电流电压检测方法

电流电压检测方法
电流电压检测方法

电流电压检测方法

一,电压检测

1电压检测相对比较简单,电压传感器并接在待测电压的线端就行。

0.1V以上的精度的话比较简单,简单芯片就可以,比较器。或电压跟随器;放大器来满足精度不够的问题,不同的放大器有不通的精度A) 以下为电压范围检测,输出状态:

常用器件:LM358,TL431等

B) 使用分压电路,将0--100V转换成0—5V ,然后通过ADC取样转换成数字信号,1024或更高位。精度在10-3方,这种办法可以测定连续线性电压。

常用芯片AD536、AD637、LTC1966、LTC1967、LTC1968等等。

C)高精度一般采用专门的ADC转换芯片,带有专用接口。常见于

0.05V以上的精度,要考虑到漂移。常用专门芯片转换,ADC转换

芯片。可以对连续的线性电压进行取样检测。

常用芯片如CS1232 ADC 0808/0809 ,AD574A , ADS1110, MAX4080/MAX4081 INA270 INA271

注意:电压电流转换的时候,根据需要为了防止干扰,有带隔离的芯片。

二,电流检测

电流检测分为接触与非接触式,

接触式:互感检测法、电阻检测法;

非接触式:霍尔电流传感器等

电流检测,实际上也依赖电压检测,再计算出电流。

1、交流互感检测法。损耗低。互感检测法,一般用在高电压大电

流场合(交流)。当主绕组流过大小不同电流时,副绕组就感应出相应的高低不同的电压。将互绕组的电压数值读出,就可计算出流经主绕组的电流。比如变压器中常用。为了减少损耗,常采用电流互感器检测。在电流互感器检测电路的设计中,要充分考虑电路拓扑对检测效果的影响,综合考虑电流互感器的饱和问题和副边电流的下垂效应,以选择合适的磁芯复位电路、匝比和检测电阻。电流互感器检测在保持良好波形的同时还具有较宽的带宽,电流互感器还提供了电气隔离,并且检测电流小损耗也小,检测电阻可选用稍大的值,如一二十欧的电阻

2、电阻检测法。电阻检测法,一般用于低电压小电流场合。利用电流流过电阻时,在电阻两端会产生相应的电压,将这个电压数值读出,就可计算出流经电阻的电流。也就通常的电流转成电压来测量电流。

取样后通过放大,采用ADC方法能得到线性的变化;如采用比较器则能得到电流状态。

器件: CSM2512 放大器需要高的增益。MAX471

优势:成本低、精度较高、体积小

劣势:温漂较大,精密电阻的选择较难,无隔离效果;检测电阻损耗大

输出状态:

如:MAX4198 MAX4199 INA270,INA271等

该电路的缺点:

1)输入电阻相对较低,等于R1;

2)输入端的输入电阻一般有较大的误差值

3)要求电阻的匹配度要高,以保证可接受的CMRR。任何一个电阻产生1%变化就会使CMRR降低到46dB;0.1%的变化使CMRR达到66dB,0.01%的变化使CMRR达到86dB。高端电流检测需要较高的测量技巧,这促进了高端检流集成电路的发展。而低端电流检测技术似乎并没有相应的进展。

放大器的选择:

放大器要有足够低的输入失调,尽量高的共模抑制比。还要注意放大器的共模输入范围是否覆盖实际信号的共模范围,带宽是否满足要求等等。在进行pcb设计时需别注意检测信号线的走线,要尽量保持两条检测线靠近、对称布局,并远离大功率信号、数字信号布局运放的CMRR,Vos ,Vos drift setting time等等。会影响测试精度的。

3、取样电阻选择需要考虑的问题

1)电压损耗:取样电阻值过大会产生损耗

2)精度:较大的取样电阻可以获得更高的小电流测量精度。主要因为取样电阻上的电压越大,运放的失调电压与输入偏置电流的影响相对越小。

3)效率与功耗:当电流大时,取样电阻上可能发热。额定功率要大。

4)电感:如果取样电流包含大量高频成分,则取样电阻的电感量要很小。绕线电阻的电感最大,金属膜电阻较好。

5)温漂:电阻发热时,会引起阻值的变化。选择低温漂元器件及电路,布局时检测信号线要对称。如:1个电阻R=1mΩ,精度为±1%,TCR=±200ppm/℃,输出电流

最大电流为45A时输出功率为2W,这种情况下温度会有所I=33A,输出功率P=1W。

改变。假设温度漂移是75℃,如果TCR=20ppm/℃,输出精度改变为 TCR=(75℃)×(20p p m/℃)×(0.0001%/ppm)=0.15%;如果是普通电阻,温漂特性达800ppm/℃,则有TCR= (75℃)×(800ppm/℃)×(0.0001%/ppm)=6%。根据系统精度要求不同,可以选择不同温漂特性的电流传感器。常用零温漂器件OPA335,

OPA333,INA209

6)成本:直接在PCB板上检测电流,由于印制板铜线精度不高,电路里需要一个电位调节满量程的电流值。同时还要考虑温漂。

三、采用霍尔电流传感器方式。常用开环与闭环两种方式。

闭环模式又称为零磁通模式或磁平衡模式,其输入与输出端均为电流信号。

开环模式又称为直接测量式霍尔电流传感器,输入为电流,输出为电压。这种方式的优点是结构简单,测量结果的精度和线性度都较高。可测直流、交流和各种波形的电流。但它的测量范围、带宽等受到一定的限制。在这种应用中,霍尔器件是磁场检测器,它检测的是磁芯气隙中的磁感应强度。电流增大后,磁芯可能达到饱和;随着频率升高,磁芯中的涡流损耗、磁滞损耗等也会随之升高。这些都会对测量精度产生影响。当然,也可采取一些改进措施来降低这些影响,例如选择饱和磁感应强度高的磁芯材料;制成多层磁芯;采用多个霍尔元件来进行检测等等。

四、其他的电流检测器件。

除以上介绍的几种电流检测方式外,还有其他几种测量方式,分别为:

AVAGO的光耦隔离放大器。

TI的电容式隔离放大器

ADI的西格玛德尔塔式隔离放大器。

电池容量测试方法

容量是指电池存储电量的大小。电池容量的单位是“mAh”,中文名称是毫安时(在衡量大容量电池如铅蓄电池时,为了方便起见,一般用“Ah”来表示,中文名是安时,1Ah=1000mAh)。若电池的额定容量是1300mAh,如果以0.1C(C为电池容量)即130mA的电流给电池放电,那么该电池可以持续工作10小时(1300mAh/130mA=10h);如果放电电流为1300mA,那供电时间就只有1小时左右(实际工作时间因电池的实际容量的个别差异而有一些差别)。这是理想状态下的分析,数码设备实际工作时的电流不可能始终恒定在某一数值(以数码相机为例,工作电流会因为LCD显示屏、闪光灯等部件的开启或关闭而发生较大的变化),因而电池能对某个设备的供电时间只能是个大约值,而这个值也只有通过实际操作经验来估计。 附:充电电池的分类 首先容我向大家介绍与充电电池种类以及相关术语。目前数码产品中使用最多的就是AA(俗称5号)和AAA(俗称7号)标准电池,还有一部份使用专用电池。不管它们的外形如何,从它里面的电芯可以分为镍镉可充电电池(Ni-Cd Battery)、镍氢可充电电池(Ni-Mh Battery)、锂离子电池(Li-lon Battery)三种。 镍镉可充电电池 镍镉可充电电池采用1.6倍电压充电,通常充电次数为300~800次。在充放电达500次后电容量会下降,只能达到约80%。镍镉电池的缺点是在充放电时,阴极会长出镉的针状结晶,有时会穿透分隔物而引起内部枝状晶体式的短路。 这里我顺带提一提大名鼎鼎的“记忆效应”,相信不少朋友都知道这个词,但它倒底是怎么一回事儿呢?针对镍镉电池而言,由于传统工艺中电池负极为烧结式,镉晶粒较粗,如果镍镉电池在它们被完全放电之前就重新充电,镉晶粒容易聚集成块而使电池放电时形成放电平台。电池会储存这一放电平台并在下次循环中将其作为放电的终点。尽管电池本身的容量可以使电池放电到更低的平台上,但在以后的放电过程中电池将只记得这一低容量。也就是说电池容量变小了,这就是所谓的“记忆效应”。 镍氢可充电电池 镍氢可充电电池主要是为了取代镍镉电池而设计的。镍氢电池是使用氧化镍作为阳极,以及吸收了氢的金属合金作为阴极,氢氧化钾碱性水溶液为电解液。镍氢电池的能量密度比镍镉电池大,相同体积的镍氢电池容量可以达到镍镉电池的2倍左右。同时它不含有害金属、更加环保,同时镍氢电池基本消除了“记忆效应”。它的充电效率高,能在2小时内充足90%电量。但是不耐过充和过度放电,因此这种电池的充电器必须可自动断电,否则易造成电池损坏。 基于以上优点,镍氢电池几乎已经完全取代了镍镉电池。目前销售数码相机、MP3的电脑市场上出售的标准AA、AAA电池绝大多数是镍氢电池,主流AA镍氢电池容量达到了1500~2600mAH时,主流AAA镍氢电池容量达650~800mAH。而容量仅几百mAH的镍镉电池仅在一些百货商场可以见到,但与镍氢电池相同明显没有性价比,不建议贪图价格上的便宜而选用镍镉电池。关于容量方面的选择,目前DC、MP3等产品的液晶屏越来越大,应该尽量选择大容量的产品。 锂离子电池 我们俗称的锂电池一般将多颗电芯串连起来,电压范围在3.0~4.0V之间(公称电压3.6V)。以前还有一种金属锂电池,但锂离子电池比金属锂电子更安全,原因就在于是采用锂离子状态,锂离子电池没有可流动的液态电解质,而是改为聚合物电解质导电。锂离子电池与相同

直流电机测试方法和常见不良问题的分析

测试方法和常见不良问题的分析 一、测试方法 1.电机空载转速及电流的测试 1)定义:在额定电压下(指要求的加到电机端子上的电 压, 并不是指电源电压),无负载时的电机每分钟转动的圈 数 (空载转速)及此时流过端子的电流 2)测试方法:使用测速计、胶轮、直流电源,如下连接, 直流电源 电机测速计 参考测试 方法:使 用电机综 合测试仪测试(但誨定范围及电机的冲片槽数,测试 数据不准) 2.负载转速及电流的测试 1)定义:在额定电压下(指要求的加到电机端子上的电 压, 并不是指电源电压),额定负载时的电机每分钟转动的 圈数(负载转速)及此时流过端子的电流(负载电 流) 2)测试方法:见上图,一般选择胶轮的直径为20mm,如 果负载为M gem,则所挂舷码的重量则为M g,同时胶 轮上的圈数取决于绳子A处必须松动才行(即祛码的重 量必须全部加到轮子上才行) 3.堵转力矩和堵转电流的测试

1); “ 定义:使电机正好停止转动时的负载力矩Ts即为堵转力

矩,此时的电流即为堵转电流Is 3)一般采用两点法进行测试,选择两个负载T1及T2,测 试此负载下的nl> n2及II、12,使用下而的公式计算堵 转力矩和堵转电流: Ts=(n2Tl-nlT2)/(n2-nl) I S=(I2T1-I2T2)/(T1-T2)+(I1-I2)/(T1-T2)*T S 注意点:T1最好在最大效率点附近,而T2最好在最大 功率点附近 参考测试方法:可以采用测功计测试(不精确)或者使 用扭力计测试(较准) 4.窜动量的测试 1)定义:转子在电机中沿轴向可以松动的最大的间隙量 2)测试方法:使用百分表,电机轴前后最大窜动的位置在 百分表上显示的位置分别是A和B,则电机窜动量为B-A 电机 5.电流波形 1)定义:电机在额定电压下旋转时,流过电机两端子间的电 流的变化的波形,可以用示波器进行显示 2)测试方法:如图连接,示波器上显示的波形即为电机的电 流波形,电容一般为qf的电解电容,如果槽数为n 个,则 电机转动一周的完整的波形数为2n个

电流电压功率之间的关系及公式

电流电压功率之间的关 系及公式 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

电流、电压、功率的关系及公式 1、电流I,电压V,电阻R,功率W,频率F? W=I2乘以R? V=IR W=V2/R 电流=电压/电阻? 功率=电压*电流*时间 2、电压V(伏特),电阻R(欧姆),电流强度I(安培),功率N (瓦特)之间的关系是: V=IR, N=IV=I*I*R,或也可变形为:I=V/R,I=N/V等等. 但是必须注意,以上均是在直流(更准确的说,是直流稳态)电路情况下推导出来的!其它情况不适用. 如交流电路,那要对其作补充和修正求电压、电阻、电流与功率的换算关系 电流=I,电压=U,电阻=R,功率=P? U=IR,I=U/R,R=U/I,

P=UI,I=P/U,U=P/I? P=U2/R,R=U2/P 还有P=I2RP=IUR=U/I最好用这两个; 3、如电动机电能转化为热能和机械能: 电流符号:I 符号名称:安培(安) 单位:A 公式: 电流=电压/电阻I=U/R 单位换算:1MA(兆安)=1000kA(千安)=1000000A(安) 1A(安)=1000mA(毫安)=1000000μA(微安) 单相电阻类电功率的计算公式=电压U*电流I 单相电机类电功率的计算公式= 电压U*电流I*功率因数COSΦ三相电阻类电功率的计算公式=?*线电压U*线电流I(星形接法) =?3*相电压U*相电I(角形接法)

三相电机类电功率的计算公式=?*线电压U*线电流I*功率因数 COSΦ 星形电流=I,电压=U,电阻=R,功率=P? U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I? P=U2/R,R=U2/P P=I2R? 4、串联电路? P(电功率),U(电压),I(电流),W(电功),R(电阻),T(时间)电流处处相等: I1=I2=I 总电压等于各用电器两端电压之和: U=U1+U2? 总电阻等于各电阻之和: R=R1+R2 U1:U2=R1:R2 总电功等于各电功之和“ W=W1+W2? W1:W2=R1:R2=U1:U2? P1:P2=R1:R2=U1:U2? 总功率等于各功率之和:

电流电压公式

(1)串联电路P(电功率)U(电压)I(电流)W(电功)R(电阻)T(时间)电流到处相称I1=I2=I 总电压等于各用电器两端电压之和U=U1+U2 总电阻等于各电阻之和... (1)串联电路P(电功率)U(电压)I(电流)W(电功)R(电阻)T(时间) 电流到处相称I1=I2=I 总电压等于各用电器两端电压之和U=U1+U2 总电阻等于各电阻之和R=R1+R2 U1:U2=R1:R2 总电功等于各电功之和W=W1+W2 W1:W2=R1:R2=U1:U2 P1:P2=R1:R2=U1:U2 总功率等于各功率之和P=P1+P2 (2)并联电路 总电流等于遍地电流之和I=I1+I2 遍地电压相称U1=U1=U 总电阻等于各电阻之积除以各电阻之和R=R1R2÷(R1+R2) 总电功等于各电功之和W=W1+W2 I1:I2=R2:R1 W1:W2=I1:I2=R2:R1 P1:P2=R2:R1=I1:I2 总功率等于各功率之和P=P1+P2 (3)统一用电器的电功率 ①定额功率比现实功率等于定额电压比现实电压的平方Pe/Ps=(Ue/Us)的平方 2.有关电路的公式 (1)电阻R ①电阻等于材料疏密程度乘以(长度除以横截平面或物体表面的大)R=疏密程度×(L÷S) ②电阻等于电压除以电流R=U÷I ③电阻等于电压平方除以电功率R=UU÷P (2)电功W 电功等于电流乘电压乘时间W=UIT(普式公式) 电功等于电功率乘以时间W=PT 电功等于电荷乘电压W=QT 电功等于电流平方乘电阻乘时间W=I×IRT(纯电阻电路) 电功等于电压平方除以电阻再乘以时间W=U?U÷R×T(同上) (3)电功率P ①电功率等于电压乘以电流P=UI ②电功率等于电流平方乘以电阻P=IIR(纯电阻电路) ③电功率等于电压平方除以电阻P=UU÷R(同上) ④电功率等于电功除以时间P=W:T (4)电热Q 电热等于电流平方成电阻乘时间Q=IIRt(普式公式) 电热等于电流乘以电压乘时间Q=UIT=W(纯电阻电路 功率=1.732*定额电压*电流是三相电路中星型接法的纯阻性负载功率计算公式 功率=定额电压*电流是单相电路中纯阻性负载功率计算公式 P=1.732×(380×I×COSΦ)是三相电路中星型接法的感性负载功率计算公式 单相电阻类电功率的计算公式= 电压U*电流I 单相机电类电功率的计算公式= 电压U*电流I*功率因子COSΦ 三相电阻类电功率的计算公式= 1.732*线间电压U*线电流I (星形接法)

汽车蓄电池容量的检测方法详解

汽车蓄电池容量的检测方法详解 汽车蓄电池是汽车启动时的唯一电源,在汽车发电机不工作时,它可以在一段时间内向汽车的用电设备供电(1~2h);在发电机正常发电时,它将发电机供给用电器后多余的电能转化成化学能储存起来,供下次启动或其它用电。 蓄电池的工作能力随其规格型号不同而不同,也随其生产的年代、厂家牌号有较大区别。同一个蓄电池,由于不同的使用维护水平,其剩余的工作力也不同。加上蓄电池自身的自行放电,极板硫化等不可避免的因素作用,也会使蓄电池的工作能力逐渐削弱以至报废。因此,在必要时对蓄电池的工作能力进行检测就成为汽车维护与保养的重要工作之一。 一、蓄电池的容量指标及其测定 蓄电池的工作能力用“容量”来衡量,它是在规定的端电压范围内,蓄电池对负载供给一定电流所能持续的时间(t),即衡量蓄电池电能做功的能力A=UIt(瓦秒)。在实际运用中,蓄电池的容量指标Q常用安培小时(Ah)来表示: Q=I·t(A·h) I—放电电流(A);t—放电时间(h) 由于电流单位安培(A)=库伦/秒,所以容量的单位安培小时(Ah)=库伦/秒×3600秒=3600库伦(3.6kC)。 库伦是电荷量单位,1库伦=6.24×1018(624亿亿)个电子所带的电量,所以容量与电池的物质量(正负极板数、总面积、电解液密度)有关。对于标准正、负极板组而言,每片正极板的额定容量为15Ah,每个单格电池中负极板数总是比正极板多1片,因此可以算出一定容量的单格电池中正负极板的准确片数,如3-QA-60Ah蓄电池,其额定容量为60Ah,正极板数=60(Ah)/15(Ah)=4;负极板数=4+1=5。如果蓄电池的额定容量不是15Ah 的整数倍数,则极板的尺寸、厚度及材料就会有所区别。 蓄电池的常用容量指标有“额定容量”、“储备容量”和“启动容量”三种。 1. 额定容量 根据GB5008-91规定,额定容量是:将充足电的新蓄电池在电解液温度为25±5℃条件下以20h率的放电电流(即0.05Q20)连续放电至单格电池平均电压降到1.75V时输出的电量。

大学物理实验多种方法测量直流电阻

用多种方法测量直流电阻 一、实验目的 1、熟悉各种电学仪器及电路技巧; 2、掌握多种方法测量直流电阻 3、巩固不确定度的评定方法 二、仪器 DH6108赛电桥综合实验仪,直流稳压电源,万用电表,电阻箱,两个待测电阻,千分尺,直流电流表,直流电压表,滑线变阻器,检流计等 三、实验原理 电阻是电磁学实验工作中的常用元件,可分为高值电阻(兆欧以上)、中值电阻(10欧~兆欧)、低值电阻(10欧以下)。测量电阻的方法有许多种,常用的如伏安法、电桥法、比较测量方法(电压比等于电阻比)。 (一)伏安法测量电阻的原理(适用于测中值电阻) 1、实验线路的比较和选择 当电流表内阻为0,电压表内阻无穷大时,下述两种测试电路的测量不确定度是相同的。 图1 电流表外接测量电路 图2 电流表内接测量电路 被测电阻的阻值为: I V R = 。 但实际的电流表具有一定的内阻,记为R I ;电压表也具有一定的内阻,记为R V 。因为R I 和R V 的存在,如果简单地用I V R = 公式计算电阻器电阻值,必然带来附加测量误差。为了减少这种附加误差,测量电路可以粗略地按下述办法选择:

比较(R/R I )和(R V /R )的大小,比较时R 取粗测值或已知的约值。如果前者大则选电流表内接法,后者大则选择电流表外接法。 如果要得到测量准确值,就必须按下(1)、(2)两式,予以修正。 即电流表内接测量时,I R I V R -= (1) 电流表外接测量时, V R V I R 11-= (2) 2、测量误差与不确定度的评定 实验使用的电压表和电流表的量程和准确度等级一定时,可以估算出U V 、U I ,再用简化公式I R I V R -= 计算时的相对不确定度 (3) 式中U R 表示测量R 的不确定度,并非指R 的电压值。 可见要使测量的准确度高,应选择线路的参数使数字表的读数尽可能接近满量程,因为这时的V 、I 值大,U R /R 就会小些。 当电压表、电流表的内阻值R V 、R I 及其不确定度大小U RI 、U RV 已知时,可用公式(1)、(2)更准确地求得R 的值,相对不确定度由下式求出: 电流表内接时: (4) 电流表外接时: (5) 这就知道由公式(1)、(2)来得到电阻值R 时,线路方案和参数的选择应使U R /R 尽可能最小(选择原则3)。 (二)惠斯通电桥测量未知电阻的原理 (适用于测中值电阻) 现代计量中直流电桥正逐步被数字仪表所替代. 以往在电阻测量中电桥起了重要作用。 惠斯通电桥(Wheatstone ,s bridge )沿用了近二百年,1833年由克里斯泰(Cheistie )首先提出,后来以惠斯通名字命名. 电桥产生的背景是: 1)在数字仪表发展之前的时期,如果用伏安法测量电阻/R V I =,需要同时准确测量电压V 和电流I ,当时0.2级模拟式电表的制造成本与价格就已经显著高于准确度约0.05% 6位旋转式电阻箱. 2)伏安法测量的条件要求较高,如0.2级电表的使用与检定的条件要求较高,对电源 2 2?? ? ??+??? ??=I U V U R U I V R ?? ????-??? ?????? ??+??? ??+??? ??=I V R I V R R U I U V U R U I I I R I V R I /1/2222????? ?-???? ?????? ??+??? ??+??? ??=V V V R I V R R I V R I V R U I U V U R U V /1/222 2

电流、功率、电压、电阻计算公式.

= 1.732 X U X I X COSφ 功率 P =1.732X380X I X0.85 电流 I = P / (1.732 X 380 X 0.85 功率分有功和无功,有功P=U*I*(cos a;无功Q=U*I*(sin a;注:a是功率因数。 三相电动机的功率电阻的电流如何计算。电压已知为380V。求高人指点!2012-4-20 09:43 提问者:mfkwfntxgt|浏览次数:364次 我来帮他解答 2012-4-20 10:23 满意回答 电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 就记得这一些了,不知还有没有 还有P=I2R P=IU R=U/I 最好用这两个;如电动机电能转化为热能和机械能。电流 符号: I 符号名称: 安培(安) 单位: A 公式: 电流=电压/电阻 I=U/R 单位换算: 1MA(兆安)=1000kA(千安)=1000000A(安)

1A(安)=1000mA(毫安)=1000000μA(微安)单相电阻类电功率的计算公式= 电压U*电流I 单相电机类电功率的计算公式= 电压U*电流I*功率因数COSΦ 三相电阻类电功率的计算公式= 1.732*线电压U*线电流I (星形接法) = 3*相电压U*相电流I(角形接法) 三相电机类电功率的计算公式= 1.732*线电压U*线电流I*功率因数COSΦ(星形电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 就记得这一些了,不知还有没有 还有P=I2R ⑴串联电路 P(电功率)U(电压)I(电流)W(电功)R(电阻)T (时间) 电流处处相等 I1=I2=I 总电压等于各用电器两端电压之和 U=U1+U2 总电阻等于各电阻之和 R=R1+R2 U1:U2=R1:R2 总电功等于各电功之和 W=W1+W2 W1:W2=R1:R2=U1:U2 P1:P2=R1:R2=U1:U2 总功率等于各功率之和 P=P1+P2 ⑵并联电路 总电流等于各处电流之和 I=I1+I2 各处电压相等 U1=U1=U 总电阻等于各电阻之积除以各电阻之和 R=R1R2÷(R1+R2)

磷酸铁锂电池测试方法

低温磷酸铁锂电池测试方法及检测标准 1.电池测试方法 1.1蓄电池充电 在20℃士5℃条件下,蓄电池以1I 3 (A)电流放电,至蓄电池电压达到2.0 V,静置 1h,然后在20℃±5℃条件下以1I 3 (A)恒流充电,至蓄电池电压达3.65V时转恒 压充电,至充电电流降至0.1I 3 时停止充电。充电后静置lh。 1.2 20℃放电容量 a) 蓄电池按1.1方法充电。 b) 蓄电池在20℃士5℃下以1I 3 (A)电流放电,直到放电终止电压2.0V 。 c) 用1I 3 (A)的电流值和放电时间数据计算容量(以A.h计)。 d) 如果计算值低于规定值,则可以重复a)一c)步骤直至大于或等于规定值,允许5次。 1.3 -20℃放电容量 a) 蓄电池按1.1方法充电。 b) 蓄电池在-20℃士2℃下储存20h。 c) 蓄电池在-20℃士2℃下以1I 3 (A)电流放电,直到放电终止电压2.0V。 d) 用c)电流值和放电时间数据计算容量(以A.h计),并表达为20℃放电容量的百分数。 1.4 -40℃放电容量 a) 蓄电池按1.1方法充电。 b) 蓄电池在-40℃士2℃下储存20h。 c) 蓄电池在-40℃士2℃下以1I 3 (A)电流放电,直到放电终止电压2.0V。 d) 用c)电流值和放电时间数据计算容量(以A.h计),并表达为20℃放电容量的百分数。 备注:1I 3— 3h率放电电流,其数值等于C 3 /3。 C 3 — 3 h率额定容量(Ah)。 1.5 高温荷电保持与容量恢复能力: a) 蓄电池按1.1方法充电。 b) 蓄电池在60℃士2℃下储存7day。 c) 蓄电池在20℃士5℃下恢复5h后,以1I 3 (A)电流放电,直到放电终止电压2.OV d) 用 c)的电流值和放电时间数据计算容量(以A.h计),荷电保持能力可以表达为额定容量的百分数。 e) 蓄电池再按1.1方法充电。 f) 蓄电池在20℃士5℃下以11 3 (A )电流放电,直到放电终止电压2.0V 。

电流电压功率之间的关系及公式

电流、电压、功率的关系及公式 1、电流I,电压V,电阻R,功率W,频率F W=I2乘以R V=IR W=V2/R 电流=电压/电阻 功率=电压*电流*时间 2、电压V(伏特),电阻R(欧姆),电流强度I(安培),功率N(瓦 特)之间的关系是: V=IR, N=IV=I*I*R,或也可变形为:I=V/R,I=N/V等等. 但是必须注意,以上均是在直流(更准确的说,是直流稳态)电路情况下推导出来的!其它情况不适用. 如交流电路,那要对其作补充和修正求电压、电阻、电流与功率的换算关系 电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 还有P=I2R P=IU R=U/I 最好用这两个;

3、如电动机电能转化为热能和机械能: 电流符号: I 符号名称: 安培(安) 单位: A 公式: 电流=电压/电阻 I=U/R 单位换算: 1MA(兆安)=1000kA(千安)=1000000A(安)1A(安)=1000mA(毫安)=1000000μA(微安) 单相电阻类电功率的计算公式= 电压U*电流I 单相电机类电功率的计算公式= 电压U*电流I*功率因数COSΦ三相电阻类电功率的计算公式= 1.732*线电压U*线电流I(星形接法) = 3*相电压U*相电I(角形接法)三相电机类电功率的计算公式= 1.732*线电压U*线电流I*功率因数COSΦ 星形电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P P=I2R 4、串联电路 P(电功率),U(电压),I(电流),W(电功),R(电阻),T(时

电池电量检测方法

锂离子电池是目前最常见的二次锂电池,拥有高能量密度,与高容量镍镉/镍氢电池相比,其能量密度为前者的1.5~2倍。其平均使用电压为3.6V,是镍镉电池、镍氢电池的3倍。它的内阻较大,不能进行大电流充放电,并且需要精确的充放电控制,以防止电池损坏并达到最佳使用性能。锂离子电池广泛使用在各种便携电子产品中,包括手机、笔记本电脑、mp3等。 锂聚合物电池是一种新型的二次锂电池,具有更大的容量;内阻较低,允许10C充放电电流。它和锂离子电池一样需要精确的充放电控制。目前,锂聚合物电池主要用于一些需要大电流充放电的应用中,如动力/模型汽车等。 充电电池容量估算方法 在多数便携应用中,都需要随时了解电池剩余容量以估算电池使用时间。 图1 简化的电池电量计框图 最早应用的方法是通过监视电池开路电压来获得剩余容量。这是因为电池端电压和剩余容量之间有一个确定的关系,测量电池端电压即可估算其剩余容量。这种方法的局限是:1)对于不同厂商生产的电池,其开路电压与容量之间的关系各不相同。2)只有通过测量电池空载时的开路电压才能获得相对准确的结果,但是大多数应用都需要在运行中了解电池的剩余容量,此时负载电流在内阻上产生的压降将会影响开路电压测量精度。而电池内阻的离散性很大,且随着电池老化这种离散性将变得更大,因此要补偿该压降带来的误差将十分困难。综上所述,通过开路电压来实时估算电池剩余容量的方法在实际应用中无法达到足够的精度,只能提供一个大致的参考值。 另一种大量应用的方法是通过测量流入/流出电池的净电荷来估算电池剩余容量。这种方法对流入/流出电池的总电流进行积分,得到的净电荷数即为剩余容量。电池容量可以预置,也可在后续的完整充电周期中进行学习。在补偿电池自放电、不同温度下的容量变化等因素后,这种方法可以获得令人满意的精度,因此广泛运用于笔记本电脑等高端应用中。

测量电感及电容上电流和电压的相位差

测量电感及电容上电流和电压的相位差&测量电容上电流和电压 的相位差 上海中学高二(9)王晓欣、徐烨婷 指导教师杨新毅 实验目的:运用TI-83对电容电路进行实验,测量电容电路中电压与电流之间的相位差,了 解电容电感的性质。 实验原理 对于电阻R1,电流与电压成正比。电压v=Vsinωt,则i= Vsinωt /R。由于电阻R1mR1m1与电容串联,因此两者的电流相等。i= i= Vsinωt /R,电容的电流波形图与电阻的电压L1R1m1波形图的周期、初相位都相同,只在幅值上有所不同。因为只需观察电容的电流电压波形图 周期与初相位的关系,因此可以将电阻的电流波形图与电容的电压波形图进行对比,得出电 容的电压与电流的关系。 实验过程 1. 开机方法: ?用专用接线连接TI—83Plus和CBL。 ?按ON键打开TI—83Plus电源。

?按应用功能键APPS,进入Applications界面(见图1)。 图1 按数字键4选择Physics功能(见图2)。 图2 按ENTER回车键,进入主菜单(见图3)。 图3 2. 探头设定: ?将两个电压探头分别插入CH1,CH2两个插口中,打开CBL电源。 ?在Main Menu下按1选择SET UP PROBES,进入探头设定 菜单(见图4)。在NUMBER OF PROBES菜单中按2选择 图4 TWO。 在SELECT PROBE中按7选择MORE(见图5),再按3(见图6)将第一个探头选择为VOLTAGE。按ENTER 重复以上操作,将第二个探头也设为VOLTAGE。回到主菜 图5 单(见图7)。

图6 图7 3. 参数设定 在Main Menu下按2选择2:COLLECT DATA。在DATA COLLECTION中按2选择2:TIME GRAPH(见图8)。 图8 在ENTER TIME BETWEEN SAMPLES IN SECONDS:后输入时间间隔0.0005。在ENTER NUMBER OF SAMPLES:后输入取样个数100(见图9)。 图9 按ENTER对实验设置进行确认(见图10)。 图10 在CONTINUE中按1选择USE TIME SETUP,用以上设置图11 进行实验(见图11)。 4. 连接电路

三相电流计算公式

三相电流计算公式 I=P/(U*所以1000W的线电流应该是。 功率固定的情况下,电流的大小受电压的影响,电压越高,电流就越小,公式是I=P/U 当电压等于220V时,电流是,电压等于380V时,电流是,以上说的是指的单相的情况。380V 三相的时候,公式是I=P/(U*,电流大小是 三相电机的电流计算I= P/*380* 式中:P是三相功率是根号3) 380 是三相线电压(I 是三相线电流) 是功率因数,这里功率因数取的是,如果功率因数取或者,计算电流还小。电机不是特别先进的都是按计算。按10kW计算:I=10kW/*380* =10kW/ = A 三相电机必须是三相电源,10KW电动机工作时,三根电源线上的工作电流都是 A 实际电路计算的时候还要考虑使用系数,启动电流等因素来确定导线截面积、空开及空开整定电流。 三相电中,功率分三种功率,有功功率P、无功功率Q和视在功率S。电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cosΦ=P/S 三种功率和功率因素cosΦ是一个直角功率三角形关系:两个直角边是有功功率P、无功功率Q,斜边是视在功率S。三相负荷中,任何时候这三种功率总是同时存在:S2=P2+Q2 S=√(P2+Q2) 视在功率S= 有功功率P=Φ 无功功率Q=Φ 功率因数cosΦ=P/S 根号3,没有软件写不上,用代替 系统图 Pe:额定功率Pj:计算有功功率Sj:计算视在功率Ij:计算电流Kx:同时系数cosφ:功率因数Pj=Kx*Pe Sj=Pj/cosφ 单相供电时,Ij=Sj/Ue 三相供电时,Ij=Sj/√3Ue 电气系统图里的符号是有标准的 KM表示交流接触器 KA表示中间继电器, KT表示时间继电器; FR表示热继电器;

电池电量检测方法及原理 pdf

FUEL GAUGE 电池电量检测方法及原理锂电池具有高存储能量、寿命长、重量轻和无记忆效应等优点,已经在现行便携式设备中得到了广泛的使用,尤其是在手机、多媒体播放器、GPS终端等消费类电子设备中。这些设备不但单纯地只是支持单一的通讯功能,还支持流媒体播放和高速的无线发送和接收等等功能。随着越来越多功能的加入且要获得更长单次充电的使用时间,便携式设备中锂电池的容量也不断地增大,以智能手机为例,主流的电池容量已经800mAH增长到现在1500mAH,并且还有继续增长的趋势。 随着大容量电池的使用,如果设备能够精确的了解电池的电量,不仅能够很好地保护了电池,防止其过放电,同时也能够让用户精确地知道剩余电量来估算所能使用的时间,及时地保存重要数据。因此,在PMP和GPS中,电量计不断加入到设备中,并且电量计也在智能手机中得到了应用,尤其是在一些Windows Mobile操作系统的智能手机中,如图1所示,电池电量的显示已由原来的柱状图变为了数字显示。 本文介绍和比较三种种不同电量计的实现方法,并且以意法半导体的STC3100电池监控IC为例,在其Demo实现了1%精度的电池精度计量。 (a)柱状图电量显示(b)数字精确电量显示 图1 Windows Mobile 手机中电量计量 1,电量计的实现方法和分类。 据统计,现行设备中有三种电量计,分别是: 直接电池电压监控方法,也就是说,电池电量的估计是通过简单地监控电池的电压得来的,尽管该方法精度较低和缺乏对电池的有效保护,但其简单易行,所以在现行的设备中得到最广泛的应用。然而锂电池本身特有的放电特性,如图2所示。不难从中发现,电池的电量与其电压不是一个线性的关系,这种非线性导致电压直接检测方法的不准确性,电量测量精度超过20%。电池电量只能用分段式显示,,如图1.a所示,无法用数字显示精确的电池电量。手机用户经常发现,在手机显示还有两格电的时候,电池的电量下降得非常快,也就是因为这时候电池已经进入Phase3。 图2 锂电池放电曲线

电流检测方法

电流检测方法 1 传统的电流检测方法 1. 1 利用功率管的RDS进行检测( RDS SENSIN G) 当功率管(MOSFET) 打开时,它工作在可变电阻区,可等效为一个小电阻。MOSFET 工作在可变电阻区时等效电阻为: 式中:μ为沟道载流子迁移率; COX 为单位面积的栅电容;V TH 为MOSFET 的开启电压。 如图1 所示,已知MOSFET 的等效电阻,可以通过检测MOSFET 漏源之间的电压来检测开关电流。 这种技术理论上很完美,它没有引入任何额外的功率损耗,不会影响芯片的效率,因而很实用。但是这种技术存在检测精度太低的致命缺点: (1) MOSFET 的RDS本身就是非线性的。 (2) 无论是芯片内部还是外部的MOSFET ,其RDS受μ, COX ,V TH影响很大。 (3) MOSFET 的RDS随温度呈指数规律变化(27~100 ℃变化量为35 %) 。 可看出,这种检测技术受工艺、温度的影响很大,其误差在- 50 %~ + 100 %。但是因为该电流检测电路简单,且没有任何额外的功耗,故可以用在对电流检测精度不高的情况下,如DC2DC 稳压器的过流保护。 图1 利用功率管的RDS进行电流检测

1. 2 使用检测场效应晶体管(SENSEFET) 这种电流检测技术在实际的工程应用中较为普遍。它的设计思想是: 如图2 在功率MOSFET两端并联一个电流检测FET ,检测FET 的有效宽度W 明显比功率MOSFET 要小很多。功率MOSFET 的有效宽度W 应是检测FET 的100 倍以上(假设两者的有效长度相等,下同) ,以此来保证检测FET 所带来的额外功率损耗尽可能的小。节点S 和M 的电流应该相等,以此来避免由于FET 沟道长度效应所引起的电流镜像不准确。 图2 使用场效应晶体管进行电流检测 在节点S 和M 电位相等的情况下,流过检测FET的电流IS 为功率MOSFET 电流IM 的1/ N ( N 为功率FET 和检测FET 的宽度之比) , IS 的值即可反映IM 的大小。 1. 3 检测场效应晶体管和检测电阻相结合 如图3 所示,这种检测技术是上一种的改进形式,只不过它的检测器件不是FET 而是小电阻。在这种检测电路中检测小电阻的阻值相对来说比检测FET 的RDS要精确很多,其检测精度也相对来说要高些,而且无需专门电路来保证功率FET 和检测FET 漏端的电压相等,降低了设计难度,但是其代价就是检测小电阻所带来的额外功率损耗比第一种检测技术的1/ N 2还要小( N 为功率FET 和检测FET 的宽度之比) 。此技术的缺点在于,由于M1 ,M3 的V DS不相等(考虑VDS对IDS的影响), IM 与IS 之比并不严格等于N ,但这个偏差相对来说是很小的,在工程中N 应尽可能的大, RSENSE应尽可能的小。在高效的、低压输出、大负载应用环境中,就可以采用这种检测技术。

电流表格模板和电压表格模板测量练习测试题

电流表格模板和电压表格模板测量练习测试题(总5页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

L 2 V L 1 A B C D 电流表和电压表测量练习题 1、下图中电压表测量谁的电压 2、如下图所示,L 1和L 2是 联,的a 端是 接线柱,b 端是 接线柱。测量________两端的电压。 3、如图所示为用电压表测量灯泡两端电压的电路图,其中正确的是( ) A .图 A B. 图 B C .图 C D .图 D 第2题 4、下列各图中测量L 1电压的电路,正确的是( ) 9、判断下列各图中电压表所测量的对象。 (1)如图1,电灯L 1、L 2是 联,电压表V1测量 两端的电压,电压表V2 测量 两端的电压 (2)如图2,电灯L 1、L 2是 联,电流表A 测通过 的电流。电压表V 测量 两端的电压。 (3)、如图4,电灯L 1、L 2、L 3是 联,电流表A 1测量通过 的电流,电流表A 2测通过 的电流,电流表A 3测通过 的电流。 10、用电流表测量灯泡L 1中的电流, 下图中正确的是〔 〕 11、下列各图中,电路连接没有错误,电表均有正常示数,请判定甲、乙各是电流表还是电压 表。 12、如图2是某同学做实验时的电路图。闭合开关S 后,发现灯泡L 1、L 2均不亮, 电流表示数为零,电压表示数等于电源电压,则该电路中的故障是:( ) A .电源正极与a 之间断路 B .a 、L 1、b 之间断路 C .b 、L 2、c 之间断路 D .c 与电源负极之间断路 A 1 A 2 S V 1 V 2 R 1 R 2 P S A V a b P S A R V 1 V 2 L 1 L 2 图 1 图4 L 1 A 1 A 2 A 3 L 2 L 3

电流 电阻 电压 计算公式

电流电阻电压计算公式 1、串联电路电流和电压有以下几个规律:(如:R1,R2串联) ①电流:I=I1=I2(串联电路中各处的电流相等) ②电压:U=U1+U2(总电压等于各处电压之和) ③电阻:R=R1+R2(总电阻等于各电阻之和)如果n个阻值相同的电阻串联,则有R总=nR 2、并联电路电流和电压有以下几个规律:(如:R1,R2并联) ①电流:I=I1+I2(干路电流等于各支路电流之和) ②电压:U=U1=U2(干路电压等于各支路电压) ③电阻:(总电阻的倒数等于各并联电阻的倒数和)或。 如果n个阻值相同的电阻并联,则有R总= R 注意:并联电路的总电阻比任何一个支路电阻都小。 电功计算公式:W=UIt(式中单位W→焦(J);U→伏(V);I→安(A);t→秒)。 5、利用W=UIt计算电功时注意:①式中的W、U、I和t是在同一段电路;②计算时单位要统一;③已知任意的三个量都可以求出第四个量。 6、计算电功还可用以下公式:W=I2Rt ;W=Pt;W=UQ(Q是电量); 【电学部分】 1电流强度:I=Q电量/t 2电阻:R=ρL/S 3欧姆定律:I=U/R 4焦耳定律: ⑴Q=I2Rt普适公式) ⑵Q=UIt=Pt=UQ电量=U2t/R (纯电阻公式) 5串联电路: ⑴I=I1=I2 ⑵U=U1+U2 ⑶R=R1+R2 ⑷U1/U2=R1/R2 (分压公式) ⑸P1/P2=R1/R2 6并联电路: ⑴I=I1+I2 ⑵U=U1=U2 ⑶1/R=1/R1+1/R2 [ R=R1R2/(R1+R2)] ⑷I1/I2=R2/R1(分流公式) ⑸P1/P2=R2/R1 7定值电阻: ⑴I1/I2=U1/U2 ⑵P1/P2=I12/I22 ⑶P1/P2=U12/U22

各种电流检测方式的比较

浅谈电流检测方式 一、检测电阻+运放 优势: 成本低、精度较高、体积小 劣势: 温漂较大,精密电阻的选择较难,无隔离效果。 分析: 这两种拓扑结构,都存在一定的风险性,低端检测电路易对地线造成干扰;高端检测,电阻与运放的选择要求高。 检测电阻,成本低廉的一般精度较低,温漂大,而如果要选用精度高的,温漂小的,则需要用到合金电阻,成本将大大提高。运放成本低的,钳位电压低,而特殊工艺的,则成本上升很多。 二、电流互感器CT/电压互感器PT 在变压器理论中,一、二次电压比等于匝数比,电流比为匝数比的倒数。而CT和PT就是特殊的变压器。基本构造上,CT的一次侧匝数少,二次侧匝数多,如果二次开路,则二次侧电压很高,会击穿绕阻和回路的绝缘,伤及设备和人身。PT相反,一次侧匝数多,二次侧匝数少,如果二次短路,则二次侧电流很大,使回路发热,烧毁绕阻及负载回路电气。 CT,电流互感器,英文拼写Current Transformer,是将一次侧的大电流,按比例变为适合通过仪表或继电器使用的,额定电流为5A或1A的变换设备。它的工作原理和变压器相似。也称作TA 或LH(旧符号)工作特点和要求: 1、一次绕组与高压回路串联,只取决于所在高压回路电流,而与二次负荷大小无关。 2、二次回路不允许开路,否则会产生危险的高电压,危及人身及设备安全。 3、CT二次回路必须有一点直接接地,防止一、二次绕组绝缘击穿后产生对地高电压,但仅一点接地。

4、变换的准确性。 PT,电压互感器,英文拼写Phase voltage Transformers,是将一次侧的高电压按比例变为适合仪表或继电器使用的额定电压为100V的变换设备。电磁式电压互感器的工作原理和变压器相同。也称作TV或YH(旧符号)。 工作特点和要求: 1、一次绕组与高压电路并联。 2、二次绕组不允许短路(短路电流烧毁PT),装有熔断器。 3、二次绕组有一点直接接地。 4、变换的准确性 模块型霍尔电流传感器 模块型霍尔电流传感器分开环模式与闭环模式。 开环模式又称为直接测量式霍尔电流传感器,输入为电流,输出为电压。这种方式的优点是结构简单,测量结果的精度和线性度都较高。可测直流、交流和各种波形的电流。但它的测量范围、带宽等受到一定的限制。在这种应用中,霍尔器件是磁场检测器,它检测的是磁芯气隙中的磁感应强度。电流增大后,磁芯可能达到饱和;随着频率升高,磁芯中的涡流损耗、磁滞损耗等也会随之升高。这些都会对测量精度产生影响。当然,也可采取一些改进措施来降低这些影响,例如选择饱和磁感应强度高的磁芯材料;制成多层磁芯;采用多个霍尔元件来进行检测等等。 开环模式的结构原理见下图 根据检测量程的需求,一般分为以下两种绕线模式,左图为小量程的结构图,右图为大量程的结构图。 闭环模式又称为零磁通模式或磁平衡模式,其输入与输出端均为电流信号。原理见下图

功率电压电流公式 功率电压电流公式大全

功率电压电流公式功率电压电流公式大全 1、欧姆定律: I=U/R U:电压,V; R:电阻,Ω; I:电流,A; 2、全电路欧姆定律: I=E/(R+r) I:电流,A; E:电源电动势,V; r:电源内阻,Ω; R:负载电阻,Ω 3、并联电路,总电流等于各个电阻上电流之和 I=I1+I2+…In 4、串联电路,总电流与各电流相等 I=I1=I2=I3=…=In 5、负载的功率 纯电阻有功功率P=UI → P=I2R(式中2为平方) U:电压,V; I:电流,A; P:有功功率,W; R:电阻

纯电感无功功率Q=I2*Xl(式中2为平方)Q:无功功率,w; Xl:电感感抗,Ω I:电流,A 纯电容无功功率Q=I2*Xc(式中2为平方)Q:无功功率,V; Xc:电容容抗,Ω I:电流,A 6、电功(电能) W=UIt W:电功,j; U:电压,V; I:电流,A; t:时间,s 7、交流电路瞬时值与最大值的关系 I=Imax×sin(ωt+Φ) I:电流,A; Imax:最大电流,A; (ωt+Φ):相位,其中Φ为初相。 8、交流电路最大值与在效值的关系 Imax=2的开平方×I I:电流,A; Imax:最大电流,A; 9、发电机绕组三角形联接

I线=3的开平方×I相 I线:线电流,A; I相:相电流,A; 10、发电机绕组的星形联接 I线=I相 I线:线电流,A; I相:相电流,A; 11、交流电的总功率 P=3的开平方×U线×I线×cosΦ P:总功率,w; U线:线电压,V; I线:线电流,A; Φ:初相角 12、变压器工作原理 U1/U2=N1/N2=I2/I1 U1、U2:一次、二次电压,V; N1、N2:一次、二次线圈圈数; I2、I1:二次、一次电流,A; 13、电阻、电感串联电路 I=U/Z Z=(R2+XL2)和的开平方(式中2为平方) Z:总阻抗,Ω; I:电流,A; R:电阻,Ω; XL:感抗,Ω 14、电阻、电感、电容串联电路 I=U/Z Z=[R2+(XL-Xc)2]和的开平方(式中2为平方)Z:总阻抗,Ω; I:电流,A; R:电阻,Ω; XL:感抗,Ω; Xc:容抗,Ω

超全的常用测试电流检查方法

指针式直流电流表 数值式万用表能测交直流 电流—电压转换,A/D转换,显示

钳流表非接触式,交直流精度较上面仪器要低些 霍尔原理 电流探头配合示波器使用,用于观察电流波形交直流霍尔原理

常用的用于测量电流的仪表,显示出来的电流大小大多是有效值。 有效值也指均方根值,其物理意义:一个交流电流和一个直流电流作用在同一电阻上,若在相同的时间内它们所产生的热量相等,则交流电流的有效值I 等于该直流电流值。假设交流信号的周期为T : 由220()=I RT T P i t Rdt =? ? I =显然,直流电流的有效值和平均值是相等的。 平均值: 01 ()T I i t dt T =? 显然正负对称的交流信号平均值为0 另种定义: 0 1|()|T I i t dt T =? 全波整流之后的平均值 波形系数K F 定义:信号的有效值与平均值(全波整流后的值)之比,_F I K I = 。 显然,不同类型信号的波形系数不同。 波峰系数Kp 定义:信号的峰值与有效值之比, p p I K I = 下表为一些常见信号的一些参数

知道了波形系数和波峰系数之后,对特定信号可以很容易的进行不同值之间的转换。实际上,直接获取信号的有些仪表就利用了这一转换原理进行有效值的测量。 一.直接测量法 在被测电电路中串入适当量程的电流表,让被测电流流过电流表,从表上直接读取被测电流值。 中学实验室里常用的直流电流表是指针式磁电系电流表,它由灵敏电流计(俗称表头)改装而成。灵敏电流计主要由永磁铁、可动线圈、螺旋弹簧(游丝)和指针刻度盘等组成。如下图: 图2-1 电流计原理图 当线圈通以电流时,线圈的两边受到安培力,设导线所处位置磁感应强度大小为B、线框长为L、宽为d 、匝数为n,当线圈中通有电流时,则安培力的大小为:F=nBIL 。安培力对转轴产生的力矩:M1=Fd= nBILd。不论线圈转到什么位置,它的平面都跟磁感线平行,安培力的力矩不变。在这一力矩的作用下,线圈就会顺时针转动。当线圈转过θ角时(指针偏角也为θ),两弹簧相应地会产生阻碍线圈转动的扭转力矩M2 (M2=kθ,胡克定律)。

相关文档
最新文档