曲线和方程典型例题

曲线和方程典型例题
曲线和方程典型例题

典型例题一

例1 如果命题“坐标满足方程()0=y x f ,的点都在曲线C 上”不正确,那么以下正确的命题是

(A )曲线C 上的点的坐标都满足方程()0=y x f ,.

(B )坐标满足方程()0=y x f ,的点有些在C 上,有些不在C 上.

(C )坐标满足方程()0=y x f ,的点都不在曲线C 上.

(D )一定有不在曲线C 上的点,其坐标满足方程()0=y x f ,.

分析:原命题是错误的,即坐标满足方程()0=y x f ,的点不一定都在曲线C 上,易知答案为D .

典型例题二

例2 说明过点)1,5(-P 且平行于x 轴的直线l 和方程1=y 所代表的曲线之间的关系.

分析:“曲线和方程”的定义中所列的两个条件正好组成两个集合相等的充要条件,二者缺一不可.其中“曲线上的点的坐标都是方程0),(=y x f 的解”,即纯粹性;“以方程的解为坐标的点都是曲线上的点”,即完备性.这是我们判断方程是不是指定曲线的方程,曲线是不是所给方程的曲线的准则.

解:如下图所示,过点P 且平行于x 轴的直线l 的方程为1-=y ,因而

在直线l 上的点的坐标都满足1=y ,所以直线l 上的点都在方程1=y 表示的曲线上.但是以1=y 这个方程的解为坐标的点不会都在直线l 上,因此方程1=y 不是直线l 的方程,直线l 只是方程1=y 所表示曲线的一部分.

说明:本题中曲线上的每一点都满足方程,即满足纯粹性,但以方程的解为坐标的点不都在曲线上,即不满足完备性.

典型例题三

例3 说明到坐标轴距离相等的点的轨迹与方程x y =所表示的直线之间的关系.

分析:该题应该抓住“纯粹性”和“完备性”来进行分析.

解:方程x y =所表示的曲线上每一个点都满足到坐标轴距离相等.但是“到坐标轴距离相等的点的轨迹”上的点不都满足方程x y =,例如点)3,3(-到两坐标轴的距离均为3,但它不满足方程x y =.因此不能说方程x y =就是所有到坐标轴距离相等的点的轨迹方程,到坐标轴距离相等的点的轨迹也不能说是方程x y =所表示的轨迹.

说明:本题中“以方程的解为坐标点都在曲线上”,即满足完备性,而“轨迹上的点的坐标不都满足方程”,即不满足纯粹性.只有两者全符合,方程才能叫曲线的方程,曲线才能叫方程的曲线.

典型例题四

例4 曲线4)1(2

2=-+y x 与直线4)2(+-=x k y 有两个不同的交点,求k 的取值范围.有一个交点呢?无交点呢?

分析:直线与曲线有两个交点、一个交点、无交点,就是由直线与曲线的方程组成的方程组分

别有两个解、一个解和无解,也就是由两个方程整理出的关于x 的一元二次方程的判别式?分别满足0>?、0=?、0

解:由???=-++-=.

4)1(,4)2(22y x x k y 得04)23()23(2)1(222=--+-++k x k k x k

∴]4)23)[(1(4)23(42222--+--=?k k k k

)5124(42+--=k k

)52)(12(4---=k k

∴当0>?即0)52)(12(<--k k ,即2

521<

5=k 时,直线与曲线有一个交点. 当0--k k ,即21<

k 或25>k 时,直线与曲线没有公共点. 说明:在判断直线与曲线的交点个数时,由于直线与曲线的方程组成的方程组解的个数与由两方程联立所整理出的关于x (或y )的一元方程解的个数相同,所以如果上述一元方程是二次的,便可通过判别式来判断直线与曲线的交点个数,但如果是两个二次曲线相遇,两曲线的方程组成的方程组解的个数与由方程组所整理出的一元方程解的个数不一定相同,所以遇到此类问题时,不要盲目套用上例方法,一定要做到具体问题具体分析.

典型例题五

例5 若曲线x a y =与)0(>+=a a x y 有两个公共点,求实数a 的取值范围.

分析:将“曲线有两个公共点”转化为“方程有两个不同的解”,从而研究一元二次方程的解的个数问题.若将两条曲线的大致形状现出来,也许可能得到一些启发. 解法一:由???+==a

x y x a y 得:a y a y -=

∵0≥y ,∴222)(a y a y -=,

即02)1(4

322=+--a y a y a .

要使上述方程有两个相异的非负实根. 则有:?????????>->->--=?01

0120)1(4424

23246a a a a a a a 又∵0>a

∴解之得:1>a .

∴所求实数a 的范围是),1(∞+. 解法二:x a y =的曲线是关于y 轴对称且顶点在原点的折线,而a

x y +=表示斜率为1且过点),0(a 的直线,由下图可知,当1≤a 时,折线的右支与直线

不相交.所以两曲线只有一个交点,当1>a 时,直线与折线的两支都相交,所以

两条直线有两个相异的交点.

说明:这类题较好的解法是解法二,即利用数形结合的方法来探求.若题设条件中“0>a ”改为R a ∈呢,请自己探求.

典型例题六

例 6 已知AOB ?,其中)0,6(A ,)0,0(O ,)3,0(B ,则角AOB 平分线的方

程是x y =(如下图),对吗?

分析:本题主要考查曲线方程概念掌握和理解的程度,关键是理解三角形内

角平分线是一条线段.

解:不对,因为AOB ?内角平分线是一条线段OC ,而方程x y =的图形是一条直线.如点)8,8(P 坐标适合方程x y =,但点P 不在AOB ?内角AOB 的平分线上.

综合上述内角AOB 平分线为:)20(≤≤=x x y .

说明:判断曲线的方程或方程的曲线,要紧扣定义,两个条件缺一不可,关键是要搞清楚曲线的范围.

典型例题七

例7 判断方程122+--=x x y 所表示的曲线.

分析:根据方程的表面形式,很难判断方程的曲线的形状,因此必需先

将方程进行等价变形. 解:由原方程122+--=x x y 可得:

1--=x y ,即???<-≥+-=),

1(1),1(1x x x x y ∴方程122+--=x x y 的曲线是两条射线,如图所示:

说明:判断方程表示的曲线,在化简变形方程时要注意等价变形.如方程21-=-y x 等价于2)1(2-=-y x 且1≥x ,即)1(2)1(2≥+-=x x y ,原方程的曲线是抛物线一部分.

典型例题八

例8 如图所示,已知A 、B 是两个定点,且2=AB ,动点M 到定点A 的距

离是4,线段MB 的垂直平分线l 交线段MA 于点P ,求动点P 的轨迹方程.

分析:本题首先要建立适当直角坐标系,动点P 满足的条件(等量关系)题

设中没有明显给出,要从题意中分析找出等量关系.连结PB ,则PB PM =,由此4==+=+AM PM PA PB PA ,即动点P 到两定点A ,B 距离之和为常数.

解:过A ,B 两点的直线为x 轴,A ,B 两点的中点O 为坐标原点,建立直角坐标系 ∵2=AB ,∴A ,B 两点坐标分别为)0,1(-,)0,1(.

连结PB .∵l 垂直平分线段BM , ∴PB PM =,

4==+=+AM PM PA PB PA .

设点),(y x P ,由两点距离公式得

4)1()1(2222=+-+++y x y x ,

化简方程,移项两边平方得(移项)

x y x -=+-4)1(222.

两边再平方移项得:

13

42

2=+y x ,即为所求点P 轨迹方程. 说明:通过分析题意利用几何图形的有关性质,找出P 点与两定点A ,B 距离之和为常数4,是解本题的关键.方程化简过程也是很重要的,且化简过程也保证了等价性.

典型例题九

例9 过()42,P 点作两条互相垂直的直线1l ,2l ,若1l 交1l 轴于A ,2l 交y 轴于B ,求线段AB 中点M 的轨迹方程.

解:连接PM ,设()y x M ,,则()02,x A ,()y B 20,.

∵ 21l l ⊥

∴ PAB ?为直角三角形.

由直角三角形性质知 AB PM 2

1=

即 ()()222

2442142y x y x +=-+- 化简得M 的轨迹方程为

052=-+y x

说明:本题也可以用勾股定理求解,还可以用斜率关系求解,因此本题可有三种解法.用斜率求解的过程要麻烦一些.

典型例题十

图2

例10 求与两定点A 、B 满足22

2k PB PA =-(k 是常数)的动点P 的轨迹方程.

分析:按求曲线方程的方法步骤求解.

解法一:如图甲,取两定点A 和B 的连线为x 轴,过AB 的中点且与AB 垂

直的直线为y 轴建立坐标系.

设)0,(a A -,)0,(a B ,),(y x P ,则:222

)(y a x PA ++=,222)(y a x PB +-=. 据题意,222k PB PA =-,有[][]

22222)()(k y a x y a x =+--++得24k ax =. 由于k 是常数,且0≠a ,所以a

k x 42

=为动点的轨迹方程,即动点P 的轨迹是一条平行于y 轴的直线.

解法二:如图乙,取A 与B 两点连线为x 轴,过A 点且与AB 垂直的直线为y

轴建立坐标系.

设)0,0(A ,)0,(a B ,),(y x P ,则:222y x PA +=,222)(y a x PB +-=. 据题意,222k PB PA =-,有()[]

22222)(k y a x y x =+--+, 得a k a x 222+=,即动点P 的轨迹方程为a

k a x 22

2+=,它是平行于y 轴的一条直线.

解法三:如图丙建立坐标系,设),(11y x A ,),(22y x B ,),(y x P ,则

21212)()(y y x x PA -+-=,22222

)()(y y x x PB -+-=. 据题意,222k PB PA =-,有 [][]222222121)()()()(k y y x x y y x x =-+---+-,

整理后得到点P 的轨迹方程为: 0)(2)(22222221211212=---++-+-k y x y x y y y x x x ,它是一条直线.

说明:由上面介绍的三种解法,可以看到对于同一条直线,在不同的坐标系中,方程不同,适当建立坐标系如解法一、解法二,得到的方程形式简单、特性明显,一看便知是直线.而解法三得到的方程烦琐、冗长,若以此为基础研究其他问题,会引起不必要的麻烦.因此,在求曲线方程时,根据具体情况适当选取坐标系十分重要.另外,也要注意到本题所求的是轨迹的方程,在作解答表述时应强调曲线的方程,而不是曲线.

典型例题十一

例11 两直线分别绕着定点A 和B (a AB 2=)在平面内转动,且转动时保持相互垂直,求两直线的

交点P 的轨迹方程.

分析:建立适当的直角坐标系,利用直角三角形的性质,列出动点所满足的等式.

解:取直线AB 为x 轴,取线段AB 的中点O 为原点建立直角坐标系,则:

)0,(a A -,)0,(a B ,P 属于集合{}222AB PB PA P C =+=.

设),(y x P ,则22222)2()()(a y a x y a x =+-+++,化简得222a y x =+.

这就是两直线的交点P 的轨迹方程.

说明:本题易出现如下解答错误:

取直线AB 为x 轴,取线段AB 的中点O 为原点建立直角坐标系,则:

)0,(a A -,)0,(a B ,交点P 属于集合{}{}1-=?=⊥=PB PA k k P PB PA P C .

设),(y x P ,则a x y k PA +=

)(a x -≠,a x y k PB -=)(a x ≠, 故1-=-?+a

x y a x y ,即222a y x =+(a x ±≠). 要知道,当x PA ⊥轴且另一直线与x 轴重合时,仍有两直线互相垂直,此时两直线交点为A .同样x PB ⊥轴重合时,且另一直线与x 轴仍有两直线互相垂直,此时两直线交点为B .因而,)0,(a A -与)0,(a B 应为所求方程的解.

纠正的方法是:当PA 或PB 的斜率不存在时,即a x ±=时,)0,(a A -和)0,(a B 也在曲线上,故所求的点P 的轨迹方程是222a y x =+.

求出曲线上的点所适合的方程后,只是形式上的曲线方程,还必须对以方程的解为坐标的点作考察,既要剔除不适合的部分,也不要遗漏满足条件的部分.

典型例题十二

例12 如图,ABC Rt ?的两条直角边长分别为a 和b )(b a >,A 与B 两点分

别在x 轴的正半轴和y 轴的正半轴上滑动,求直角顶点C 的轨迹方程.

分析:由已知ACB ∠是直角,A 和B 两点在坐标轴上滑动时,AOB ∠也

是直角,由平面几何知识,A 、C 、B 、O 四点共圆,则有AOC ABC ∠=∠,

这就是点C 满足的几何条件.由此列出顶点C 的坐标适合的方程.

解:设点C 的坐标为),(y x ,连结CO ,由?=∠=∠90AOB ACB ,所以A 、O 、B 、C 四点共圆.

从而ABC AOC ∠=∠.由a b ABC =∠tan ,x y AOC =∠tan ,有a b x y =,即x a

b y =. 注意到方程表示的是过原点、斜率为a

b 的一条直线,而题目中的A 与B 均在两坐标轴的正半轴上滑动,由于a 、b 为常数,故C 点的轨迹不会是一条直线,而是直线的一部分.我们可考察A 与B 两点在坐标轴上的极端位置,确定C 点坐标的范围.

如下图,当点A 与原点重合时,

x b a x AB S ABC ?+=?=?222121,所以22b

a a

b x +=. 如下图,当点B 与原点重合时,C 点的横坐标BD x =

由射影定理,AB BD BC ?=2

,即222b a x a +?=,有222

b a a x +=.由已知b a >,所以22222b a a b a ab +<+.

故C 点的轨迹方程为:x a b y =(222

22b

a a x

b a ab +≤≤+). 说明:求出曲线上的点所适合的方程后,只是形式上的曲线方程,还

必须对以方程的解为坐标的点作考察,剔除不适合的部分.

典型例题十三

例13 过点)2,3(P 作两条互相垂直的直线1l 、2l ,若1l 交x 轴于A ,2l 交y 轴于B ,M 在线段AB 上,且3:1:=BM AM ,求M 点的轨迹方程.

分析:如图,设),(y x M ,题中几何条件是21l l ⊥,在解析几何中要表示垂直关系的代数关系式就是斜率乘积为-1,所以要求M 的轨迹方程即x 、y 之间的关系,首先要把1l 、2l 的斜率用x 、y 表示出来,而表示斜率的关键是用x 、y 表示A 、B 两点的坐标,由题可知M 是A 、B 的定比分点,由定比分点坐标公式便可找出A 、B 、M 坐标之间的关系,进而表示出A 、B 两点的坐标,并求出M 点的轨迹方程.

解:设),(y x M ,)0,(a A ,),0(b B

∵M 在线段AB 上,且3:1:=BM AM .

∴M 分AB 所成的比是3

1, 由?????

??????+=+=31131311b y a x ,得?????==y b x a 434, ∴)0,34(x A 、)4,0(y B

又∵)2,3(P ,∴1l 的斜率x k 3

321-=,2l 的斜率3242--=y k .

∵21l l ⊥,∴13

243

432-=--?-y x . 化简得:01384=-+y x .

说明:本题的上述解题过程并不严密,因为1k 需在49≠x 时才能成立,而当4

9=x 时,)0,3(A ,1l 的方程为3=x .所以2l 的方程是2=y .故)2,0(B ,可求得)21,49(M ,而)2

1,49(也满足方程01384=-+y x .故所求轨迹的方程是01384=-+y x .这类题在解答时应注意考虑完备性和纯粹性.

典型例题十四

例14 如图,已知两点)2,2(-P ,)2,0(Q 以及一直线x y l =:,设长为2的线段AB 在直线l 上移动.求直线PA 和QB 的交点M 的轨迹方程.

分析1:设),(y x M ,题中的几何条件是2=AB ,所以只需用

),(y x 表示出A 、B 两点的坐标,便可求出曲线的方程,而要表示A 点

坐标可先找出A 、M 两点坐标的关系,显然P 、A 、M 三点共线.这

样便可找出A 、M 坐标之间的关系,进而表示出A 的坐标,同理便可表

示出B 的坐标,问题便可以迎刃而解.

解法一:设),(y x M 、),(a a A 、),(b b B )(a b >.

由P 、A 、M 三点共线可得:

2222+-=+-x y a a (利用PA 与MP 斜率相等得到) ∴4

22+-+=y x y x a . 由Q 、B 、M 三点共线可得

x y b b 22-=-. ∴2

2+-=y x x b . 又由2=AB 得2)(22=-b a .

∴1=-a b ,∴14

2222=+-+-+-y x y x y x x . 化简和所求轨迹方程为:082222=+-+-y x y x .

分析2:此题也可以先用P 、A 、M 三点共线表示出A 点坐标,再根据2=

AB 表示出B 点

坐标,然后利用Q 、B 、M 三点共线也可求得轨迹方程.

解法二:设),(y x M ,),(a a A 由2=AB 且B 在直线x y =上且B 在A 的上方可得:)1,1(++a a B 由解法一知422+-+=

y x y x a , ∴)4

43,443(+-+++-++y x y x y x y x B 又由Q 、B 、M 三点共线可得:

x

y y x y x y x y x 24

432443-=+-++-+-++. 化简得所求轨迹方程为:082222=+-+-y x y x . 解法三:由于2=AB 且AB 在直线x y =上

所以可设),(a a A ,)1,1(++a a B .

则直线AP 的方程为:)2)(2()2)(2(+-=-+x a y a

直线BQ 的方程为:x a y a )1()2)(1(-=-+ 由上述两式解得)0(1212≠???

????-+=--=a a a y a a x ∴???

????++=+-+=+44)1(44)1(222222a a y a a x ∴8)1()1(22-=+-+y x ,

即082222=+-+-y x y x .

而当0=a 时,直线AP 与BQ 平行,没有交点.

∴所求轨迹方程为082222=+-+-y x y x .

说明:本题的前两种方法属于直接法,相对较繁,而后一种方法,事实上它涉及到参数的思想(a 为参数),利用交点求轨迹方程.一般先把交点表示为关于参数的坐标,然后消去参数,这也反映出运动的观点.

1.下列各组方程中,表示相同曲线的一对方程是

A .2,y x x y ==

B 。 1,==y

x x y C .0,22=-=y x y x D 。x y x y lg 2,lg 2==

2.如果实数y x ,满足条件??

???≤++≥+≥+-010101y x y y x 那么y x -2的最大值为( )

A .2

B .1

C .2-

D .3-

3.点(3,1)和点(6,4-)在直线023=+-a y x 的两侧,则a 的取值范围是( )

A .7-a

B .247<<-a

C .7-=a 或24=a

D .

7≥a 4.ABC ?中,)5

22,1(),1,1(),2,5(C B A ,以三角形内部及其边界为可行域,若使目标函数)0(>+=a y ax z 取最大值的最优解有无穷多个,则a 的值为( ) A.41 B.53 C 。4 D.3

5 5.曲线x y 42=关于直线2=x 对称的曲线方程是( )

A .x y 482-=

B .842-=x y

C .x y 4162-=

D .1642-=x y

6.设1),(=y x f 是平面直角坐标系中一个面积有限的图形M 的边界方程,则1)2,2(=y x f 围成的图形面积是M 面积的( ) A.41倍 B. 2

1倍 C.1倍 D.4倍 7.已知坐标满足方程0),(=y x F 的点都在曲线C 上,那么( )

A .曲线C 上的点的坐标都适合方程0),(=y x F

B .坐标不适合方程0),(=y x F 的点都不在曲线

C 上

C .不在曲线C 上的点的坐标必不适合方程0),(=y x F

D .不在曲线C 上的点的坐标有些适合方程0),(=y x F ,有些不适合方程0),(=y x F

8.已知曲线C 的方程是)0(022≠=+-+m my mx y x ,下列各点不在曲线C 的点是( )

A .)0,0(

B .)2,0(m

C .)2,0(m -

D .)0,2(m

9.在平面直角坐标系中,方程04422=-+-y x 表示的图形是( )

A .2条直线

B .4条直线

C .2个点

D .4个点

10.下列方程的曲线关于直线x y =对称的是

A .122=+-y x x

B .122=+xy y x

C .1=-y x

D .122=-y x

11.直线23+=x y 被曲线22

1x y =所截得的线段的中点到原点的距离是( ) A .229 B .4

29 C .29 D .29

12.实数x 、y 满足不等式组??

???≥--≥-≥02200y x y x y ,则11+-=x y ω的取值范围是( ) A .??????-31,1 B .??????-31,21 C .??????+∞-,21 D .??

????-1,21 13.已知集合{}1),(≤+=y x y x A , {}0

))((),(≤+-=x y x y y x B ,B A M ?=,则M

的面积为

14.直线k x y +=与曲线21y x -=恰有一个公共点,则k 的取值范围是 15.已知)2lg(-x , y 2lg ,x 16lg 成等差数列,则点),(y x P 的轨迹方程为

16.已知动点M 到定点)0,9(A 的距离是M 到定点)0,1(B 的距离的3倍,则M 的轨迹方程_______________

三、解答题:本大题共2小题,共20分。解答题应写出文字说明,证明过程或演算步骤。解答过 程写在答题卡的相应位置。

17.(本小题满分10分)点),(b a M 处于由2,0,0≤+≥≥y x y x 三个不等式所确定的平面区域内,求点),(b a b a N -+所在的平面区域的面积。

18.(本小题满分10分)如果直线1+=kx y 与圆0422=-+++my kx y x 相交于M ,N 两点,且点M ,N 关于直线0=+y x 对称。(10分)

(1)画出不等式组??

???≥≤-≥+-0001y m y kx y kx 所表示的平面区域。

(2)求y x 2-

答案

选择题CBBBC ACBDB AD

填空题13。1 14。2-=k 或11≤<-k 15.

)2(42-=x x y )2(>x 16。922=+y x

解答题

17.设点N ),(y x 则???-=+=b a y b a x ,故???

????-=+=22y x b y x a 又?????≤+≥≥200b a b a ,?????≤≥-≥+∴200x y x y x

画出可行域,易求得其面积为4

18.(1) 圆周上两点M ,N 关于直线0=+y x 对称,

∴直线0=+y x 过圆心)2

,2(m k --,且直线MN 斜率为1, 故?????==-+-10)2(2k m k ,???-==∴11m k 故可行域为??

???≥≤+≥+-001y y x y x 所表示区域。图略 (2)2

3)2(min -

=-y x

曲线的参数方程(教案)

曲线的参数方程 教材 上海教育出版社高中二年级(理科)第十七章第一节 教学目标 1、理解曲线参数方程的概念,能选取适当的参数建立参数方程; 2、通过对圆和直线的参数方程的研究,了解某些参数的几何意义和物理意义; 3、初步了解如何应用参数方程来解决某些具体问题,在问题解决的过程中, 形成数学抽象思维能力,初步体验参数的基本思想。 教学重点 曲线参数方程的概念。 教学难点 曲线参数方程的探求。 教学过程 (一)曲线的参数方程概念的引入 引例: 2002年5月1日,中国第一座身高108米的摩天轮,在上海锦江乐园正式对外运营。并以此高度跻身世界三大摩天轮之列,居亚洲第一。 已知该摩天轮半径为51.5米,逆时针匀速旋转一周需时20分钟。如图所示,某游客现在点(其中点和转轴的连线与水平面平行)。问:经过秒,该游客的位置在何处? 引导学生建立平面直角坐标系,把实际问题抽象到数学问题,并加以解决 (1、通过生活中的实例,引发学生研究的兴趣;2、通过引例明确学习参数方程的现实意义;3、通过对问题的解决,使学生体会到仅仅运用一种方程来研究往往难以获得满意的结果,从而了解学习曲线的参数方程的必要性;4、通过具体的问题,让学生找到解决问题的途径,为研究圆的参数方程作准备。) (二)曲线的参数方程 1、圆的参数方程的推导 (1)一般的,设⊙的圆心为原点,半径为,0OP 所在直线 为轴,如图,以0OP 为始边绕着点按逆时针方向绕原点以匀角 速度作圆周运动,则质点的坐标与时刻的关系该如何建立呢? (其中与为常数,为变数) 结合图形,由任意角三角函数的定义可知: ),0[sin cos +∞∈???==t t r y t r x ωω 为参数 ① (2)点的角速度为,运动所用的时间为,则角位移t ωθ=,那么方程组①可以改写为何种形式? 结合匀速圆周运动的物理意义可得:),0[sin cos +∞∈???==θθ θr y r x 为参数 ② (在引例的基础上,把原先具体的数据一般化,为圆的参数方程概念的形成作准备,同时也培养了学生数学抽象思维能力)

曲线与方程练习题

曲线与方程 命题人:褚晓清 审核人:王焕功 一、选择题 1、方程(x 2+y 2-4) x +y +1=0的曲线形状是( ) 2、已知点P 是直线2x -y +3=0上的一个动点,定点M (-1,2),Q 是线段PM 延长线上的一点,且|PM |=|MQ |,则Q 点的轨迹方程是( ) A .2x +y +1=0 B .2x -y -5=0 C .2x -y -1=0 D .2x -y +5=0 3、已知命题“曲线C 上的点的坐标是方程(,)0f x y =的解”是正确的,则下列命题中正确的是 A .满足方程(,)0f x y =的点都在曲线C 上 B .方程(,)0f x y =是曲线 C 的方程 C .方程(,)0f x y =所表示的曲线不一定是C D .以上说法都正确 4、方程2(326)[log (2)3]0x y x y --+-=表示的图形经过点(0,1)A -,(2,3)B ,(2,0)C ,57(,)34 D -中的 A .0个 B .1个 C .2个 D .3个 52(2)0y +=表示的图形是 A .圆 B .两条直线 C .一个点 D .两个点 6、方程y =- A B C D

7、一条线段的长等于10,两端点,A B 分别在x 轴和y 轴上滑动,M 在线段AB 上 且4AM MB =,则点M 的轨迹方程是 A .221664x y += B . 221664x y += C .22168x y += D .22168x y += 8、“点M 在曲线||y x =上”是“点M 到两坐标轴距离相等”的 A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件 9、已知(2,0)M -,(2,0)N ,则以MN 为斜边的直角三角形的直角顶点P 的轨迹方程是 A . 222x y += B .224x y += C .222(2)x y x +=≠± D .224(2)x y x +=≠± 10、一动点C 在曲线221x y +=上移动时,它和定点B (3,0)连线的中点P 的轨迹方程是 A .22(3)4x y ++= B .22(3)1x y -+= C .22(23)41x y -+= D .223()12 x y ++= 11、已知F 1,F 2分别为椭圆C :x 24+y 23 =1的左、右焦点,点P 为椭圆C 上的动点,则△PF 1F 2的重心G 的轨迹方程为( ) A.x 236+y 227=1(y ≠0) B.4x 29 +y 2=1(y ≠0) C.9x 24+3y 2=1(y ≠0) D .x 2+4y 23=1(y ≠0) 12、设圆C 与圆x 2+(y -3)2 =1外切,与直线y =0相切,则C 的圆心轨迹为( ) A .抛物线 B .双曲线 C .椭圆 D .圆 二、填空题 13、已知△ABC 的顶点B (0,0),C (5,0),AB 边上的中线长|CD |=3,则顶点A 的轨迹方程为__________. 14、曲线y =||0()y ax a +=∈R 的交点有______个. 15、已知两定点A (-2,0),B (1,0),如果动点P 满足|PA |=2|PB |,则点P 的 轨迹所包围的图形的面积为__________.

最新曲线和方程优秀教案

1 《曲线和方程》教案 2 【课题】曲线和方程 3 【教材】人教版普通高中课程标准实验教科书——数学选修2-1 4 【教学目标】 5 ◆知识目标: 6 1、了解曲线上的点与方程的解之间的一一对应关系; 7 2、初步领会“曲线的方程”与“方程的曲线”的概念; 8 3、学会根据已有的情景资料找规律,进而分析、判断、归纳结论; 9 4、强化“形”与“数”一致并相互转化的思想方法。 10 ◆能力目标: 1、通过直线方程的引入,加强学生对方程的解和曲线上的点的一一对应关系 11 12 的认识; 13 2、在形成曲线和方程的概念的教学中,学生经历观察、分析、讨论等数学活 动过程,探索出结论,并能有条理的阐述自己的观点; 14 15 3、能用所学知识理解新的概念,并能运用概念解决实际问题,从中体会转化16 化归的思想方法,提高思维品质,发展应用意识; 17 ◆情感目标: 18 1、通过概念的引入,让学生感受从特殊到一般的认知规律; 19 2、通过反例辨析和问题解决,培养合作交流、独立思考等良好的个性品质,

以及勇于批判、敢于创新的科学精神。 20 21 【教学重点】“曲线的方程”与“方程的曲线”的概念 22 【教学难点】怎样利用定义验证曲线是方程的曲线,方程是曲线的方程 23 【教学方法】问题探索和启发引导式相结合 24 【教具准备】多媒体教学设备 25 【教学过程】 一、感性认识阶段——以旧带新,提出课题 26 27 师:在本节课之前,我们研究过直线的各种方程,建立了二元一次方程与直线的对应28 关系:在平面直角坐标系中,任何一条直线都可以用一个二元一次方程表示,同时任何29 一个二元一次方程也表示着一条直线。下面看一个具体的例子: 30 (出示幻灯片2) 幻灯片2 31 借助多媒体让学生直观上深刻体会如下结论: 32 33 (出示幻灯片3) 34

曲线和方程的概念说课

《曲线和方程的概念》说课稿 临朐二中谢文利 各位评委、老师,大家好! 我说课的内容是“曲线和方程的概念”。下面我从教材分析、教学方法、学法指导、教学程序设计、板书设计以及教后评价六个方面来汇报对教材的钻研情况和本节课的教学设想。恳请在座的领导、专家、同仁批评指正。 一、关于教材分析 1、教材的地位和作用 “曲线和方程”是高中数学人教B版选修2-1第二章第一节的重点内容之一,对一般曲线(也包括直线)与二元方程的关系作进一步的研究。这部分内容从理论上揭示了几何中的“形”与代数中的“数”相统一的关系,为“形”与“数”的相互转化开辟了途径,同时也体现了解析几何的基本思想,为解析几何 https://www.360docs.net/doc/2b6899113.html,/view/900761eae009581b6bd9eb45.html 的教学奠定了一个理论基础。 2、教学内容的选择和处理 本节教材主要讲解曲线的方程和方程的曲线 https://www.360docs.net/doc/2b6899113.html,/view/9d02094fc850ad02de8041ad.html) 坐标法、解析几何等概念,讨论怎样求曲线的方程以及曲线的交点等问题。共分两课时,这是第一课时。此课时的主要内容是建立“曲线的方程”和“方程的曲线”这两个概念,并对概念进行初步运用。我在处理教材时,不拘泥于教材,敢于大胆进行调整。主要体现在对曲线的方程和方程的曲线的定义进行归纳上,通过构造反例,引导学生进行观察、讨论、分析、正反对比,逐步揭示其内涵,加深学生对概念的认识然后在此基础上归纳定义。 3、教学目标的确定 根据新课程标准的要求以及本节教材的地位和作用,结合高二学生的认知特点,我认为,通过本节课的教学,应使学生理解曲线和方程的概念;会用定义来判断点是否在方程的曲线上、证明曲线的方程;培养学生分析、判断、归纳的逻辑思维能力,渗透数形结合的数学思想;并借用曲线与方程的关系进行辩证唯物主义观点的教育;通过对问题的不断探讨,培养学生勇于探索的精神。 4、关于教学重点、难点和关键 由于曲线和方程的概念体现了解析几何的基本思想,学生只有透彻理解了这个概念,才能用解析法去研究几何图形,才算是踏上学好解析几何的入门之径。因此,我把曲线和方程的概念确定为本节课的教学重点。另外,由于曲线和方程的概念比较抽象,加之刚刚进入高二的学

圆锥曲线与方程测试题及答案

2013-2014学年度第二学期3月月考 高二数学试卷 满分:150分,时间:120分钟 一、选择题:(本大题共12小题,每小题5分,共60分) 1、抛物线y2=-2px (p >0)的焦点为F ,准线为l ,则p表示 ( ) A 、F 到准线l 的距离 B、F到y 轴的距离 C 、F点的横坐标 D 、F到准线l 的距离的一半 2.抛物线 2 2x y =的焦点坐标是 ( ) A .)0,1( B.)0,4 1(?C.)8 1,0( D .)4 1,0( 3.离心率为 3 2,长轴长为6的椭圆的标准方程是 ( )A.22195x y + = B .22195x y +=或22 159 x y += C.2213620x y += D.2213620x y +=或22 12036 x y += 4、焦点在x 轴上,且6,8==b a 的双曲线的渐近线方程是 ( ) A.043=+y x B .043=-y x C .043=±y x D . 034=±y x 5、以椭圆15 82 2=+y x 的焦点为顶点,椭圆的顶点为焦点的双曲线的方程为 ( ) A.15322=-y x B.13522=-y x C.181322=-y x D .15 132 2=-y x 6.顶点在原点,坐标轴为对称轴的抛物线过点(-2,3),则它的方程是 ( ) A .y x 292-=或x y 342= B .x y 2 9 2-=或y x 3 42= C .y x 3 4 2 = D.x y 2 92 - = 7.抛物线2 2y px =的焦点与椭圆22 162 x y + =的右焦点重合,则p = ( ) A.4 B.4-?C .2 D. 2-

曲线与方程的教学设计

曲线与方程的教学设计 上海曹杨二中桂思铭 一、内容和内容解析 曲线与方程为选修2-1的内容,它刻画了曲线(几何图形)和方程(代数算式)间的一一对应关系;同时,介绍了求解曲线方程的一般方法,并要求学生能通过方程来处理一些简单的几何问题,如根据已知条件确定方程中的参数,求动点的轨迹方程等问题. 学生在这本节内容学习之前,已经有了直线方程及圆方程的相关知识,在这里进一步研究曲线与方程的关系有着承上启下的作用,学生可以根据已经验通过教师的引导进行一般的归纳总结,用已有经验来加深对定义的认识,廓清曲线与方程之间的关系,进而能更深入理解解析几何的本质,同时也为后继圆锥曲线的学习奠定一个基础. 二.目标和目标解析 教学目标:理解曲线的方程、方程的曲线的概念;能根据给出的条件求曲线的方程;经历对曲线方程定义的归纳理解过程,体会数学思维的严谨,借助于技术强化数形结合的思想 方法. 上述教学目标具体体现在: (1)能辨析给出的方程是否是某个曲线的方程; (2)给出一些熟悉的曲线的部分图像后能确定变量的取值范围; (3)掌握求曲线方程的基本流程; (4)能利用曲线方程的定义求解轨迹方程; (5)能对照求曲线方程的步骤来反思自己的求解过程. 教学的重点和难点在于学生对曲线与方程的概念的理解和掌握. 三.教学问题诊断 新课标教材将这部分内容作为选修内容,之前的学习为学生提供了曲线与方程的具体事例(直线及圆),学生知道直线和圆的问题可以通过方程来研究处理,如判断两条直线的位置关系;求直线的交点;直线和圆的位置关系等,但可能经过了一个阶段学生记忆中留下的只是一些具体的解题的方法和知识,并不能自觉地通过已有的知识、记忆去发展和构建新的知识,这需要教师通过一些事例去激活学生的思维. 另外,在前面学习的直线和圆的过程中,学生遇到的问题往往是求得的直线或圆就是一条完整的直线或一个完整的圆,不需要去深究求得的方程是否会混入不在曲线上的点的问题,而进入到一般的曲线的研究过程,学生自然会在这方面出现这样或那样的问题,所以我们

曲线和方程时

课题:求曲线的方程(第一课时) 教学目标: (1)了解坐标法和解析几何的意义,了解解析几何的基本问题. (2)进一步理解曲线的方程和方程的曲线. (3)初步掌握求曲线方程的方法. (4)通过本节内容的教学,培养学生分析问题和转化的能力. 教学重点、难点:求曲线的方程. 教学用具:计算机. 教学方法:启发引导法,讨论法. 教学过程: 【引入】 1?提问:什么是曲线的方程和方程的曲线. 学生思考并回答?教师强调. 2?坐标法和解析几何的意义、基本问题. 对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方 程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何?解析几何的两大基本问题就是: (1)根据已知条件,求岀表示平面曲线的方程. (2)通过方程,研究平面曲线的性质. 事实上,在前边所学的直线方程的理论中也有这样两个基本问题. 而且要先研究如何求岀曲线方程,再研究如何用方程研究曲线?本节课就初步研究曲线方程的求法. 【问题】 如何根据已知条件,求岀曲线的方程. 【实例分析】

例1:设「、亦两点的坐标是、(3,7),求线段工三的垂直平分线-的方程.

由斜率关系可求得l 的斜率为 于是有 y~ 沪奶7 即丨的方程为 -0 ① 分析、引导:上述问题是我们早就学过的,用点斜式就可解决?可是,你们是否想过①恰好 就是所求的吗?或者说①就是直线 '的方程?根据是什么,有证明吗? (通过教师引导,是学生意识到这是以前没有解决的问题, 应该证明,证明的依据就是定义 中的两条). 证明:(1)曲线上的点的坐标都是这个方程的解. 设是线段」:王的垂直平分线上任意一点,贝9 呦?|阙 即 J (呵十if 十S 十if = J (仓_ 十也 将上式两边平方,整理得 首先由学生分析:根据直线方程的知识,运用点斜式即可解决. 解法一:易求线段 二占的中点坐标为(1, 3),

曲线和方程练习题

曲线和方程练习题 一、选择题 1、(2014·安徽高考文科·T3)抛物线2 14 y x = 的准线方程是( ) A. 1-=y B. 2-=y C. 1-=x D. 2-=x 【解题提示】 将抛物线化为标准形式即可得出。 【解析】选A 。22 144 y x x y = ?,所以抛物线的准线方程是y=-1. 2. (2014·新课标全国卷Ⅱ高考文科数学·T10) (2014·新课标全国卷Ⅱ高考文科数学·T10)设F 为抛物线C:y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,则 AB = ( ) A. B.6 C.12 D. 【解题提示】画出图形,利用抛物线的定义求解. 【解析】选C.设AF=2m,BF=2n,F 3,04?? ??? .则由抛物线的定义和直角三角形知识可得, 2m=2· 34·34n,解得m=32 ),n=3 2 所以m+n=6. AB=AF+BF=2m+2n=12.故选C. 3. (2014·新课标全国卷Ⅱ高考理科数学·T10)设F 为抛物线C:y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为( ) A. 4 B. 8 C. 6332 D. 9 4 【解题提示】将三角形OAB 的面积通过焦点“一分为二”,设出AF,BF,利用抛物线的定义求得面积. 【解析】选D.设点A,B 分别在第一和第四象限,AF=2m,BF=2n,则由抛物线的定义和直角三角形知识可 得,2m=2· 34+m,2n=2·34-n,解得m=32 (2+),n=3 2 (2-),所以m+n=6.所以S △OAB =1324?·(m+n)=94 .故选D. 4. (2014·四川高考理科·T10)已知F 为抛物线x y =2 的焦点,点A ,B 在该抛物线上且位于x 轴的两 侧,2OA OB ?=u u u r u u u r (其中O 为坐标原点),则ABO ?与AFO ?面积之和的最小值是( ) A. 2 B.3 C. 8 【解题提示】

数学:曲线与方程教案新人教B版选修

第二章圆锥曲线与方程 2.1曲线与方程 2.1.1曲线与方程2.1.2求曲线的轨迹方程 一、教学目标 (一)知识教学点 使学生掌握常用动点的轨迹以及求动点轨迹方程的常用技巧与方法. (二)能力训练点 通过对求轨迹方程的常用技巧与方法的归纳和介绍,培养学生综合运用各方面知识的能力.(三)学科渗透点 通过对求轨迹方程的常用技巧与方法的介绍,使学生掌握常用动点的轨迹,为学习物理等学科打下扎实的基础. 二、教材分析 1.重点:求动点的轨迹方程的常用技巧与方法. (解决办法:对每种方法用例题加以说明,使学生掌握这种方法.)2.难点:作相关点法求动点的轨迹方法. (解决办法:先使学生了解相关点法的思路,再用例题进行讲解.) 教具准备:与教材内容相关的资料。 教学设想:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.三、教学过程 学生探究过程: (一)复习引入 大家知道,平面解析几何研究的主要问题是:

(1)根据已知条件,求出表示平面曲线的方程; (2)通过方程,研究平面曲线的性质. 我们已经对常见曲线圆、椭圆、双曲线以及抛物线进行过这两个方面的研究,今天在上面已经研究的基础上来对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析. (二)几种常见求轨迹方程的方法 1.直接法 由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法. 例1(1)求和定圆x2+y2=k2的圆周的距离等于k的动点P的轨迹方程; (2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹. 对(1)分析: 动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0. 解:设动点P(x,y),则有|OP|=2R或|OP|=0. 即x2+y2=4R2或x2+y2=0. 故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0. 对(2)分析: 题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.由学生演板完成,解答为: 设弦的中点为M(x,y),连结OM, 则OM⊥AM.

课时2-2.1曲线与方程_教学设计_教案

教学准备 1. 教学目标 [1]掌握如何建立坐标系。 [2]依据已知罗列方程。 [3]理解方程验证的意义及方法。 [4]通过学习研究概括曲线的性质。 2. 教学重点/难点 教学重点:建立坐标系、依据已知列方程。 教学难点:平面几何到方程式的转换。 3. 教学用具 多媒体设备 4. 标签 教学过程 教学过程设计 1 复习引入 【师】同学们,我们来复习一下上节课的内容,请同学们回答,我们上节课学 了什么内容? 【板书】 轨迹方程:一条曲线可以看成动点依据某种条件运动的轨迹,所以曲线的方程 又常称为满足某种条件的点的轨迹方程。 曲线方程:在平面直角坐标系中,如果曲线C与方程F(x,y)=0之间具有如下关系: (1)曲线C上点的坐标都是方程F(x,y)=0的解;

(2)以方程F(x,y)=0的解为坐标的点都在曲线C上。 那么,曲线C叫做方程F(x,y)=0的曲线,方程F(x,y)=0叫做曲线C的方程。 2 新知介绍 [1]依据曲线求方程 【师】今天,我们就是要以一个具体实例来说明,如何根据曲线来构建方程。 那么第一个问题是“曲线”以何种形式出现? 【生】讨论回答 【师】“曲线”一般都是描述性的,具有某种或某些几何意义。 【板书】 “曲线的由来”:语言描述,具有一定的几何意义。 [2]构建坐标系、列方程 【师】方程离不开坐标系,那么建立坐标系就是必须且必要的了,怎么建立坐 标系呢?建立坐标系后如何依据题意列方程? 【生】讨论回答 【师】依据题意,见招拆招。 [3]例题研究 见书36页,并结合ppt,研究标准例题。 [4]小结 【师】刚才我们讨论了如何根据曲线建立方程的一般过程现在总结如下: ◎分析题目,对曲线首先有个直观的了解 ◎建立坐标系 ◎依据题意列方程 ◎化简并检验

高中数学人教A版选修2-1导学案:第二章第一节曲线与方程第一课时

第二章第一节曲线与方程第一课时 学习目标 1. 了解曲线与方程的对应关系; 2. 建立“数”与“形”的桥梁,感受数形结合的基本思想. ________________________________________________________________________ 自学探究 问题1. 画出2 2x y =)21(≤≤-x 的图像 问题2.画出两坐标轴所成的角在第一,三象限的平分线,并写出其方程 问题4. “方程(,)0F x y =叫做曲线C 的方程,曲线C 叫做方程(,)0F x y =的曲线”这 句话的含义是什么? 【试试】 1.点(1,)P a 在曲线2250x xy y +-=上,则a =___ . 2.曲线220x xy by +-=上有点(1,2)Q ,则b = . 【技能提炼】 1.证明与两条坐标轴的距离的积是常数(0)k k >的点的轨迹方程式是xy k =±. 【变式】到x 轴距离等于5的点所组成的曲线的方程是50y -=吗? 2.设,A B 两点的坐标分别是(1,1)--,(3,7),求线段AB 的垂直平分线的方程. 【变式】已知等腰三角形三个顶点的坐标分别是(0,3)A ,(2,0)B -,(2,0)C .中线AO (O 为 原点)所在直线的方程是0x =吗?为什么?

教师问题创生 学生问题发现 变式反馈 1. 如果命题“坐标满足方程f (x, y)=0的点都在曲线c 上”是不正确的,那么下列命题正确的是( )。 A.坐标满足方程f (x, y)=0的点都不在曲线c 上 B.坐标满足方程f (x, y)=0的点有些在曲线c 上,有些不在曲线c 上 C.曲线c 上的点不都满足方程f (x, y)=0 D.一定有不在曲线c 上的点,其坐标满足方程f (x, y)=0 2. 与两个坐标轴距离相等的点的轨迹方程是( )。 A .y=|x | B.y=x C.y=-x D.02 2=-y x 3. 下面各对方程中表示的曲线相同的一对是( )。 A. y=1与y=0x B.y=x 与x y =1 C.|y |=|x |与2 2x y = D.2lg x y =与x y lg 2= 4. 已知△ABC 的面积为4,A 、B 两点的坐标分别是(-2,0)、(2,0),则顶点C 的轨迹方程是( )。 A.y=2 B.y=-2 C.y=2和y=-2 D.y=2或y=-2 5.下列方程的曲线分别是什么? (1) 2x y x = (2) 222x y x x -=- (3) log a x y a =

圆锥曲线与方程测试和答案

圆锥曲线与方程 测试(1) 第Ⅰ卷(选择题 共60分) 一.选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的.) 1.椭圆12 2 =+my x 的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( ) A. 41 B.2 1 C.2 D.4 2.双曲线 22 1412 x y -=的焦点到渐近线的距离为( ) A 3. 已知双曲线12222=-b y a x 的一条渐近线方程为x y 34 =,则双曲线的离心率为( ) A. 35 B. 34 C. 45 D. 2 3 4.已知椭圆 116 252 2=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为( ) A.9 B.7 C.5 D.3 5.动点P 到点)0,1(M 及点)0,3(N 的距离之差为2,则点P 的轨迹是( ) A.双曲线 B.双曲线的一支 C.两条射线 D.一条射线 6.中心在原点,焦点在x 轴上,焦距等于6,离心率等于 5 3 ,则椭圆的方程是( ) A. 13610022=+y x B.16410022=+y x C.1162522=+y x D.19252 2=+y x 7.焦点为(06), 且与双曲线2 212 x y -=有相同的渐近线的双曲线方程是( ) A. 22 11224 y x -= B. 2212412y x -= C.22 12412 x y -= D. 22 11224 x y -=

8.若椭圆的短轴为AB ,它的一个焦点为1F ,则满足1ABF △为等边三角形的椭圆的离心率是( ) A. 14 B. 2 C. 2 D. 12 9.以双曲线2 2 312x y -+=的焦点为顶点,顶点为焦点的椭圆的方程是( ) A. 22 11612 x y += B. 221164x y += C.22 11216x y += D. 22 1416 x y += 10.双曲线的虚轴长为4,离心率2 6 = e ,1F .2F 分别是它的左.右焦点,若过1F 的直线与双曲线的左支交于A .B 两点,且||AB 是||2AF 与||2BF 的等差中项,则||AB 等于( ) A.28 B.24 C.22 D.8. 11.已知双曲线中心在原点且一个焦点为)0,7(F ,直线1-=x y 与其相交于N M ,两点, MN 中点横坐标为3 2 - ,则此双曲线的方程是( ) A 14322=-y x B 13422=-y x C 12522=-y x D 15 22 2=-y x 12.若直线4=+ny mx 和⊙O ∶42 2 =+y x 没有交点,则过),(n m 的直线与椭圆 14 922=+y x 的交点个数( ) A.至多一个 B.2个 C.1个 D.0个

圆锥曲线与方程练习题

《圆锥曲线与方程》单元测试 姓名_____________ 学号__________ 成绩____________ 一、选择题:本大题共10小题,每小题5分,共50分. 在每小题的4个选项中,只有一项是符合题目要求的. 1.直线过抛物线24y x =的焦点,与抛物线交于A(x 1, y 1)、B(x 2, y 2)两点,如果x 1 + x 2 = 6,那么AB 等于 ( ) A.10 B.8 C.7 D.6 2.已知双曲线12222=-b y a x 的一条渐近线方程为x 43 y =,则双曲线的离心率为 ( ) A.35 B.34 C.45 D.23 3.以(-6,0),(6,0)为焦点,且经过点(-5,2)的双曲线的标准方程是( ) A. 1201622=-y x B.1201622=-x y C.1162022=-y x D.116 2022=-x y 4.方程 22 125-16x y m m +=+表示焦点在y 轴上的椭圆,则m 的取值范围是 ( ) A.1625m -<< B.9162m -<< C.9252m << D.92 m > 5.过双曲线22149 x y -=的右焦点F 且斜率是32的直线与双曲线的交点个数是( ) A.0个 B.1个 C.2个 D.3个 6.抛物线2y x =上的点到直线24x y -=的最短距离是( ) A.35 B.553 C.552 D.105 3 7.抛物线x y 122=截直线12+=x y 所得弦长等于( ) A. 15 B.152 C. 2 15 D.15 8.设12,F F 是椭圆164942 2=+y x 的两个焦点,P 是椭圆上的点,且3:4:21=PF PF ,则 21F PF ?的面积为( ) A.4 B.6 C.22 D.24 9.如图,圆O 的半径为定长r ,A 是圆O 外一个定点,P 是圆上任意一点,线段AP 的垂直平分线l 和直线OP 相交于点Q ,当点P 在圆上运动时,点Q 的轨迹是( ) A.圆 B.椭圆 C.双曲线 D.抛物线

2.1.2求曲线的方程(2)(教学设计)

2.1.2求曲线的方程(2)(教学设计) 教学目标: 知识目标:1.根据条件,求较复杂的曲线方程. 2.求曲线的交点. 3.曲线的交点与方程组解的关系. 能力目标: 1.进一步提高应用“五步”法求曲线方程的能力. 2.会求曲线交点坐标,通过曲线方程讨论曲线性质. 情感目标: 1.渗透数形结合思想. 2.培养学生的辨证思维. 教学重点 1.求曲线方程的实质就是找曲线上任意一点坐标(x,y)的关系式f(x,y)=0. 2.求曲线交点问题转化为方程组的解的问题. 教学难点 1. 寻找“几何关系”. 2. 转化为“动点坐标”关系. 教学方法 启发诱导式教学法. 启发诱导学生联想新旧知识点的联系,从而发现解决问题的途径. 教学过程 一、复习回顾: 求曲线的方程(轨迹方程),一般有下面几个步骤: 1.建立适当的坐标系,设曲线上任一点M 的坐标(,)x y ; 2.写出适合条件P 的几何点集:{} ()P M P M =; 3.用坐标表示条件()P M ,列出方程(,)0f x y =; 4.化简方程(,)0f x y =为最简形式; 5.证明(查漏除杂). 说明:回顾求简单曲线方程的一般步骤,阐明步骤(2)、(3)为关键步骤,说明(5)步不要求书面表达,但思维一定要到位,注意等价性即可. 二、师生互动,新课讲解: (一)、直接法: 由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法. 例1:(1)求和定圆x 2+y 2=R 2的圆周的距离等于R 的动点P 的轨迹方程; (2)过点A(a ,o)作圆O ∶x 2+y 2=R 2(a >R >o)的割线,求割线被圆O 截得弦的中点的轨迹. 对(1)分析: 动点P 的轨迹是不知道的,不能考查其几何特征,但是给出了动点P 的运动规律:|OP|=2R 或|OP|=0.

2.3.1双曲线及其标准方程公开课教学设计

§2.3.1双曲线及其标准方程 海南华侨中学王芳文 1.教学背景 1.1 学生特征分析 我授课班级是海南侨中理科班,方法储备上,学生经过学习,已经基本适应高中数学学习规律,但是学习方法还是停留在简单模仿,反复练习层次上,对知识的生成与发展,区别与联系认识不深,缺少抽象概括及分析综合能力。 知识储备上,学生已经系统的学习了直线方程,圆的方程以及椭圆的相关知识,学生熟知椭圆的定义,会根据题目条件求简单的椭圆的标准方程。但是由于接触学习椭圆的时间还相对较短,对椭圆的基本性质了解不深,而且理性思维比较欠缺,且计算能力的短板约束使得在处理直线与椭圆等综合问题时还存在困难。把新问题转化为已解决问题的能力有待提高,缺乏选择、调整解决问题策略的能力。 1.2教师特点分析 自己教学中的优势:注重问题引导、思路分析、善于与信息技术的整合、善于鼓励学生,能对学生进行有效指导。 不足:课堂教学语言相对不够准确简练、板书不够清晰美观。 1.3 学习内容分析 1、内容分析:学生初步认识圆锥曲线是从椭圆开始的,双曲线的学习是对其研究内容的进一步深化和提高。如果双曲线研究的透彻、清楚,那么抛物线的学习就会顺理成章。所以说本节课的作用就是纵向承接椭圆定义和标准方程的研究,横向为双曲线的简单性质的学习打下基础。从高考大纲要求和课程标准角度来讲,双曲线的定义、标准方程作为了解内容,在高考的考查当中以选择、填空为主。正因如此,学生在学习过程当中对双曲线缺少应有的重视,成为了学生的一个失分点。而且由于学生对椭圆与双曲线的区别与联系认识不够,无法做到知识与方法的迁移,在学习双曲线时极易与椭圆混淆。在教学中要时刻注意运用类比的方法,让学生充分的类比体会椭圆与双曲线的异同点,使得椭圆与双曲线的学习能相互促进。 2、例题分析: 温故:帮助学生复习椭圆的定义,提出问题。 探究:如图,实验操作:1.取一条拉链,拉开一部分;

圆锥曲线与方程单元测试卷答案

圆锥曲线与方程单元测试 卷答案 Newly compiled on November 23, 2020

《圆锥曲线与方程》单元测试卷 一、选择题:(本大题共10小题,每小题4分,共40分.) 1.方程132-=y x 所表示的曲线是 ( ) (A )双曲线 (B )椭圆 (C )双曲线的一部分 (D )椭圆的一部分 2.平面内两定点A 、B 及动点P ,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P 的 轨迹是以A .B 为焦点的椭圆”,那么 ( ) (A )甲是乙成立的充分不必要条件 (B )甲是乙成立的必要不充分条件 (C )甲是乙成立的充要条件 (D )甲是乙成立的非充分非必要条件 3.椭圆14222=+a y x 与双曲线12 2 2=-y a x 有相同的焦点,则a 的值是 ( ) (A )12 (B )1或–2 (C )1或12 (D )1 4.若抛物线的准线方程为x =–7, 则抛物线的标准方程为 ( ) (A )x 2=–28y (B )y 2=28x (C )y 2=–28x (D )x 2=28y 5.已知椭圆19 252 2=+y x 上的一点M 到焦点F 1的距离为2,N 是MF 1的中点,O 为原点,则|ON|等于 (A )2 (B ) 4 (C ) 8 (D ) 23 ( ) 6.顶点在原点,以x 轴为对称轴的抛物线上一点的横坐标为6,此点到焦点的距离等于10,则抛物线焦点到准线的距离等于 ( ) (A ) 4 (B )8 (C )16 (D )32 7.21F F 为双曲线2214 x y -=-的两个焦点,点P 在双曲线上,且1290F PF ∠=,则21PF F ?的面积是 (A ) 2 (B )4 (C )8 (D )16 ( )

(完整word)19圆锥曲线与方程(中职数学春季高考练习题)

学校______________班级______________专业______________考试号______________姓名______________ 数学试题 圆锥曲线与方程 . 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间90分钟, 考试结束后,将本试卷和答题卡一并交回. . 本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01. 第Ⅰ卷(选择题,共60分) 30小题,每小题2分,共60分.在每小题列出的四个选项中,只有一项 . 设12F F 、 为定点,126F F =,动点M 满足128MF MF +=,则动点M 的轨迹是 A .椭圆 B .直线 C .圆 D .线段 . 若抛物线焦点在x 轴上,准线方程是3x =-,则抛物线的标准方程是 A .2 12y x = B .2 12y x =- C .2 6y x = D .2 6y x =- . 已知椭圆方程为 22 1916 x y +=,那么它的焦距是 A .10 B .5 C .7 D .27 . 抛物线2 6y x =-的焦点到准线的距离为 A .2 B .3 C .4 D .6 . 若椭圆满足4a =,焦点为()()0303-,,, ,则椭圆方程为 A . 22 1167 x y += B . 22 1169x y += C . 22 1167y x += D . 22 1169 y x += . 抛物线2 40y x +=上一点到准线的距离为8,则该点的横坐标为 A .7 B .6 C .7- D .6- . 一椭圆的长轴是短轴的2倍,则其离心率为 A .34 B . 32 C . 22 D .12 8. 椭圆的一个焦点与短轴的两个端点的连线互相垂直,则该椭圆的离心率是 A . 12 B . 32 C . 2 D . 14 9. 椭圆 22 1164 x y +=在y 轴上的顶点坐标是 A .()20±, B .()40±, C .()04±, D .()02±, 10. 若双曲线的焦点在x 轴上,且它的渐近线方程为3 4 y x =± ,则双曲线的离心率为 A . 54 B . 53 C . 7 D . 7 11. 椭圆 22 1169 x y +=与x 轴正半轴交于点A ,与y 轴正半轴交于点B ,则AB 等于 A .5 B .7 C . 5 D .4 12. 如果椭圆22 221x y a b +=经过两点()()4003A B ,、,,则椭圆的标准方程是 A . 221259 x y += B . 22 1163x y += C . 22 1169x y += D . 22 1916 x y += 13. 双曲线2 2 44x y -=的顶点坐标是 A .()()2020-,、, B .()()0202-,、, C .()()1010-,、, D .()()0101-,、, 14. 若双曲线22 221x y a b -=的两条渐近线互相垂直,则该双曲线的离心率是 A .2 B . 3 C . 2 D .32 15. 双曲线 22 1169 x y -=的焦点坐标为 A .()40±, B .()30±, C .()50±, D .()

曲线和方程_1

曲线和方程 教学目标(1)了解用坐标法研究几何问题的方法,了解解析几何的基本问题. (2)理解曲线的方程、方程的曲线的概念,能根据曲线的已知条件求出曲线的方程,了解两条曲线交点的概念. (3)通过曲线方程概念的教学,培养学生数与形相互联系、对立统一的辩证唯物主义观点. (4)通过求曲线方程的教学,培养学生的转化能力和全面分析问题的能力,帮助学生理解解析几何的思想方法. (5)进一步理解数形结合的思想方法. 教学建议教材分析(1)知识结构曲线与方程是在初中轨迹概念和本章直线方程概念之后的解析几何的基本概念,在充分讨论曲线方程概念后,介绍了坐标法和解析几何的思想,以及解析几何的基本问题,即由曲线的已知条件,求曲线方程;通过方程,研究曲线的性质.曲线方程的概念和求曲线方程的问题又有内在的逻辑顺序.前者回答什么是曲线方程,后者解决如何求出曲线方程.至于用曲线方程研究曲

线性质则更在其后,本节不予研究.因此,本节涉及曲线方程概念和求曲线方程两大基本问题.(2)重点、难点分析①本节内容教学的重点是使学生理解曲线方程概念和掌握求曲线方程方法,以及领悟坐标法和解析几何的思想.②本节的难点是曲线方程的概念和求曲线方程的方法.教法建议(1)曲线方程的概念是解析几何的核心概念,也是基础概念,教学中应从直线方程概念和轨迹概念入手,通过简单的实例引出曲线的点集与方程的解集之间的对应关系,说明曲线与方程的对应关系.曲线与方程对应关系的基础是点与坐标的对应关系.注意强调曲线方程的完备性和纯粹性.(2)可以结合已经学过的直线方程的知识帮助学生领会坐标法和解析几何的思想,学习解析几何的意义和要解决的问题,为学习求曲线的方程做好逻辑上的和心理上的准备.(3)无论是判断、证明,还是求解曲线的方程,都要紧扣曲线方程的概念,即始终以是否满足概念中的两条为准则.(4)从集合与对应的观点可以看得更清楚:设表示曲线上适合某种条件的点的集合;表示二元方程的解对应的点的坐标的集合.可以用集合相等的概念来定义“曲线的方程”和“方程的曲线”,即(5)在学习求曲线方程的方法时,应从具体实例出发,引导学生从曲线的几何条件,一步步地、自然而然地过渡到代数方程(曲线的方程),这

圆锥曲线与方程测试和答案.doc

C.2 De 4 2. 双曲线— 4 12 2 -=1的焦点到渐近线的距离为() A 2A/3C V3 3. 2 已知双曲线二 cr 9 r h2 4 1的一条渐近线方程为y = -x,则双曲线的离心率为() 4. () A.9 B. 锥曲线与方程测试(1) 第I卷(选择题共60分) 一.选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中, 只有一项是最符合题目要求的.) 1.椭圆x2 +/ny2=l的焦点在),轴上,长轴长是短轴长的两倍,则m的值为() 1 B.- 2 4 r 5 — c.— 3 4 1 已知椭圆* = 1上的一点P到椭圆一个焦点的距离为3,则P到另一焦点距离为

A. ----- F -— = 1 B. ------- 1 ---- = 1 100 36 100 64 9 9 八尸c. - 1— 25 16 =1 D. —+ = 1 25 哇一24 5.动点P到点M(1,0)及点》(3,0)的距离之差为2,则点P的轨迹是() A.双曲线 B.双曲线的一支 C.两条射线 D.一条射线 3 6.中心在原点,焦点在x轴上,焦距等于6,离心率等于己,则椭圆的方程是() 7.焦点为(0,6)且与双曲线—-/=1有相同的渐近线的双曲线方程是() 12 24 1 24 12 24 12

A.8V2 B.4V2 C.2V2 D.8. X 2 D — A .至多一个 B .2个 C.1个 D.0个 8. 若椭圆的短轴为AB ,它的一个焦点为Fi ,则满足△A8R 为等边三角形的椭圆的离心 率 是() A 1 R 右 「扼 n 1 4 2 2 2 9. 以双曲线-3炉+ V = ]2的焦点为顶点,顶点为焦点的椭圆的方程是() A ^+£-I B E+U — 1 C —+^-I D ^+^-1 16 12 16 4 12 16 4 16 一 V6 1().双曲线的虚轴长为4,离心率e = %-, 4.%分别是它的左?右焦点,若过4的直线与双曲 线的左支交于A.B 两点,且I A 引是\AF 2\^\BF 2 I 的等差中项,则I AB\等于() 11 .己知双曲线中心在原点且一个焦点为F (V7,0),直线>' =x-1与其相交于M,N 两点, 2 MN 中点横坐标为-一,则此双曲线的方程是( ) 3 A 3 4 - B 4 3 - C 5 2 12. 若直线mx + ny = 4和: x 1 +)户=4没有交点,则过(m,〃)的直线与椭圆 2 2 三+二=1的交点个数( ) 9 4

相关文档
最新文档