电子式慢应变应力腐蚀试验机

电子式慢应变应力腐蚀试验机
电子式慢应变应力腐蚀试验机

电子式慢应变应力腐蚀试验机

微机控制电子式慢应变应力腐蚀试验机采用计算机技术设计、研制的智能型试验机,它可以根据使用要求对试样进行拉伸、压缩、弯曲、蠕变等,主要用于检测、研究金属材料、非金属、复合材料及其制品的静态持久拉伸、蠕变、应力腐蚀等的机械性能试验,可用于在NaOH、NO3-、H2S、CL-溶液、甲醇、N2O4、NH3、湿空气和水等介质环境下测定金属的应力腐蚀破坏特性试验。通过恒载荷、恒变形等试验方法不能迅速激发应力腐蚀的条件下,确定延性材料应力腐蚀敏感性的加速试验方法。

性能参数

1、最大试验力:30kN; 50kN;

2、试验力范围:1--100%全程不分档

3、精度等级:1级;示值准确度优于±1%

4、配有螺纹连接夹具(两种)、销式连接夹具有自动调心装置;

5、速度精度优于±1%,示值准确度优于±1%,变形及位移精度优于±0.5%。

6、慢应变速率试验的拉伸速度可以在10-6~1mm/min 之间无级调节。

7、试验拉伸空间:0-400mm,试验空间可调

8、试验控制方式:力、时间、加载速率、分步(多级)加载

应用范围

1、研究金属材料的静态持久拉伸、蠕变、应力腐蚀等的机械性能试验;

2、可用于在NaOH、NO3-、H2S、CL-溶液、甲醇、N2O4、NH

3、湿空气和水等介质环境

下测定金属的应力腐蚀破坏特性试验;

3、通过恒载荷、恒变形等试验方法不能迅速激发应力腐蚀的条件下,确定延性材料应

力腐蚀敏感性的加速试验方法。

图片

应力腐蚀

1.应力腐蚀的机理:阳极溶解和氢致开裂机理 阳极溶解机理应力腐蚀断裂必须首先发生选择性腐蚀,而金属的腐蚀又受图4所示的阳极极化曲线的影响。以不锈钢为例,增加介质中Cl-含量,降低介质中O2含量及pH值,都会使图4a中阳极极化曲线从左向右移动,这四根曲线分别对应于蚀坑或裂纹区(图4b)的不同位置。应力的主要作用在于使金属发生滑移或使裂纹扩展,这两种力学效应都可破坏钝化膜,从而使阳极过程得以恢复,促进局部腐蚀。钝化膜破坏以后,可以再钝化。若再钝化速度低于钝化膜破坏速度,则应力与腐蚀协同作用,便发生应力腐蚀断裂。 氢致开裂机理或称氢脆机理,是应力腐蚀断裂的第二种机理。这种机理承认SCC必须首先有腐蚀,但是,纯粹的电化学溶解,在很多情况下,既不易说明SCC速度,也难于解释SCC的脆性断口形貌。氢脆机理认为,蚀坑或裂纹内形成闭塞电池,局部平衡使裂纹根部或蚀坑底部具备低的pH值,这是满足阴极反应放氢的必要条件。这种氢进入金属所引起的氢脆,是SCC的主要原因。这种机理取决于氢能否进入金属以及金属是否有高度的氢脆敏感性。高强度钢在水溶液中的SCC以及钛合金在海水中的SCC是氢脆引起的。

2.应力腐蚀开裂的断口形貌:穿晶断口开裂图

3.氢鼓泡产生机理,文字图 通过实验和理论分析研究了氢鼓泡形核、长大和开裂的过程. 在充氢试样中发现直径小于100 nm未开裂的孔洞, 它们是正在长大的氢鼓泡, 也发现已开裂的鼓泡以及裂纹多次扩展导致破裂的鼓泡.分析表明, 氢和空位复合能降低空位形成能, 从而使空位浓度大幅度升高, 这些带氢的过饱和空位很容易聚集成空位团.H在空位团形成的空腔中复合成H2就使空位团稳定, 成为氢鼓泡核.随着H 和过饱和空位的不断进入, 鼓泡核不断长大, 内部氢压也不断升高.当氢压产生的应力等于被氢降低了的原子键合力时, 原子键断开, 裂纹从鼓泡壁上形核. 图5 氢鼓泡形核、长大示意图 (a) 空位V和原子氢H聚集成为空位-原子氢集团; (b) 原子氢在空位 团中复合成分子氢H2, 使其稳定, 鼓泡核形成; (c) 空位和氢不断进 入鼓泡核使其长大; (d) 当鼓泡核内氢压产生的应力等于原子键合力时, 在鼓泡壁形成裂纹 首先, 氢(H)进入金属和空位(V)复合, 使空位形成能大大降低, 从而大幅度升高空位浓度, 这些过饱和空位容易聚集成空位团. 当4个或以上的空位或空位-氢复合体(V-H)聚集成空位四面体或空位团时, 内部形成空腔, 如图5(a). 空位所带的氢在空腔中就会复合成H2, 形成氢压. 由于室温时H2不能分解成H, 故含H2的空位团在室温是稳定的, 它就是鼓泡核, 如图5(b). 随着H和空位不断进入鼓泡核, 就导致鼓泡在充氢过程中不断长大, 同时氢压不断升高, 如图5(c). 当鼓泡中的氢压在内壁上产生的应力等于被氢降低了的原子键合力时, 原子键断裂, 裂纹沿鼓泡壁形核, 如图5(d). 随着氢的不断进入, 裂纹扩展, 直至鼓泡破裂4.氢进入金属材料的途径P129 5.氢致脆断类型:可逆和不可逆,第一类和第二类

金属疲劳应力腐蚀试验及宏观断口分析

金属疲劳、应力腐蚀试验及宏观断口分析 在足够大的交变应力作用下,由于金属构件外形突变或表面刻痕或内部缺陷等部位,都可能因较大的应力集中引发微观裂纹。分散的微观裂纹经过集结沟通将形成宏观裂纹。已形成的宏观裂纹逐渐缓慢地扩展,构件横截面逐步削弱,当达到一定限度时,构件会突然断裂。金属因交变应力引起的上述失效现象,称为金属的疲劳。静载下塑性性能很好的材料,当承受交变应力时,往往在应力低于屈服极限没有明显塑性变形的情况下,突然断裂。疲劳断口(见图1-1)明显地分为三个区域:裂纹源区、较为光滑的裂纹扩展区和较为粗糙的断裂区。裂纹形成后,交变应力使裂纹的两侧时而张开时而闭合,相互挤压反复研磨,光滑区就是这样形成的。载荷的间断和大小的变化,在光滑区留下多条裂纹前沿线。至于粗糙的断裂区,则是最后突然断裂形成的。统计数据表明,机械零件的失效,约有70%左右是疲劳引起的,而且造成的事故大多数是灾难性的。因此,通过实验研究金属材料抗疲劳的性能是有实际意义的。 图1-1 疲劳宏观断口 一﹑实验目的 1.了解测定材料疲劳极限的方法。 2.掌握金属材料拉拉疲劳测试的方法。 3.观察疲劳失效现象和断口特征。 4.掌握慢应变速率拉伸试验的方法。 二、实验设备 1.PLD-50KN-250NM 拉扭疲劳试验机。 2.游标卡尺。 3.试验材料S135钻杆钢。 4.PLT-10慢应变速率拉伸试验。 三﹑实验原理及方法 在交变应力的应力循环中,最小应力和最大应力的比值为应力比: max min σσ= r (1-1) 称为循环特征或应力比。在既定的r 下,若试样的最大应力为max 1σ,经历N 1次循环后,发生疲劳失效, 则N 1称为最大应力r 为时的max 1σ疲劳寿命(简称寿命) 。实验表明,在同一循环特征下,最大应力越大,则寿命越短;随着最大应力的降低,寿命迅速增加。表示最大应力max σ与寿命N 的关系曲线称为应力-寿命曲线或S-N 曲线。碳钢的S-N 曲线如图1-2所示。由图可见,当应力降到某一极限值r σ时,S-N 曲线趋 近于水平线。即应力不超过r σ时,寿命N 可无限增大。称为疲劳极限或持久极限。下标r 表示循环特征。 实验表明,黑色金属试样如经历107次循环仍未失效,则再增加循环次数一般也不会失效。故可把107 次循环下仍未失效的最大应力作为持久极限r σ。而把N 0=107称为循环基数。有色金属的S-N 曲线在N>5×108时往往仍未趋于水平,通常规定一个循环基数N 0,例如取N 0=108,把它对应的最大应力作为“条件”持久极限。

金属的应力腐蚀和氢脆断裂

第六章金属的应力腐蚀和氢脆断裂 §6.1应力腐蚀 一、应力腐蚀及其产生条件 1、定义与特点 (1)定义 (2)特点 特定介质(表6-1) 低碳钢、低合金钢——碱脆、硝脆 不锈钢——氯脆 铜合金——氨脆 2、产生条件 应力:外应力、残余应力; 化学介质:一定材料对应一定的化学介质; 金属材料:化学成分、显微组织、强化程度等。 二、应力腐蚀 1、机理(图6-1) 滑移——溶解理论(钝化膜破坏理论)

a)应力作用下,滑移台阶露头且钝化膜破裂(在表面或裂纹面); b)电化学腐蚀(有钝化膜的金属为阴极,新鲜金属为阳极); c)应力集中,使阳极电极电位降低,加大腐蚀;d)若应力集中始终存在,则微电池反应不断进行,钝化膜不能恢复。则裂纹逐步向纵深扩展。(该理论只能很好地解释沿晶断裂的应力腐蚀)2、断口特征 宏观:有亚稳扩展区,最后瞬断区(与疲劳裂纹相似);断口呈黑色或灰色。 微观:显微裂纹呈枯树枝状;腐蚀坑;沿晶断裂和穿晶断裂。(见图6-2,和p2) 三、力学性能指标 1、临界应力场强度因子K ISCC 恒定载荷,特定介质,测K I~t f曲线。 将不发生应力腐蚀断裂的最大应力场强度因子,称为应力腐蚀临界应力场强度因子。 2、裂纹扩展速度da/dt K I>K ISCC,裂纹扩展,速率da/dt Da/dt~ K I|曲线上的三个阶段(初始、稳定、失稳)由(图6-7,P152)可以估算机件的剩余寿命。 四、防止应力腐蚀的措施 1、合理选材; 2、减少拉应力; 3、改善化学介

质;4、采用电化学保护,使金属远离电化学腐蚀区域。 §6-2 氢脆 由于氢和应力的共同作用,而导致金属材料产生脆性断裂的现象,称为氢脆断裂(简称氢脆) 一、氢在金属中存在的形式 内含的(冶炼和加工中带入的氢);外来的(工作中,吸H)。 间隙原子状,固溶在金属中; 分子状,气泡中; 化学物(氢化物)。 二、氢脆类型及其特征 1、氢蚀(或称气蚀) 高压气泡(对H,CH4) 宏观断口:呈氧化色,颗粒状(沿晶); 微观断口:晶界明显加宽,沿晶断裂。 2)白点(发裂) 氢的溶解度↓,形成气泡体积↑,将金属的局部胀裂。 宏观:断面呈圆形或椭圆形,颜色为银白色。甚至有白线。 3)氢化物 形成氢化物(凝固、热加工时形成);或(应力作用下,元素扩散而形成)。 氢化物很硬、脆,与基体结合不牢。

应力腐蚀试验操作规程

文件名称:应力腐蚀试验作业标准 文件编号: 版号: 修改: 生效日期: 编制单位:

编制:年月日 审核:年月日 批准:年月日 发放编号: 受控印章: 目录

1.岗位职责及权限……………………………………………………………………(3 ) 2.主要设备参数及工装………………………………………………………………(3 ) 3.作业流程与操作规程………………………………………………………………(3~6)试样制备和要求………………………………………………………………( 3 ) 试验溶液………………………………………………………………………( 4 ) 推荐的试验装置………………………………………………………………( 4 ) 试验条件与步骤………………………………………………………………(4~5) RCC-M氯化镁应力腐蚀试验…………………………………………………(6 )结果处理………………………………………………………………………( 6 ) 4.相关文件……………………………………………………………………………(6 ) 5.质量记录……………………………………………………………………………(6 ) 6.修訂記錄……………………………………………………………………………(7 ) 7.附件…………………………………………………………………………………(7 )

1.岗位职责与权限 岗位职责 1.1.1按相关应力腐蚀试验技术标准进行试验。 1.1.2提前五分钟到岗,检查晶腐室水、电及药品的使用情况,做好试验前准备工作。 1.1.3坚守工作岗位不得随便离开,有事应向主管请假。 1.1.4认真填写本职责范围内的原始记录、对试验结果负责。 1.1.5负责提出药品及器材的购置计划。 1.1.6有责任接收上级主管部门的考核,复查结果。 1.1.7努力钻研技术,熟悉并认真执行标准,掌握好本岗位的操作技能。 权限 1.2.1对职权范围内的检验任务,按产品的规定有权作出检验结论。 1.2.2对既无产品性能说明,又无技术标准的产品有权拒绝接收检验。 1.2.3有权拒绝外来人员进入试验室,以防药品外流及干扰自已的分析测试工作。 2.主要设备参数及工装 试验采用温度计、回流冷凝器、锥形磨口密封烧瓶(1L)、箱式电阻炉、智能工业调节器AI-804、控温精度≦%、双目显微镜 3.作业流程与操作规程 试样制备和要求 3.1.1GB 3.1.1.1板状试样尺寸:厚1~3mm,宽10mm或15mm,长75mm。 3.1.1.2若试样厚度超过3mm,则仅切削其中一面,使厚度达到3mm,将非切削表面作为试验表面。 3.1.1.3试样的加工采用对于材质影响少的锯切等方法。在剪切的情况下,对切口断面进行切削和磨削加工,以消除剪切的影响。加工后的试样,可根据试验目的需要,进行消除残余应力影响的热处理。 3.1.1.4整个试样表面用GB/T 中规定的水砂纸依次磨到W40号。然后用适当溶剂除油、洗净。 3.1.2 ASTM

关注碱性应力腐蚀开裂

关注碱性应力腐蚀开裂 碱溶液中的腐蚀 在室温下,对于各种金属和合金,包括碳钢在内,在任意浓度的碱溶液(如氢氧化钠或者氢氧化钾)中的腐蚀,是较为容易控制的。随着温度和浓度的增加,腐蚀也将随之增强。考虑腐蚀的影响,碳钢的有效安全使用限制温度大约是150℉/65℃。读者从图1的曲线中可以看到碳钢的安全温度限制。相比于碳钢,不锈钢抵抗一般性腐蚀的能力更强;在大约接近250℉/121℃的温度下才发生碱性应力腐蚀开裂。 一般而言,随着含镍量的增加,金属抵抗碱溶液腐蚀的能力增强。碱性应力腐蚀开裂的敏感性主要取决于合金成分、碱浓度、温度和应力水平。对于一般开裂机理,都存在一个裂纹发生的临界应力值。不幸的是,现在还没有精确的获得在高温碱性环境下的高含镍量合金的临界应力值。由于600合金在压水反应堆蒸汽发生器传热管中的大量使用,已经获得了许多600合金在碱性环境下的数据。200合金(纯镍)除了在极其恶劣的碱性环境,包括熔盐的情况下,一般是不会发生腐蚀的。 合金抗碱溶液腐蚀的能力 碳钢和低合金钢 任意浓度的氢氧化钠和氢氧化钾(作为以下的碱)可用碳钢容器在室温下进行保存。当温度高于周围环境时,碳钢的腐蚀速率增大并且伴随着发生碱性应力腐蚀开裂的风险。碳钢容器可以在温度达到180℉/82℃的情况下安全的贮存低浓度的碱溶液;而对于浓度为50%的溶液,在温度接近120℉/48℃的情况下就会有发生碱性应力腐蚀开裂的风险。氢氧化钠环境下的使用图(图1)被广泛用于确定碳钢在不同碱浓度下的安全使用温度。图2所示的是碳钢在碱性环境下的裂纹显微照片。 铁素体不锈钢 高纯度的铁素体不锈钢,例如E-Brite 26-1(UNS S44627),显示出了很好的对高浓度碱性溶液的腐蚀抵抗力,其抗碱腐蚀性能远好于奥氏体不锈钢。根据报道,它抗碱性腐蚀的性能不低于镍。由于这种很好的对碱性环境的抗腐蚀性,使其能使用在会对镍合金造成腐蚀的次氯酸盐和氯酸盐杂质的环境中。据一则报道表明,26-1铁素体不锈钢可以在300℉/148℃到350℉/177℃的高温环境下使用。据另一则报道显示,其在350℉/177℃到400℉/204℃温度下,氢氧化钠的浓度为45%时,仍有很好的抗腐蚀能力。基于其对碱性环境,特别在含有氧化的污染物情况下,的良好抗腐蚀性,因此,在碱的蒸发器管中得到广泛应用。然而,铁素体不锈钢的致命缺陷是其固有的低的焊 接韧性和在高温下的低强度。因此,它们不能正常的应用 于压力容器。 奥氏体不锈钢 研究者根据商用纯碱溶液开发了用于描述影响碱脆的浓度 和温度参数图,也即为300系列奥氏体不锈钢的应力腐蚀 开裂。图3显示了所开发的图。1mpy的等蚀线在大约100° C使,对具有20%-60%浓度的碱为常数,应力腐蚀开裂的轮 廓线在40%-50%浓度范围内则稍高。 300系列不锈钢在热的浓度为40%-50%范围内的碱中很可能 会发生快速的一般性腐蚀,事实上,这种现象已经被观察 到了。因此,可能的安全限值将低于图上所示数值,例如: 50%浓度所对应的70°C和40%浓度所对应的80°C。 对于304/316类型的不锈钢,一般服役最大温度限值是100°C。在更高的温度下将会产生碱性开裂。300系列不 锈钢的应力腐蚀开裂是一种典型的穿晶裂纹。 双相不锈钢 双相不锈钢具有类似于316不锈钢那样的抗一般性腐蚀的 能力,并且对氯化物应力腐蚀开裂的敏感性性也较低。具 有较高合金含量的显著添加了钼和氮成分的双相钢合金, 抗碱性环境腐蚀的能力要优于316不锈钢。据报道,2205 不锈钢和2906不锈钢能很好的抵抗碱性应力腐蚀开裂。 高含镍量的奥氏体不锈钢 高含镍量的不锈钢中约含25-35 wt%的镍,包含有非专利 和有专利的合金,如:904L、Sanicro28、20Cb-3合金、800合金、AL6- XN等。与300系列不锈钢相比较,这些合 金对侵蚀性(高温)溶液的抵抗力有了极大的提高。 镍合金 在抗碱性环境下的腐蚀和应力腐蚀开裂方面,商业纯镍,200合金(N02200)和201合金(N02201)是最好的材料。400合金(N04400)和600合金(N06600)也具有优异的抗应力腐蚀能力。当碱浓度在70%以上,温度高于290°C(550°F)时,这些合金也会出现腐蚀应力开裂。镍铬钼合金,如C- 276(N10276),具有很好的抗碱性开裂的能力,但,在高浓度和高

材料的应力腐蚀

材料应力腐蚀 材料在应力和腐蚀环境的共同作用下引起的破坏叫应力腐蚀。这里需强调的是应力和腐蚀的共同作用。材料应力腐蚀具有很鲜明的特点,应力腐蚀破坏特征,可以帮助我们识别破坏事故是否属于应力腐蚀,但一定要综合考虑,不能只根据某一点特征,便简单地下结论。影响应力腐蚀的因素主要包括环境因素、力学因素和冶金因素。 原理 应力腐蚀是指在拉应力作用下,金属在腐蚀介质中引起的破坏。这种腐蚀一般均穿过晶粒,即所谓穿晶腐蚀。应力腐蚀由残余或外加应力导致的应变和腐蚀联合作用产生的材料破坏过程。应力腐蚀导致材料的断裂称为应力腐蚀断裂。 应力腐蚀一般认为有阳极溶解和氢致开裂两种。常见应力腐蚀的机理是:零件或构件在应力和腐蚀介质作用下,表面的氧化膜被腐蚀而受到破坏,破坏的表面和未破坏的表面分别形成阳极和阴极,阳极 处的金属成为离子而被溶解,产生电流流向阴极。由于阳极面积比阴极的小得多,阳极的电流密度很大,进一步腐蚀已破坏的表面。加上拉应力的作用,破坏处逐渐形成裂纹,裂纹随时间逐渐扩展直到断裂。这种裂纹不仅可以沿着金属晶粒边界发展,而且还能穿过晶粒发展。

影响 应力腐蚀过程试验研究表明:当金属加上阳极电流时可以加剧应力腐蚀,而加上阴极电流时则能停止应力腐蚀。一般认为压应力对应力腐蚀的影响不大。一般存在拉应力,但实验发现压应力有时也会产生应力腐蚀。对于裂纹扩展速率,应力腐蚀存在临界KISCC,即临界应力强度因子要大于KISCC,裂纹才会扩展。一般应力腐蚀都属于脆性断裂。应力腐蚀的裂纹扩展速率一般为10- 6~10-3 mm/min,而且存在孕育期,扩展区和瞬断区三部分。 容易发生应力腐蚀的设备发生这种腐蚀的主要设备有热交换器、冷却器、蒸汽发生器、送风机、干燥机和锅炉 特点 (1)造成应力腐蚀破坏的是静应力,远低于材料的屈服强度,而且一般是拉伸应力(近年来,也发现在不锈钢中可以有压应力引起)。这个应力可以是外加应力,也可以是焊接、冷加工或热处理产生的残留拉应力。最早发现的冷加工黄铜子弹壳在含有潮湿的氨气介质中的腐蚀破坏,就是由于冷加工造成的残留拉应力的结果。假如经过去应力退火,这种事故就可以避免。 (2)应力腐蚀造成的破坏,是脆性断裂,没有明显的塑性变形。

黄铜制成品应力腐蚀试验方法

《黄铜制成品应力腐蚀试验方法》 编制说明 1.任务来源 鉴于环保要求,当今世界上无铅黄铜新材料研发方兴未艾,黄铜的特点之一是会产生应力腐蚀开裂,因此新材料研发及产品应用必须经过应力腐蚀试验验证。黄铜制成品除残余应力外,还可能受到安装应力的作用,而且不能通过热处理方法消除,故必须进行模拟安装使用状态下的应力腐蚀试验,但这正是现行的国家标准所欠缺的。国家标准GB/T 10567.2-2007《铜及铜合金加工材残余应力检验氨熏试验法》仅适用于黄铜加工材,不适用黄铜制成品。因此,很有必要制定《黄铜制成品应力腐蚀试验方法》的全国性通用标准。 根据工业和信息化部工信厅科[2010]74号文《关于印发2010年第一批行业标准制修订计划的通知》精神,全国有色金属标准化技术委员会以有色标委[2010] 21号文下达了制定《黄铜制成品应力腐蚀试验方法》行业标准的项目计划(计划号2010-0426T-YS),由路达(厦门)工业有限公司、中铝洛阳铜业有限公司负责起草标准,并要求在2011年完成标准制定工作。 2.起草过程 标准起草单位首先查阅了国内外有关黄铜应力腐蚀试验方法的标准和资料。国内标准有GB/T 10567.2-2007《铜及铜合金加工材残余应力检验氨熏试验法》。国外同类标准主要有:国际标准ISO 6957-1988《铜合金抗应力腐蚀的氨熏试验》、欧盟标准EN 14977-2006《铜及铜合金拉应力检测 5%氨水试验》(在英、法、德等国普遍使用)、美国标准ASTM B 858-06《检测铜合金应力腐蚀破裂敏感性的氨熏试验方法》和日本标准JIS H 3250-2006《铜及铜合金棒》。 本着起草通用试验新标准应积极采用国际标准和国外先进标准,且技术水平应不低于相应国际标准的原则,标准起草单位对ISO 6957-1988等国外同类标准进行正确翻译和认真解读。然后,根据正交实验原理,对多元因子分别选择多种水平,对典型产品在各种不同使用工况条件下进行了试验研究,掌握了大量的试验数据。通过对试验结果进行深入分析和比较,对国内外相关标准的技术水平有

材料失效分析课程思考题

材料失效分析课程 思考题 第一章材料失效分析概论 1. 概述失效分析学科有哪些特点。 2. 失效是什么?它与事故、事件、故障有什么区别? 3. 失效分析的作用和意义是什么? 4. 简述失效模式、失效机理、失效缺陷和失效起因的的物理含义;举例说明它 们之间的相互关系。 5. 简要说明材料失效分析涉及的“六品”、“五件”和“四化”的物理含义。 6. 一个结构件的失效分析,一般需考虑哪几个主要因素? 7. 简述失效分析过程中的主要步骤及其任务。 8. 一辆自行车是由许多零部件组装而成,你认为哪些最容易发生失效,它们的 失效模式是什么? 9. 设想一下有没有永远不会失效的材料。如有,请举例并从失效模式和失效机 理出发叙述其理由。 第二章材料的断裂失效形式与机理 1. 工程结构件的强度设计,一般选取σs或σb二者中的最小值,许用应力的安 全系数是如何选取的? 2. 材料的强度设计准则、刚度设计准则和变形设计准则有什么区别?试用生活' 中的实例来说明它们各自的重要意义。 3. 韧性断裂和脆性断裂有什么区别?它们的断口形貌有什么不同? 4. 概述强度设计和断裂设计的区别,并谈谈如何防止脆性断裂。 5. 什么叫断裂力学? KI和KIC两者有什么关系? 6. 疲劳断口有什么特征?如何确定疲劳裂纹的起裂点? 7. 材料的抗断裂设计,有哪几个断裂参量可以选用? 8. 哪些参数可以用来表征材料的韧性? 9. 硬度测定有哪些方法?金属、陶瓷和聚合物的硬度测定方法为什么大多数不 能互用? 10.简述金属材料在不同失效模式下有哪些不同的失效机理。 第三章材料的腐蚀失效形式与机理 1. 什么叫腐蚀?化学腐蚀和电化学腐蚀有什么不同?请各举一例说明。 2. 在电化学腐蚀中,金属的损失伴随的是还原反应还是氧化反应?腐蚀发生在

应力腐蚀断裂

应力腐蚀断裂 一.概述 应力腐蚀是材料、机械零件或构件在静应力(主要是拉应力)和腐蚀的共同作用下产生的失效现象。它常出现于锅炉用钢、黄铜、高强度铝合金和不锈钢中,凝汽器管、矿山用钢索、飞机紧急刹车用高压气瓶内壁等所产生的应力腐蚀也很显著。 常见应力腐蚀的机理是:零件或构件在应力和腐蚀介质作用下,表面的氧化膜被腐蚀而受到破坏,破坏的表面和未破坏的表面分别形成阳极和阴极,阳极处的金属成为离子而被溶解,产生电流流向阴极。由于阳极面积比阴极的小得多,阳极的电流密度很大,进一步腐蚀已破坏的表面。加上拉应力的作用,破坏处逐渐形成裂纹,裂纹随时间逐渐扩展直到断裂。这种裂纹不仅可以沿着金属晶粒边界发展,而且还能穿过晶粒发展。应力腐蚀过程试验研究表明:当金属加上阳极电流时可以加剧应力腐蚀,而加上阴极电流时则能停止应力腐蚀。一般认为压应力对应力腐蚀的影响不大。 应力腐蚀的机理仍处于进一步研究中。为防止零件的应力腐蚀,首先应合理选材,避免使用对应力腐蚀敏感的材料,可以采用抗应力腐蚀开裂的不锈钢系列,如高镍奥氏体钢、高纯奥氏体钢、超纯高铬铁素体钢等。其次应合理设计零件和构件,减少应力集中。改善腐蚀环境,如在腐蚀介质中添加缓蚀剂,也是防止应力腐蚀的措施。采用金属或非金属保护层,可以隔绝腐蚀介质的作用。此外,采用阴极保护法见电化学保护也可减小或停止应力腐蚀。本篇文章将重点介绍应力腐蚀断裂失效机理与案例研究,并分析比较应力腐蚀断裂其他环境作用条件下发生失效的特征。,由于应力腐蚀的测试方法与本文中重点分析之处结合联系不大,故不再本文中加以介绍。 二.应力腐蚀开裂特征 (1)引起应力腐蚀开裂的往往是拉应力。 这种拉应力的来源可以是: 1.工作状态下构件所承受的外加载荷形成的抗应力。 2.加工,制造,热处理引起的内应力。 3.装配,安装形成的内应力。 4.温差引起的热应力。 5.裂纹内因腐蚀产物的体积效应造成的楔入作用也能产生裂纹扩展所需要的应力。 (2)每种合金的应力腐蚀开裂只对某些特殊介质敏感。 一般认为纯金属不易发生应力腐蚀开裂,合金比纯金属更易发生应力腐蚀开裂。下表列出了各种合金风应力腐蚀开裂的环境介质体系,介质有特点:即

【精品】应力腐蚀试验机

【关键字】精品 《YF-C1型(铝合金C环)应力周浸腐蚀试验机》一、概述 YF-C1型(铝合金C环)试样周期浸润应力腐蚀试验机适用于测量铝合金厚板、挤压件和锻件在高向(短横向)上的应力腐蚀试验。主要应用于铝合金C环试样在一定应力情况下置于周期浸润腐蚀试验箱内进行的应力腐蚀试验等。本产品能模拟户外自然大气腐蚀条件,通过对铝合金C环试样及其焊接材料的耐大气腐蚀的人工气候应力腐蚀加速试验,来评价其耐户外大气腐蚀的质量性能,可供各种科研机构、厂矿中心试验室及航空、航天、机械、电子领域等对产品试样进行浸润腐蚀试验用。 二、满足规范 HB 5259-83 《铝合金C环试样应力腐蚀试验方法》 GB/T 15970.5-1998 《金属和合金的腐蚀应力腐蚀试验》 TB/T2375-93 《铁路用耐侯钢周期浸润腐蚀试验方法》 HB5194-1981 《周期浸润腐蚀试验方法》 GB/T 19746-2005 《金属和合金的腐蚀盐溶液周浸试验》 三、技术指标 1、试验机工作室内尺寸:1200 X 650 X 900( L×D×H); 2、试验机外尺寸:1600 X 800 X 1500 ( L×W×H); 3、腐蚀溶液槽内尺寸:550×250×120 ( L×W×H); 4、试验温度控制范围:室温~ ; 5、湿度控制范围:40%~70%RH; 6、试验温度控制基本点:+和35+; 7、湿度控制基本点:≯45%+5%RH ; 8、温度波动度:≯+; 9、湿度波动度:≯+5%RH; 10、浸润周期时间设定范围:1—9999分钟/小时(任意设定); 11、枯燥周期时间设定范围:1—9999分钟/小时(任意设定); 12、试验时间定时控制:1—9999小时/分钟(任意设定); 13、周浸轮速度调节:无极调速,转速误差≯0.5%;

失效分析的程序和步骤

失效分析概要失效分析培训班用 2007年11月

前言 江苏省机械研究所于2007年12月举办一个三天半的失效分析培训班,本教材即为该培训班而准备的,本教材由东南大学材料科学与工程学院孔宪中编写,部分文字内容参考金属所的金属断裂失效分析一书。 我们知道,进行失效分析,是 1,找出事故原因,分清责任所属,依法进行索赔,挽回经济损失。 2,找出经验教训,避免同类事故,改进制造水平,定立新的工艺。 3,提供有关资料,促进法治建设,减少资金浪费,加快建设速度。 4,产生新型学科,提升科技水平,增强国家实力,节约资源成本这四方面所必需的,这次失效分析培训班主要介绍如何进行失效分析,大致内容有1.失效分析的几种分析思路: 按:根据失效分类的分析思路 根据设备或部件工作状况的分析思路 根据制造工艺和部件类别的分析思路 2.失效分析的分析程序 1),现场调查 2),观察,检测和检验 3),分析及验证,作分析结论, 4),提出报告,建议,及回访 3.失效分析程序的实施 1)设计分析程序和实施步骤 2)失效部件的直观检验过程 3)断裂源的确定 4)断裂机制的确定, 5)取样及编号 6)检测和检验 7)信息的纵综合,归纳,分析,得出初步结论 8)结论的验证,写出报告,提出建议, 4,常用的失效分析技术 1)金属的显微断口分析 2)金属及部件的疲劳失效分析 3)腐蚀疲劳失效分析及应力腐蚀失效分析 4)氢脆失效分析 5)高温失效分析 6)焊接失效分析 5.常见部件的失效分析案例 1)轮类用齿轮,叶轮,螺杆,轮箍各选一例 2)轴类用曲轴,摇杆轴,前轴,连杆各选一例 3)管道类用管道,导管方面选二例 4)基础件类用轴承,弹簧,模具方面选三例 通过培训班学习,使参加者获得一定的失效分析素养,能具备一定的失效分析能力,有一定程度的失效分析技术,接触一定数量的失效分析案例,便于开展失效分析工作。

应力腐蚀试验操作规程完整

. . 文件名称:应力腐蚀试验作业标准 文件编号: 版号: 修改: 生效日期: 编制单位: 编制:年月日 审核:年月日 批准:年月日 发放编号: 受控印章:

目录 1.岗位职责及权限……………………………………………………………………( 3 ) 2.主要设备参数及工装………………………………………………………………( 3 ) 3.作业流程与操作规程………………………………………………………………(3~6) 3.1试样制备和要求………………………………………………………………( 3 ) 3.2试验溶液………………………………………………………………………( 4 ) 3.3推荐的试验装置………………………………………………………………( 4 ) 3.4试验条件与步骤………………………………………………………………(4~5) 3.5RCC-M氯化镁应力腐蚀试验…………………………………………………( 6 ) 3.6结果处理………………………………………………………………………( 6 ) 4.相关文件……………………………………………………………………………( 6 ) 5.质量记录……………………………………………………………………………( 6 ) 6.修訂記錄……………………………………………………………………………( 7 ) 7.附件…………………………………………………………………………………( 7 )

1.岗位职责与权限 1.1岗位职责 1.1.1按相关应力腐蚀试验技术标准进行试验。 1.1.2提前五分钟到岗,检查晶腐室水、电及药品的使用情况,做好试验前准备工作。 1.1.3坚守工作岗位不得随便离开,有事应向主管请假。 1.1.4认真填写本职责围的原始记录、对试验结果负责。 1.1.5负责提出药品及器材的购置计划。 1.1.6有责任接收上级主管部门的考核,复查结果。 1.1.7努力钻研技术,熟悉并认真执行标准,掌握好本岗位的操作技能。 1.2权限 1.2.1对职权围的检验任务,按产品的规定有权作出检验结论。 1.2.2对既无产品性能说明,又无技术标准的产品有权拒绝接收检验。 1.2.3有权拒绝外来人员进入试验室,以防药品外流及干扰自已的分析测试工作。 2.主要设备参数及工装 试验采用温度计、回流冷凝器、锥形磨口密封烧瓶(1L)、箱式电阻炉、智能工业调节器AI-804、控温精度≦0.2%、双目显微镜 3.作业流程与操作规程 3.1试样制备和要求 3.1.1GB 3.1.1.1板状试样尺寸:厚1~3mm,宽10mm或15mm,长75mm。 3.1.1.2若试样厚度超过3mm,则仅切削其中一面,使厚度达到3mm,将非切削表 面作为试验表面。 3.1.1.3试样的加工采用对于材质影响少的锯切等方法。在剪切的情况下,对切口 断面进行切削和磨削加工,以消除剪切的影响。加工后的试样,可根据试验 目的需要,进行消除残余应力影响的热处理。 3.1.1.4整个试样表面用GB/T 2481.1中规定的水砂纸依次磨到W40号。然后用适 当溶剂除油、洗净。 3.1.2 ASTM 3.1.2.1试样应从平行或垂直轧制方向截取。 3.1.2.2图1为代表性试样,试样的施加应力方式决定试样上是否开小洞。试样的 长和宽取决于材料的大小和形状,施加应力的方式以及试验容器大小。试样 厚度取决于材料的形状,强度和延展性,以及弯曲方式。表1列出了几种尺 寸供参考。 3.1.2.3若要对试样进行比较,则试样的尺寸应相同,特别是厚度与弯曲半径的比 值。这样使得在比较的材料中产生的最大应力近似相等。若进行比较的材料 之间机械性能相差很大,保持试样尺寸的严格相等是不必要的。 3.1.2.4最终表面处理之前可进行必要的热处理。分阶段进行研磨或加工,表面粗 糙度至少为0.76μm。加工过程应避免过热,防止产生残余应力或表面发生 冶金、化学改变。对试样边缘进行与表面一样的处理。 3.1.2.5若要求检验表面(如,冷轧或冷轧,退火,和酸洗)不去除表面金属,试 样边缘应进行磨削,任何情况下都应避免锋利的边缘。 3.1.2.6最后一步为对试样进行去油。视应力施加方法不同,可在施加应力前或后 进行。 3.2试验溶液 3.2.1 GB

失效分析案例举例

失效分析案例举例

案例1 油井套管腐蚀 0、背景介绍: 1、套管腐蚀形貌 2、腐蚀产物XRD分析 3、油套管材质的金相和非金属夹杂分析 4、管壁SRB分析检测 5、腐蚀试验 6、结论

背景介绍:中原油田全油田有100多口井套管 腐蚀穿孔,30多口井报废,200多口井套管待修。油井套管的最大穿孔速度为0.48mm年。 1套管腐蚀形貌 对现场取出损坏的套管进行解剖分析。套管内壁分布腐蚀坑,管内壁腐蚀面平稳,腐蚀沿管轴纵向延伸呈马蹄形,其横断面为上宽下窄的梯形深谷状,管壁穿孔处周边锐利,界面清晰。从总体上看,套管内壁都附着黑色粘性油污,无明显腐蚀产物堆积,主要表现为坑蚀穿孔,并有一定的流体冲刷作用。

2腐蚀产物XRD分析 取套管内壁物质,洗去油污,再用丙酮清洗吹干,进行X—射线 衍射分析。套管内壁腐蚀产物中主要有FeCO 3和CaCO 夹杂有NaCl和硫酸亚铁等。腐蚀产物的主要成份为碳酸盐,显示出套管、油管腐蚀与CO 2 腐蚀有关。 3油套管材质的金相和非金属夹杂分析 采用电子探针分析仪进行钢基、夹杂物定性、定量和元素面分析。套管钢的纵截面夹杂物形貌及面分析发现, 大量细小球形 暗灰色颗粒为Al 2O 3 , 短条状为MnS。材质中夹杂物以Al 2O 3 和MnS为主, 少量Al 2 O 3 、TiO2存在。整个材料裂口 面上夹杂物多且分散较均匀,夹杂物以Al 2O 3 、MnS为主 散均匀,加速了钢材的腐蚀。同时经电子探针元素定量分析表明随着向腐蚀坑底的深入,表层元素中氧、硫、氯、钙、镁含量在逐步增大。说明生成的腐蚀产物有铁氧化物、硫化铁、碳酸钙、碳酸镁等,并随腐蚀深入呈增加趋势。

应力腐蚀试验标准和应力腐蚀试验机

应力腐蚀试验标准和应力腐蚀试验机 在日常生活中,腐蚀现象随处可见,因为腐蚀而造成的材料失效比比皆是。现在,研究材料在腐蚀介质环境(或称作氛围)中材料对介质的敏感性以及在腐蚀介质中裂纹扩展速率显得尤为重要,作为材料研究者或者材料应用者,应对材料的这种耐腐蚀特性需要仔细研究,以确保材料的合理使用,最优使用。掌握材料的应力腐蚀试验方法、试验标准也非常重要。 通常,材料的耐腐蚀特性主要通过以下几种试验确定: 1. 慢应变速率应力腐蚀试验,通常也叫做慢拉伸试验; 2. 材料应力腐蚀疲劳试验; 3. 材料腐蚀试验; 这三种试验通常采用慢应变速率应力腐蚀试验机,腐蚀疲劳试验机,腐蚀环境试验箱三种设备完成。需要提醒用户的是:慢应变速率应力腐蚀试验机可以和应力腐蚀疲劳试验机集成在一套设备上完成,而不必搞成两套设备完成。作为材料研究单位,因为一种材料往往面临在很多介质条件下工作的可能性,所以,介质环境的准备、不同的介质、不同的温度对试验容器将会提出不同的要求,包括安装位置,所以用户在采购这类设备的时候一定要对这些条件明晰,以采购到合适的设备。 百若仪器为用户提供的采用集中加载单元的FCC-50型多功能裂纹扩展速率试验机,即可完成慢拉伸试验、应力腐蚀疲劳试验。 希望以下的标准对用户的应力腐蚀试验起到一定的帮助作用。 GB/T 13671-1992 不锈钢缝隙腐蚀电化学试验方法 GB/T 15748-1995 船用金属材料电偶腐蚀试验方法 GB/T 10119-1988 黄铜耐脱锌腐蚀性能的测定 GB/T 10123-2001 金属和合金的腐蚀 基本术语和定义 GB/T 10126-2002 铁-铬-镍合金在高温水中应力腐蚀试验方法 GB/T 10127-2002 不锈钢三氯化铁缝隙腐蚀试验方法 GB/T 15970.2-2000 金属和合金的腐蚀 应力腐蚀试验 第2部分:弯梁试样的制备和应用 GB/T 15970.4-2000 金属和合金的腐蚀 应力腐蚀试验 第4部分:单轴加载拉伸试样的制备和应用 GB/T 15970.5-1998 金属和合金的腐蚀 应力腐蚀试验 第5部分:C型环试样的制备和应用 GB/T 15970.6-1998 金属和合金的腐蚀 应力腐蚀试验 第6部分:预裂纹试样的制备和应用 GB/T 15970.7-2000 金属和合金的腐蚀 应力腐蚀试验 第7部分:慢应变速率试验 GB/T 16482-1996 荧光级氧化钇铕 GB/T 16545-1996 金属和合金的腐蚀 腐蚀试样上腐蚀产物的清除

应力腐蚀断裂

一.概述 应力腐蚀是材料、机械零件或构件在静应力(主要是拉应力)和腐蚀的共同作用下产生的失效现象。它常出现于锅炉用钢、黄铜、高强度铝合金和不锈钢中,凝汽器管、矿山用钢索、飞机紧急刹车用高压气瓶内壁等所产生的应力腐蚀也很显著。 常见应力腐蚀的机理是:零件或构件在应力和腐蚀介质作用下,表面的氧化膜被腐蚀而受到破坏,破坏的表面和未破坏的表面分别形成阳极和阴极,阳极处的金属成为离子而被溶解,产生电流流向阴极。由于阳极面积比阴极的小得多,阳极的电流密度很大,进一步腐蚀已破坏的表面。加上拉应力的作用,破坏处逐渐形成裂纹,裂纹随时间逐渐扩展直到断裂。这种裂纹不仅可以沿着金属晶粒边界发展,而且还能穿过晶粒发展。应力腐蚀过程试验研究表明:当金属加上阳极电流时可以加剧应力腐蚀,而加上阴极电流时则能停止应力腐蚀。一般认为压应力对应力腐蚀的影响不大。 应力腐蚀的机理仍处于进一步研究中。为防止零件的应力腐蚀,首先应合理选材,避免使用对应力腐蚀敏感的材料,可以采用抗应力腐蚀开裂的不锈钢系列,如高镍奥氏体钢、高纯奥氏体钢、超纯高铬铁素体钢等。其次应合理设计零件和构件,减少应力集中。改善腐蚀环境,如在腐蚀介质中添加缓蚀剂,也是防止应力腐蚀的措施。采用金属或非金属保护层,可以隔绝腐蚀介质的作用。此外,采用阴极保护法见电化学保护也可减小或停止应力腐蚀。本篇文章将重点介绍应力腐蚀断裂失效机理与案例研究,并分析比较应力腐蚀断裂其他环境作用条件下发生失效的特征。,由于应力腐蚀的测试方法与本文中重点分析之处结合联系不大,故不再本文中加以介绍。 二.应力腐蚀开裂特征 (1)引起应力腐蚀开裂的往往是拉应力。 这种拉应力的来源可以是: 1.工作状态下构件所承受的外加载荷形成的抗应力。 2.加工,制造,热处理引起的内应力。 3.装配,安装形成的内应力。 4.温差引起的热应力。 5.裂纹内因腐蚀产物的体积效应造成的楔入作用也能产生裂纹扩展所需要的应力。 (2)每种合金的应力腐蚀开裂只对某些特殊介质敏感。 一般认为纯金属不易发生应力腐蚀开裂,合金比纯金属更易发生应力腐蚀开裂。下表列出了各种合金风应力腐蚀开裂的环境介质体系,介质有特点:即金属或合金可形成纯化膜,弹介质中有有破坏纯化膜完整性的离子存在。而且

慢应力腐蚀试验机

一、产品用途: FL慢应力腐蚀试验机为在常温~微高温、常温~低温、常压~微高压介质环境下的慢应变速率拉伸试验(SSRT)、恒载荷应力腐蚀开裂(SCC)试验等,能对SCC 裂纹扩展、腐蚀疲劳裂纹扩展在线、离线测量等多种试验提供实现方案。应力腐蚀试验的环境介质常见的有超纯水、海水、N2O4、NH3、甲醇等腐蚀介质环境,系统采用模组化设计,不同试验功能配置不同的实验模块,具有极高的维护性和可扩展性。该系统的单元有:馥勒应力加载单元、实验釜单元、水化学测量循环回路、DCPD 裂纹扩展测量单元、应变测量单元、温度控制单元、测控单元、馥勒试验软件等 二、满足标准 2.1HB 7235-1995 慢应变速率应力腐蚀试验方法 2.2HB 5260-1983 马氏体不锈钢拉伸应力腐蚀试验方法 2.3GB/T15970.7-2000 金属和合金的腐蚀应力腐蚀试验第7 部分:慢应变速率试验 2.4ISO 7539-7-2005 Corrosion of metals and alloys – Stress corrosion testing Part7: Method for slow strain rate testing 2.5ASTM G129 - 00(2006) Standard Practice for Slow Strain Rate Testing to Evaluate the Susceptibility of Metallic Materials to Environmentally Assisted Cracking 2.6ASTM G47 Standard Test Method for Determining Susceptibility to Stress-Corrosion Cracking of 2XXX and 7XXX Aluminum Alloy Products 三、主要技术参数 3.1试验机型号:FLFS304、FLFS504、FLFS105 3.2额定载荷:30KN、50KN、100KN可选可定制 3.3力值测量范围:0.4%~100%F.S. 3.4力值准确度:0.5% 3.5力值分辨率:0.2N(30KN)、0.3N(50KN)、0.6N(100KN) 3.6加载额定移动范围:80mm 3.7加载位移速率范围(慢拉伸应力加载单元):10mm/s~1x10-7mm/s 3.8加载位移速率范围(裂纹扩展应力加载单元):10mm/s~1x10-6mm/s 位移示值准确度:0.3% 3.9位移分辨率(慢拉伸应力加载单元):0.0005μm 3.10位移分辨率(裂纹扩展应力加载单元):0.005μm 3.11伸长测量范围(光栅位移传感器):30mm 3.12伸长测量分辨率:0.1μm 3.13伸长测量准确度:0.5% 3.14疲劳加载波形:正弦波、三角波,以及半波 3.15疲劳加载频率:0.0001~2Hz 3.16实验容器:可选 四、主要特点: 4.1主机框架为四立柱落地式结构,灵活的安装方式可以根据试验需求对实验釜进行上置固定或者下置固定。载荷架有两倍以上的设计强度保护,保证了极高的刚性,大幅减弱了载荷架的弹性形变对测量的影响。 4.2全数字嵌入式测控系统,专为实时性测量和数据处理而设计,双32bit CPU高速运行,可

材料的应力腐蚀

材料应力腐蚀材料在应力和腐蚀环境的共同作用下引起的破坏叫应力腐蚀。这里需强调的是应力和腐蚀的共同作用。材料应力腐蚀具有很鲜明的特点,应力腐蚀破坏特征,可以帮助我们识别破坏事故是否属于应力腐蚀,但一定要综合考虑,不能只根据某一点特征,便简单地下结论。 影响应力腐蚀的因素主要包括环境因素、力学因素和冶金因素。 原理 应力腐蚀是指在拉应力作用下,金属在腐蚀介质中引起的破坏。这种腐蚀一般均穿过晶粒,即所谓穿晶腐蚀。应力腐蚀由残余或外加应力导致的应变和腐蚀联合作用产生的材料破坏过程。应力腐蚀导致材料的断裂称为应力腐蚀断裂。 应力腐蚀一般认为有阳极溶解和氢致开裂两种。常见应力腐蚀的机理是:零件或构件在应力和腐蚀介质作用下,表面的氧化膜被腐蚀而受到破坏,破坏的表面和未破坏的表面分别形成阳极和阴极,阳极处的金属成为离子而被溶解,产生电流流向阴极。由于阳极面积比阴极的小得多,阳极的电流密度很大,进一步腐蚀已破坏的表面。加上拉应力的作用,破坏处逐渐形成裂纹,裂纹随时间逐渐扩展直到断裂。这种裂纹不仅可以沿着金属晶粒边界发展,而且还能穿过晶粒发展。 影响 应力腐蚀过程试验研究表明:当金属加上阳极电流时可以加剧应力腐蚀,而加上阴极电流时则能停止应力腐蚀。一般认为压应力对应力腐蚀的影响不大。一般存在拉应力,但实验发现压应力有时也会产生应

力腐蚀。对于裂纹扩展速率,应力腐蚀存在临界KISCC,即临界应力强度因子要大于KISCC,裂纹才会扩展。一般应力腐蚀都属于脆性断裂。应力腐蚀的裂纹扩展速率一般为10-6~10-3mm/min,而且存在孕育期,扩展区和瞬断区三部分。 容易发生应力腐蚀的设备发生这种腐蚀的主要设备有热交换器、冷却器、蒸汽发生器、送风机、干燥机和锅炉 特点 (1)造成应力腐蚀破坏的是静应力,远低于材料的屈服强度,而且一般是拉伸应力(近年来,也发现在不锈钢中可以有压应力引起)。这个应力可以是外加应力,也可以是焊接、冷加工或热处理产生的残留拉应力。最早发现的冷加工黄铜子弹壳在含有潮湿的氨气介质中的腐蚀破坏,就是由于冷加工造成的残留拉应力的结果。假如经过去应力退火,这种事故就可以避免。 (2)应力腐蚀造成的破坏,是脆性断裂,没有明显的塑性变形。 (3)只有在特定的合金成分与特定的介质相组合时才会造成应力腐蚀。例如α黄铜只有在氨溶液中才会腐蚀破坏,而β黄铜在水中就能破裂。 (4)应力腐蚀的裂纹扩展速率一般在10-9-10-6m/s,有点象疲劳,是渐进缓慢的,这种亚临界的扩展状况一直达到某一临界尺寸,使剩余下的断面不能承受外载时,就突然发生断裂。

相关文档
最新文档