钻具摩阻与扭矩

钻具摩阻与扭矩
钻具摩阻与扭矩

钻具摩阻与扭矩 This manuscript was revised by the office on December 22, 2012

1、管柱的摩阻和扭矩

钻大位移井时,由于井斜角和水平位移的增加而扭矩和摩阻增大是非常突出的问题,它可以限制位移的增加。

管柱的摩阻和扭矩是指钻进时钻柱的摩阻和扭矩,下套管时套管的摩阻和扭矩。

(1)钻柱扭矩和摩阻力的计算

为简化计算,作如下假设:

*在垂直井段,钻柱和井壁无接触;

*钻柱与钻井液之间的摩擦力忽略不计;

*在斜井段,钻柱与井壁的接触点连续,且不发生失稳弯曲。 计算时,将钻柱划分为若干个小单元,从钻柱底部的已知力开始逐步向上计算。若要知道钻柱上某点的扭矩或摩阻力,只要把这点以下各单元的扭矩和摩阻力分别叠加,再分别加上钻柱底部的已知力。

钻柱扭矩的计算

在弯曲的井段中,取一钻柱单元,如图2—1。

该单元的扭矩增量为

F r R M =?(2—1)

式中△M —钻柱单元的扭矩增量,N·m

R —钻柱的半径,m ;

Fr —钻柱单元与井壁间的周向摩擦力,N 。

该单元上端的扭矩为

式中M j —从钻头算起,第j 个单元的上端的扭矩,N·m;

Mo —钻头扭矩(起下钻时为零),N?m ,

△ M I —第I 段的扭矩增量,N.m 。

钻柱摩阻力的计算(转盘钻)

转盘钻进时,钻柱既有旋转运动,又有沿井眼轴向运动,因此,钻柱表面某点的运动轨迹实为螺线运动。在斜井段中取一钻柱单元,如图2-2。图2中,V 为钻柱表面C 点的运动速度V t ,V r 分别为V 沿钻柱轴向和周向的速度分量;F 为C 点处钻柱

所受井壁的摩擦力,其方向与V 相反;Ft ,Fr 分别为F 沿钻柱轴向和周向的摩擦力的分量,即钻柱的轴向摩擦力和周向摩擦力。

由图2-2

V

V F V F r t

s t t 22/+=(2-3) V V F V F r t s r r 22/+=(2-4)

F s =fN(2-5)

式中F S —钻柱单元的静摩擦力,N ;

f —摩擦系数;

N —钻柱单元对井壁的挤压力,N 。

[])sin ()2

2sin (θθθφW T T N +?+?=(2-6) 式中T —钻柱单元底部的轴向力,N ;

W —钻柱单元在钻井液中的重量,N ;

θ,△θ,Δφ—钻柱单元的井斜角,井斜角增量。 减小管柱扭矩和摩阻的措施

为减小管柱在大位移井中的扭矩和摩阻,在大位移井的设计与施工中要采取各种必要的措施。

(1)优化井身剖面。

(2)增强钻井液的润滑性

用润滑性能好的低毒性钻井液。许多大位移井采用油基钻井液,一般来说,润滑基对油基钻井液性能影响较小,而油水比对润滑性影响较大。

(3)优化钻柱设计、使用高强度钻杆

底部钻具组合可少用钻铤,而使用高强度加重杆。

(4)使用降扭矩工具

使用不转动的钻杆护箍可有效地减小扭矩。

(5)对于套管,可在套管上加箍或使用加厚套管。

近几年国外应用选择性浮动装置下套管技术,可降低

套管的摩阻。这种技术的原理是在套管内全部或部分

地充满空气,通过降低套管在井内的重量来降低套管

的摩阻。用的较多的是部分充气,这种方法可使套管

的法向力降低80%。

(6)提高地面设备的功率

(7)使用顶部驱动系统

2、钻柱设计

钻柱设计包括底部钻具组合设计和钻杆设计。在大位移井中一般使用高强度薄壁钻杆,以减少扭矩和摩阻。

对底部钻具组合(BHA),尺寸越大,钻柱的扭矩和摩阻

也越大,这并不利于大位移井钻进,所以在保证钻压需要的前提下应使底部钻具组合的尺寸尽量减小。

(1)钻柱设计应考虑的因素

尽量减小压差卡钻的可能性。

使用螺旋钻铤和螺旋扶正器,以增大环空间隙和减

小钻柱与井壁之间的接触面积。

尽量减少丝扣连接的数量。

采用井下可调稳定器。

尽量减少在大斜度井段使用加重钻杆的数量。

选用高强度钻杆,使之具有足够的抗扭转力和抗磨

能力。

给钻头施压时尽量不使钻杆发生弯曲。

(2)钻压设计

大位移井的钻柱设计主要是钻压设计。在直井段底部和弯曲井段,钻柱的弯曲是不可避免的。在斜井段,可通过底部钻具的足够重量给钻头施加足够的钻压来避免钻柱的弯曲。为减少钻柱的扭矩和摩阻,在大位移井中底部钻具组合可部分的或全部的使用加重钻杆施加钻压。

若用常规钻杆对钻头施加钻压,要考虑钻杆的弯曲问题。设计的原则是钻杆某点受到的压力载荷,不应超过钻杆的临界弯曲载荷。在大斜度井中,井斜角有利于钻杆的稳定性,所以钻杆在直井中的临界弯曲载荷适用于大斜度井。在直井中,钻杆的临界弯曲载荷用下式计算,

式中F C RIT—临界弯曲载荷,lb;

E—杨氏模量,psi;

I—惯性矩,in4;

W—钻杆在空气中的重量,lb/ft;

K b—浮力系数,无因次;

θ—井斜角,度;

R—钻杆和井眼间的径向间隙,in。

上式提供了加重钻杆在直井中施加钻压的限制范围。钻杆所受的压力与上式计算的临界弯曲载荷相比,可以确定钻杆是否发生弯曲,如果发生弯曲,则要降低钻压,或更换具有更大的临界弯曲载荷的钻杆。

如上所述,钻杆所能施加的钻压可由下式确定,

WOB≦F CR IT+W BS

式中WOB—设计钻压;

W BS—钻杆的浮重。

3、大位移井轨道到设计

轨道设计的原则

大位移井轨道设计,要求对所有参数进行优化,尽量降低井眼对管柱的扭矩和摩阻,提高管柱和测量工具的下入能力,并能尽量增大大位移井的延伸距离。

国外大位移井井身剖面的主要类型:

(1)增斜—稳斜剖面这种剖面的造斜率低,井斜角及测深增幅缓慢,但可降低钻柱的扭矩、摩阻和套管的磨损。

(2)小曲率造斜剖面这种剖面的特点是造斜点较深,井斜角大,能降低扭矩和摩阻,而且随目标深度的增加,旋转扭矩的增幅较小。

(3)准悬链线剖面准悬链线剖面有许多优点,它不但对管柱的扭矩和摩阻低(钻柱与井壁之间的接触力近似为零),而且使套管的下入重量增加。目前这种剖面在大位移井中广为应用。

石油大学的韩志勇教授在准悬链线剖面的基础上提出了侧位悬链线剖面的设计方法,这种剖面比准悬链线剖面的扭矩和摩阻小。

侧位悬链线轨道设计方法:

轨道关键参数的计算所谓轨道关键参数是指所有设计计算轨道的参数中需首先求出的参数。只要求出这些参数,轨道上的所有参数都可求得。

图2—3为大位移井轨道,轨道的关键参数为αb和L W。

关键参数的求法:

已知αb求L W

用下式计算特征参数A

求出轨道的关键参数和特征参数之后,就可进行轨道的节点和分点参数计算。

节点参数的计算

设计轨道是由垂直段、造斜段和稳斜段组成,相邻两个井段的分界点称为节点。上图轨道中,a、b为节点,a点的参数已知,b点的井深、垂深和水平位移为:

所谓分点的参数,就是在各井段内,以上节点为始点,每隔30米为一个分点,每个分点需计算的参数有井深、垂深、井斜角、水平位移、东西坐标、南北坐标和造斜率7项。4.大位移井的井壁稳定问题

1.大位移井的井壁不稳定性

影响大位移井井壁不稳定的因素主要有以下几种:

(1)狭窄的泥浆密度范围

一般地,当井眼倾角增加时,泥浆要提供足够大的压力来防止井壁坍塌。同时,出现裂缝的可能性也增加了。

简言之,防止井壁坍塌的泥浆密度范围较小。

(2)高的当量循环密度(ECD)

大位移井井眼长,泥浆循环时环空压降大,而泥浆密度工作范围窄,泥浆的高的当量循环密度容易达到井壁的破裂压力,而使井壁破裂。

(3)抽吸和激动压力

在大位移井中,由于狭窄的泥浆密度范围,井壁对抽吸压力和激动压力相当敏感。可能导至井壁坍塌或破裂。

(4)时间关系

井壁在低密度泥浆中长期侵泡,特别是水基泥浆的情况下,非稳性尤为明显,常常会造成许多钻井事故。

(5)化学反应

钻井液和地层间的化学作用也影响井壁稳定性,水基钻井液和油层上部的泥页岩经常发生强的化学反应,泥页岩膨胀,造成缩径或井壁坍塌。

2.井壁稳定性的机理

(1)井眼(井壁)应力

原始地应力分为三项主应力,即上复应力S v(亦称最大主应力)、最大水平应力S H和最小水平应力S h,如下图a。

打开井眼之后,原始地应力消失,而沿井壁重新分布,即平行于井眼轴线的应力S Z、周向应力Sθ和径向应力

S R,如下图b。

ab

(2)岩石的破坏

*压缩破坏当作用于岩石上的压力大于岩石的抗压强度时产生压缩破坏(井眼坍塌)。

*拉伸破坏当作用于岩石的拉力大于岩石的抗拉强度时拉伸破坏(井壁破裂)。

(岩石力学规定压应力为正,拉伸应力为负。)

(3)大位移井眼的不稳定性

随着井斜的增加,井壁的不稳定性增加。井眼由垂直变为水平,其应力状态的变化如下图

在正常压实地层,S H=S h,S v>S H。

在井眼某深度,原地应力是固定的,井壁的周向应力Sθ沿周边位置变化,其大小也发生变化,且必然存在

Sθmi n和Sθmam,这就导致井壁有破裂和坍塌的可能。

井壁破裂(拉伸破坏)

井壁破裂与Sθmi n有关。研究表明,在斜井中,随着井斜的增加,Sθmi n减小,并趋于拉应力状态,当拉伸应力

Sθmi n超过岩石的抗张强度时,岩石发生破裂。

对直井Sθmi n=2S H-P W-P P(1)

对水平井Sθmin=3S H–S V-P W-P P(2)

式中P W–泥浆柱压力;

P P--地层孔隙压力。

对比式(1)和(2),3S H–S V总是小于2S H,所以水平井中的Sθmin总是小于直井中的Sθmi n,更具有拉伸性。

井壁坍塌(压缩破坏)

井壁坍塌与Sθma x有关。研究表明,在斜井中,随着井斜的增加,Sθma x也增加,且更趋于压应力状态,当Sθma x的值超过岩石的抗压强度时,岩石发生压缩破坏,即井壁坍塌。

对直井Sθma x=2S H-P W-P P(3)

对水平井Sθmax=3S v–S H-P W-P P(4)

同样,水平井的Sθma x总是大于直井的Sθma x,更容易发生井壁坍塌。

5.大位移井的井眼的清洗

大位移井同其它类型井一样,好的井眼清洗和净化

以提高钻速、降低扭矩、缩短作业时间、节省费用等。

提高井眼清洗效率的措施

(1)高泵排量和环空返速都有利于井眼净化

通常要用井眼净化模型来计算井眼净化的最小排量和最优钻井液流变性。大排量可以提高泥浆的流速,增加携岩能力。然而,大排量需要高的泵压,在大位移井中,泵压可能会受到限制。为使泥浆以紊流循环,可以增大钻杆尺寸来增加给定泵压下的环空返速。

(2)钻井液的流变性

良好的钻井液流变性对任何类型的井都非常重要,

对大位移井更是如此。要保证钻井液的流型为层流或紊流,避免过渡流,因为过渡流的携岩能力差。在砂岩油

层段会发生漏失,钻井液流变性必须保持低值,以降低

当量循环密度。

(3)钻具转动

由于大位移井的位移不断增加,井眼的最优排量难以达到,这就需要其它的井眼净化技术,如提高转盘旋转速度和倒划眼。

(4)固相控制

在大位移井中,钻屑将在环空钻井液中长期滞留,使钻屑变的更细,更难以携带,如要钻井液保持良好状态,就必须有良好的固控设备。

6、大位移井的固井、完井技术

在大位移井的固井、完井中,套管的摩阻和磨损是个严重的问题。套管磨损使套管的强度降价,套管摩阻会使套管难以下入到设计井深、造成卡套管或井壁坍塌等问题。特别是在井眼曲率较小的造斜段,套管的联接部分需要有较高的抗弯能力,而且在下套管作业中,联接部分要求有足够的搞拉强度。

(1)井身结构设计

井身结构设计要考虑以下几个问题

井身结构必须满足完井设计要求。

生产井段的井眼应尽可能大,以利于随钻测井工具

的下入。

井身结构不能防碍优质固井。

(2)套管柱的联结

套管丝扣接头要相互楔牢,以防套管柱通过弯曲井

段时脱扣。

生产管柱的接头应有足够的抗扭强度,以允许注水

泥时套管柱旋转。

如果生产管柱是原始压力容器,其接头应该是密封

的。

(3)在大斜度井眼中下套管

在大斜度井中下套管,使套管下入的动力(套管自重)本来就很小,而且还要用来克服阻力,所以要在地面采取措施,帮助管柱下入。采取的措施有

接钻铤,靠钻铤的重量将管柱推进。

调整泥浆性能,减小摩阻。

在套管内充填轻流体或气体,以减小摩阻。

(4)注水泥考虑的问题

由于大位移井的井壁应力,使泥浆密度有很狭窄的工作范围,下套管时的激动压力和注水泥时的循环压降容易引起井壁破裂,发生循环漏失,所以要特别注意泥浆、前置液和水泥浆的特性。

下套管前要部分地稀释泥浆,以防下套管引起过大

的激动压力;注水泥前要彻底稀释泥浆,以防注水

泥时的循环压降过高。

最好使用非加重前置液,这样可降低ECD,但要注意

井壁稳定问题。在保证井内静液柱压力的前提下,

应尽量增大非加重前置液的用量。

要控制水泥浆的自由水含量(自由水含量最好为

零),优化水泥浆的稠化时间,保证水泥浆的稳定

性,防止固井窜槽。

7、大位移井的轨迹控制

用导向钻井工具(略)。

第二部分大位移井钻井技术

复习思考题

1、大位移井的基本概念、特点及用途。

2、大位移井钻井有哪几项关键技术?

3、示图并分析在斜井段钻柱所受扭矩和摩阻。

4、在斜井段钻柱摩阻的计算方法。

5、在大位移井中减小管柱扭矩和摩阻的主要措施。

6、钻压设计的主要原则是什么?

7、钻杆临界弯曲载荷的实际意义。

8、大位移井轨道设计的原则。

9、什麽大位移井轨道的节点节点的基本参数是什麽

10、

11、影响大位移井井壁不稳定的因素有哪些?

12、循环压降、抽吸压力和激动压力对井底压力的影响如何?

13、岩石破坏的基本形式和井壁破坏的表现形式是什麽?

14、用应力分析的观点解释,水平井与直井相比井壁总是容易发生

破裂与坍塌。

15、提高大位移井井眼清洗效率的主要措施。

16、下套管和注水泥对大位移井的井壁稳定有什麽影响在这两个过

程中要采取什麽措施保证井壁稳定

17、

常见油管扣型

常见油管扣型 扣型是工具中最常见的部分,也是比较难区分的一部分。扣型对于工具师或是监督是很重要的,一个工具师如果不了解扣型,要料、准备到指挥作业都是行不通的,要出大问题的。这一周主要是学习认识各种常见扣型,包括油管扣型,冲管扣型,筛管盲管扣型,密封单元连接扣形,钻杆扣型等。 1、常见油管扣型(Tubing Joint) 油管常用扣型分为三种分别是EU、NU和NewVam。这三种扣型在工具车间都能找到,其中EU和NU单独从扣的外观上很难区分,都是三角扣型,但是从整个管柱就能很容易区分,那就是EU表示外加厚NU表示没有外加厚。New Vam实际是一种梯形扣(扣截面呈矩形),也是不带外加厚的,所以也很容易区分。下面将用示意图详细介绍三种扣型。 1)EU(External upset)外加厚 EU扣是一种外加厚油管扣型。在车间货架上认识变扣接头过程中还会发现三种和EU有关的biano标识。其中EUE(External Upset End)表示外加厚端,EUP(External Upset Pin)表示外加厚公扣,EUB(External Upset Box)表示外加厚母扣。除了用pin和box表示公扣母扣外,其他表示公扣有1. external thread 2. male 3. male thread。母扣有1. female thread 2. internal thread 3. box 4. box thread。 图1-1 EU扣型 2)NU(Non-upset)没有外加厚 NU表示是没有外加厚的油管接头。除了没有外加厚外和EU一般还有一种区别就是NU一般每英寸10扣,EU一般每英寸8扣。其中NUE表示非加厚端或者说端部非加厚。同样E表示End。[以上说法来源《石油大典》。] 图1-2 NU扣型 3)New VAM 这种扣型特点是扣截面基本为矩形,螺距间隔相等,锥度不大,没有外加厚。在车间的生产滑套套筒端部见到。 图1-3 New VAM扣型 2.钻杆常用扣型总结 钻杆扣一般常见为REG和IF扣,其他如FH等在工具车间没有找到。根据师傅经验REG 扣和IF扣一般分别是5扣/in和4扣/in,但是大于4-1/2”即使是4扣/in也是REG扣,也就是说大于4-1/2”一般都是REG扣,小于4-1/2”IF扣较多。 1)REG(API Regular Thread)API标准里的正规扣型 正规型钻杆接头采用的螺纹。该型螺纹曾用于连接内加厚钻杆,形成钻杆接头内径小于钻杆加厚端内径,而钻杆加厚端内径又小于钻杆管体内径的通径。[见于95-96页《油气田井下作业修井工程》聂海光王新河等,石油工业出版社2002年2月北京第一版]

各种螺栓扭矩标准.doc

M6~M24 螺钉或螺母的拧紧力矩(操作者参考) 螺纹公称 直径尺寸施加在扳 手上的拧紧力矩 M/ d/mm M6 M8 M10 M12 螺栓屈服 强度强度 级N/mm 2 240 300 480 640 900 1080 螺栓屈服 强度强度 级N/mm 2 240 300 施加在扳手上的 螺纹公称直径 施力操作要领拧紧力矩施力操作要领 d/mm M/ 只加腕力M16 71 加全身力加腕力、肘力M20 137 压上全身重量加全身臂力M24 235 压上全身重量加上半身力 螺栓拧紧力矩 螺栓公称直径 mm 681012 拧紧力矩 4~ 5 10~ 12 20~ 25 36~ 45 5~ 7 12~ 15 25~ 32 45~ 55 7~ 9 17~ 23 33~ 45 58~ 78 9~ 12 22~ 30 45~ 59 78~ 104 13~ 16 30~ 36 65~ 78 110~ 130 16~ 21 38~ 51 75~ 100 131~ 175 螺栓公称直径 mm 14161820 拧紧力矩 55~ 70 90~ 110 120~ 150 170~ 210 70~ 90 110~ 140 150~ 190 210~ 270 48093~ 124145~ 193199~ 264282~ 376 640124~ 165193~ 257264~ 354376~ 502

900 180 ~ 201 280 ~330 380~450 540 ~650 1080 209 ~ 278 326 ~434 448~597 635 ~847 螺栓屈服螺栓公称直径 mm 强度强度22 24 27 30 级N/mm 拧紧力矩 2 240 230 ~ 290 300 ~377 450~530 540 ~680 300 290 ~ 350 370 ~450 550~700 680 ~850 480 384 ~ 512 488 ~650 714~952 969~ 1293 640 512 ~ 683 651 ~868 952~ 1269 1293~1723 900 740 ~ 880 940~ 1120 1400~1650 1700~2000 1080 864~ 1152 1098 ~1464 1606~2142 2181~2908 螺栓屈服螺栓公称直径 mm 强度强度33 36 螺栓扭矩标准( kg/m) 螺栓直径S 尺寸日本标准德国标准 M6 10 M8 13 M10 17 M12 19 9 8 M14 22 14 M16 24 M18 27 32 M20 30 47

常见各种扣型标准解释

·石油常用管丝扣类型及规格 一、前言 在石油工业发展过程中,API系列规范的石油管专用螺纹起着不可或缺的作用。石油管专用螺纹主要分为两大类:用于井下工具及钻柱构件连接的石油钻具接头螺纹及用于油套管连接的油套管接头螺纹。 随着油井气钻采作业向更深、更高压力和更高温度等更苛刻工况条件的方向发展,而且石油钻采工艺技术不断的进步,常规石油管螺纹很难满足油田的开发需求。本文就石油常用专用管螺纹和管材的主要类型、规格及发展现状作相应的介绍。 目前高压油气井越来越多,普通API螺纹油管已经不能满足高压密封的要求,对于压力高于28MPa的油气井,大多数选择了气密封特殊扣型油管。 由于越来越多的含有H2S/CO2/Cl-的油气井将投入开发,普通低碳低合金钢油管不能适应较恶劣 的腐蚀环境,油管使用寿命不能达到油气井的设计要求,因而9Cr、13Cr、22Cr、25Cr等耐腐蚀材质油管的应用也越来越广泛。 (一)、公司采用成套无压痕设备起下作业满足以下要求: 1. 扭矩管理:气密封特殊螺纹油管的作业,实施单根扭矩管理(扭矩图形记录、过扭矩保护)。 2. 转速管理:特殊材质油管,使用无压痕液压钳,低速上扣(1~6 rpm)。 3.引扣:使用布带钳引扣。 (二)、提供无压痕成套设备和技术: 1.采用国家专利“无牙卡瓦”(专利号ZL 2005 20146989.3)配套液压动力钳和液压站使用。 2.使用NKY-193B型扭矩自动控制系统,记录实时扭矩曲线、过扭矩保护。 3.用布带钳引扣,不伤油管表面防腐层。 (三)、无压痕起下作业具有以下优点: 1.油管表面没有咬印,保护油管不受损伤; 2.减少作业次数,降低油井维修费用; 3.按最佳扭矩上扣,延长油管使用寿命; 4.最大程度降低油管破裂损耗几率; 5.增强油管串的整体性,提高油管串的安全性。 (公司对外提供特殊材质特殊扣(无压痕)油套管起下成套设备和技术服务)

螺丝扭力规格及标准

螺絲扭力規格及标准 螺絲扭力規格螺絲直徑硬度 螺絲扭力規格 備註: 1. 高硬度材質為鐵類材質 2. 較低硬度材質用扭力標準為非鐵類材質,如ABS,M/B,FDD 塑膠框 依材質區分之螺絲扭力規格

Unit:Kgf-cm P.S) 1. The material of screw is low carbon steel. 2. The data as above is used in order to utilize the full strength of threades fasteners without damaging the threads. It should be used as a guid in tightening threaded fasteners. 3. 美規螺絲 a . #2-56 (0.086-56): 2 番56 牙 b #4-40 (0.112-40) : 4 番40 牙 c. #6-32 (0.138-32) : 6 番32 牙 d. #8-32 (0.164-32) : 8 番32 牙 e. #10-24 (0.190-24): 10 番24 牙 20.1 " Plastics LCD Moniter case screw : 粗牙6 kgf-cm inner PCB 4 Kgf-cm speaker : 2 Kgf-cm 螺丝扭力标准(目前常用之螺丝扭力标准) A B C D E M3 8 8 6 10 12 M3.5 10 8 6 —— M4 16 12 8 20 22 M5 30 20 12 —— M6 50 30 ——— M8 120 70 ——— M10 240 140 ——— M12 420 260 ———

油管、套管规格尺寸对照表

A P I油管规格及尺寸 公称尺寸(in)不加厚外径 (mm) 不加厚内径 (mm) 加厚外径 (mm) 加厚内径 (mm) 不加厚接箍 外径(mm) 加厚接箍 外径(mm) 1 1/ 2 48.3 40.3 53.2 40.3 55 63.5 2 3/ 8 60.3 50.3 65.9 50.3 73 78 2 7/ 8 73.0 62.0 78.6 62.0 89.5 93 3 1/ 2 88.9 75.9 95.25 75.9 107 114.5 4 101.6 88.6 107.95 88.6 121 127 4 1/ 2 114.3 100.3 120.65 100.3 132.5 141.5 -1-

石油油管螺纹代号对照表 平式油管螺纹外加厚油管螺纹 GB9253.3 YB239-63 GB9253.3 YB239-63 1.900TBG 1 1/ 2 " 平式扣 1.900UPTBG 1 1/ 2 " 外加厚扣 2 3/ 8 TBG 2" 平式扣 2 3/ 8 UPTBG 2" 外加厚扣 2 7/ 8 TBG 2 1/ 2 " 平式扣 2 7/ 8 UPTBG 2 1/ 2 " 外加厚扣 3 1/ 2 TBG 3" 平式扣 3 1/ 2 UPTBG 3" 外加厚扣 4 TBG 3 1/ 2" 平式扣4UPTBG 3 1/ 2 " 外加厚扣 4 1/ 2 TBG 4" 平式扣 4 1/ 2 UPTBG 4" 外加厚扣 -2-

套管规格及尺寸 外径mm(in)接箍外径 (mm) 内径 (mm) 通径 (mm) 外径 mm(in) 接箍外径 (mm) 内径 (mm) 通径 (mm) 114.3 (4 1/ 2) 127.0 103.9 100.7 177.8 (7) 194.5 166.1 162.9 102.9 99.7 164.0 160.8 101.6 98.4 161.7 158.5 99.6 96.4 159.4 156.2 127 (5)141.3 115.8 112.6 193.7 (7 5/ 8 ) 215.9 178.5 175.3 114.1 111.0 177.0 173.8 112.0 108.8 174.6 171.5 108.6 105.4 171.8 168.7 139.7 (5 1/ 2) 153.7 127.3 124.1 219.1 (8 5/ 8 ) 244.5 205.7 202.5 125.7 122.6 203.7 200.5 124.3 121.1 201.2 198.0 121.4 118.2 198.8 195.6 -3-

最全螺栓扭矩表

螺栓、螺母扭矩推荐值 强度等级 4.8 6.88.810.912.9 最小破断强度392Mpa588Mpa784Mpa941Mpa1176Mpa 材质一般结构钢机械结构钢铬钼合金钢镍铬钼合金钢镍铬钼合金钢螺栓M螺母S 扭矩值扭矩值扭矩值扭矩值扭矩值mm mm KGM NM KGM NM KGM NM KGM NM KGM NM 14227691098141371716523225 1624109814137212062524736353 18271413721206292843534149480 20301817628296414025856969676 22322322534333555397876593911 24363231448470706861009811201176 27414544165637105102915014721801764 30466058890882125122520019622402352 3350757351151127150147021020602502450 36551009801501470180176425024533002940 396012011761801764220215630029433703626 426515515192402352280274439038264704606 457018017642802744320313645044155505390 487523022543503430400392057055926806664 528028027444204116480470467065738508330 56853603528530514961059788608437105010290 6090410401861059787907742110010791135013230 6495510499876074489008820 6810058056848708526110010780 72105660646810009800129012642 761107507350110010780150014700 801158308134125012250185018130 851209008820140013720225022050 90430108010584165016170250024500 100145140013720205020090 110155167016366255024990 120175203019894305029890 1、以上是德国工业标准,表中扭矩值为螺栓达到屈服极限的70%时所测定。 2、建议锁紧扭矩值为:表中数据×80%。 例如:M48,8.8级螺栓,则锁紧扭矩为:400×80%=320KGM 3、拆松扭矩值为锁紧扭矩值的1.5~2倍。 例如:上例锁紧扭矩320KGM,则其拆松扭矩约为320×(1.5~2)=480~640KGM

表-常用油管尺寸与性能知识

石油油管基本常识 一、石油管有关基本知识 1、石油管相关专用名词解释 API:它是英文American Petroleum Institute的缩写,中文意思为美国石油学会。 OCTG:它是英文Oil Country Tubular Goods的缩写,中文意思为石油专用管材,包括成品油套管、钻杆、钻铤、接箍、短接等。 油管:在油井中用于采油、采气、注水和酸化压裂的管子。 套管:从地表面下入已钻井眼作衬壁,以防止井壁坍塌的管子。 钻杆:用于钻井眼的管子。 管线管:用于输送油、气的管子。 接箍:用于连接两根带螺纹管子并具有内螺纹的圆筒体。 接箍料:用于制造接箍的管子。 API螺纹:API 5B标准规定的管螺纹,包括油管圆螺纹、套管短圆螺纹、套管长圆螺纹、套管偏梯形螺纹、管线管螺纹等。 特殊扣:具有特殊密封性能、连接性能以及其它性能的非API螺纹扣型。 失效:在特定的服役条件下发生变形、断裂、表面损伤而失去原有功能的现象。油套管失效的主要形式有:挤毁、滑脱、破裂、泄漏、腐蚀、粘结、磨损等。 2、石油相关标准 API 5CT:套管和油管规范(目前最新版为第8版) API 5D:钻杆规范(目前最新版为第5版) API 5L:管线钢管规范(目前最新版为第43版) API 5B:套管、油管和管线管螺纹的加工、测量和检验规范 GB/T 9711.1-1997:石油天然气工业输送钢管交货技术条件第1部分:A级钢管 GB/T9711.2-1999:石油天然气工业输送钢管交货技术条件第2部分:B级钢管 GB/T9711.3-2005:石油天然气工业输送钢管交货技术条件第3部分:C级钢管 3、英制与米制换算值 1英寸(in)=25.4毫米(mm) 1英尺(ft)=12英寸(in)=0.3048米(m) 1平方英寸(sp.in)=645.16平方毫米(mm2) 1磅(lb)=0.45359千克(kg)

常用钻具紧扣扭矩表

常用钻具紧扣扭矩表 ZQ100液压大钳与扭矩对应关系 注:1)扭矩大时:起钻必须上下倒换钻具。2)每次起钻必须错扣起钻,释放应力并有记录。 3)钻具钢号前面必须有标准的字母。

新钻具钢号规定 钻具重量参照表

(1页) 常用钻具使用技术参数(单位:mm) 钻铤尺寸及工作参数

(2页) 方钻杆:1)方钻杆表面不应有裂纹,结疤,剥层,不允许在表面焊补缺陷或焊标尺。2)方部和圆角要平整。3)方钻杆的对边宽不得小于原尺寸的12mm。4)方钻杆台肩使用标准与钻铤相同。 加重钻杆:1)127mm加重钻杆接头外径不得小于155,最小台肩面宽度不得低于9。2)88.9mm加重钻杆接头外径不得小于119,最小台肩面宽度不得低于6.5。 螺纹:1)数字型,内平型剩余牙顶宽应>0.83。2)51/2~65/8FH, 51/2~85/8REG剩余牙顶宽不少于0.64。3)磨尖牙数均不能大于4扣。4)螺纹不应有严重腐蚀和泥浆冲蚀痕迹。 台肩平面:1)台肩平面应平整光滑,没有径向伤痕,刺痕,无毛刺。2)台肩平面因粘结或撞击呈凹凸不平者,在靠内圆处应保持完好,其完好部分最窄处宽度应达到相应尺寸钻具60%的使用台肩宽度,凡凸出处必须锉平。3)磨损后的台肩宽度包括倒角宽度。4)内螺纹镗孔直径±不得超过1.5mm(23/8,27/8钻杆,31/2钻铤±不得超过1.2mm)。5)外螺纹伸长在50.8内不得超过0.75mm。 直线度:1)8~12m长钻杆直线度应≤6mm,2)大于9m长钻铤直线度应≤6mm,小于9m长钻铤直线度应≤5mm。3)方钻杆直线度应≤8mm。 4)加重钻杆直线度应≤5mm。 钻具稳定器 为20%,二类钻杆偏磨为35%。

螺丝扭力标准

螺丝扭力标准 ○一般螺丝 螺丝规格 M2 M2.5 M3 M4 M5 标准扭力 1.6~2 3~4 6~7.5 14.5~18 28~35 (kgf?cm) ○自攻牙螺丝 螺丝规格 1.7 2 2.3 2.6 3 3.5 标准扭力 1.5 3 3 3 4 4 可以换算成国际通用的N.m,也就是牛米。 1KGF.cm=0.098Nm 扭力標准是怎么制定的? 先說一下我是怎么來做的 1.准备测试用具:电动起子,扭力计,机台,各种规格螺丝。 2.實際量測以不同扭力锁附各规格螺丝,并立即量测出退锁扭力值。 退鎖扭力應為鎖附扭力值的60%或以上. 3.用扭力计直接测量出破坏扭力数值。 破坏扭力数值即會造成滑牙,滑丝,螺丝斷裂或螺丝头打花的扭力值 4.求出适当扭力数值。 Ex:测出锁PCB板螺丝破壞扭力值为16kgf.cm,则适当扭力上限值为16/2=8kgf.cm, 故適當扭力值取7±1kgf.cm。 注:根据本厂内产品螺丝规格之特性,扭力值之安全系数取2,避免作业时因鎖附 扭力值訂的太大,而造成鎖附時會偶滑牙,滑丝,螺丝头打花不良现象. 5.验证适当扭力值之可靠性。 a.重複鎖附,测量扭力值。 b.取用适当扭力值锁附之产品进行振动试验,检查螺丝有无松动,并用扭力计量测 各螺丝退锁扭力是否大于或等于适当扭力值的60%. 螺丝扭力标准 目前常用之螺丝扭力标准 A B C D E M3 8 8 6 10 12 M3.5 10 8 6 —— M4 16 12 8 20 22 M5 30 20 12 —— M6 50 30 ———

M8 120 70 ——— M10 240 140 ——— M12 420 260 ——— 单位:Kgf.cm; 容许误差:±10% A、铁螺丝与铁螺帽(螺孔)之固定,如: *箱体各组件之组合。 *接地螺丝、螺帽之固定。 *PCB固定于箱体。 B、铁螺丝、铜螺帽(螺孔及铝合金材料螺孔之螺定,如: *电晶体或线材端子固定于铝散热片上。 *铝散热片固定于PCB上。 *大电容或电晶体端子(TERMINAL)之固定螺丝。 *RS-232六角铜柱之固定。 C、铁螺丝(自攻)锁于塑胶孔。 *塑胶面板固定于箱体。 *PCB固定于塑胶面板上。 D、铁螺丝(自攻)锁于板厚1.0之抽牙孔。 *M3抽牙也为ф2.8(+0,-0.05) *M4抽牙孔为ф3.65(+0.05,-0) E、铁螺丝(自攻锁于板厚1.2之抽牙孔,抽牙孔尺寸同D项。螺絲扭力表(公制)

常用高强度螺栓预紧力和拧紧扭矩

常用高强度螺栓预紧力和拧紧扭矩(参考) 预紧力Fv(kN)及扭紧力矩MA(N·m) 计算方式决定施工高强度螺栓扭矩: Ma=1.1 k Pv d 式中: k---扭矩系数,此数据由高强度螺栓制造商提供或在安装前实验得 到。通常k=0.11-0.15,详细数据见供货商的质量报告。 Pv---高强度螺栓预拉力, [kN]; d---高强度螺栓直径,mm。

如何确定机螺丝的紧固力矩 关于如何紧固螺栓和螺母的文章已经有很多,但如何恰当地紧固机螺丝(Machine Screws)的 文章较少。与如何确保螺栓和螺母的安全连接一样,在紧固机螺丝时,恰当地选择合适的拧紧力矩十分重要。恰当的、安全的连接直接关系到装配后产品的质量好坏。因此在紧固机螺丝时,我们应该计算一下合理的拧紧力矩。紧固机螺丝的这些力矩与紧固螺栓、螺母的力矩相比起来要小得多。 1、机螺丝拧紧力矩的计算 常用的计算螺纹紧固件拧紧力矩的公式为: T=D×K×P 其中: T:力矩(牛顿?米/英寸?磅1Nm=9 in.1b) D:螺纹的外径(1mm=0.03937 in) K:螺母的摩擦系数 (光杆螺栓 K=0.20 镀锌螺栓 K=0.22 上蜡或带润滑螺栓 K=0.10) P:夹紧力(一般是屈服点抗拉强度值的75%) 1.1米制机螺丝 米制机螺丝(Metric Machine Screws)有不同的强度等级,每个等级都有相应合适的拧紧力矩。在ISO国际标准中来制机螺丝(Metric Machine Screws)有两个主要的强度等级:4.8级(类似SAE 60M)和8.8级(类似SAE 120M)。强度等级4.8表示最小的抗拉强度是480MPa,这约等于每英寸70,000磅(即70,000 Psi)。强度等级8.8表示最小的抗拉强度是880MPa,约等于每英寸127,000磅(127,000Psi)。米制电镀锌机螺丝拧紧力矩见表1。 1.2 英制机螺丝 对于英制机螺丝(Inch Machine Screws)也有不同的强度等级,每个等级都有相应合适的拧紧力矩。在标准SAEJ82中对于英制机械螺栓有两种强度等级:60M级和120M级。强度等级60M表示最小的抗拉强度是60,000Psi;强度等级120M表示最小抗拉强度是120,000Psi。在 SAE J429中,强度等级5.2相当于在标准SAE J82中的强度等级120M,即也有约120, 紧固件的同行!您好!我是mDesign机械设计平台中国区总代理。非常期待与您的合作。我们希

螺栓拧紧力矩规范标准-全

螺栓拧紧力矩标准 未注明拧紧力矩要求时,参考下表(普通螺栓拧紧力矩)

公制螺栓扭紧力矩Q/STB 12.521.5-2000 范围:本标准适用于机械性能10.9级,规格从M6-M39的螺栓的扭紧力矩,对于使用尼龙垫圈、密封垫圈、其它非金属垫圈的螺栓,本标准不适用。

★对于设计图纸有明确力矩要求的,应按图纸要求执行。 套管螺母紧固力矩Q/STB B07833-1998 材料HPb63-3Y2 直通式压注油杯Q/STB B07020-1998(螺纹M6、M8*1、M10*1)紧固力矩:0.3-0.5Kg.m。 安全阀Q/STB B07029-1998(螺纹R1/8) 紧固力矩:2.9-4.9Nm。 通气塞Q/STB B07030-1998 (螺纹R1/4) 紧固力矩:2.94-5.88Nm。 螺塞Q/STB B07040-1998(公称直径08-10螺距1.25,12-36螺距1.5) 螺栓(排气)Q/STB B07060-1998(M12*1.5) 紧固力矩:58.8-78.4N.m。

软管(锥形密封)Q/STB B07100-1998 软管(锥形密封)Q/STB B07123-1998 (接头部螺母拧紧力矩)

螺母(球头式管接头用)Q/STB B07201-1998 拧紧力矩:N.m 材料:(Q235) 管接头螺母Q/STB B07202-1998 拧紧力矩(Q235 / HPb 59-1) 铰接螺栓Q/STB B07206-1998 拧紧力矩(Q235)

球头式端直通接头Q/STB B07211-1998 拧紧力矩(Q235 HPb 60-1 ) 表中拧紧力矩适用于钢制接头 管接头Q/STB B07212-1998 紧固力矩(区分代号为5、7的件材料Q235)

套管上扣扭矩表

套管上扣扭矩表一、339.7mm(133/8”)套管(单位:N*M) 钢级壁厚mm 长园扣短园扣 最佳最小最大最佳最小最大 H-408.38436532815464 J-559.65696952338718 10.928067604710087 12.199152686011443 K-559.65741655599224 10.928582644010725 13.069735730812175 C-7513.0613260995216582 N-8013.06141001057517625 C-9513.06163241224320405二、244.5mm(95/8”)套管 钢级壁厚mm 长园扣短园扣 最佳最小最大最佳最小最大 H-407.92344425904311 8.94398629966684 J-558.94614246107674534240136684 10.03705052888813612845967660 K-558.94663049758284637542987172 10.03760657089504658949498243 C-7510.039409706411769 11.0510521789013151 11.9911551866414140 13.84135451015516934 N-8010.039992749812487 11.0511185839313978 11.9912270920615334 13.84143991080618005 C-9510.0311484860914358 11.0512853964016066 11.99141001057517625 13.84165411240520676 P11011.05149951125318751 11.99164461233820554 13.84192801446624106 注:1b.ft(磅/英尺)=1.355818N.m;1kg.m=7.233b.ft(磅/英尺);Psi(磅/英寸2)=6.894757kpa (千帕);kg.cm2=98.0665kpa;m(米)=3.28048ft(英尺);kg..m=9.80655N.m;

最全螺栓扭矩表

Nm Ft-tb Nm Ft-tb Nm Ft-tb Nm Ft-tb Nm Ft-tb Nm Ft-tb M40.80.590048 1.040.7670624 1.92 1.41612 2.24 1.65213 3.12 2.30119 3.92 2.89124M5 1.44 1.06208642 1.47512 3.76 2.77323 4.48 3.30427 6.24 4.602377.44 5.48745M6 2.24 1.6521344 3.12 2.3011872 6.24 4.602377.84 5.7824710.968.0836612.569.26375(M7) 3.92 2.8912352 5.52 4.071331210.247.5526112.569.2637518.0813.335121.215.6363M8 6.24 4.60237447.84 5.782470415.6811.564919.614.456227.4420.238631.3623.1299M1011.768.673705615.6811.564940831.3623.129935.2826.021151.0437.645162.846.3188M1219.614.45617626.7219.707603246.434.222862.846.318890.466.6754109.680.8366(M14)31.3623.129881643.231.86259286.463.7252102.475.5261144.8106.799172.8127.45M1648.835.99292865.648.383936133.698.538156.8115.649213.6157.543256188.815(M18)67.249.56403291.267.265472184.8136.301208153.412292.8215.958351.2259.031M2096.871.395808130.496.177824259.2191.176298.4220.088420309.775502.4370.55(M22)131.296.767872176.8130.400608345.6254.901400295.024568.8419.524682.4503.311M24166.4122.729984225.6166.393536447.2329.837510.4376.451722.4532.813863.2636.662(M27)251.2185.275072337.6249.000256659.2486.2768.8567.0361083.2798.9251310.4966.499M30337.6249.000256455.2335.737312887.2654.3631052775.9131475.21088.051773.61308.14(M33) 463.2 341.637792 628 463.18768 1208.8 891.563 1436 1059.14 2024.8 1493.41 2416.8 1782.54 Spec Tight Toques for grade of bolt 4.6 5.6 (A4-50) 6.9 (A4-70)8.8 (A4-80)10.912.9

相关文档
最新文档