各种焊接方式优缺点

各种焊接方式优缺点
各种焊接方式优缺点

.

氩弧焊

缺点:

1)氩弧焊因为热影响区域大,工件在修补后常常会造成变形、硬度降低、砂眼、局部退火、开裂、针孔、磨损、划伤、咬边、或者是结合力不够及内应力损伤等缺点。尤其在精密铸造件细小缺陷的修补过程在表面突出。在精密铸件缺陷的修补领域可以使用冷焊机来替代氩弧焊,由于冷焊机放热量小,较好的克服了氩弧焊的缺点,弥补了精密铸件的修复难题。

(2)氩弧焊与焊条电弧焊相比对人身体的伤害程度要高一些,氩弧焊的电流密度大,发出的光比较强烈,它的电弧产生的紫外线辐射,约为普通焊条电弧焊的5~30倍,红外线约为焊条电弧焊的1~1.5倍,在焊接时产生的臭氧含量较高,因此,尽量选择空气流通较好的地方施工,不然对身体有很大的伤害。

(3)对于低熔点和易蒸发的金属(如铅、锡。锌),焊接较困难。

氩弧焊的应用:

氩弧焊适用于焊接易氧化的有色金属和合金钢(主要用Al、Mg、Ti及其合金和不锈钢的焊接);适用于单面焊双面成形,如打底焊和管子焊接;钨极氩弧焊还适用于薄板焊接。优点:

1、氩气保护可隔绝空气中氧气、氮气、氢气等对电弧和熔池产生的不良影响,减少合金元素的烧损,以得到致密、无飞溅、质量高的焊接接头;

2、氩弧焊的电弧燃烧稳定,热量集中,弧柱温度高,焊接生产效率高,热影响区窄,所焊的焊件应力、变形、裂纹倾向小;

3、氩弧焊为明弧施焊,操作、观察方便;

4、电极损耗小,弧长容易保持,焊接时无熔剂、涂药层,所以容易实现机械化和自动化;

5、氩弧焊几乎能焊接所有金属,特别是一些难熔金属、易氧化金属,如镁、钛、钼、锆、铝等及其合金;

6、不受焊件位置限制,可进行全位置焊接。[3]

.

焊接参数的选择方法

焊接参数的选择方法 电弧焊的焊接参数主要有焊条直径、焊接电流、电弧电压、焊接层数、电源种类及极性等。 (1)焊条直径的选择。焊条直径的选择主要取决于焊件厚度、接头型式、焊缝位置及焊接层次等因素。在不影响焊接质量的前提下,为了提高劳动生产率,一般倾向于选择大直径的焊条。 (2)焊接电流的选择。主要根据焊条类型、焊条直径、焊件厚度、接头型式、焊缝空间位置及焊接层次等因素来决定,其中,最主要的因素是焊条直径和焊缝空间位置。 (3)电弧电压的选择。电弧电压是由电弧长来决定。电弧长,则电弧电压高;电弧短,则电弧电压低。 (4)焊接层数的选择。在中、厚板焊条电弧焊时,往往采用多层焊。 (5)电源种类和极性的选择。直流电源,电弧稳定,飞溅小,焊接质量好,一般用在重要的焊接结构或厚板大刚度结构的焊接上应首先考虑用直流焊机。

一般情况下,使用碱性焊条或薄板的焊接,采用直流反接;而酸性焊条焊接中厚板,通常选用正接。 (三)埋弧焊焊接材料 1、焊丝 根据所焊金属材料的不同,埋弧焊用焊丝有碳素结构钢焊丝、合金结构钢焊丝。高合金钢焊丝、各种有色金属焊丝和堆焊焊丝。按焊接工艺的需要,除不锈钢焊丝和有色金属焊丝外,焊丝表面均镀铜,以利于防锈并改善导电性能。 同一电流使用较小直径的焊丝时,可获得加大焊缝熔深、减小熔宽的效果。当工件装配不良时,宜选用较粗的焊丝。 2.焊剂 埋弧焊焊剂按用途分为钢用焊剂和有色金属用焊剂,按制造方法分为熔炼焊剂、烧结焊剂和陶质焊剂。 (1)焊剂应满足下列基本要求: l)具有良好的冶金性能。 2)具有良好的工艺性能。

(2)焊剂的分类。埋弧焊焊剂除按其用途分为钢用焊剂和有色金属用焊剂外,通常还按制造方法、化学成分、化学性质和颗粒结构等分类。 l)按制造方法分为:熔炼焊剂、烧结焊剂和陶质焊剂。 2)按化学成分分为:碱性焊剂、酸性焊剂和中性焊剂。 (3)焊剂和焊丝的选配。 低碳钢的焊接可选用高锰高硅型焊剂,配合H08MnA焊丝,或选用低锰、无锰型焊剂配H08MnA和H10MnZ焊丝。低合金高强度钢的焊接可选用中锰中硅或低锰中硅型焊剂配合与钢材强度相匹配的焊丝。 耐热钢、低温钢、耐蚀钢的焊接可选用中硅或低硅型焊剂配合相应的合金钢焊丝。铁素体、奥氏体等高合金钢,一般选用碱度较高的熔炼焊剂或烧结、陶质焊剂,以降低合金元素的烧损及掺加较多的合金元素。 常用材料焊接焊材选用一览表 钢号焊条电弧焊CO2保护焊氩弧焊

焊接中常见的缺陷及解决方法

焊接中常见的缺陷及解决方法 1.漏焊---漏焊包括焊点漏焊、螺栓漏焊、螺母漏焊等。 原因---主要原因是因为没有自检、互检,对工艺不熟悉造成的。 解决方法---在焊接后对所有焊点(螺母、螺栓等)进行检查,确认焊点(螺母、螺栓等)数量,熟悉工艺要求,加强自检意识,补焊等。 2.脱焊---包括焊点、螺母、螺栓等脱焊。(除材料与零部件本身不合格) 以下3种可视为脱焊: ①.接头贴合面未形成熔核,呈塑料性连接; ②.贴合面上的熔核尺寸小于规定值; ③.熔核核移,使一侧板焊透率达不到要求。 产生脱焊原因: ①.焊接电流过,焊接区输入热量不足; ②.电极压力过大,接触面积增大,接触电阻降低,散热加强; ③.通电时间短,加热不均匀,输入热量不足; ④.表面清理不良,焊接区电阻增大,分流相应增大; ⑤.点距不当,装配不当,焊接顺序不当,分流增大。 解决方法:在调整焊接电流后,对焊点做半破坏检查(试片做全破坏检查),目视焊点形状;补焊,检查上次半破坏后的相关焊点。 3.补焊---多焊了工艺上不要求焊接的焊点。 原因---不熟悉工艺或焊接中误操作焊钳。 解决方法---熟悉工艺或加强操作技能。 注意:两个或多于两个的连续点焊不能有偏焊现象,边缘及拐角处也不能存在偏焊的现象。(如两个连点偏焊,至少要有一个焊点需要重新点焊。) 4.焊渣---由于电流过大或压力过小,造成钢板的一部分母材在高温熔合 时沿着两钢板贴合面被挤出而形成的冷却物. 原因---主要原因是电流和压力的变化,以及焊钳操作不当引起的。 解决方法---调整焊接参数与电极压力,加强操作技能及清除焊渣。 5.飞溅---飞溅分为内部飞溅和外部飞溅两种。 内部飞溅---高温液态金属在电极压力的作用下,沿着最薄弱的两钢板间贴合而挤出。 产生原因 ①.电流过大,电极压力不足; ②.板间有异物或贴合不紧密。 外部飞溅---电极与焊件之间融合金属溢出的现象. 产生原因 ①.电极修磨得太尖锐;

常见的焊接缺陷与缺陷图片

常见的焊接缺陷(1) 常见的焊接缺陷 (1)未焊透:母体金属接头处中间(X坡口)或根部(V、U坡口)的钝边未完全熔合在一起而留下的局部未熔合。未焊透降低了焊接接头的机械强度,在未焊透的缺口和端部会形成应力集中点,在焊接件承受载荷时容易导致开裂。 (2)未熔合:固体金属与填充金属之间(焊道与母材之间),或者填充金属之间(多道焊时的焊道之间或焊层之间)局部未完全熔化结合,或者在点焊(电阻焊)时母材与母材之间未完全熔合在一起,有时也常伴有夹渣存在。 (3)气孔:在熔化焊接过程中,焊缝金属的气体 或外界侵入的气体在熔池金属冷却凝固前未来得及逸出而残留在焊缝金属部或表面形成的空穴或孔隙,视其形态可分为单个气孔、链状气孔、密集气孔(包括蜂窝状气孔)等,特别是在电弧焊中,由于冶金过程进行时间很短,熔池金属很快凝固,冶金过程中产生的气体、液态金属吸收的气体,或者焊条的焊剂受潮而在高温下分解产生气体,甚至是焊接环境中的湿度太大也会在高温下分解出气体等等,这些气体来不及析出时就会形成气孔缺陷。尽管气孔较之其它的缺陷其应

力集中趋势没有那么大,但是它破坏了焊缝金属的致密性,减少了焊缝金属的有效截面积,从而导致焊缝的强度降低。 某钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,未焊透 某钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,密集气孔 (4)夹渣与夹杂物:熔化焊接时的冶金反应产物,例如非金属杂质(氧化物、硫化物等)以及熔渣,由于焊接时未能逸出,或者多道焊接时清渣不干净,以至残留在焊缝金属,称为夹渣或夹杂物。视其形态可分为点状和条状,其外形通常是不规则的,其位置可能在焊缝与母材交界处,也可能存在于焊缝。另外,在采用钨极氩弧焊打底+手工电弧焊或者钨极氩弧焊时,钨极崩落的碎屑留在焊缝则成为高密度夹杂物(俗称夹钨)。 W18Cr4V(高速工具钢)-45钢棒 对接电阻焊缝中的夹渣断口照片 钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,局部夹渣

焊接工艺基本知识

焊接工艺基本知识 1什么是焊接接头?它有哪几种类型? 用焊接方法连接的接头称为焊接接头(简称为接头)。它由焊缝、熔合区、热影响区及其邻近的母材组成。在焊接结构中焊接接头起两方面的作用,第一是连接作用,即把两焊件连接成一个整体;第二是传力作用,即传递焊件所承受的载荷。 根据GB/T3375—94《焊接名词术语》中的规定,焊接接头可分为10种类型,即对接接头、T形接头、十字接头、搭接接头、角接接头、端接接头、套管接头、斜对接接头、卷边接头和锁底接头,如图1。其中以对接接头和T形接头应用最为普遍。

2什么是坡口?常用坡口有哪些形式? 根据设计或工艺需要,将焊件的待焊部位加工成一定几何形状的沟槽称为坡口。开坡口的目的是为了得到在焊件厚度上全部焊透的焊缝。 坡口的形式由 GB985—88《气焊、手工电弧焊及气体保护焊焊缝坡口的基本形式与尺寸》、GB986—88《埋弧焊焊缝坡口的基本形式及尺寸》标准制定的:常用的坡口形式有I形坡口、Y型坡口、带钝边U形坡口、双Y形坡口、带钝边单边V形坡口等,见图2。

3表示坡口几何尺寸的参数有哪些?它们各起什么作用? ⑴坡口面焊件上所开坡口的表面称为坡口面,见图3。

⑵坡口面角度和坡口角度焊件表面的垂直面与坡口面之间的夹角称为坡口面角度,两坡口面之间的夹角称为坡口角度,见图4。

开单面坡口时,坡口角度等于坡口面角度;开双面对称坡口时,坡口角度等于两倍的坡口面角度。坡口角度(或坡口面角度)应保证焊条能自由伸入坡口内部,不和两侧坡口面相碰,但角度太大将会消耗太多的填充材料,并降低劳动生产率。

⑶根部间隙焊前,在接头根部之间预留的空隙称为根部间隙。亦称装配间隙。根部间隙的作用在于焊接底层焊道时,能保证根部可以焊透。因此,根部间隙太小时,将在根部产生焊不透现象;但太大的根部间隙,又会使根部烧穿,形成焊瘤。 ⑷钝边焊件开坡口时,沿焊件厚度方向未开坡口的端面部分称为钝边。钝边的作用是防止根部烧穿,但钝边值太大,又会使根部焊不透。 ⑸根部半径 U形坡口底部的半径称为根部半径。根部半径的作用是增大坡口根部的横向空间,使焊条能够伸入根部,促使根部焊透。 4试比较Y形、带钝边U形、双Y形三种坡口各自的优缺点? 当焊件厚度相同时,三种坡口的几何形状见图5。

几种焊接的优缺点

钨极氩弧焊得优缺点 1钨极氩弧焊得优点: ①氩气能有效得隔绝空气,本身又不溶于金属,不与金属反应,施焊过程中 电弧还能自动清除熔池表面氧化膜得作用,因此,可成功得焊接易氧化、 氮化、化学活泼性得有色金属,不锈钢与各种合金。 ②钨极电弧稳定,几十在很小得焊接电流(小于10A)下仍可稳定得燃烧,特 别适合用于薄板,超薄材料得焊接。 ③热源与填充焊丝可分别控制,因而热输入容易调节,可进行各种位置得焊 接,也就是实现单面焊双面成型得理想方法。 ④由于填充焊丝熔滴不通过电弧,所以不会产生飞溅,焊缝成型美观。 2钨极氩弧焊得缺点 ①焊缝熔深浅,熔敷速度小,生产率较低。 ②钨极承载电流较差,过大得电流会引起钨极融化与蒸发,其微粒有可能进 入熔池,造成污染(夹钨)。 ③惰性气体(氩气、氮气)较贵,与其她电弧焊方法(如手弧焊、埋弧焊、二氧 化碳气体保护焊等)相比,生产成本较高。 注:脉冲钨极氩弧焊适宜于焊接薄板,特别就是全位置对接焊。钨极氩弧焊一般只适用于焊接厚度小于6mm得焊件。 二:熔化极氩弧焊得特点: ①与TIG焊一样,几乎可焊接所有得金属,尤其适合于焊接铝及铝合金、铜 及铜合金以及不锈钢等材料。 ②由于焊丝作电极,可采用高密度电流,因而母材熔深大,填充金属熔敷速 度快,用于焊接厚铝板,铜等金属时生产率比TIG焊高,焊接变形比TIG 小。 ③熔化极氩弧焊可直流反接,焊接铝及其合金有着很好得阴极雾化作用。 ④熔化极氩弧焊焊接铝及其合金时,亚射流电弧得固有调节作用比较显 著。 三:MIG焊得特点:(MIG焊通常采用惰性气体(氩、氦或其混合气体))作焊接 区得保护气体。 MIG焊得优点: ①惰性气体几乎不与任何金属产生化学作用,也不溶于金属中,所以几乎 可以焊接所有金属。 ②焊丝外表没有涂料层,焊接电流可提高,因而母材熔深较大,焊丝熔化速 度快,熔敷率高,与TIG(Tungsten Inert Gas Arc Welding )焊相比,其生产 效率高。 ③熔滴过渡主要采用射流过渡。短路过渡仅限于薄板焊接时采用,而滴状 过渡在生产中很少采用。焊接铝、镁及其合金时,通常就是采用亚射流 过渡,因阴极雾化区大,熔池保护效果好,且焊缝成形好、缺陷少。 ④若采用短路过渡或脉冲焊接方法,可以进行全位置焊接,但其焊接效率 不及平焊与横焊。 ⑤一般都采用直流反接,这样电弧稳定、熔滴过渡均匀与飞溅少,焊缝成形

国内焊接工艺评定标准的对比及差异

价值工程 序号标准号名称批准部门使用范围标准简称1JB4708-2000《钢制压力容器焊接工艺评定》国家机械工业局、国家石油和化学工业局联合发布。钢制压力容器的气焊、焊条手弧焊、埋弧焊、熔化极气体保护焊、钨极气体保护焊、电渣焊、耐蚀层堆焊的焊接工艺评定JB4708标准2GB50236-98《现场设备、工业管道焊接工程施工及验收规范》第4条:焊接工艺评定中华人民共和国建设部和国家技术监督局联合发布。工程建设中施工现场设备和工业金属管道焊接工程的碳素钢、合金钢、铝及铝合金、铜及铜合金、工业纯钛、镍及镍合金的气焊、手弧焊、氩弧焊、二氧化碳气体保护焊、埋弧焊焊接工艺评定“设计压力不大于42MPa ,设计温度不超过材料允许使用温度的管道工程”不适用于锅炉、压力容器、核装置的专用管道、矿井专用管道、长输管道 GB50236标准3蒸汽锅炉安全技术监察规程》附录Ⅰ焊接工艺评定中华人民共和国劳动部用于承压的以水为介质的固定式蒸汽锅炉及锅炉范围内的管道制造、安装焊接工艺评定或汽水两用锅炉的焊接工艺评定。 不适用水容量小于30L 的固定式承压蒸汽锅炉和原子能锅炉。需评定的焊缝。《蒸规》4SHJ509-88《石油化工工程焊接工艺评定》 中国石油化工总公司用于石油化工常压容器、工业管道和特殊的钢结构施工采用气焊、手弧焊、钨极氩弧焊、熔化极气体保护焊、埋弧焊等焊接方法的焊接工艺评定SHJ509标准5SHJ509-88《石油天然气金属管道焊接工艺评定》国家经济贸易委员会适用于陆上石油天然气工程(不含炼油工程)中各类金属管道的气焊、焊条电弧焊、熔化极气体保护焊、自保护管状药芯焊丝自动及半自动焊、埋弧自动焊及它们的组合等焊接方法的焊接工艺评定 SY/T0452标准表1常用的焊接工艺评定标准1我国焊接工艺评定现行标准我们国家对焊接工艺评定管理工作,同世界先进国家一样,把它也纳入了标准化管理,随着与国际标准化接轨日趋完善。但我国行业管理在国民经济中还占有较大的比重,各行各业就各自产品工程的焊接特点,对焊接工艺评定均制定了相应的标准。本文对国内的焊接工艺评定标准(以下简称“标准”,常用标准见表1)进行对比分析,谈谈焊接工艺评定(以后简称“焊评”)管理的建议。2标准的分析与对比 为了减少焊接工艺评定数量,各“标准”根据母材的化学成分、 力学性能和焊接性能进行分类分组,由于各“标准”涉及产品范围不 一样,各自所列母材分类分组也有所区别。《蒸规》标准中附录Ⅰ第 10条第2款把母材钢号分4类,没有再分组,仅涉及碳素钢、低合 金结构钢、耐热钢,对同类钢号评定合格范围(替代)规定不具体、操 作不方便。但对其它“标准”正文中没涉及到的国外钢材,作出了具 体规定。2.1JB4708标准和SHJ509标准中,母材钢号分类分组基本一 致,区别在于类别号对应钢号顺序排列,在JB4708标准中Cr5Mo 钢单独列为一类,列出8类14组52种钢材牌号;SHJ509标准Cr5Mo 钢列入了耐热合金钢类别单独一组,共计7类19组58种钢材牌号。另外,有色金属铝及铝合金、铜和铜合金单独分列为两类。但这些不同之处,在母材替代方面没有矛盾。JB4708标准中有一项独特内容,即耐蚀层堆焊其合金弯曲试验合格指标。2.2GB50236标准中表4.2.3对母材分类分组更全面细致,分列了23类28组64种牌号钢材,除铝、镁、铜及其合金外,增列了镍合金和钛,对耐热钢和不锈钢又细分出分类号,它主要依据美国机械工程师协会标准ASM —Ⅸ分类分组。在替代范围上较其它“标准”放宽,体现在:2.2.1P+P3(12CrMo+12CrMo )可替代P3+P2A 、P2B 或P1组成的异种钢接头,其中:P2A :16Mn\16MnR\16MnRc\15MnV\15MnNR 等P2B :16MnDR 、09Mn2VD 、09MnVDR P1:Q235—A 、B 、\20R\20G\20HP\10\20等;2.2.2P4+P4(15CrMo+15CrMo )可替代P4+P2A 、P2B 或P1组成的异种钢焊接接头; 2.2.3P5A +P5A (12Cr2Mo+12Cr2Mo )可替代P5A+P2A 、P2B 或P1组成的异种钢焊接接头。但这三种情况适用性不强,因为P3、P4、P5A 各自同类钢评定合格,各自与低合金钢、碳素钢组成异种焊接,焊条牌号前三位(或焊丝钢号)要改变,属于改变重要因素,必须重新进行“焊评”。对于未列入“标准”中钢号,各“标准”都给予了一致的规定。2.3GB50236标准中较三个“标准”缺少角焊缝和组合焊缝的试件、试样和检验、评定内容;弯曲试样的厚度的规定也不甚一致,但不矛盾。它规定弯曲试样(面弯、背弯)厚度为:当试件厚度T<10mm 时,试样厚度t =T (与其他“标准”相同)。当试件厚度T ≥10mm 时, 试样厚度t =10mm ,与其他标准有不同之处,不同材质试件弯曲试验所用的弯轴直径与其它“标准”要求也不一样。同时,GB50236———————————————————————作者简介:张军锋(1975-),男,河南灵宝人,焊接工程师,主要从事压力容器的焊接工艺评定和焊接质量管理工作。国内焊接工艺评定标准的对比及差异 Comparison of Domestic Welding Procedure Qualification Standards and the Differences 张军锋①Zhang Junfeng ;彭建良②Peng Jianliang (①东方电气河南电站辅机制造有限公司,灵宝472501;②三门峡市锅炉压力容器检验所,三门峡472000) (①DEC He ′nan Station Auxiliary Equipment Co.,Ltd.,Lingbao 472501,China ; ②Sanmenxia Boiler &Pressure Vessel Inspection Institute ,Sanmenxia 472000,China ) 摘要:目前,我国用于焊接工程的常用材料,其焊接性已基本掌握,要确保焊接质量,施焊前应进行焊接工艺评定,以评定施焊单位是否有能 力焊出符合相应规程、 规范和产品技术条件所要求的焊接接头。然而,国内不同行业的产品对其焊接工艺评定规定却不太一致,本文通过对国内常用的焊接工艺评定标准的对比,发现其不同点,因而在实际中应用时根据不同的要求选用不同的焊接工艺评定标准。 Abstract:At present,the weldability of materials commonly used in welding engineering has already been grasped basically,and we should make welding procedure qualification before welding when ensuring the quality of welding,so as to assess whether the welding units weld the welding joint which meets corresponding regulations,standards and the requirements of product technology conditions or not.However,there are consistent provisions of domestic different industries ′products to its welding procedure qualification.Through the comparison of domestic commonly used welding procedure qualification standards,this paper finds the differences,thus choose different welding procedure qualification standards according to different requirements in practical application. 关键词:焊接工艺评定;标准 Key words:welding procedure qualification ;standard 中图分类号:P755.1文献标识码:A 文章编号:1006-4311(2012)03-0014-02 ·14·

几种焊接的优缺点

钨极氩弧焊的优缺点 1钨极氩弧焊的优点: ①氩气能有效的隔绝空气,本身又不溶于金属,不和金属反应,施焊过程 中电弧还能自动清除熔池表面氧化膜的作用,因此,可成功的焊接易氧 化、氮化、化学活泼性的有色金属,不锈钢和各种合金。 ②钨极电弧稳定,几十在很小的焊接电流(小于10A)下仍可稳定的燃烧, 特别适合用于薄板,超薄材料的焊接。 ③热源和填充焊丝可分别控制,因而热输入容易调节,可进行各种位置的 焊接,也是实现单面焊双面成型的理想方法。 ④由于填充焊丝熔滴不通过电弧,所以不会产生飞溅,焊缝成型美观。 2钨极氩弧焊的缺点 ①焊缝熔深浅,熔敷速度小,生产率较低。 ②钨极承载电流较差,过大的电流会引起钨极融化和蒸发,其微粒有可能 进入熔池,造成污染(夹钨)。 ③惰性气体(氩气、氮气)较贵,和其他电弧焊方法(如手弧焊、埋弧焊、 二氧化碳气体保护焊等)相比,生产成本较高。 注:脉冲钨极氩弧焊适宜于焊接薄板,特别是全位置对接焊。钨极氩弧焊一般只适用于焊接厚度小于6mm的焊件。 二:熔化极氩弧焊的特点: ①与TIG焊一样,几乎可焊接所有的金属,尤其适合于焊接铝及铝合金、 铜及铜合金以及不锈钢等材料。 ②由于焊丝作电极,可采用高密度电流,因而母材熔深大,填充金属熔敷 速度快,用于焊接厚铝板,铜等金属时生产率比TIG焊高,焊接变形比 TIG小。 ③熔化极氩弧焊可直流反接,焊接铝及其合金有着很好的阴极雾化作用。 ④熔化极氩弧焊焊接铝及其合金时,亚射流电弧的固有调节作用比较显 著。 三:MIG焊的特点:(MIG焊通常采用惰性气体(氩、氦或其混合气体))作 焊接区的保护气体。 MIG焊的优点: ①惰性气体几乎不与任何金属产生化学作用,也不溶于金属中,所以几 乎可以焊接所有金属。 ②焊丝外表没有涂料层,焊接电流可提高,因而母材熔深较大,焊丝熔 化速度快,熔敷率高,与TIG(Tungsten Inert Gas Arc Welding ) 焊相比,其生产效率高。

激光焊接的工作原理及其主要工艺参数(精)

激光焊接的工作原理及其主要工艺参数 目前常用的焊接工艺有电弧焊、电阻焊、钎焊、电子束焊等。电弧焊是目前应用最广泛的焊接方法,它包括手弧焊、埋弧焊、钨极气体保护电弧焊、等离子弧焊、熔化极气体保护焊等。但上述各种焊接方法都有各自的缺点,比如空间限制,对于精细器件不易操作等,而激光焊接不但不具有上述缺点,而且能进行精确的能量控制,可以实现精密微型器件的焊接。并且它能应用于很多金属,特别是能解决一些难焊金属及异种金属的焊接。 激光指在能量相应与两个能级能量差的光子作用下,诱导高能态的原子向低能态跃迁,并同时发射出相同能量的光子。激光具有方向性好、相干性好、单色性好、光脉冲窄等优点。激光焊接是利用大功率相干单色光子流聚焦而成的激光束为热源进行的焊接,这种焊接通常有连续功率激光焊和脉冲功率激光焊。激光焊接从上世纪60年代激光器诞生不久就开始了研究,从开始的薄小零器件的焊接到目前大功率激光焊接在工业生产中的大量的应用,经历了近半个世纪的发展。由于激光焊接具有能量密度高、变形小、热影响区窄、焊接速度高、易实现自动控制、无后续加工的优点,近年来正成为金属材料加工与制造的重要手段,越来越广泛地应用在汽车、航空航天、造船等领域。虽然与传统的焊接方法相比,激光焊接尚存在设备昂贵、一次性投资大、技术要求高的问题,但激光焊接生产效率高和易实现自动控制的特点使其非常适于大规模生产线。 2. 激光焊接原理 2.1激光产生的基本原理和方法 光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子。微观粒子都具有一套特定的能级,任一时刻粒子只能处在与某一能级相对应的状态,物质与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光子的能量值为此两能级的能量差△E,频率为ν=△E/h。爱因斯坦认为光和原子的相互作用过程包含原子的自发辐射跃迁、受激辐射跃迁和受激吸收跃迁三种过程。我们考虑原子的两个能级E1和E2,处于两个能级的原子数密度分别为N1和N2。构成黑体物质原子中的辐射场能量密度为ρ,并有E2 -E1=hν。 2.1.自发辐射 处于激发态的原子如果存在可以接纳粒子的较低能级,即使没有外界作用,粒子也有一定的概率自发地从高能级激发态(E2)向低能级基态(E1)跃迁,同时辐射出能量为(E2-E1)的光子,光子频率ν=(E2-E1)/h。这种辐射过程称为自发辐射。自发辐射发出的光,不具有相位、偏振态上的一致,是非相干光。 2.2.受激辐射 除自发辐射外,处于高能级E2上的粒子还可以另一方式跃迁到较低能级。当频率为ν=(E2-E1)/h的光子入射时,也会引发粒子以一定的概率,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都相同的光子,这个过程称为受激辐射。 2.3.受激吸收 受激辐射的反过程就是受激吸收。处于低能级E1的一个原子,在频率为的辐射场作用下吸收一个能量为hν的光子,并跃迁至高能级E2,这种过程称为受激吸收。自发辐射是不相干的,受激辐射是相干的。 由受激辐射和自发辐射的相干性可知,相干辐射的光子简并度很大。普通光源在红外和可见光波段实际上是非相干光源。如果能够创造这样一种情况:使得腔内某一特定模式的ρ很大,而其他所有模式的都很小,就能够在这一特定模式内形成很高的光子简并度,使相干

焊接常见缺陷讲课教案

焊接常见缺陷

焊接缺陷及其成因常见的焊接外部缺陷有:尺寸不符合要求、咬边、焊瘤、弧坑及表面飞溅等。常见的焊缝内部缺陷有:夹渣及气孔等。产生焊缝缺陷的原因可用人、机、料、法、环五大因素查找。其中人是最活跃的因素。有些缺陷是焊工施焊时的习惯性动作所致,或与其尚未克服的瘤疾有关,这主要是电焊工的技术素质及责任心问题。从设备上看,我厂的电焊机均无电流表及电压表,调节手柄的数值只能作参考,因此要严格地执行焊接工艺要求是困难的。从材料上看,钢板无除锈除油工序,焊条夹头不除锈;工艺评定覆盖面不大,因我厂的材料代用较多,如可代Q2352A 钢的就有SM41B、SS41 、BCT3Cπ、RST37 等, 有时自焊, 有时互焊。虽然这些材料成分及性能相近,但是有些还存在较大差异,因此工艺参数应有相应的变化。施焊环境如空气的相对湿度、温度、风速等,都会影响焊接质量,然而有的电焊工却忽视了一点。产生焊接缺陷的原因很多,但只要严格执行焊接工艺就能够最大限度地避免这些缺陷。为了保证焊接质量,焊缝的检验是必不可少的,如焊缝的外观检查、射线探伤及机械性能试验。经验表明,前两者的合格与否都不是后者合格与否的必要条件,只是概率的大小而已。 2. 1 焊缝尺寸不符合要求 2. 1. 1 焊缝宽度过窄这主要是焊接电流较小、焊弧过长或焊速较快造成的。由于形成的金属熔池较小或保持时间较短,不利于钢水流动。我厂进口钢代替Q2352A 钢时常出现这一问题。这是由于进口钢一般比Q2352A 含合金元素要高些,熔点高,需要的熔化热也多。2. 1. 2 焊缝余高过高有时它与前一个问题同时出现。有的焊工片面地认为焊缝高点没关系,所以不习惯于0~1. 5mm 的焊缝余高,多数为上限或超高。但过高会产生应力集中,其主要原因是倒数第二层焊道接头过高,造成盖面层焊道局部超高,有时各层焊接参数不合适,各层累计超高。 2. 1. 3 角焊缝单边或下陷量过大角焊缝单边或下陷量过大造成单位面积上承力过大,使焊接强度降低。在我厂这是个老问题。其原因是坡口不规则、间隙不均匀、焊条与工件夹角不合适以及焊接参数与工艺要求不一致等。 2. 2 弧坑焊接弧坑多出现在列管式换热器管头焊缝或部分角焊缝,有部分弧坑在试水压时渗漏。产生弧坑的原因是熄弧时间过短或电流较大。 2. 3 咬边在我厂大多是局部深度超标的咬边,连续咬边超标的不多。咬边使焊接强度减弱,造成局部应力集中。其主要原因是电弧热量太高,如焊接电流过大,运条速度不当,焊条角度不当等,使电弧将焊缝边缘熔化后没有得到熔敷金属的补充所留下的缺口。 2. 4 焊瘤熔化金属流到加热不足的母材上形成了焊瘤,主要原因是焊接电流过大,焊接熔化过慢或焊条偏斜。 2. 5 严重飞溅比较严重的是那些无探伤要求的设备,直接原因是没按规定使用焊条。受潮或变质的焊条因水分或氧化物在焊接时分解产生大量气体,部分气体溶解在金属熔滴中,在电弧高温作用下,金属熔滴中的气体发生剧烈膨胀,使熔滴炸裂形成飞溅小滴散落在焊缝两侧。 2. 6 夹渣由于焊接电流过小或运条速度过快,金属熔池温度较低,液态金属和熔渣不易分开,或熔渣未来得及浮出,熔池已开始凝固,有时也存在清根不彻底问题。 2. 7 气孔产生气孔的原因很多,但在我厂产生气孔的主要原因是焊材及环境因素。钢板坡口两侧不做除锈处理,Fe3O4 除本身含氧外,还含有一定的结晶水,另外在空气相对湿度较大情况下也有微小的水珠,在熔池冶金过程中,非金属元素形成非金属氧化物,由于气体在金属中的溶解度随温度降低而减少,在结晶过程中部分气体来不及逸出,气泡残留在金属内形成了气孔。 3 克服焊接缺陷应采取的措施 (1) 增强有关人员的责任心,严格执行工作标准和焊接工艺要求。 (2) 经常进行技术培训,提高操作人员及有关人员的技术素质。 (3) 保证焊接设备及

激光焊接的工作原理及其主要工艺参数

激光焊接的工作原理及其主要工艺参数摘要:焊接技术主要应用在金属母材热加工上,常用的有电弧焊,电阻焊,钎焊, 电子束焊,激光焊等多种,本文详细介绍了激光焊接的工作原理与工艺参数,还讨论了激光焊接技术在现代工业中的应用,并与其他焊接方法进行对比。研究表明激光焊接技术将逐步得到广泛应用。 关键词:焊接技术;激光焊接;工作原理;工艺参数。 1. 引言 目前常用的焊接工艺有电弧焊、电阻焊、钎焊、电子束焊等。电弧焊是目前应用最广泛的焊接方法,它包括手弧焊、埋弧焊、钨极气体保护电弧焊、等离子弧焊、熔化极气体保护焊等。但上述各种焊接方法都有各自的缺点,比如空间限制,对于精细器件不易操作等,而激光焊接不但不具有上述缺点,而且能进行精确的能量控制,可以实现精密微型器件的焊接。并且它能应用于很多金属,特别是能解决一些难焊金属及异种金属的焊接。 激光指在能量相应与两个能级能量差的光子作用下,诱导高能态的原子向低能态跃迁,并同时发射出相同能量的光子。激光具有方向性好、相干性好、单色性好、光脉冲窄等优点。激光焊接是利用大功率相干单色光子流聚焦而成的激光束为热源进行的焊接,这种焊接通常有连续功率激光焊和脉冲功率激光焊。激光焊接从上世纪60年代激光器诞生不久就开始了研究,从开始的薄小零器件的焊接到目前大功率激光焊接在工业生产中的大量的应用,经历了近半个世纪的发展。由于激光焊接具有能量密度高、变形小、热影响区窄、焊接速度高、易实现自动控制、无后续加工的优点,近年来正成为金属材料加工与制造的重要手段,越来越广泛地应用在汽车、航空航天、造船等领域。虽然与传统的焊接方法相比,激光焊接尚存在设备昂贵、一次性投资大、技术要求高的问题,但激光焊接生产效率高和易实现自动控制的特点使其非常适于大规模生产线。 2. 激光焊接原理 2.1激光产生的基本原理和方法 光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子。微观粒子都具有一套特定的能级,任一时刻粒子只能处在与某一能级相对应的状态,物质与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光子的能量值为此两能级的能量差△E,频率为ν=△E/h。爱因斯坦认为光和原子的相互作用过程包含原子的自发辐射跃迁、受激辐射跃迁和受激吸收跃迁三种过程。我们考虑原子的两个能级E1和E2,处于两个能级的原子数密度分别为N1和N2。构成黑体物质原子中的辐射场能量密度为ρ,并有E2 -E1=hν。 2.1.自发辐射 处于激发态的原子如果存在可以接纳粒子的较低能级,即使没有外界作用,粒子也有一定的概率自发地从高能级激发态(E2)向低能级基态(E1)跃迁,同时辐射出能量为(E2-E1)的光子,光子频率ν=(E2-E1)/h。这种辐射过程称为自发辐射。自发辐射发出的光,不具有相位、偏振态上的一致,是非相干光。 2.2.受激辐射 除自发辐射外,处于高能级E2上的粒子还可以另一方式跃迁到较低能级。当频率为ν=(E2-E1)/h的光子入射时,也会引发粒子以一定的概率,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都相同的光子,

氩弧焊焊接工艺参数_百度文库(精)

氩弧焊焊接工艺参数 一、电特性参数 1.焊接电流钨极氩弧焊的焊接电流通常是根据工件的材质、厚度和接头的空间位置来选择的,焊接电流增加时,熔深增大,焊缝的宽度和余高稍有增加,但增加很少,焊接电流过大或过小都会使焊缝成形不良或产生焊接缺陷。 2.电弧电压钨极氩弧焊的电弧电压主要是由弧长决定的,弧长增加,电弧电压增高,焊缝宽度增加,熔深减小。电弧太长电弧电压过高时,容易引起未焊透及咬边,而且保护效果不好。但电弧也不能太短,电弧电压过低、电弧太短时,焊丝给送时容易碰到钨极引起短路,使钨极烧损,还容易夹钨,故通常使弧长近似等于钨极直径。 3.焊接速度焊接速度增加时,熔深和熔宽减小,焊接速度过快时,容易产生未熔合及未焊透,焊接速度过慢时,焊缝很宽,而且还可能产生焊漏、烧穿等缺陷。手工钨极氩弧焊时,通常是根据熔池的大小、熔池形状和两侧熔合情况随时调整焊接速度。 二、其它参数 1.喷嘴直径喷嘴直径(指内径增大,应增加保护气体流量,此时保护区范围大,保护效果好。但喷嘴过大时,不仅使氩气的消耗增加,而且不便于观察焊接电弧及焊接操作。因此,通常使用的喷嘴直径一般取8mm~20mm为宜。 2.喷嘴与焊件的距离喷嘴与焊件的距离是指喷嘴端面和工件间的距离,这个距离越小,保护效果越好。所以,喷嘴与焊件间的距离应尽 可能小些,但过小将不便于观察熔池,因此通常取喷嘴至焊件间的距离为 7mm~15mm。 3.钨极伸出长度为防止电弧过热烧坏喷嘴,通常钨极端部应伸出喷嘴以外。钨极端头至喷嘴端面的距离为钨极伸出长度,钨极伸出长度越小,喷嘴与工件间距离越近,保护效果越好,但过小会妨碍观察熔池。通常焊对接缝时,钨极伸出长度为 5mm~6mm较好;焊角焊缝时,钨极伸出长度为7mm~8mm较好。

焊接方法有哪几种

●闪光焊,钢轨形成对接接头,通电并使其端面逐渐移近,达到局 部接触,利用电阻热加热这些接触点(产生闪光),使端面全部熔化,直至端部在一定深度范围内达到预定温度时,迅速施加顶锻力完成焊接。 优点:闪光焊自动化程度高,工艺稳定,焊接质量优良,焊接接头为致密锻造组织,接头韧性好,力学性能接近钢轨母材,生产效率高,主要用于厂焊或基地焊,部分用于单元轨节焊接。缺点:焊机价格昂贵,一次性投资大,设备复杂且需配备大功率电源、柴油发电机组,焊接工艺参数较多,调节繁琐;同时闪光焊焊接过程中钢轨烧损严重,每个接头消耗钢轨25.1-50mm。 ●气压焊,是利用气体燃料产生的热能将钢轨端部加热到熔化状态 或塑性状态,再施加一定的顶锻压力,完成钢轨焊接。 优点:气压焊的一次性投资少,焊接时间短,焊接质量好,焊接接头也为致密锻造组织,主要用于现场联合接头焊接。钢轨烧损较少,焊接后钢轨缩短约30mm。缺点:焊接时对接头断面的处理要求十分严格,焊接工艺受诸多人为因素影响,接头质量波动较大,不易控制。 ●铝热焊,是利用铝和氧化铁(含添加剂),在一定温度下进行氧化 还原反应,形成高温液态金属注入特制的铸模内,将两个被焊钢轨端部熔化而实现连接的一种焊接方法。 优点:设备简单、操作方便,生产成本较低,且没有顶锻过程,接头外观平顺性好,占用封锁时间短,尤其适用于断轨修复、跨区间无缝线路道岔联焊和运输任务繁忙的线上联焊。缺点:强度低、质量欠稳

定,断头率高,综合性能差,是无缝线路最薄弱环节。 电弧焊,接头间隙,并利用铜挡块强迫成型,冷却后形成焊接接头,属于熔化焊方法。 优点:采用合适的焊条和焊丝成分,电弧焊接头可以得到性能优异的贝氏体组织,综合性能可达到母材水平,抗拉强度和耐磨性能等有时甚至超过钢轨母材。缺点:目前推广较少,此外对焊接工艺、技术水平要求严格。

常见的焊接缺陷及产生原因

常见的焊接缺陷及产生原因,非常重要的经验!金属加工 焊接是大型安装工程建设中的一项关键工作,其质量的好坏、效率的高低直接影响工程的安全运行和制造工期。由于技术工人的水准不同,焊接工艺良莠不齐,容易存在很多的缺陷。现整理缺陷的种类及成因,以减少或防止焊接缺陷的产生, 提高工程完成的质量。 一、焊缝尺寸不合要求 焊波粗、外形高低不平、焊缝加强高度过低或过高、焊波宽度不一及 角焊缝单边或下陷量过大等均为焊缝尺寸不合要求,其原因是: 1. 焊件坡口角度不当或装配间隙不均匀。 2. 焊接电流过大或过小,焊接规范选用不当。 3. 运条速度不均匀,焊条(或焊把)角度不当。 二、裂纹 裂纹端部形状尖锐,应力集中严重,对承受交变和冲击载荷、静拉力影响较大,是焊缝中最危险的缺陷。按产生的原因可分为冷裂纹、热裂纹和再热裂纹等。(冷裂纹)指在200℃以下产生的裂纹,它与氢有密切的关系,其产生的主要原因是: 1. 对大厚工件选用预热温度和焊后缓冷措施不合适。 2. 焊材选用不合适。 3. 焊接接头刚性大,工艺不合理。 4. 焊缝及其附近产生脆硬组织。 5. 焊接规范选择不当。 (热裂纹)指在300℃以上产生的裂纹(主要是凝固裂纹),其产生的主要原因是: 1. 成分的影响。焊接纯奥氏体钢、某些高镍合金钢和有色金属时易出现。 2. 焊缝中含有较多的硫等有害杂质元素。 3. 焊接条件及接头形式选择不当。 (再热裂纹)即消除应力退火裂纹。指在高强度的焊接区,由于焊后热处理或高温下使用,在热影响区产生的晶间裂纹,其产生的主要原因是: 1. 消除应力退火的热处理条件不当。 2. 合金成分的影响。如铬钼钒硼等元素具有增大再热裂纹的倾向。

几种铝合金焊接先进工艺

铝合金焊接的几种先进工艺:搅拌摩擦焊、激光焊、激光- 电弧复合焊、电子束焊。针对于焊接性不好和曾认为不可焊接的合金提出了有效的解决方法,几种工 艺均具有优越性,并可对厚板铝合金进行焊接。 关键词: 铝合金搅拌摩擦焊激光焊激光- 电弧复合焊电子束焊 1 铝合金焊接的特点 铝合金由于重量轻、比强度高、耐腐蚀性能好、无磁性、成形性好及低温性能好等特点而被广泛地应用于各种焊接结构产品中,采用铝合金代替钢板材料焊接,结构重量可减轻50 %以上。 铝合金焊接有几大难点: ①铝合金焊接接头软化严重,强度系数低,这也是阻碍铝合金应用的最大障碍; ②铝合金表面易产生难熔的氧化膜(Al2O3 其熔点为2060 ℃) ,这就需要采用 大功率密度的焊接工艺; ③铝合金焊接容易产生气孔; ④铝合金焊接易产生热裂纹; ⑤线膨胀系数大,易产生焊接变形; ⑥铝合金热导率大(约为钢的4 倍) ,相同焊接速度下,热输入要比焊接钢材大 2~4 倍。 因此,铝合金的焊接要求采用能量密度大、焊接热输入小、焊接速度高的高效 焊接方法。 2 铝合金的先进焊接工艺 针对铝合金焊接的难点,近些年来提出了几种新工艺,在交通、航天、航空等行业得到了一定应用,几种新工艺可以很好地解决铝合金焊接的难点,焊后接头性能良好,并可以对以前焊接性不好或不可焊的铝合金进行焊接。 2. 1 铝合金的搅拌摩擦焊接 搅拌摩擦焊FSW( Friction Stir Welding) 是由英国焊接研究所TWI ( The Welding Institute) 1991 年提出的新的固态塑性连接工艺[1~2 ] 。图1为搅拌 摩擦焊接示意图[3 ] 。其工作原理是用一种特殊形式的搅拌头插入工件待焊部位,通过搅拌头高速旋转与工件间的搅拌摩擦,摩擦产生热使该部位金属处于热塑性 状态,并在搅拌头的压力作用下从其前端向后部塑性流动,从而使焊件压焊在一起。图2 为搅拌摩擦焊接过程[4 ] 。由于搅拌摩擦焊过程中不存在金属的熔化,是一种固态连接过程,故焊接时不存在熔焊的各种缺陷,可以焊接用熔焊方法难以焊接的有色金属材料,如铝及高强铝合金、铜合金、钛合金以及异种材料、复合材料 焊接等。目前搅拌摩擦焊在铝合金的焊接方面研究应用较多。已经成功地进行了搅拌摩擦焊接的铝合金包括2000 系列(Al- Cu) 、5000 系列(Al - Mg) 、6000 系列(Al - Mg - Si) 、7000 系列(Al - Zn) 、8000 系列(Al - Li) 等。国外已经.进入工业化生产阶段,在挪威已经应用此技术焊接快艇上长为20 m 的结构件,美国洛克希德·马丁航空航天公司用该项技术焊接了铝合金储存液氧的低温容器火箭结 构件。 铝合金搅拌摩擦焊焊缝是经过塑性变形和动态再结晶而形成,焊缝区晶粒细化,无熔焊的树枝晶,组织细密,热影响区较熔化焊时窄,无合金元素烧损、裂纹和气孔等缺陷,综合性能良好。与传统熔焊方法相比,它无飞溅、烟尘,不需要添加焊丝和保护气体,接头性能良好。由于是固相焊接工艺,加热温度低,焊接热影响区显微组织变化小,如亚稳定相基本保持不变,这对于热处理强化铝合金及沉淀强化铝合金非常有利。焊后的残余应力和变形非常小,对于薄板铝合金焊后基本不变形。与

各种焊接方式优缺点资料讲解

学习资料 氩弧焊 缺点: 1)氩弧焊因为热影响区域大,工件在修补后常常会造成变形、硬度降低、砂眼、局部退火、开裂、针孔、磨损、划伤、咬边、或者是结合力不够及内应力损伤等缺点。尤其在精密铸造件细小缺陷的修补过程在表面突出。在精密铸件缺陷的修补领域可以使用冷焊机来替代氩弧焊,由于冷焊机放热量小,较好的克服了氩弧焊的缺点,弥补了精密铸件的修复难题。 (2)氩弧焊与焊条电弧焊相比对人身体的伤害程度要高一些,氩弧焊的电流密度大,发出的光比较强烈,它的电弧产生的紫外线辐射,约为普通焊条电弧焊的5~30倍,红外线约为焊条电弧焊的1~1.5倍,在焊接时产生的臭氧含量较高,因此,尽量选择空气流通较好的地方施工,不然对身体有很大的伤害。 (3)对于低熔点和易蒸发的金属(如铅、锡。锌),焊接较困难。 氩弧焊的应用: 氩弧焊适用于焊接易氧化的有色金属和合金钢(主要用Al、Mg、Ti及其合金和不锈钢的焊接);适用于单面焊双面成形,如打底焊和管子焊接;钨极氩弧焊还适用于薄板焊接。优点: 1、氩气保护可隔绝空气中氧气、氮气、氢气等对电弧和熔池产生的不良影响,减少合金元素的烧损,以得到致密、无飞溅、质量高的焊接接头; 2、氩弧焊的电弧燃烧稳定,热量集中,弧柱温度高,焊接生产效率高,热影响区窄,所焊的焊件应力、变形、裂纹倾向小; 3、氩弧焊为明弧施焊,操作、观察方便; 4、电极损耗小,弧长容易保持,焊接时无熔剂、涂药层,所以容易实现机械化和自动化; 5、氩弧焊几乎能焊接所有金属,特别是一些难熔金属、易氧化金属,如镁、钛、钼、锆、铝等及其合金; 6、不受焊件位置限制,可进行全位置焊接。[3] 仅供学习与参考

几种焊接的优缺点之欧阳光明创编

钨极氩弧焊的优缺点 欧阳光明(2021.03.07) 1钨极氩弧焊的优点: ①氩气能有效的隔绝空气,本身又不溶于金属,不和金属反 应,施焊过程中电弧还能自动清除熔池表面氧化膜的作 用,因此,可成功的焊接易氧化、氮化、化学活泼性的有 色金属,不锈钢和各种合金。 ②钨极电弧稳定,几十在很小的焊接电流(小于10A)下仍 可稳定的燃烧,特别适合用于薄板,超薄材料的焊接。 ③热源和填充焊丝可分别控制,因而热输入容易调节,可进 行各种位置的焊接,也是实现单面焊双面成型的理想方 法。 ④由于填充焊丝熔滴不通过电弧,所以不会产生飞溅,焊缝成型美观。 2钨极氩弧焊的缺点 ①焊缝熔深浅,熔敷速度小,生产率较低。 ②钨极承载电流较差,过大的电流会引起钨极融化和蒸发,其 微粒有可能进入熔池,造成污染(夹钨)。 ③惰性气体(氩气、氮气)较贵,和其他电弧焊方法(如手弧 焊、埋弧焊、二氧化碳气体保护焊等)相比,生产成本较高。 注:脉冲钨极氩弧焊适宜于焊接薄板,特别是全位置对接焊。钨极

氩弧焊一般只适用于焊接厚度小于6mm的焊件。 二:熔化极氩弧焊的特点: ①与TIG焊一样,几乎可焊接所有的金属,尤其适合于焊接 铝及铝合金、铜及铜合金以及不锈钢等材料。 ②由于焊丝作电极,可采用高密度电流,因而母材熔深大, 填充金属熔敷速度快,用于焊接厚铝板,铜等金属时生产 率比TIG焊高,焊接变形比TIG小。 ③熔化极氩弧焊可直流反接,焊接铝及其合金有着很好的阴 极雾化作用。 ④熔化极氩弧焊焊接铝及其合金时,亚射流电弧的固有调节 作用比较显著。 三:MIG焊的特点:(MIG焊通常采用惰性气体(氩、氦或其混合气体))作焊接区的保护气体。 MIG焊的优点: ①惰性气体几乎不与任何金属产生化学作用,也不溶于金属 中,所以几乎可以焊接所有金属。 ②焊丝外表没有涂料层,焊接电流可提高,因而母材熔深较 大,焊丝熔化速度快,熔敷率高,与TIG(Tungsten Inert Gas Arc Welding )焊相比,其生产效率高。 ③熔滴过渡主要采用射流过渡。短路过渡仅限于薄板焊接时 采用,而滴状过渡在生产中很少采用。焊接铝、镁及其合 金时,通常是采用亚射流过渡,因阴极雾化区大,熔池保 护效果好,且焊缝成形好、缺陷少。

相关文档
最新文档