (3)假设工艺水和石灰石不含杂质 (4)假设原烟气和净烟气没有夹带物代入和带出系统 (5)假设没有除雾器冲洗水 (6)假设没有泵的密封水 (7)假设工艺系统是封闭的,没有环境物质的进入和流出 3.1吸收系统物料衡算和相关配置 喷淋塔内主要进行脱硫反应,由锅炉引风压机引来的烟气,经过增压风机升压后,从吸收塔中下部进入吸收塔,脱硫除雾后的净烟气从吸收塔顶部侧向离开吸收塔,塔的下部为浆液池。 前面已经详细地介绍了脱硫反应的机理,由此可知反应的物料比例为 CaCO3s Ca s 1.02S s 1.02SO2 1.02 : 1.02 : 1 : 1 设原来烟气二氧化硫SO2质量浓度为 a (mg/m3),根据理想气体状态方程 PV二nRT 可得:7700mg/m3273K amg/m3(273 145)K 求得: 4 4 a=1.18X 104mg/m4 而原来烟气的流量(145C时)为20X 104(m3/h)换算成标准状态时(设为V a) 200000m3/h (145 273)K V a273K 求得 V a=1.31 X 105 m3/h=36.30 m3/s 故在标准状态下、单位时间内每立方米烟气中含有二氧化硫质量为

干燥过程的物料衡算和热量衡算

第三节 干燥过程的物料衡算和热量衡算 对干燥流程的设计中,物料衡算解决的问题: (1)物料气化的水分量W (或称为空气带走的水分量); (2)空气的消耗量(包括绝干气消耗量L 和新鲜空气消耗量L 0)。 而热量衡算的目的,是计算干燥流程的热能耗用量及各项热量分配(即预热器换热量 p Q ,干燥器供热量D Q 及干燥器热损失L Q )。 一、湿物料中含水率表示法 湿物料=水分+绝干物料 (一)湿基含水量w %100?= 总质量 水 m m w (8-12) 工业上常用这种方法表示湿物料的含水量。 (二)干基含水量X X =湿物料中水分质量/湿物料中绝干料质量 (8-13) 式中 X ――湿物料的干基含水量,kg 水分.(kg 绝干料)-1。 两者关系: X X w += 1 (8-14) 或 w w X -= 1 (8-15)

二、干燥器的物料衡算 图8-7 各流股进、出逆流干燥器的示意图 图8-7中,G ――绝干物料流量,kg 绝干料.s -1; L ――绝干空气消耗量,kg 绝干气.s -1; H 1 ,H 2――分别为湿空气进、出干燥器时的湿度,kg.(kg 绝干气)-1; G 1 ,G 2――分别为湿物料进、出干燥器时的流量,kg 湿物料.s -1; X 1 ,X 2――分别为湿物料进、出干燥器时的干基含水量,kg 水分.(kg 绝干料)-1。 (一)水分蒸发量W )()(122121H H L G G X X G W -=-=-= (8-16) 其中 )1()1(2211w G w G G -=-= (8-17) (二)空气消耗量L 对干燥器作水分物料衡算:2211GX LH GX LH +=+ 则: ()121221H H W H H X X G L -= --= (8-18) 若设: 121 H H W L l -= = (8-19) 式中 l ――每蒸发1kg 水分消耗的绝干空气量,称为单位空气消耗量,kg 绝干 气.(kg 水分)-1; L ――单位时间内消耗的绝干空气量,kg 绝干气.s -1。

相关文档
最新文档