直流电动机控制系统

直流电动机控制系统
直流电动机控制系统

煤炭工程学院课程设计

题目:直流电动机转速控制系统

专业班级:

学生姓名:

学号:

指导教师:

日期:

摘要

当今社会,电动机作为最主要的机电能量转换装置,其应用范围已遍及国民经济的各个领域和人们的日常生活。无论是在工农业生产,交通运输,国防,航空航天,医疗卫生,商务和办公设备中,还是在日常生活的家用电器和消费电子产品(如电冰箱,空调,DVD等)中,都大量使用着各种各样的电动机。据资料显示,在所有动力资源中,百分之九十以上来自电动机。同样,我国生产的电能中有百分之六十是用于电动机的。电动机与人的生活息息相关,密不可分。电气时代,电动机的调速控制一般采用模拟法、PID控制等,对电动机的简单控制应用比较多。简单控制是指对电动机进行启动,,制动,正反转控制和顺序控制。这类控制可通过继电器,光耦、可编程控制器和开关元件来实现。还有一类控制叫复杂控制,是指对电动机的转速,转角,转矩,电压,电流,功率等物理量进行控制。

电机在各行各业发挥着重要的作用,而电机转速是电机重要的性能指标之一,因而测量电机的转速和电机的调速,使它满足人们的各种需要,更显得重要,而且随着科技的发展,PWM调速成为电机调速的新方式。

随着数字技术的迅速发展,微控制器在社会的各个领域得到了广泛的应用,由于数字系统有着模拟系统所没有的优势,如抗干扰性强、便于和PC机相联、系统易于升级维护。

本设计是以单片机AT89S52和L298控制的直流电机脉宽调制调速系统。利用AT89S52芯片进行低成本直流电动机控制系统的设计,能够简化系统构成、降低系统成本、增强系统性能、满足更多应用场合的需要。系统实现对电机的正转、反转、急停、加速、减速的控制,以及PWM的占空比在LCD上的实时显示。

关键词:直流电机;AT89S52;PWM调速;L298

目录

摘要 (1)

目录 (2)

一﹑绪论 (3)

1.1直流电机的介绍 (3)

1.2单片机的介绍 (4)

二﹑总体方案 (5)

2.1系统框架设计 (5)

2.2设计思路 (6)

三﹑各模块的介绍 (7)

3.1 PWM脉宽调制原理 (7)

3.2系统硬件设计 (9)

3.3 AT89S52 .﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍10 3.4独立式键盘控制模块 (12)

3.5 L298电机驱动模块 (13)

3.6光电测速模块 (16)

3.7 LCD显示模块 (19)

3.8系统软件设计 (22)

结论 (23)

致谢 (24)

参考文献﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍24附录﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍25

一﹑绪论

1.1直流电机

1.1.1直流电机的发展

直流电动机在冶金、矿山、化工、交通、机械、纺织、航空等领域中已经得到广泛的应用。而以往直流电动机的控制只是简单的控制,很难进行调速,不能实现智能化。如今,直流电动机的调速控制已经离不开单片机的支持,单片机应用技术的飞速发展促进了自动控制技术的发展,使人类社会步入了自动化时代,单片机应用技术与其他学科领域交叉融合,促进了学科发展和专业更新,引发了新兴交叉学科与技术的不断涌现。现代科学技术的飞速发展,改变了世界,也改变了人类的生活。由于单片机的体积小、重量轻、功能强、抗干扰能力强、控制灵活、应用方便、价格低廉等特点,计算机性能的不断提高,单片机的应用也更加广泛特别是在各种领域的控制、自动化等方面。

在实际应用中,电动机作为把电能转换为机械能的主要设备,一是要具有较高的能量转换效率;二是应能根据生产工艺的要求调整转速。电动机的调速性能如何对提高产品质量、提高劳动生产率和节省电能有着直接的决定性影响。因此,调速技术一直是研究的热点。

1.1.2直流电机控制方法和工作原理

直流电动机转速的控制方法可分为两类:励磁控制法与电枢电压控制法。励磁控制法控制磁通,其控制功率虽然小但低速时受到磁场饱和的限制,高速时受到换向火花和转向器结构强度的限制,而且由于励磁线圈电感较大动态响应较差。所以常用的控制方法是改变电枢端电压调速的电枢电压控制法。

传统的改变端电压的方法是通过调节电阻来实现的,但这种调压方法效率低。随着电力电子技术的发展,创造了许多新的电枢电压控制方法。其中脉宽调制(Pulse Width Modulation,PWM)是常用的一种调速方法。其基本原理是用改变电机电枢电压的接通和断开的时间比(即占空比)来控制马达的速度,在脉宽调速系统中当电机通电时,其速度增加,电机断电时其速度降低。只要按照一定的规律改变通断电的时间,就可使电机的速度保持在一稳定值上。

直流电机可按其结构、工作原理和用途等进行分类,其中根据直流电机的用途可分为以下几种:直流发电机(将机械能转化为直流电能)、直流电动机(将直流电能转化为机械能)、直流测速发电机(将机械信号转换为电信号)、直流伺服电动机(将控制信号转换

为机械信号)。

直流电机电路模型如图1-1所示,磁极N、S间装着一个可以转动的铁磁圆柱体,圆柱体的表面上固定着一个线圈abcd。当线圈中流过电流时,线圈受到电磁力作用,从而产生旋转。根据左手定则可知,当流过线圈中电流改变方向时,线圈的方向也将改变,因此

1-1。

图1.1 直流电机工作

图1-1 直流电动机电路模型

1.2单片机及微处理器控制系统的发展

单片微型计算机的诞生是计算机发展史上的一个新的里程碑。近年来,随着技术的发展和进步,以及市场对产品功能和性能的要求不断提高,直流电动机的应用更加广泛,尤其是在智能机器人中的应用。直流电动机的起动和调速性能、过载能力强等特点显得十分重要,为了能够适应发展的要求,单闭环直流电动机的调速控制系统得到了很大的发展。而作为单片嵌入式系统的核心—单片机,正朝着多功能、多选择、高速度、低功耗、低价格、大存储容量和强I/O功能等方向发展。随着计算机档次的不断提高,功能的不断完善,单片机已越来越广泛地应用在各种领域的控制、自动化、智能化等方面,特别是在直流电动机的调速控制系统中。这是因为单片机具有很多优点:体积小,功能全,抗干扰能力强,可靠性高,结构合理,指令丰富,控制功能强,造价低等。所以选用单片机作为控制系统的核心以提高整个系统的可靠性和可行性。

早期直流传动的控制系统采用模拟分离器件构成,由于模拟器件有其固有的缺点,如存在温漂、零漂电压,构成系统的器件较多,使得模拟直流传动系统的控制精度及可靠性

较低。随着计算机控制技术的发展,微处理器已经广泛使用于直流传动系统,实现了全数字化控制。由于微处理器以数字信号工作,控制手段灵活方便,抗干扰能力强。所以,全数字直流调速控制精度、可靠性和稳定性比模拟直流调速系统大大提高。所以,直流传动控制采用微处理器实现全数字化,使直流调速系统进入一个崭新的阶段。

微处理器诞生于上个世纪七十年代,随着集成电路大规模及超大规模集成电路制造工

艺的迅速发展,微处理器的性价比越来越高。此外,由于电力电子技术的发展,制作工艺

的提升,使得大功率电子器件的性能迅速提高。为微处理器普遍用于控制电机提供了可能,利用微处理器控制电机完成各种新颖的、高性能的控制策略,使电机的各种潜在能力得到

充分的发挥,使电机的性能更符合工业生产使用要求,还促进了电机生产商研发出各种如

步进电机、无刷直流电机、开关磁阻电动机等便于控制且实用的新型电机,使电机的发展

出现了新的变化。

对于简单的微处理器控制电机,只需利用用微处理器控制继电器、电子开关元器件,使电路开通或关断就可实现对电机的控制。现在带微处理器的可编程控制器,已经在各种的机床设备和各种的生产流水线中普遍得到应用,通过对可编程控制器进行编程就可以实现对电机的规律化控制。对于复杂的微处理器控制电机,则要利用微处理器控制电机的电压、电流、转矩、转速、转角等,使电机按给定的指令准确工作。通过微处理器控制,可使电机的性能有很大的提高。目前相比直流电机和交流电机他们各有所长,如直流电机调速性能好,但带有机械换向器,有机械磨损及换向火花等问题;交流电机,不论是异步电机还是同步电机,结构都比直流电机简单,工作也比直流电机可靠,但在频率恒定的电网上运行时,它们的速度不能方便而经济地调节[2]。高性能的微处理器如DSP (DIGITAL SIGNAL PROCESSOR即数字信号处理器)的出现,为采用新的控制理论和控制策略提供了良好的物质基础,使电机传动的自动化程度大为提高。在先进的数控机床等数控位置伺服系统,已经采用了如DSP等的高速微处理器,其执行速度可达数百万兆以上每秒,且具有适合的矩阵运算。

二﹑总体方案

2.1系统框架设计

方案说明:直流电机PWM调速系统以AT89S52单片机为控制核心,由命令输入模块、LCD显示模块及电机驱动模块组成。采用独立式键盘作为命令的输入,单片机在程序控制下,定时不断给L298直流电机驱动芯片发送PWM波形,完成电机正,反转和急停控制;

同时单片机不停的将PWM脉宽调制占空比送到LCD数码管完成实时显示,见图2-1。

图2-1 系统框架设计

采用传统的直流电机调速系统的模拟电路容易随时间漂移,会产生一些不必要的热损耗,以及对噪声敏感等。而在用了PWM技术后,避免了以上的缺陷,实现了用数字方式来控制模拟信号,可以大幅度降低成本和功耗。另外,由于PWM 调速系统的开关频率较高,仅靠电枢电感的滤波作用就可获得平稳的直流电流,低速特性好;同样,由于开关频率高,快速响应特性好,动态抗干扰能力强,可以获得很宽的频带;开关器件只工作在开关状态,

主电路损耗小,装置效率高。PWM 具有很强的抗噪性,且有节约空间、比较经济等特点。

2.2设计思路

直流电机PWM控制系统的主要功能包括:实现对直流电机的加速、减速以及电机的正转、反转和急停,能够很方便的实现电机的智能控制。

主体电路:即直流电机PWM控制模块。这部分电路主要由AT89S52单片机的I/O端口、定时计数器、外部键盘等控制直流电机的加速、减速以及电机的正转和反转,能够很方便的实现电机的智能控制。其间是通过AT89S52单片机产生脉宽可调的脉冲信号并输入到L298驱动芯片来控制直流电机工作的。该直流电机PWM控制系统由以下电路模块组成:设计输入部分:这一模块主要是利用独立式键盘来实现对直流电机的加速、减速以及电机的正转、反转和急停控制。

设计控制部分:主要由AT89S52单片机的外部键盘扩展电路组成。直流电机PWM控制实现部分主要由一些二极管、电机和L298直流电机驱动模块组成。

设计测速部分:主要有光电对管和AT89S52实现。

设计显示部分: LCD数码管显示部分,实现对速度实时显示。

三﹑各模块的介绍

3.1 PWM脉宽调速原理

PWM(脉冲宽度调制)是通过控制固定电压的直流电源开关频率,改变负载两端的电压,从而达到控制要求的一种电压调整方法。PWM可以应用在许多方面,比如:电机调速、温度控制、压力控制等等。

在PWM驱动控制的调整系统中,按一个固定的频率来接通和断开电源,并且根据需要改变一个周期内“接通”和“断开”时间的长短。通过改变直流电机电枢上电压的“占空比”来达到改变平均电压大小的目的,从而来控制电动机的转速。也正因为如此,PWM又被称为“开关驱动装置”,见图3-1所示。

图3-1 PWM信号的占空比

设电机始终接通电源时,电机转速最大为Vmax,设占空比为D= t1 / T,则电机的平均速度为Va = Vmax * D,其中Va指的是电机的平均速度;Vmax 是指电机在全通电时的最大速度;D = t1 / T是指占空比。

由上面的公式可见,当我们改变占空比D=t1/T时,就可以得到不同的电机平均速度Va,从而达到调速的目的。严格来说,平均速度Va与占空比D并非严格的线性关系,但是在一般的应用中,我们可以将其近似的看成是线性关系。

3.1.1 PWM调速方法

基于单片机类由软件来实现PWM:在PWM调速系统中占空比D是一个重要参数在电源电压Ud不变的情况下,电枢端电压的平均值取决于占空比D的大小,改变D的值可以改变电枢端电压的平均值从而达到调速的目的。改变占空比D的值有三种方法:

A、定宽调频法:保持t1不变,只改变t2,这样使周期(或频率)也随之改变。

B、调宽调频法:保持t2不变,只改变t1,这样使周期(或频率)也随之改变。

C、定频调宽法:保持周期T(或频率)不变,同时改变t1和t。

前两种方法在调速时改变了控制脉冲的周期(或频率),当控制脉冲的频率与系统的固有频率接近时,将会引起振荡,因此常采用定频调宽法来改变占空比从而改变直流电动机电枢两端电压。利用单片机的定时计数器外加软件延时等方式来实现脉宽的自由调整,此种方式可简化硬件电路,操作性强等优点。

3.1.2 PWM实现方式

方案一:采用定时器做为脉宽控制的定时方式,这一方式产生的脉冲宽度极其精确,误差只在几个us。

方案二:采用软件延时方式,这一方式在精度上不及方案一,特别是在引入中断后,将有一定的误差。故采用方案一。

3.1.3 PWM控制流程图

在本设计中PWM脉冲调制的控制流程见下图3-2。

图3-2 PWM控制流程

3.2系统硬件设计

3.2.1系统基本组成

硬件模块组成

(1)单片机控制模块(主)

(2)光电对管测速(主)

(3)L298电机驱动模块

(4)独立键盘控制模块

(5)LCD显示模块

3.2.2单片机整个控制模块

直流电机调速系统的控制模块见下图4-1

图4-1直流电机调速系统的控制模块

这里利用定时计数器让单片机P2口的P2.7引脚输出占空比不同的方波,然后经驱动芯片L298放大后控制直流电机。驱动芯片的输入电压是两引脚的电压差,在调速时一根引脚线为低电平,另一个引脚产生调速方波,这样两个引脚的电压差就可通过控制其中一个引脚来控制。当需要改变电机转动方向时,两个引脚的输出相反。

定时计数器50us中断一次,就使P2.7产生一个高电平或低电平。占空比为高电平脉冲个数占一个周期总脉冲个数的百分数。一个周期加在电机两端的电压为脉冲高电压乘以占空比。占空比越大,加在电机两端的电压越大,电机转动越快。电机的平均速度等于在一定的占空比下电机的最大速度乘以占空比。当我们改变占空比时,就可以得到不同的电机平均速度,从而达到调速的目的。

3.3 AT89S52的简介

3.3.1 AT89S52主要性能

AT89S52是一种低功耗、高性能CMOS8位微控制器,具有8K 在系统可编程Flash 存储器。使用Atmel 公司高密度非易失性存储器技术制造,与工业80C51 产品指令和引脚完全兼容。片上Flash 允许程序存储器在系统可编程,亦适于常规编程器。在单芯片上,拥有灵巧的8 位CPU 和在系统可编程Flash ,使得AT89S52为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。

与MCS-51单片机产品兼容;8K 字节在系统可编程Flash 存储器;1000次擦写周期;全静态操作:0Hz ~33Hz ;三级加密程序存储器;32个可编程I/O 口线;三个16位定时器/计数器;六个中断源;全双工UART 串行通道;低功耗空闲和掉电模式;掉电后中断可唤醒;看门狗定时器;双数据指针;掉电标识符。

3.3.2 AT89S52各引脚功能介绍

21

22232425262728293031323334353637383940U?

图4-2 AT89S52单片机各引脚

AT89S52 有6个中断源:两个外部中断(INT0 和INT1),三个定时中断(定时器0、1、2)和一个串行中断。这些中断每个中断源都可以通过置位或清除特殊寄存器IE 中的相关中断允许控制位分别使得中断源有效或无效。IE 还包括一个中断允许总控制位EA ,

它能一次禁止所有中断。

AT89S52内部具有看门狗定时器及3个16位可编程定时器/计数器。16位是指他们都

216 。可编程是指它们的工作方式由指令来设是由16个触发器构成,故最大计数模值为1

置,或者当计数器用,或者当定时器用,并且记数(定时)的范围也可以由指令来设置。这种控制功能是通过定时器方式控制器TMOD来完成的。

存储器结构:MCS-51器件有单独的程序存储器和数据存储器。外部程序存储器和数据存储器都可以64K寻址。程序存储器:如果EA引脚接地,程序读取只从外部存储器开始。对于 89S52,如果EA 接VCC,程序读写先从内部存储器(地址为0000H~1FFFH)开始,接着从外部寻址,寻址地址为:2000H~FFFFH。

数据存储器:AT89S52 有256 字节片内数据存储器。

3.4独立式键盘控制模块

3.4.1独立式键盘

独立式键盘的按键相互独立,每个按键接一根I/O口线,一根I/O口线上的按键工作状态不会影响其它I/O口线的工作状态。因此,通过检测I/O口线的电平状态,即可判断键盘上哪个键被按下,独立式键盘见图4-3。

3.4.2本系统中独立式键盘与单片机的链接

本设计中有五个独立式按键,分别控制电机的加速、减速、正反转、急停和系统的复位,独立式按键与单片机的具体连接

3.5 L298电机驱动模块

3.5.1 L298电机驱动简介

L298是SGS公司的产品,L298N为15个管角的单块集成电路,高电压,高电流,四通道驱动,设计用L298N来接收DTL或者TTL逻辑电平,驱动感性负载(比如继电器,直流和步进马达)和开关电源晶体管。内部包含4通道逻辑驱动电路,其额定工作电流为 1 A,最大可达 1.5 A,Vss 电压最小 4.5 V,最大可达 46 V;Vs 电压最大值也是 46 V。L298N 可直接对电机进行控制,无须隔离电路,可以驱动双电机。

3.5.2 L298内部的原理

L298内部H桥电路,电路得名于“H桥驱动电路”是因为它的形状酷似字母H。4个三极管组成H的4条垂直腿,而电机就是H中的横杠。如图所示,H桥式电机驱动电路包括4个

三极管和一个电机。要使电机运转,必须导通对角线上的一对三极管。根据不同三极管对的导通情况,电流可能会从左至右或从右至左流过电机,从而控制电机的转向。

要使电机运转,必须使对角线上的一对三极管导通。例如,如图4-5所示,当Q1管和Q4管导通时,电流就从电源正极经Q1从左至右穿过电机,然后再经Q4回到电源负极。按图中电流箭头所示,该流向的电流将驱动电机顺时针转动。当三极管Q1和Q4导通时,电流将从左至右流过电机,从而驱动电机按特定方向转动(电机周围的箭头指示为顺时针方向)。

图4-5 H桥电路驱动电机顺时针转动

另一对三极管Q2和Q3导通的情况,电流将从右至左流过电机。当三极管Q2和Q3导通时,电流将从右至左流过电机,从而驱动电机沿另一方向转动(电机周围的箭头表示为逆时针方向,上图反方向)。

驱动电机时,保证H桥上两个同侧的三极管不会同时导通非常重要。如果三极管Q1和Q2同时导通,那么电流就会从正极穿过两个三极管直接回到负极。此时,电路中除了三极管外没有其他任何负载,因此电路上的电流就可能达到最大值(该电流仅受电源性能限制),甚至烧坏三极管。基于上述原因,在实际驱动电路中通常要用硬件电路方便地控

制三极管的开关。

3.5.3 L298的逻辑功能

当使能端为高电平时,输入端IN1为PWM信号,IN2为低电平信号时,电机正转;输入端IN1为低电平信号,IN2为PWM信号时,电机反转;;IN1与IN2相同时,电机快速停止。当使能端为低电平时,电动机停止转动。

在对直流电动机电压的控制和驱动中,半导体功率器件(L298)在使用上可以分为两种方式:线性放大驱动方式和开关驱动方式。线性放大驱动方式是半导体功率器件工作在线性区,优点是控制原理简单,输出波动小,线性好,对邻近电路干扰小,缺点为功率器件工作在线性区,功率低和散热问题严重。开关驱动方式是使半导体功率器件工作在开关状态,通过脉调制(PWM)来控制电动机的电压,从而实现电动机转速的控制,L298逻辑功能见表4-1。

表4-1 L298逻辑功能

3.5.4本系统中单片机与L298的连接

L298为直流电机的驱动,在本设计中L298与单片机以及直流电机的连接见

3.6 光电测速模块

3.6.1光电测速的参数

发射管:由红外辐射效率高的材料(常用砷化镓)制成PN结,外加正向偏置电压时,向PN 结注入电流激发红外光.

接收管:光敏二极管或光敏三极管,PN结受照射后产生光电流.

红外发光二极管:发出红外光(近红外线约0.93μm )。管压降约1.4V ,正向工作电流一般小于20mA。

3.6.2光电测速的原理

红外线发射与接收的方式有两种,其一是直射式,其二是反射式。直射式指发光管和接收管相对安放在发射与受控物的两端,中间相距一定距离;反射式指发光管与接收管并列一起,平时接收管始终无光照,只在发光管发出的红外光线遇到反射物时,接收管收到反射回来的红外光线才工作。

我们采用直射式,也就是码盘

红外发射管的驱动有直流驱动和脉冲驱动两种。

红外发射管在直流驱动方式下,只适合近距离传输。当红外发射管在脉冲驱动方式下,最远传输距离可达20米。

光电对管的电路图:

4

2

5

D1

TLN104

R1

330

Q1

TLP104

R2

20K

R3

150K

C1

104

C2

104

3.7 LCD显示模块

1602LCD简介

引脚功能说明

1602LCD采用标准的14脚(无背光)或16脚(带背光)接口,各引脚接口说明如表4-2所示:

表4-2:引脚接口说明表

第1脚:VSS为地电源。

第2脚:VDD接5V正电源

第3脚:VL为液晶显示器对比度调整端,接正电源时对比度最弱,接地时对比度最高,对比度过高时会产生“鬼影”,使用时可以通过一个10K的电位器调整对比度。

第4脚:RS为寄存器选择,高电平时选择数据寄存器、低电平时选择指令寄存器。

晶闸管—直流电动机调速系统教学文稿

7.1 晶闸管—直流电动机调速系统 采用晶闸管可控整流电路给直流电动机供电,通过移相触发,改变直流电动机电枢电压,实现直流电动机的速度调节。这种晶闸管—直流电动机调速系统是电力驱动中的一种重要方式,更是可控整流电路的主要用途之一。可以图7-1所示三相半波晶闸管—直流电动机调速系统为例,说明其工作过程和系统特性。 直流电动机是一种反电势负载,晶闸管整流电路对反电势负载供电时,电流容易出现断续现象。如果调速系统开环运行,电流断续时机械特性将很软,无法负载;如果闭环控制,断流时会使控制系统参数失调,电机发生振荡。为此,常在直流电机电枢回路内串接平波电抗器Ld,以使电流Id尽可能连续。这样,晶闸管—直流电动机调速系统的运行分析及机械特性,必须按电流连续与否分别讨论。 8.1.1 电流连续时 如果平波电抗器Ld电感量足够大,晶闸管整流器输出电流连续,此时晶闸管—直流电动机系统可按直流等值电路来分析,如图7-2所示。图中,左半部代表电流连续时晶闸管整流器的等效电路,右半部为直流电动机的等效电路。由于电流连续,晶闸管整流器可等效为一个直流电源Ud与内阻的串联,Ud为输出整流电压平均值 (7-1) 式中U为电源相压有效值,为移相触发角。

电流连续情况下,晶闸管有换流重迭现象,产生出换流重迭压降,相当于整流电源内串有一个虚拟电阻,其中LB为换流电感。再考虑交流电源(整流变压器)的等效内电阻Ro,则整流电源内阻应为,如图所示。 电流连续时直流电动机可简单地等效为为反电势E与电枢及平波电抗器的电阻总和Ra 串联,而平波电抗器电感Ld在直流等效电路中是得不到反映的。 这样,根据图7-2等效电路,可以列写出电压平衡方程式为 (7-2) 式中,Ce为直流电机电势常数,φ为直流电机每极磁通。求出电机转速为 (7-3) 可以看出,在电枢电流连续的情况下,当整流器移相触发角固定时,电动机转速随 负载电流Id的增加而下降,下降斜率为。当角改变时,随着空载转速点no的变化,机械特性为一组斜率相同的平行线。 但是在一定的平波电抗器电感Ld下,当电流减小到一定程度时,Ld中储能将不足以维持电流连续,电流将出现断续现象,此时直流电动机机械特性会发生很大变化,不再是直线,图7-3中以虚线表示。这部分的机械特性要采用电流断续时的运行分析来确定。 二、电流断续时

直流电动机调速课程设计

《电力拖动技术课程设计》报告书 直流电动机调速设计 专业:电气自动化 学生姓名: 班级: 09电气自动化大专 指导老师: 提交日期: 2012 年 3 月

前言 在电机的发展史上,直流电动机有着光辉的历史和经历,皮克西、西门子、格拉姆、爱迪生、戈登等世界上著名的科学家都为直流电机的发展和生存作出了极其巨大的贡献,这些直流电机的鼻祖中尤其是以发明擅长的发明大王爱迪生却只对直流电机感兴趣,现而今直流电机仍然成为人类生存和发展极其重要的一部分,因而有必要说明对直流电机的研究很有必要。 早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率。 直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。从控制的角度来看,直流调速还是交流拖动系统的基础。早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工效率。

温度控制直流电动机转速系统设计报告

实训题目: 温度控制直流电动机转速 学生姓名:崔敬通 学号: 201223160126 专业:电子信息工程 2013年11月27日

1 引言 直流电机具有良好的线性调速特性和控制性能,使其调速控制占主流地位。尽管交流变频电机、步进电机等在控制调速领域的应用比较广泛,但直流电机调速仍是大多数调速控制电机的最佳选择。89C55单片机支持C语言编程,可移植性好,速度快,已被广泛应用于机电一体化、工业控制、智能仪器仪表等领域。现应用89C51单片机对直流电机速度进行有效测试和控制,通过对直流电机转速脉冲和中断次数的计数,可实现根据输入值控制直流电机的转速。 2 设计任务与要求 根据设计需要,通过测量原件把检测到的直流电机转速读入到89C55单片机中,再通过编程使读入的数值在显示器上显示出来。若检测到的电机转速等于设定值,则对直流电机的转速进行记录;若检测到的电机转速没有达到设定值,则通过加大数值或模数转换芯片使电机速度提升至设定值;若检测到电机转速超过设定值则通过模数转换芯片把电机速度降至设定值。通过这种实时检测和在线控制的方式使单片机能够对直流电机 2.1系统的设计要求及主要技术指标 本论文要求使用单片机进行电路设计,同时单片机部分应带有显示功能。单片机对某个位置进行温度监控,当外部温度≥45℃时,电动机加速正转,当温度≥75℃时,电动机全速正转;当外部温度≤10℃时,电动机加速反转,当温度≤0℃时,电动机全速反转;当温度回到10℃~45℃之间时电动机逐渐停止转动。 2.2系统总体方案 系统总体方案设计,如下图2.1

图2.1 系统总体方案图 2.3总体方案论述 该系统采用AT89C55单片机为核心,通过DS18B20进行温度采集,送入单片机,经过软件编程进行温度的比较和范围划定,然后通过程序控制由单片机产生不同的PWM(脉冲宽度调制)信号,送给电机驱动芯片L298的使能端口,通过L298驱动芯片来控制直流电机的启动、速度、方向的变化;单片机将温度数据传送给LM016L显示温度。整个电路设计包括温度采集模块,单片机控制模块,温度显示模块,和电机及电机驱动模块。 3硬件电路设计 MCS-51系列单片机 Intel公司推出的8位单片机: 1976年推出的MCS-48系列:8039,8048等。

直流电机与交流电动机的区别

直流电机与交流电动机的区别 区别就是驱动电源的种类不同,交流电机是交流,直流电机是直流。 交流电机是定子所形成的旋转磁场在转子上感应出电势后产生的旋转动力。 转速一般是固定的转速。但由于其结构简单,供电电源方便,所以大量使用于工业企业中。小到家用冰箱洗衣机吸尘器,大到机床,等等,都使用交流电机。 直流电机的定子是一个固定磁场,直流电通过转子的电刷在其周围形成变化的磁场,从而在定子内转动。 由于交流比较容易获得,比较容易输送,所以目前我们所使用的电动机械大部分都是交流电机驱动的,交流电机应用更广泛一些。 直流电机是磁场不动,导体在磁场中运动;交流电机是磁场旋转运动,而导体不动. 直流电动机分为定子绕组和转子绕组.定子绕组产生磁场.当通直流电时.定子绕组产生固定 极性的磁场.转子通直流电在磁场中受力.于是转子在磁场中受力就旋转起来.直流电机构造 复杂.造价高. 交流电动机分定子绕组和转子导体.转子导体形状像鼠笼,导体与导体之间用硅钢片.有的交流电动机转子也有绕组. 三相异步电动机的旋转原理 三相异步电动机要旋转起来的先决条件是具有一个旋转磁场,三相异步电动机的定子绕组就是用来产生旋转磁场的。我们知道,三相电源相与相之间的电压在相位上是相差120度的,三相异步电动机定子中的三个绕组在空间方位上也互差120度,这样,当在定子绕组中通入三相电源时,定子绕组就会产生一个旋转磁场,定子绕组产生旋转磁场后,转子导体(鼠笼条)将切割旋转磁场的磁力线而产生感应电流,转子导条中的电流又与旋转磁场相互作用产生电磁力,电磁力产生的电磁转矩驱动转子沿旋转磁场方向旋转起来。一般情况下,电动机的实际转速低于旋转磁场的转速不同步。为此我们称三相电动机为异步电动机。 直流电机具有响应快速、较大的起动转矩、从零转速至额定转速具备可提供额定转矩的性能,但直流电机的优点也正是它的缺点,因为直流电机要产生额定负载下恒定转矩的性能,则电枢磁场与转子磁场须恒维持90°,这就要藉由碳刷及整流子。碳刷及整流子在电机转动时会产生火花、碳粉因此除了会造成组件损坏之外,使用场合也受到限制。 交流电机没有碳刷及整流子,免维护、坚固、应用广,但特性上若要达到相当于直流电机的性能须用复杂控制技术才能达到。交流电动机分为异步电动机和同步电动机两类。异步电动机按照定子相数的不同分为单相异步电动机、两相异步电动机和三相异步电动机。三相异步电动机结构简单,运行可靠,成本低廉等。

直流电动机调速系统

创新设计创新设计名称: 直流电动机调速系统设计

目录 目录 (1) 1 引言 (2) 1.1 设计背景 (2) 1.2 系统可实现的功能 (2) 2 总体方案设计 (3) 2.1 单片机选型方案 (3) 2.2 转速测量方案选择 (4) 2.3直流电机驱动电路介绍 (5) 2.4 PWM调宽方式的选择 (6) 2.5键盘的选择 (6) 2.6整体方案设计框图 (6) 3 硬件电路设计 (7) 3.1 系统的整体硬件框图 (7) 3.2 按键模块电路设计 (7) 3.3数码管显示模块电路设计 (8) 4系统软件设计 (10) 4.1 PWM输出程序设计 (10) 4.2 数字PID算法程序设计 (11) 4.3速度采集模块程序设计 (12) 4.4 按键设定程序设计 (13) 4.5 速度显示模块程序设计 (15) 5 总结 (16) 6参考文献 (17) 附录A系统原理图 (18)

1 引言 1.1 设计背景 现代工业生产中,电动机是主要的驱动设备,目前在直流电动机拖动系统中已大量采用晶闸管(即可控硅)装置向电动机供电的KZ—D拖动系统,取代了笨重的发电动一电动机的F—D系统,又伴随着电子技术的高度发展,促使直流电机调速逐步从模拟化向数字化转变,特别是单片机技术的应用,使直流电机调速技术又进入到一个新的阶段,智能化、高可靠性已成为它发展的趋势。直流电机调速基本原理是比较简单的(相对于交流电机),只要改变电机的电压就可以改变转速了。改变电压的方法很多,最常见的一种PWM脉宽调制,调节电机的输入占空比就可以控制电机的平均电压,控制转速。本设计主要研究了利用MCS-51系列单片机,通过PWM方式控制直流电机调速的方法。PWM控制技术以其控制简单、灵活和动态响应好的优点而成为电力电子技术最广泛应用的控制方式,也是人们研究的热点。由于当今科学技术的发展已经没有了学科之间的界限,结合现代控制理论思想或实现无谐振软开关技术将会成为PWM控制技术发展的主要方向之一。 1.2 系统可实现的功能 设计一个直流电机调速系统,要求系统具有如下功能:通过按键设定转速的大小,然后由单片机产生PWM控制信号,控制直流电机驱动器L298N,使电动机以一定的转速旋转,为实现闭环控制,通过外围器件为单片机提供测量转速的电平变化信号,单片机测得转速后,与设定的转速值相比较,通过数字PID算法产生控制信号,改变PWM输出的占空比,从而改变电动机转速,从而实现闭环控制,使电动机在一个转速值上较稳定的旋转。

直流电动机的调速

一概述 随着电力电子器件的发展,大功率变流技术前进到一个以弱电为控制,强电为输出的新时代。直流电机调速系统由于它在技术性能与经济指标上具有优越性,实施技术上也比较成熟,因此在冶金、机械、矿山、铁道、纺织、化工、造纸及发电设备等行业都得到了广泛的应用,已成为工业自动控制领域一个及其重要的组成部分。一般工业生产中大量应用各种交直流电动机。直流电动机有良好的调速性能,三相交流桥式全控整流是目前在各种整流电路中应用最为广泛的电力电子电路,在运用到在直流电机调速时可以采用这种电路。 三相交流桥式全空整流最初用途是传动控制,但目前应用的新领域是各种直流电源设计。前者是三相交流桥式全控整流电路的传统领域,后者则是它当前和未来发展的新领域。而高频、大功率、高可靠性开关电源是当今电源变换技术发展的重要方向之一。 从我国的实际情况来看很好地采用三相桥式全控整流给直流电机调速仍然有很广泛的应用市场。这对改善我国科技现状水平,提高经济效益将起着重要作用,所以研究三相桥是全控整流直流调速系统有着深远的意义,它不仅能够大大改善各种机车的调速系统,为其提高安全、快速、低损耗的调速装置,在解决目前国际各国所面临的能源无谓的消耗起到立竿见影的效果。

二设计的总体思路 2.1 直流电动机的调速方法 采用改变电动机端电压调速的方法。当额定励磁保持不变,理想空载转速 n随U减小而减小,各特性线斜率不变,由此可实 现额定转速以下大范围平滑调速,并且在整个调速范围内机械特性硬度不变。变电压调速要有可调的直流电源,根据供电电源的种类分两种情况:一是采用可控变流装置,将交流电转变为可调的直流电。二是采用直流斩波器,在具有恒定直流供电电源的地方,实现脉冲调压调速由于工矿企业中大多为交流电源,因此前一种情况应用最广。 晶闸管变流装置输出的直流脉动电压 U加在电抗器L和电动 d 机电枢两端,L起滤波作用以及保持电流连续。改变晶闸管触发电 U,就可改变触发脉冲的控制角。,从而改变输路的移相控制电压 g U的大小,实现平滑的调压调速。 出平均电压 d 2.2 调速系统的确定 双闭环调速

直流电动机控制系统

煤炭工程学院课程设计 题目:直流电动机转速控制系统 专业班级: 学生姓名: 学号: 指导教师: 日期:

摘要 当今社会,电动机作为最主要的机电能量转换装置,其应用范围已遍及国民经济的各个领域和人们的日常生活。无论是在工农业生产,交通运输,国防,航空航天,医疗卫生,商务和办公设备中,还是在日常生活的家用电器和消费电子产品(如电冰箱,空调,DVD等)中,都大量使用着各种各样的电动机。据资料显示,在所有动力资源中,百分之九十以上来自电动机。同样,我国生产的电能中有百分之六十是用于电动机的。电动机与人的生活息息相关,密不可分。电气时代,电动机的调速控制一般采用模拟法、PID控制等,对电动机的简单控制应用比较多。简单控制是指对电动机进行启动,,制动,正反转控制和顺序控制。这类控制可通过继电器,光耦、可编程控制器和开关元件来实现。还有一类控制叫复杂控制,是指对电动机的转速,转角,转矩,电压,电流,功率等物理量进行控制。 电机在各行各业发挥着重要的作用,而电机转速是电机重要的性能指标之一,因而测量电机的转速和电机的调速,使它满足人们的各种需要,更显得重要,而且随着科技的发展,PWM调速成为电机调速的新方式。 随着数字技术的迅速发展,微控制器在社会的各个领域得到了广泛的应用,由于数字系统有着模拟系统所没有的优势,如抗干扰性强、便于和PC机相联、系统易于升级维护。 本设计是以单片机AT89S52和L298控制的直流电机脉宽调制调速系统。利用AT89S52芯片进行低成本直流电动机控制系统的设计,能够简化系统构成、降低系统成本、增强系统性能、满足更多应用场合的需要。系统实现对电机的正转、反转、急停、加速、减速的控制,以及PWM的占空比在LCD上的实时显示。 关键词:直流电机;AT89S52;PWM调速;L298

直流电动机调速系统设计方案

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 直流电动机调速系统设计 初始条件: 采用MC787组成触发系统,对三相全控桥式整流电路进行触发,通过改变直流电动机电压来调节转速。 要求完成的主要任务: (1)设计出三相全控桥式整流电路拓扑结构; (2)设计出触发系统和功率放大电路; (3)采用开环控制、转速单闭环控制、转速外环+电流内环控制。 (4) 器件选择:晶闸管选择、晶闸管串联、并联参数选择、平波和均衡电抗 器选择、晶闸管保护设计 参考文献: [1] 周渊深.《电力电子技术与MATLAB仿真》.北京:中国电力出版社, 2005:41-49、105-114 时间安排: 2011年12月5日至2011年12月14日,历时一周半,具体进度安排见下表 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 1概述 0 2转速、电流双闭环直流调速系统的组成及其静特性 0 2.1转速、电流双闭环直流调速系统的组成 0 2.2 稳态结构框图和静特性 (1) 3双闭环直流调速系统的数学模型与动态过程分析 (2) 3.1双闭环直流调速系统的动态数学模型 (2) 3.2双闭环直流调速系统的动态过程分析 (3) 4转速电流双闭环直流调速系统调节器的工程设计 (5) 4.1转速和电流两个调节器的作用 (5) 4.2调节器的工程设计方法 (5) 4.2.1设计的基本思路 (6) 4.3 触发电路及晶闸管整流保护电路设计 (6) 4.3.1触发电路 (6) 4.3.2整流保护电路 (7) 4.3.2.1 过电压保护和du/dt限制 (7) 4.3.2.2 过电流保护和di/dt限制 (8) 4.4 器件选择与计算 (8) 5心得体会 (13) 参考文献 (14) 附录:电路原理图 (15)

直流电动机调速设计

综述 直流电机是人类最早发明的和应用的一种电机。与交流电机相比,直流电机因结构复杂、维护困难、价格较贵等缺点制约了它的发展,应用不如交流电机广发。但由于直流电动机具有优良的起动、调速和制动性能,因此在工业领域中仍占有一席之地。随着电力电子技术的发展,直流发电机虽有可能被可控整流电源取代的趋势,但从供电的质量和可靠性来看,直流发电机仍具有一定的优势,因此在某些场合,例如化学工业中的电镀、电解等设备,直流电焊机和某些大型同步电机的励磁电源仍然使用直流发电机作为供电电源。 直流电动机主要分为四类:1他励直流电动机,2并励直流电动机,3串励直流电动机,4复励直流电动机。本文对他励直流电动机的调速进行设计,主要介绍了他励直流电动机的调速原理以及调速方法。

1 直流电动机调速原理 1.1直流电动机的定义 输入为直流电能的旋转电动机,称为直流电动机,它是能实现直流电能向机械能转换的电动机。 1.2直流电动机的基本结构 直流电机由定子和转子两部分组成,其间有一定的气隙。其构造的主要特点是具有一个带换向器的电枢。直流电机的定子由机座、主磁极、换向磁极、前后端盖和刷架等部件组成。其中主磁极是产生直流电机气隙磁场的主要部件,由永磁体或带有直流励磁绕组的叠片铁心构成。直流电机的转子则由电枢、换向器(又称整流子)和转轴等部件构成。其中电枢由电枢铁心和电枢绕组两部分组成。电枢铁心由硅钢片叠成,在其外圆处均匀分布着齿槽,电枢绕组则嵌置于这些槽中。换向器是一种机械整流部件。由换向片叠成圆筒形后,以金属夹件或塑料成型为一个整体。各换向片间互相绝缘。换向器质量对运行可靠性有很大影响。 图1-1直流电动机的基本结构 1—直流电机总图;2—后端盖;3—通风器;4—定子总图;5—转子(电枢)总图;6—电刷装置;7—前端盖。 1.3直流电动机的工作原理 直流发电机的工作原理就是把电枢线圈中感应产生的交变电动势,靠换向器配合电刷的换向作用,使之从电刷端引出时变为直流电动势的原理。 电刷上不加直流电压,用原动机拖动电枢使之逆时针方向恒速转动,线圈两边就分别切割不同极性磁极下的磁力线,而在其中感应产生电动势,电动势方向按右手定则确定。这种电磁情况表示在图上。由于电枢连续地旋转,,因此,必须使载流导体在磁场中所受到线圈边ab和cd交替地切割N极和S极下的磁力线,虽然每个线圈边和整个线圈中的感应电动势的方向是交变的.线圈内的感应电动势是一种交变电动势,而在电刷A,B端的电动势却为直流电动势(说得确切一些,是一种方向不变的脉振电动势)。因为,电枢在转

直流电动机分类

直流电动机分类 直流电动机按结构及工作原理可划分:(1)无刷直流电动机和(2)有刷直流电动机。 (1)无刷直流电动机:无刷直流电动机是将普通直流电动机的定子与转子进行了互换。其转子为永久磁铁产生气隙磁通:定子为电枢,由多相绕组组成。在结构上,它与永磁同步电动机类似。无刷直流电动机定子的结构与普通的同步电动机或感应电动机相同.在铁芯中嵌入多相绕组(三相、四相、五相不等).绕组可接成星形或三角形,并分别与逆变器的各功率管相连,以便进行合理换相。转子多采用钐钴或钕铁硼等高矫顽力、高剩磁密度的稀土料,由于磁极中磁性材料所放位置的不同.可以分为表面式磁极、嵌入式磁极和环形磁极。由于电动机本体为永磁电机,所以习惯上把无刷直流电动机也叫做永磁无刷直流电动机。 (2)有刷直流电动机可划分:(2、1)永磁直流电动机和(2、2)电磁直流电动机。 (2、1)永磁直流电动机划分:稀土永磁直流电动机、铁氧体永磁直流电动机和铝镍钴永磁直流电动机。 (2、1、1)稀土永磁直流电动机:体积小且性能更好,但价格昂贵,主要用于航天、计算机、井下仪器等。

(2、1、2)铁氧体永磁直流电动机:由铁氧体材料制成的磁极体,廉价,且性能良好,广泛用于家用电器、汽车、玩具、电动工具等领域。 (2、1、3)铝镍钴永磁直流电动机:需要消耗大量的贵重金属、价格较高,但对高温的适应性好,用于环境温度较高或对电动机的温度稳定性要求较高的场合。 (2、2)电磁直流电动机划分:串励直流电动机、并励直流电动机、他励直流电动机和复励直流电动机。 (2、2、1)串励直流电动机:电流串联,分流,励磁绕组是和电枢串联的,所以这种电动机内磁场随着电枢电流的改变有显著的变化。为了使励磁绕组中不致引起大的损耗和电压降,励磁绕组的电阻越小越好,所以直流串励电动机通常用较粗的导线绕成,他的匝数较少。 (2、2、2)并励直流电动机:并励直流电机的励磁绕组与电枢绕组相并联,作为并励发电机来说,是电机本身发出来的端电压为励磁绕组供电;作为并励电动机来说,励磁绕组与电枢共用同一电源,从性能上讲与他励直流电动机相同。 (2、2、3)他励直流电动机:励磁绕组与电枢没有电的联系,励磁电路是由另外直流电源供给的。因此励磁电流不受电枢端电压或电枢电流的影响。

直流电动机转速控制

直流电动机转速控制 王文玺 (北京交通大学机械与电子控制工程学院,北京) 摘要:通过对直流电动机控制系统的建模,再利用Matlab对建模后的系统进行分析,来加深对自动控制系统的理解。找到系统的输入、输出,理清经历各环节前后的信号变化,找出系统传递函数。 关键词:直流电动机、Matlab、建模、传递函数 1、直流电动机动态数学模型建立 1.1直流电机数字PID闭环速度控制,系统实现无静差控制。 这是一个完整的带PID算法的直流电动机控制系统。目标值为给定的期望值,期望值与被测输出结果形成的反馈做比较,得到误差信号。误差信号经过PID控制环节得到控制信号。继而经历驱动环节得到操作量,驱动量作用与对象即电动机然后得到输出信号即转速。转速通过传感器得到反馈信号。 1.2PID控制环节 1.3被控对象(直流电动机)的统一数学模型 信号类型一次为,输入信号为电压,然后电流、电流、转矩、转速,反馈信号为电压。

各环节的比例函数为: 1.3.1额定励磁条件下,直流电机的电压平衡关系: (Ud为外加电压,E 为感应电势,R a为电枢电阻 ,La为电枢电感,i a为电枢电流。) 拉氏变换后: (ra—L /R ,为电枢时间常数) 1.3.2直流电机的转矩平衡关系及拉氏变换: (Te 为电磁转矩,Tl 为负载转矩,B为 阻尼系数,J 为转动惯量,w为电机机 械转速,rm=J/B,为机械时间常数) 1.3.3电动机传递函数 可见直流电动机本身就是一个闭环系统,假设电机工作在空载状态,且机械时间常数远大于电枢时间常数,则电机传递函数可近似为: 1.4具体实例 电枢控制直流电动机拖动惯性负载的原理图,涉及的参数有:电压U为输入,转速为输出,R、L为电枢回路电阻、电感,K 是电动机转矩系数,K 是反电动势系数,K 是电动机和负载折合到电动机轴上的黏性摩擦系数,.厂是电动机和负载折合到电动机轴上的转动惯量。已知:R一2.0 Q,L:==0.5 H ,K = Kb一0.015,Kf一0.2 Nms,J— o.02kg.m 。 ( 取电压U为输入,转速叫为输出,由已知条件和原理图,根据直流电机的运动方程可以求出电动机系统的数学模型为:

直流电动机和异步电动机的调速原理及特性分析

[直流电动机和异步电动机 的调速原理及特性分析] 姓名: 学号:26 院系:11级机械系三班 通讯: 导师:

一.直流电动机的调速原理及特性分析 直流电动机具有良好的起动制动性能,宜于在较大范围内平滑调速"长期以来,在电动机调速领域中,直流调速方法一直占主要地位"与交流电动机相比,直流电动机有良好的调速性能,它的调速范围较广;调速连续平滑;经济性好,设备投资较少,调速损耗较小,经济指标高;调速方法简便,工作可靠. 流伺服电动机是满足伺服系统要求的直流电动机,分为有刷DC伺服和无刷DC伺服。在传统有刷DC伺服中,整流子和电刷一起起着回转开关的作用,随着功率半导体器件技术的发展,霍尔元件和大功率晶体管代替了整流子和碳刷的作用,就产生了无刷DC伺服。与普通电动机相比,DC伺服具有工作精度高,调速性能好,带负载能力强,响应速度快,稳定可靠等特点。虽然其工作原理与普通直流电动机基本相同,但为了减小体积和提高散热,DC伺服电动机通常采用永久磁铁励磁。 直流伺服电动机主要有如下基本特点: U保持不变时,电动机的转速n随电磁转矩M变1、机械特性:在输入的电枢电压α 化而线形变化的规律,称直流电动机的机械特性。机械特性的关系可用下式表示; U——电枢电压 式中:α R——电枢电阻 α φ——磁通 M—电动机输出的电磁转矩 机械特性曲线如图1-1所示。 M称为堵转转矩。斜率K表示电磁转矩变化引起图中,0n为理想空载转速,d 转速变化的程度。K越大,电磁转矩变化引起转速变化越大,电动机的机械特性越软;K越小,电磁转矩变化引起转速变化越小,电动机的机械特性越硬。

图1-1直流伺服电机机械特性曲线 在直流伺服系统中,希望电动机的机械特性硬一些。当负载发生变化时引起的转速变化小,有利于提高直流电机的速度稳定性和运动精度。且由式(1.1)可知,K 与电枢电阻αR 成正比,电枢回路中串入的电阻或功率放大器的输出电阻增大,会使直流电机特性变软,功耗增大。 2、调节特性:直流电机在一定的电磁转矩M (或负载转矩)下,电机的稳定转速n 随电枢的控制电压 α U 变化而线性变化的规律为直流电机的调节特性。调节特性 的关系可用下式表示: )()(102ααα αααφ φφφU U K C MR U C M C C R C U n m e m e e -=-=-= (1.2) 式中:αU ——电枢电压 αR ——电枢电阻 e C ——电势系数, α 60NP C e = ( 电枢绕组支路数磁极对数 电枢绕组系数??= 60e C ) φ——磁通 m C ——力矩系数, πα 2NP C e = M —电动机输出的电磁转矩 调节特性曲线如图1-2所示。 图中,0αU 为启动电压,为电动机处于待转动而没转动的临界状态的控制电压。 0αU 与电磁转矩(负载转矩)成正比。M 越大,0αU 越大。电动机启动时,在0~0 αU 范围内,电动机不转,该区域称为电动机的死区。斜率K 表示转速n 随电枢的控制电压 α U 变化而变化的快慢程度。其值与负载无关,仅决定于电动机本身的结构

他励直流电动机的调速

摘要 随着工业的不断发展,电动机的需求会越来越大,电动机的应用越来越广泛,电动机的操作系统是一个非常庞大而复杂的系统,它不仅为现代化工业、家庭生活和办公自动化等一系列应用提供基本操作平台,而且能提供多种应用服务,使人们的生活质量有了大幅度的提高,摆脱了人力劳作的模式。而电动机主要应用于工业生产的自动化操作中是电动机的主要应用之一,因此本课程设计课题将主要以在工业中电动机调速方法的应用过程可能用到的各种技术及实施方案为设计方向,为工业生产提供理论依据和实践指导。 关键词:他励直流电动机;调速;机械特性

目录 1 引言 (1) 2 直流电动机 (1) 2.1 直流电动机的介绍 (1) 2.2 直流电动机的分类 (1) 3 他励直流电动机 (2) 3.1 他励直流电动机的基本工作原理 (2) 3.2 他励直流电动机的机械特性 (3) 4 他励直流电动机的调速 (5) 4.1 调速的基本概念 (5) 4.2 调速的指标 (5) 4.3 调速的方式 (7) 4.3.1 电枢串电阻调速 (7) 4.3.2 改变电枢电源电压调速 (7) 4.3.3改变励磁电流调速 (8) 5实例分析 (9) 6结论 (11) 参考文献 (12) 致谢 (13)

1 引言 现代工业中,有大量的生产机械,要求能改变工作速度。例如金属切削机床,由于加工工件的材料和精度要求不同,速度也就不同。又如轧钢机,当轧制不同品种和不同厚度的钢材时,也必须采用不同的最佳速度。所谓调速就是在一定的负载下,根据生产的需要人为地改变电动机的转速。这是生产机械经常提出的要求。调速性能的好坏往往影响到生产机械的工作效率和产品质量。所以直流电动机的调速在生产工作中起着至关重要的作用。 2 直流电动机 2.1 直流电动机的介绍 直流电动机是人类最早发明和应用的一种电机。直流电动机以其结构复杂、价格较贵、体积较大、维护较难而使得其应用受到了影响。随着交流电动机变频调速系统的发展,在不少应用领域中已为交流电动所取代。但是直流电动机又以起动转矩大、转速性能好、自动控制方便而著称,因此,在工业等应用领域中仍占有一席之地。在四种直流电动机中,他励直流电动机应用最广泛。 2.2 直流电动机的分类 根据直流电动机的励磁方式,可以将其分为以下几种类型。 1、他励直流电动机 励磁绕组与电枢绕组采用两个电源供电,各有了各的电源开关,没有直接的电源联系,如图2-1(a)所示,电枢电流Ia由电枢端电压U决定,而励磁电流I f由励磁绕组端电压 U1决定。 2、并励直流电动机 励磁绕组和电枢绕组并联,采用同一个电源U供电,由一个开关控制,如图2-1(b)所示。其特点是励磁绕组的电压即为电枢电压,电源电流为电枢电流Ia与励磁电流I f之和。为了降低损耗,并励直流电动机的励磁电流一般较小,约为电枢电流的5%;为保证足够的磁通,励磁绕组一般导线较细,匝数多,电阻大。 3、串励直流电动机 励磁绕组与电枢绕组串联之后,外接一个直流电源,由一个开关控制,如图2-1(c)所示。其特点是励磁电流I f与电枢电流Ia相同,这个电流一般较大,所以串励直流电动机的励磁绕组导线较粗,匝数少,电阻小。 4、复励直流电动机 这种电动机中既有串励又有并励,一部分励磁绕组与电枢绕组串联,另一部分励磁绕组再与电枢绕组并联,如图2-1(d)所示。其特点是电动机的主磁通由这两个励磁绕组共

直流电动机调速系统设计综述

概述 (2) 1 设计任务与分析 (3) 1.1 任务要求 (3) 1.2 任务分析 (3) 2方案选择及论证 (4) 2.1 三相可控整流电路的选择 (4) 2.2 触发电路的选择 (4) 2.3 电力电子器件的缓冲电路 (5) 2.4 电力电子器件的保护电路 (5) 3主电路设计 (7) 3.1 整流变压器计算 (7) 3.1.1 U2的计算 (7) 3.1.2一次侧和二次侧相电流I1和I2的计算 (8) 3.1.3变压器的容量计算 (8) 3.2 晶闸管元件的参数计算 (9) 3.2.1晶闸管的额定电压 (9) 3.2.2晶闸管的额定电流 (9) 3.3 电力电子电路保护环节 (10) 3.3.1交流侧过电压保护 (10) 3.3.2直流侧过电压保护 (11) 3.3.3晶闸管两端的过电压保护 (11) 3.3.4过电流保护 (11) 4触发电路设计 (11) 4.1 触发电路主电路设计 (11) 4.2 触发电路的直流电源 (13) 5电气原理图 (14) 小结与体会 (15) 参考文献 (16) 附录 (16)

直流电动机具有良好的起动和制动性能,广泛应用于机械、纺织、冶金、化工、轻工等工业系统。随着电力电子技术的发展,晶闸管在直流电动机的调速系统中得到广泛应用。晶闸管直流电动机调速系统,可实现电动机的无级调速,具有调节范围宽,控制精度高,使用寿命长、成本低等优点。正确掌握晶闸管直流电动机调速系统的设计方法,对系统的可靠运行及应用有重大意义。 本设计以晶闸管直流电动机调速装置为主,介绍了系统的各个部件的组成及主要器件的参数计算。调速装置以可控整流电路作为直流电源,把交流电变换成大小可调的单一方向直流电。通过改变触发电路所提供的触发脉冲送出的早晚来改变直流电压的平均值。 关键词:可控整流晶闸管触发电路保护电路

直流电动机控制系统设计

X X X X X学院 题目:直流电动机控制系统 学 院 XXXXXX学院 专 业 自动化 班 级 XX班 姓 名 XXX 学 号 XXXXX 指导老师 XXX 2012年 12 月 25 日 1、 设计题目:直流电动机控制系统 1、前言 近年来,随着科技的进步,电力电子技术得到了迅速的发展,直流电机得到了越来越广泛的应用。直流它具有优良的调速特性,调速平滑、方便,调速范围广;过载能力大,能承受频繁的冲击负载,可实现频繁的无级快速起动、制动和反转;需要能满足生产过程自动化系统各种不同的特殊运行要求,从而对直流电机的调速提出了较高的要求,改变电枢回路电阻调速,改变电枢电压调速等技术已远远不能满足要求,这时通过PWM方式控制直流电机调速的方法应运而生。 采用传统的调速系统主要有以下缺陷:模拟电路容易随时间漂移,会产生一些不必要的热损耗,以及对噪声敏感等。而在用了PWM技术后,避免了以上的缺陷,实现了用数字方式来控制模拟信号,可以大幅度降低成本和功耗。另外,由于PWM 调速系统的开关频率较高,仅靠电枢电感的滤波作用就可获得平稳的直流电流,低速特性好;同样,由于开

关频率高,快速响应特性好,动态抗干扰能力强,可以获得很宽的频带;开关器件只工作在开关状态,主电路损耗小,装置效率高。PWM 具有很强的抗噪性,且有节约空间、比较经济等特点。 2、系统设计原理 脉宽调制技术是利用数字输出对模拟电路进行控制的一种有效技术,尤其是在对电机的转速控制方面,可大大节省能量,PWM控制技术的理论基础为:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需 要的波形。按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。 直流电动机的转速n和其他参量的关系可表示为 (1) 式中 Ua——电枢供电电压(V); Ia ——电枢电流(A); Ф——励磁磁通(Wb); Ra——电枢回路总电阻(Ω); CE——电势系数, ,p为电磁对数,a为电枢并联支路数,N为导体数。 由式(1)可以看出,式中Ua、Ra、Ф三个参量都可以成为变量,只要改变其中一个参量,就可以改变电动机的转速,所以直流电动机有三种基本调速方法:(1)改变电枢回路总电阻Ra;;(2)改变电枢供电电压Ua;(3)改变励磁磁通Ф。 3、方案选择及论证 3.1、方案选择 3.1.1、改变电枢回路电阻调速 可以通过改变电枢回路电阻来调速,此时转速特性公式为 n=U-【I(R+Rw)】/KeФ (2)式中Rw为电枢回路中的外接电阻(Ω)。 当负载一定时,随着串入的外接电阻Rw的增大,电枢回路总电阻R= (Ra+Rw)增大,电动机转速就降低。Rw的改变可用接触器或主令开关切换来实现。 这种调速方法为有级调速,转速变化率大,轻载下很难得到低速,

单片机课程设计完整版《PWM直流电动机调速控制系统》

单片机原理及应用课程设计报告设计题目: 学院: 专业: 班级: 学号: 学生姓名: 指导教师: 年月日 目录

设计题目:PWM直流电机调速系统 本文设计的PWM直流电机调速系统,主要由51单片机、电源、H桥驱动电路、LED 液晶显示器、霍尔测速电路以及独立按键组成的电子产品。电源采用78系列芯片实现+5V、+15V对电机的调速采用PWM波方式,PWM是脉冲宽度调制,通过51单片机改变占空比实现。通过独立按键实现对电机的启停、调速、转向的人工控制,LED实现对测量数据(速度)的显示。电机转速利用霍尔传感器检测输出方波,通过51单片机对1秒内的方波脉冲个数进行计数,计算出电机的速度,实现了直流电机的反馈控制。 关键词:直流电机调速;定时中断;电动机;波形;LED显示器;51单片机 1 设计要求及主要技术指标: 基于MCS-51系列单片机AT89C52,设计一个单片机控制的直流电动机PWM调速控制装置。 设计要求 (1)在系统中扩展直流电动机控制驱动电路L298,驱动直流测速电动机。 (2)使用定时器产生可控的PWM波,通过按键改变PWM占空比,控制直流电动机的转速。 (3)设计一个4个按键的键盘。 K1:“启动/停止”。 K2:“正转/反转”。 K3:“加速”。 K4:“减速”。 (4)手动控制。在键盘上设置两个按键----直流电动机加速和直流电动机减速键。在

手动状态下,每按一次键,电动机的转速按照约定的速率改变。 (5)*测量并在LED显示器上显示电动机转速(rpm). (6)实现数字PID调速功能。 主要技术指标 (1)参考L298说明书,在系统中扩展直流电动机控制驱动电路。 (2)使用定时器产生可控PWM波,定时时间建议为250us。 (3)编写键盘控制程序,实现转向控制,并通过调整PWM波占空比,实现调速; (4)参考Protuse仿真效果图:图(1) 图(1) 2 设计过程 本文设计的直流PWM调速系统采用的是调压调速。系统主电路采用大功率GTR为开关器件、H桥单极式电路为功率放大电路的结构。PWM调制部分是在单片机开发平台之上,运用汇编语言编程控制。由定时器来产生宽度可调的矩形波。通过调节波形的宽度来控制H电路中的GTR通断时间,以达到调节电机速度的目的。增加了系统的灵活性和精确性,使整个PWM脉冲的产生过程得到了大大的简化。 本设计以控制驱动电路L298为核心,L298是SGS公司的产品,内部包含4通道逻辑驱动电路。是一种二相和四相电机的专用驱动器,即内含二个H桥的高电压大电流双全桥式驱动器,接收标准TTL逻辑电平信号,可驱动46V、2A以下的电机。可驱动2个电机,OUTl、OUT2和OUT3、OUT4之间分别接2个电动机。5、7、10、12脚接输入控制电平,控制电机的正反转,ENA,ENB接控制使能端,控制电机的停转。 本设计以AT89C52单片机为核心,如下图(2),AT89C52是一个低电压,高性能 8位,片内含8k bytes的可反复擦写的只读程序存储器和256 bytes的随机存取数据存储器(),器件采用的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元,AT89C52单片机在电子行业中有着广泛的应用。 图(2) 对直流电机转速的控制即可采用开环控制,也可采用闭环控制。与开环控制相比,速度控制闭环系统的机械特性有以下优越性:闭环系统的机械特性与开环系统机械特性相比,其性能大大提高;理想空载转速相同时,闭环系统的静差(额定负载时电机转速降落与理想空载转速之比)要小得多;当要求的静差率相同时, 闭环调速系统的调速范

直流电动机设计方案

直流电动机设计方案 第1章前沿 1.1 课题研究的背景及意义 直流电动机以其良好的起动、制动性能,较宽范围内平滑调速的优点,在许多调速要求较高、要求快速正反向、以蓄电池为电源的电力拖动领域中得到了广泛的应用。近年来,虽然高性能交流调速技术得到了很快的发展,在某些领域交流调速系统已逐步取代直流调速系统。然而直流调速系统系统不仅在理论上和实践上都比较成熟,目前还在应用,比如轧钢机、电气机车等都还有用直流电机;而且从控制规律的角度来看,交流拖动控制系统的控制方式是建立在直流拖动控制系统的基础之上的,从某种意义上说有相似的地方。因此,掌握和了解直流拖动控制系统的控制规律和方法是非常必要的。 从生产机械的要求的角度看,电力拖动控制系统分为调速系统、伺服系统、多电动机同步控制系统、张力控制系统等多种类型。而各种系统大多都是通过控制转速来实现的,因此调速系统是电力拖动控制系统最基本的系统[1]。 从直流电机在国民生产生活中所占位置的角度来看,直流电机目前依旧应用于工业生产中,并广泛应用于人们的生活中。因此直流电机的控制技术的发展很大程度上影响着国民经济的增长,影响着人们的生产生活水平,因此,对直流电机调速系统的研究还是很有必要的。 1.2 课题发展历程及趋势 在很长的一段时间里直流电动机作为最主要的电力拖动工具,其应用已经渗透到人们的工作、学习、生活的各个方面。早期电动机调速控制器主要由模拟器件构成,由于模拟器件存在的固有缺点,比如存在温漂,零漂电压等,使系统控制精度和可靠性降低。后来,随着可编程控制器比如AT89C51,PLC等和IGBT、GTR等电力电子开关器件,传感器技术等的发展使得直流电机调速系统进入了数字控制的阶段,这使得直流电机调速系

直流电动机可逆调速系统设计 (1)

摘要 本次课程设计直流电机可逆调速系统利用的是双闭环调速系统,因其具有调速范围广、精度高、动态性能好和易于控制等优点,所以在电气传动系统中得到了广泛的应用。直流双闭环调速系统中设置了两个调节器, 即转速调节器(ASR)和电流调节器(ACR), 分别调节转速和电流。本文对直流双闭环调速系统的设计进行了分析,对直流双闭环调速系统的原理进行了一些说明,介绍了其主电路、检测电路的设计,介绍了电流调节器和转速调节器的设计以及系统中一些参数的计算。 关键词:双闭环,可逆调速,参数计算,调速器。

目录 1. 设计概述 (1) 1.1 设计意义及要求 (1) 1.2 方案分析 (1) 1.2.1 可逆调速方案 (1) 1.2.2 控制方案的选择 (2) 2.系统组成及原理 (4) 3.1设计主电路图 (7) 3.2系统主电路设计 (8) 3.3 保护电路设计 (8) 3.3.1 过电压保护设计 (8) 3.3.2 过电流保护设计 (9) 3.4 转速、电流调节器的设计 (9) 3.4.1电流调节器 (10) 3.4.2 转速调节器 (10) 3.5 检测电路设计 (11) 3.5.1 电流检测电路 (11) 3.5.2 转速检测电路 (11) 3.6 触发电路设计 (12) 4. 主要参数计算 (14) 4.1 变压器参数计算 (14) 4.2 电抗器参数计算 (14) 4.3 晶闸管参数 (14) 5设计心得 (15) 6参考文献 (16)

直流电动机可逆调速系统设计 1.设计概述 1.1设计意义及要求 直流电动机具有良好的起、制动性能,宜于在大范围内实现平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。从控制的角度来看,直流拖动控制系统又是交流拖动控制系统的基础,所以应该首先掌握直流拖动控制系统。本次设计最终的要求是能够是电机工作在电动和制动状态,并且能够对电机进行调速,通过一定的设计,对整个电路的各个器件参数进行一定的计算,由此得到各个器件的性质特性。 1.2 方案分析 1.2.1 可逆调速方案 使电机能够四象限运行的方法有很多,可以改变直流电机电枢两端电压的方向,可以改变直流电机励磁电流的方向等等,即电枢电压反接法和电枢励磁反接法。 电枢励磁反接方法需要的晶闸管功率小,适用于被控电机容量很小的情况,励磁电路中需要串接很大的电感,调速时,电机响应速度较慢,且需要设计很复杂的电路,故在设计中不采用这种方式。 电枢电压反接法可以应用在电机容量很的情况下,且控制电路相对简单,电枢反接反向过程很快,在实际应用中常常采用,本设计中采用该方法。 电枢电压反接电路可以采用两组晶闸管反并联的方式,两组晶闸管分别由不同的驱动电路驱动,可以做到互不干扰。 图1-1 两组晶闸管反并联示意图

相关文档
最新文档