动力电池剩余寿命测试

动力电池剩余寿命测试
动力电池剩余寿命测试

剩余寿命测试

动力电池的耐久性与其剩余寿命息息相关,它体现了动力电池系统在不同工作条件下,特别是在极限工况条件下的耐受能力。当前对于动力电池耐久性管理研究侧重于对单一应力或复合多应力作用下的动力电池寿命预测与健康状态评估,从而对可预见的电池故障和失效进行预警或干预。

一方面,在电动汽车的实际应用中,动力电池的寿命通常要求达到10~15年的时间,但相关测试必须满足成本和时间最小化要求。另一方面,考虑到动力电池在实际应用中外界因素复杂多变,且不同应力水平下电池的寿命衰减轨迹也不同,动力电池的剩余寿命测试还应实现对混合应力的解耦,其中混合应力包括充放电倍率、截止电压、SOC区间、温度等。研究表明,借助剩余寿命测试获取动力电池的寿命衰退规律和不同老化状态下的特性,是实现动力电池及系统剩余寿命预测与耐久性快速评价的可行方案。

综上,本书介绍了一套包括不同倍率、不同温度、不同SOC区间和不同下截止电压放电测试在内的剩余寿命测

试方案,该实验的部分测试结果将用于支撑第6章的剩余寿命预测研究。测试步骤具体如下:

方案1:不同倍率的剩余寿命测试(见图2-24)

图2-24 不同倍率的剩余寿命测试

①以0.5C恒流充电至上截止电压,再恒压充电至截止电流0.05C。

②静置5min。

③分别以1C、2C、3.5C放电至下截止电压,再以0.5C 放电至截止电压。

④静置5min,返回步骤①。

⑤每100个循环进行一次常规电性能测试和交流阻抗测试。

方案2:不同温度的剩余寿命测试

将环境模拟设备温度分别设为10℃、25℃和40℃,重复方案1。

方案3:不同SOC区间的剩余寿命测试(见图2-25)

①以0.5C恒流充电至SOC区间上截止点,若是100%SOC情况,则需再恒压充电至截止电流0.05C。

②静置5min。

③分别在0~100%、10%~90%、50%~100%、25%~75%、0~50%、80%~100%、40%~60%、0~20%、90%~100%、20%~30%10个SOC区间和5个不同ΔSOC放电;放电电流均为1C。

④静置5min,返回步骤①。

⑤每100个循环进行一次常规电性能测试和交流阻抗测试。

图2-25 不同SOC区间的剩余寿命测试方案4:不同截止电压的剩余寿命测试(见图2-26)

①以0.5C恒流充电至上截止电压,再恒压充电至截止电流0.05C。

②静置5min。

③以1C恒流分别放电至不同下截止电压2.6V、2.8V 和3.5V(可依据电池参数自行设定),再以0.5C恒流放电至相应的下截止电压2.6V、2.8V和3.5V。

④静置5min,返回步骤①。

⑤每100个循环进行一次常规电性能测试和交流阻抗测试。

图2-26 不同截止电压的剩余寿命测试

电动汽车用锂离子动力蓄电池包和系统测试规程

电动汽车用锂离子动力电池包和系统测试规程 范围 本标准规定了电动汽车用锂离子动力电池包和系统基本性能、可靠性和安全性的测试方法。 本标准适用于高功率驱动用电动汽车锂离子动力电池包和电池系统。 规范性引用文件(其中的一部分) 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 2423.4-2008 电工电子产品环境试验第2部分:试验方法试验Db 交变湿热(12h+12h循环)(IEC 60068-2-30:2005,IDT) GB/T 2423.43-2008 电工电子产品环境试验第2部分:试验方法振动、冲击和类似动力学试验样品的安装(IEC 60068-2-47:2005,IDT) GB/T 2423.56-2006 电工电子产品环境试验第2部分:试验方法试验Fh:宽带随机振动(数字控制)和导则(IEC 60068-2-64:1993,IDT) GB/T 18384.1-2001 电动汽车安全要求第1部分:车载储能装置(ISO/DIS 6469-1:2000,EQV)GB/T 18384.3-2001 电动汽车安全要求第3部分:人员触电防护(ISO/DIS 6469-3:2000,EQV)GB/T 19596-2004 电动汽车术语(ISO 8713:2002,NEQ) GB/T xxxx.1- xxxx 道路车辆电气及电子设备的环境条件和试验第1部分:一般规定(Road vehicles - Environmental conditions and testing for electrical and electronic equipment Part 1: General,MOD) GB/T xxxx.3- xxxx 道路车辆电气及电子设备的环境条件和试验第3部分:机械负荷(Road vehicles - Environmental conditions and testing for electrical and electronic equipment Part 3: Mechanical loads,MOD) GB/T xxxx.4- xxxx 道路车辆电气及电子设备的环境条件和试验第4部分:气候负荷(Road vehicles - Environmental conditions and testing for electrical and electronic equipment Part 4: Climatic loads,MOD) 术语和定义 1.1 蓄电池电子部件 采集或者同时监测蓄电池单体或模块的电和热数据的电子装置,必要时可以包括用于蓄电池单体均衡的电子部件。 注:蓄电池电子部件可以包括单体控制器。单体电池间的均衡可以由蓄电池电子部件控制,或者通过蓄电池控制单元控制。 1.2 蓄电池控制单元 battery control unit (BCU) 控制、管理、检测或计算电池系统的电和热相关的参数,并提供电池系统和其他车辆控制器通讯的电子装置。 1.3 1 / 20

电动汽车用动力蓄电池技术要求及试验方法

《电动客车安全要求》 征求意见稿编制说明 一、工作简况 1、任务来源 为引导和规范我国电动客车产业健康可持续发展,提高电动客车安全技术水平,落实工业和信息化部建设符合电动客车特点的整车、电池、电机、高压线束等系统的安全条件及测试评价标准体系的要求,全国汽车标准化技术委员会于2016年8月启动了本强标的立项和编制工作。 2、主要工作过程 根据有关部门对电动客车安全标准制定工作的要求,全国汽车标准化技术委员会电动车辆分技术委员会组织成立“电动客车安全要求工作组”(以下简称工作组),系统开展电动客车安全要求标准的制定工作。 (1)GB《电动客车安全要求》于2016年底完成立项(计划号20160968-Q-339),2016年12月29日在南充电动汽车整车标准工作组会议上组建了标准制定的核心工作组,启动了强标制定工作,并由起草组代表介绍了标准的背景、编制思路、以及与相关标准的协调性关系。 (2) 2017年2月-3月,基于已开始执行的《电动客车安全技术条件》(工信部装[2016]377号,以下简称《条件》)的工作基础,工作组向电动客车行业主要企业、检测机构等16家单位征求《条件》的实施情况反馈与强制性国标制定建议。 (3) 2017年4月18日,工作组在重庆组织召开标准制定讨论会,会议对《条件》制定情况进行了回顾,对收集到的《条件》执行情况进行了分析讨论。根据讨论结果,针对共性问题形成了专项征求意见表。 (4) 2017年5月-6月,工作组根据重庆会议讨论结果向行业进行强标制定专项意见征求意见。 (5) 2017年6月6日,在株洲召开工作组会议,会议对专项征求意见期间收集的反馈意见进行研究讨论。 (6)2017年6月-10月,工作组依据意见反馈情况和会议讨论结果进行标

动力电池系统技术规范

密级:项目内部 动力电池系统技术规范项目代号: 文件编号: 编写:时间: 校核:时间: 批准:时间: 天津易鼎丰动力科技有限公司 1.文件范围 本文件规范了XX公司XX车型所用XX动力电池必须满足的技术性能要求。 2.术语定义和及产品执行标准 .术语定义 电动汽车(electricvehicle,EV):指以车载能源为动力,由电动机驱动的汽车; 电芯(cell):一个单一的电化学电池最小的功能单元; 模组(module):指由多个电芯的并联组装集合体,是一个单一的机电单元; 电池组(batterypack):由一个或多个模组连接组成的单一机械总成; 电池管理系统(batterymanagementsystem,BMS):指任何通过监控充电电池的状态、计算二次数据并报告该等数据、保护该等充电电池、设置报警信号、与设备中的其他子系统进行电子通信、控制充电电池内部的环境或平衡该等充电电池或环境等方式来管理该等充电电池的电子设备,包括软件、硬件和运算法则; 动力电池系统(batterysystem):动力电池系统是指由动力电池组、电池箱体、电池管理系

统、电器元件及高低压连接器等组成的总成部件,功能为接收和储存由车载充电机、发电机、制动能量回收装置或外置充电装置提供的高压直流电,并且为电驱动系统及电辅助系统提供高压直流电; 整车控制器(vehiclecontrollerunit):检测控制电动汽车系统电路的控制器; 高电压(HighVoltage,HV):特指电动汽车200VDC以上高压系统; 低电压(LowVoltage,LV):指任何信号或功率型能量低于50VDC,本文中特指整车12VDC电源系统; 荷电状态(state-of-charge,SOC):电池放电后剩余容量与全荷电容量的百分比; 寿命初始(BeginningOfLife,BOL):指动力电池系统刚交付使用的状态; 寿命终止(EndOfLife,EOL):动力电池系统能量降低到初始能量的80%,或者实时峰值 功率低于初始峰值功率的85%时,视为寿命终止; 电磁兼容性(Electro-MagneticCompatibility,EMC):在同一电子环境中,两种或多种电子 设备能互不干扰进行正常工作的能力; 高低压互锁(HighVoltageInter-Lock,HVIL):特指低压断电时,通过低压信号控制能够 同时将高压回路切断; CAN(ControllerAreaNetwork):控制器局域网; DFMEA(FailureModeandEffectsAnalysis):设计故障模式及失效分析; MTBF(MeanTimeBetweenFailure):平均无故障时间; 额定容量:在25℃±2℃下,以1I1(A)电流恒电流充电至动力电池系统总电压或最高单体 电压达到规定电压值,以恒定电压充电至电流小于(A)时停止充电,休眠10分钟后,以1I1(A)电流放电达到规定的终止电压时停止放电,整个测试过程放出的容量为额定容量,单位为Ah; 额定能量:在25℃±2℃下,以1I1(A)电流恒电流充电至动力电池系统总电压达到或最高 单体电压达到规定电压值,以恒定电压充电至电流小于时停止充电,休眠10分钟后,以1I1(A)电流放电达到规定的终止电压时停止放电,整个测试过程放出的能量为额定能量,(Wh),此值可由电压-容量曲线的覆盖面积积分得到; 可用能量:在25±2℃、-5±2℃两种温度条件下,按照《动力电池可用能量测试规范》分 别做NEDC测试,动力电池系统在放电率允许的范围内实际放出的电量的平均值。 额定电压:额定能量除以额定容量,标定为额定电压; 峰值功率:本项目峰值功率标定为XXkW。 产品执行标准 表1.产品执行标准 备注:未经特殊说明,本规范中涉及到的术语定义、检测方法、判断标准等都以上述标准为准。

电动汽车动力电池公告检测中存在的问题及建议

No.22011 BUS TECHNOLOGY AND RESEARCH 客车技术与研究 电动汽车动力电池公告检测中存在的问题及建议 杨杰,夏晴,史瑞祥,凌泽 (重庆车辆检测研究院国家客车质量监督检验中心,重庆401122) 摘要:以动力锂电池为例,重点介绍其在一致性、安全性和电性能这三方面的公告检测中存在的主要问题并提出建议,为国内电动汽车的研发提供参考,以促进电动汽车动力电池质量的提高和技术的发展。关键词:动力电池;公告检测;电动汽车;问题及建议 中图分类号:U469.72;U467文献标志码:B文章编号:1006-3331(2011)02-0023-03 Problem and Suggestion for Electric Vehicle Power Battery Annoucement Test YANG Jie,XIA Qing,SHI Rui-Xiang,LING Ze (Chongqing Vehicle Test&Research Inst.,National Coach Quality Supervision and Test Center, Chongqing401122,China) Abstract:Taking a lithium-ion battery as an example,the authors introduce problems and put forward suggestions about the consistency,safety and electrical properties in the battery annoucement test,which provide reference for the electric vehicle research to promote the quality improvement and technology development of the power battery. Key words:power battery;annoucement test;electric vehicle;problem and suggestion 第2期 截至国家工业和信息化部(以下简称工信部)发布的第222批《车辆生产企业及产品公告》,已列入19批《节能与新能源汽车示范推广应用工程推荐车型目录》,涉及60余家企业的200多种节能与新能源汽车产品。随着当前电动汽车研发的迅猛开展,电动汽车产品中的有关问题也越发凸显。动力电池作为电动汽车的核心零部件之一,其试验检测受到高度重视。重庆车辆检测研究院国家客车质量监督检验中心率先在国内健全了工信部要求的22项电动汽车专项检测能力,在电动汽车动力电池方面开展了大量的试验检测及研究工作,积累了丰富经验。本文以动力锂电池为例,指出其在公告检测中存在的主要问题并提出建议,为国内电动汽车的研发提供参考,以促进电动汽车动力电池质量的提高和技术的发展。 1试验检测中存在的主要问题 2009年7月1日,工信部发布的《电动汽车生产企业及产品准入管理规则》(工产业[2009]第44号)已正式施行。根据该《规则》,电动汽车除了应当符合常规汽车产品的有关检测标准外,还应当符合电动汽车产品的专项检测标准(共22项)。其中涉及动力电池的专项检测标准5项[1-5],这也是我国目前《车辆生产企业及产品公告》对于电动汽车动力电池的强制性检测依据。本文针对标准QC/T743-2006《电动汽车用锂离子蓄电池》(该标准具体分为19项单体电池试验和13项模块电池试验两部分内容),重点介绍电动汽车动力电池在一致性、安全性和电性能这三方面试验检测中存在的主要问题。 1.1一致性方面 一致性问题是制约电动汽车动力电池质量的关键因素。“标准”以单体电池放电容量的标准差系数和模块电池放电电压的标准差系数来衡量电池的一致性;对于单体电池,一致性分析的内容包括常温、低温、高温等不同工况的放电容量。对于模块电池,一致性分析的内容包括恒流放电、恒流充电、搁置等不同阶段的各单体电池放电终止电压。由于目前这一指标还处于数据积累阶段,“标准”仅给出了分析方法,无具体的限值要求,因而在实际检测中,缺少对于电池一致性进行评价和考核的依据[6-7]。 图1是某模块电池恒流放电曲线。根据“标准” 作者简介:杨杰(1982-),男,硕士;主要从事新能源汽车电池、电机、电控的试验检测与研究工作。 23

动力电池测试项目和测试标准

1.测试项目:循环特性(12 C *10Cycle): 测试方式:电池在12± 2C的环境下以的电流进行充放电循环10次,再将电池在常温下标准充放电一次 评价标准:解析结果:负极锂析出状态 2.测试项目:电池倍率放电特性测试 测试方式:池在室温下:①放电:CC下限电压;②休止10min;③充电CC/上限电 压截止④休止5min;⑤放电CC下线电压;⑥休止10min;⑦调整倍率至、 1C、2C重复③?⑥步骤。 评价标准:放电容量,维持率 3.测试项目:电池温度放电特性测试 测试方式:电池在室温下以CC/CV 满充电至上限电压,截止; 然后分别在25C、-20 C、- 10 C、0C、60C的环境下放置2小时后进行放电至下限电压。 评价标准:放电容量,维持率 4.测试项目:60C /7 天储存测试 测试方式:将电池厚度测定后在室温下进行标准充电和放电,再进行满充电,接着将电池在60± 2 C的环境中储存7天,最后在室温下放置2Hr后进行标准放电,记录储存 前后放电容量,试验完成后进行尺寸外观检查。 评价标准:残存容量》80%,外观无漏液。参考项[恢复容量》80%内阻增加比例w 25%], 厚度增加比例w 10% 5.测试项目:常温/30 天储存测试测试方式:将电池厚度测定后在室温下进行标准充电和放电, 再进行满充电,接着将电 池在常温的环境中储存30 天,最后在室温下放置进行标准放电,记录储存前后放电 容量,试验完成后进行尺寸、外观检查。 评价标准:残存容量》90%参考项[恢复容量》95%内阻增加比例w 25%] 6.测试项目:85C*4H 储存测试 测试方式:将电池厚度测定后在室温下进行标准充电和放电,再进行满充电,接着将电池在常温的环境中储存30 天,最后在室温下放置进行标准放电,记录储存前后放电容量,试验完 成后进行尺寸、外观检查。 评价标准:残存容量》90%参考项[恢复容量》95%内阻增加比例w 25%] 7.测试项目:高温高湿测试测试方式:将电池厚度测定后在室温下进行标准充电和放电,再进行满 充电,接着将电 池在60± 2 C /95%RH的环境中储存7Day,最后在室温下放置进行残存放电及回复 放电, 试验完成后进行尺寸外观检查。 评价标准:回复容量》80%外观无漏液、表面无损害。参考项[内阻增加比例w 40%] 8.测试项目:循环(特性测试测试方式:电池在室温下先进行标准充电,之后测定电池厚度,再将电池在室温下以的电流进行充放电循环500 次,充放电之间休止30min ;试验完成后进行厚度检查。 评价标准:放电容量维持率:第1次=100%第500次》80%Cmin厚度增加比例w

电动汽车用锂离子动力蓄电池包和系统测试规程

电动汽车用锂离子动力蓄电池包和系统测 试规程 电动汽车用锂离子动力电池包和系统测试规程 1范围 本标准规定了电动汽车用锂离子动力电池包和系统基本性能、可靠性和安全性的测试方法。 本标准适用于高功率驱动用电动汽车锂离子动力电池包和电池系统。 2规范性引用文件(其中的一部分) 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 2423.4-2008电工电子产品环境试验第2部分:试验方法试验Db交变湿热(12h+ 12h循环)(IEC 60068-2- 30:2005,IDT )

GB/T 2423.43-2008电工电子产品环境试验第2 部分:试验方法振动、冲击和类似动力学试验样品的安装(IEC 60068-2-47:2005,IDT) GB/T 2423.56-2006电工电子产品环境试验第2 部分:试验方法试验Fh:宽带随机振动(数字控制)和导则(IEC 60068-2-64:1993,IDT) GB/T 18384.1-2001电动汽车安全要求第1部分: 车载储能装置(ISO/DIS 6469-1:2000,EQV ) GB/T 18384.3-2001电动汽车安全要求第3部分: 人员触电防护(ISO/DIS 6469-3:2000,EQV ) GB/T 19596-2004 电动汽车术语 (ISO 8713:2002,NEQ) GB/T xxxx.1- xxxx 道路车辆电气及电子设备的环境条件和试验第1部分:一般规定(Road vehicles - En vir onmen tal con diti ons and testi ng for electrical and electronic equipment Part 1: Gen eral,MOD) GB/T xxxx.3- xxxx 道路车辆电气及电子设备的环境条件和试验第3部分:机械负荷(Road vehicles - En vir onmen tal con diti ons and testi ng for electrical and electronic equipment Part 3: Mecha ni cal loads,MOD) GB/T xxxx.4- xxxx 道路车辆电气及电子设备的环境条

动力电池测试项目和测试标准

测试项目 1.测试项目:循环特性(12℃*10Cycle): 测试方式:电池在12±2℃的环境下以0、2C的电流进行充放电循环10次,再将电池在常温下标准充放电一次 评价标准:解析结果:负极锂析出状态 2.测试项目:电池倍率放电特性测试 测试方式:池在室温下:①放电:CC 0、5C-下限电压;②休止10min;③充电CC/CV0、5C-上限电压 0、05C截止④休止5min;⑤放电 CC 0、2C-下线电压; ⑥休止10min;⑦调整倍率至0、5C、1C、2C重复③~⑥步骤。 评价标准:放电容量,维持率 3.测试项目:电池温度放电特性测试 测试方式:电池在室温下以CC/CV 0、5C满充电至上限电压,0、05C截止; 然后分别在25℃、-20℃、-10℃、0℃、60℃的环境下放置2小时后进行0、2C 放电至下限电压。 评价标准:放电容量,维持率 4.测试项目:60℃/7天储存测试 测试方式:将电池厚度测定后在室温下进行标准充电与放电,再进行满充电,接着将电池在60±2℃的环境中储存7天,最后在室温下放置2Hr后进行标准放电,记 录储存前后放电容量,试验完成后进行尺寸外观检查。 评价标准:残存容量≥80%,外观无漏液。参考项[恢复容量≥80%,内阻增加比例≤25%],厚度增加比例≤10% 5.测试项目:常温/30天储存测试 测试方式:将电池厚度测定后在室温下进行标准充电与放电,再进行满充电,接着将电池在常温的环境中储存30天,最后在室温下放置进行标准放电,记录储存前后放电 容量,试验完成后进行尺寸、外观检查。 评价标准:残存容量≥90%。参考项[恢复容量≥95%,内阻增加比例≤25%] 6.测试项目:85℃*4H储存测试 测试方式:将电池厚度测定后在室温下进行标准充电与放电,再进行满充电,接着将电池在常温的环境中储存30天,最后在室温下放置进行标准放电,记录储存前后放电 容量,试验完成后进行尺寸、外观检查。 评价标准:残存容量≥90%。参考项[恢复容量≥95%,内阻增加比例≤25%] 7.测试项目:高温高湿测试 测试方式:将电池厚度测定后在室温下进行标准充电与放电,再进行满充电,接着将电池在60±2℃/95%RH的环境中储存7Day,最后在室温下放置进行0、2C残存放电 及0、2C回复放电,试验完成后进行尺寸外观检查。 评价标准:回复容量≥80%,外观无漏液、表面无损害。参考项[内阻增加比例≤40%] 8.测试项目:循环(0、5C)特性测试 测试方式:电池在室温下先进行标准充电,之后测定电池厚度,再将电池在室温下以0、5C 的电流进行充放电循环500次,充放电之间休止30min;试验完成后进行厚度 检查。 评价标准:放电容量维持率:第1次=100%,第500次≥80%Cmin;厚度增加比例≤11%(Thickness Max)。 9.测试项目:过充电(3C-4、6V)测试

新能源汽车电机、电控、电池包环境与可靠性试验之振动试验解读

目的: 为了了解产品的耐振寿命和性能指标的稳定性,录找可能引起破坏或失效的薄弱环节,对系统在模拟实际环境的振动、冲击条件下进行的考核试验。定型产品的试验规范通常已经标准化,新产品要制定合适的试验方法。试验方法分两大类:①标准试验,包括耐预定频率试验、耐共振试验、正弦扫描试验、宽带随 机振动试验、冲击试验、声振试验和运输试验等;②非标准试验,包括瞬态波形 振动试验、窄带随机振动试验、随机波再现试验、正弦波和随机波混合试验等。 一、电机电控正弦振动 1.1 试验标准:GB/T18488.1--2015 1.2 试验条件选择:依据装车部位选取条件,一般为“其他部位”。下图注释1中X和Y方向位移和加速度可以除2,但目前各大供应商均选择量级不除2来测试。

二、电机电控随机振动 依据装车类型分为纯电动乘用车,混合动力乘用车,商用车。 2.1 纯电动乘用车试验标准:ISO16750-3-2007 2.2 试验条件选择:试验IV-乘用车,弹性体(车身) 2.3 混合动力乘用车试验标准:ISO16750-3-2012 2.4 试验条件选择:试验II- 乘用车,变速箱

2.5 商用车试验标准:ISO16750-3-2012 2.6 试验条件选择:试验VII- 商用车,弹性体(固有频率小余30HZ以下需要追加测试,具体请查阅标准) 2.7 振动叠加温度选择(高温一般为105~125)

2.8 振动台选择,电机质量大,振动量级大,一般选择5吨以上推力振动台,台面最好为800mm*800mm以上。电控质量轻,尺寸小,一般选择3吨以上推力振动台,台面最好为600mm*600mm以上。 三、电池包随机振动 3.1 试验标准:GB/T31467-2015 3.2 Z方向试验条件 3.3 Y方向试验条件1

动力电池重要全参数定义及测量计算方法

动力电池重要参数定义及测量计算方法 1.概述 本文档的编写主要是为了方便公司内部研发人员更加快速清楚地认识电池的一些重要特性参数及其测量计算方法。主要包括动力电池的荷电状态SOC,电池健康状态SOH,内阻R等。 此文档主要参考了动力电池的国家标准与行业标准,以及网上的一些权威资料信息,同时结合自身工作经验整合编写而成。 2.电池荷电状态SOC及估算方法 2.1 电池荷电状态SOC的定义 电池的荷电状态SOC被用来反映电池的剩余电量情况,其定义为当前可用容量占初始容量的百分比(国标)。 美国先进电池联合会(USABC)的《电动汽车电池实验手册》中将SOC定义如下:在指定的放电倍率下,电池剩余电量与等同条件下额定容量的比值。 SOC=Q O/Q N 日本本田公司的电动汽车(EV Plus)定义SOC如下: SOC = 剩余容量/(额定容量-容量衰减因子) 其中剩余容量=额定容量-净放电量-自放电量-温度补偿 动力电池的剩余电量是影响电动汽车的续驶里程和行驶性能的主要因素,准确的SOC估算可以提高电池的能量效率,延长电池的使用寿命,从而保证电动汽车更好的行驶,同时SOC也是作为电池充放

电控制和电池均衡的重要依据。 实际应用中,我们需要根据电池的可测量值如电压电流结合电池内外界影响因素(温度、寿命等)来实现电池SOC的估算算法。但是SOC受自身内部工作环境和外界多方面因素而呈非线性特性,所以要实现良好的SOC估算算法必须克服这些问题。目前,国内外在电池SOC估算上已经部分实现并运用到工程上,如安时法、内阻法、开路电压法等。这些算法共同特点是易于实现,但是对实际工况中的内外界影响因素缺乏考虑而导致适应性差,难以满足BMS对估算精度不断提高的要求。所以在考虑SOC受到多种因素影响后,一些较为复杂的算法被提出,例如:卡尔曼滤波算法、神经网络算法、模糊估计算法等新型算法,相比于之前的传统算法其计算量大,但精度更高,其中卡尔曼滤波在计算精度和适应性上都有很好的表现。 2.2几种SOC估算算法简介 (1)安时法 安时法又被称为电流积分法,也是计算电池SOC的基础。假设当前电池SOC初始值为SOC0,在经过t时间的充电或放电后SOC为: Q0是电池的额定容量,i(t)是电池充放电电流(放电为正)。 事实上,SOC定义为电池的荷电状态,而电池荷电状态就是电池电流的积分,所以理论上讲安时法是最准确的。同时,它也易于实现,只需测量电池充放电电流和时间,而在实际工程应用时,采用离散化计算公式如下:

动力电池测试项目和测试标准

测试项目 1.测试项目:循环特性(12℃*10Cycle): 测试方式:电池在12±2℃的环境下以0.2C的电流进行充放电循环10次,再将电池在常温下标准充放电一次 评价标准:解析结果:负极锂析出状态 2.测试项目:电池倍率放电特性测试 测试方式:池在室温下:①放电:CC 0.5C-下限电压;②休止10min;③充电CC/CV0.5C-上限电压 0.05C截止④休止5min;⑤放电 CC 0.2C-下线 电压;⑥休止10min;⑦调整倍率至0.5C、1C、2C重复③~⑥步骤。 评价标准:放电容量,维持率 3.测试项目:电池温度放电特性测试 测试方式:电池在室温下以CC/CV 0.5C满充电至上限电压,0.05C截止; 然后分别在25℃、-20℃、-10℃、0℃、60℃的环境下放置2小时后进行0.2C放 电至下限电压。 评价标准:放电容量,维持率 4.测试项目:60℃/7天储存测试 测试方式:将电池厚度测定后在室温下进行标准充电和放电,再进行满充电,接着将电池在60±2℃的环境中储存7天,最后在室温下放置2Hr后进行标准放电, 记录储存前后放电容量,试验完成后进行尺寸外观检查。 评价标准:残存容量≥80%,外观无漏液。参考项[恢复容量≥80%,内阻增加比例≤25%],厚度增加比例≤10% 5.测试项目:常温/30天储存测试 测试方式:将电池厚度测定后在室温下进行标准充电和放电,再进行满充电,接着将电池在常温的环境中储存30天,最后在室温下放置进行标准放电,记录储存 前后放电容量,试验完成后进行尺寸、外观检查。 评价标准:残存容量≥90%。参考项[恢复容量≥95%,内阻增加比例≤25%] 6.测试项目:85℃*4H储存测试 测试方式:将电池厚度测定后在室温下进行标准充电和放电,再进行满充电,接着将电池在常温的环境中储存30天,最后在室温下放置进行标准放电,记录储存 前后放电容量,试验完成后进行尺寸、外观检查。 评价标准:残存容量≥90%。参考项[恢复容量≥95%,内阻增加比例≤25%] 7.测试项目:高温高湿测试 测试方式:将电池厚度测定后在室温下进行标准充电和放电,再进行满充电,接着将电池在60±2℃/95%RH的环境中储存7Day,最后在室温下放置进行0.2C残存 放电及0.2C回复放电,试验完成后进行尺寸外观检查。 评价标准:回复容量≥80%,外观无漏液、表面无损害。参考项[内阻增加比例≤40%]

动力电池基础知识

动力电池的主要性能参数 1、电压:开路电压=电动势+电极过电位,工作电压=开路电压+电流在电池内部阻抗上产生的电压降。电动势由电极和电解质材料特性决定,电极的过电位与材料活性、荷电状态和工况有关。 2、内阻:电池在短时间内的稳态模型可以看作为一个电压源,其内部阻抗等效为电压源内阻,内阻大小决定了电池的使用效率。电池内阻包括欧姆电阻和极化电阻两部分,欧姆电阻不随激励信号频率变化,又称交流电阻,在同一充放电周期内,欧姆电阻除温升影响外变化很小。极化电阻由电池电化学特性对外部充放电表现出的抵抗反应产生,与电池荷电、充放强度、材料活性都有关。同批电池,内阻过大或过小者都不正常,内阻过小可能意味材料枝晶生长和微短路,内阻太大又可能是极板老化、活性物质丧失、容量衰减,内阻变化可以作为电池裂化的充分性参考依据之一。 3、温升:电池温升定义为电池内部温度与环境温度的差值。多数锂电池充电时属吸热反应,放电时为放热反应,两者都包含内阻热耗。充电初期,极化电阻最小,吸热反应处于主导地位,电池温升可能出现负值,充电后期,阻抗增大,释热多于吸热,温升增加,过充时,随不可逆反应的出现,逸出气体,内压升高、温度升高,直到变形、爆裂。 4、内压:电池内部压力,由于电池内部反应逸出气体导致气压增大,气压过大将撑破壳体和发生爆裂,基于安全考虑,一方面锂电池都设计了单向的防爆阀门,一方面用塑壳制造。析气反应常伴随着不可逆反应,也就意味着活性物质的损失、电池容量的下降,无析气、小温升充放电是最理想的工况。 5、电量:电学里,电量用Wh(瓦时)表示,是能量单位,一度电等于1kWh;电池常用Ah(安时)计算电量,对于动力电池侧重于功率和能量大小,用Wh更直接一些,因为电池的电压是变化的,其全程变化量可达到极大值的一半左右,用Ah计算电量不能正确描述电池的动力驱动能力,但Ah作为电池的电量单位自有其历史和道理,在不引起歧义的地方两种电量单位都可以使用。 6、荷电(SOC):电池还有多少电量,又称剩余电量,常取其与额定容量或实际容量的比值,称荷电程度。是人们在使用中最关心的、也是最不易获得的参数数据,人们试图通过测量内阻、电压电流的变化等推算荷电量,做了许多研究工作,但直到目前,任何公式和算法都不能得到统计数据的有效支持,指示的荷电程度总是非线性变化。 7、容量:电池在充足电以后,开始放电直到放空电为止,能输出的最大电量。容量与放电电流大小有关,与充放电截止电压也有关系,故容量定义为小时率容量,动力电池常用1小时率(1C)或2小时率容量。电池在化成之前材料的活性不能正常发挥,容量很小,化成过程开始后,电池进入其生命期,在整个生命期里,电池的活化和劣化过程是一个问题的两个方面,初期活化作用处于主导地位,电池容量逐渐上升;以后,活化和劣化作用都不明显或相当;后期,劣化作用显着,容量衰减,规定容量衰减到一定比例(60%)后,电池寿命终结。(一般所指电池寿命是指剩余容量为80%的循环次数) 8、功率:电学定义直流电源的输出功率等于输出电压与电流的乘积,锂电池单体电压高,在相同的输出电流下,其功率分别是铅酸、镍镉或镍氢的倍和3倍。电动汽车用动力电池组的负载是电机控制器,电机控制器根据车速变化调整输出功率,短时间来看,电池组驱动的是恒功率负载,这个功率变化的范围极大,制动时有与加速时相近的反向逆变功率。 9、效率:电池的效率指电池的充放电效率或能量输出效率,本文指后者。对于电动汽车,续驶里程是最重要指标之一,在电池组电量和输出阻抗一定的前提下,根据能量守恒定律,电池组输出的能量转化为两部分,一部分作为热耗散失在电阻上,另一部分提供给电机控制器转化为有效动力,两部分能量的比率取决于电池组输出阻抗和电机控制器的等效输入阻抗之比,电池组的阻抗越小,无用的热耗就越小,输出效率就更大。

新能源汽车电池包和BMS环境可靠性试验

新能源汽车电池包和BMS环境可靠性试验 BMS,全称电池管理系统(BATTERY MANAGEMENT SYSTEM)是电池与用户之间的纽带。主要为了能够提高电池的利用率,均衡电池电量保持电池的一致性,延长电池的使用寿命,对蓄电池容量进行精确评估及蓄电池的监控等。主要应用领域包括电动汽车、分布式储能电站、微网储能等。因此BMS系统的优劣将直接影响到上述设备大安全及可靠性。 电池和BMS系统将是未来主要技术创新的核心,比如智能电网、再生能源、全电动车等。从经济、产业和环境角度看,降低风险和提升储能装置性能已经成为重大问题。本指引体现了必维国际检验集团的风险管理专长,将为未来新能源转换作出贡献。 动力电池作为高压系统,在使用过程中的绝缘、耐压等性能非常关键,因此在动力电池测试前后,包括在测试中,测试机构一直会关注动力电池的电特性变化。电池系统测试最受关注的主要有BMS功能测试、振动测试、碰撞冲击测试、火烧测试、浸水测试等。 BMS功能测试。对于BMS功能测试目前有QC/T897的测试标准,是专门针对电池系统的,但比较简单,目前包括欧洲的检测机构也认为单独的BMS测试有一定的局限性,应该国家环保局电池包一同进行测试,再反棕来检查BMS的功能。 振动测试。即在试验室中依据接近汽车实际使用过程中的振动曲线进行试验,以考察电池系统的机械可靠性。 碰撞冲击试验。该试验的目的评估电池包结构的基本机械强度,通过模拟电动汽车碰撞瞬间高加速度产生的机械应力,检验电池系统的的安装可靠性、单体绝缘的完整性、单体固定的独立性。其评价结果包括无泄漏、无气体排出、无起火、无外壳破裂、无爆炸、无发热现象、无电击危险等。 外部火烧测试。目的在于验证电池系统暴露在火烧情况下的性能,着火情况可以是车辆自身引起,也可能是临近车辆引起,其采用的测试方法是模拟电 电池外部起火的状态,在50%SOC情况下,预热60秒,直接燃烧70秒,间接燃烧60秒,结束试验后看电池有无爆炸等情况,整个试验持续超过3分钟,以保证驾驶员和乘客有足够的时间从车中逃离。 浸水试验。该实验按照防护等级IP7进行测试,针对电池箱体,允许其放入0.15m-1m深的水中,时间可长达30min,用以测试电池箱的密封性能。另外,还要对电池包进行海水浸泡,测试时间为2小时,然后进行相关性能的测试,其中最为关注的是漏电流的状态,是否发生触电的危险,以及是否有氢气爆炸的可能性。 广州广电计量检测股份有限公司(GRGT)定位行业高端,引领行业先锋,历经近50年的发展,目前成为一家技术精湛、服务精心、管理精细的国内一流的计量检测专业机构。 GRGT是原信息产业部电子602计量站,通过国家实验室(CNAS)认可,并获得中国计量认证(CMA)和国防实验室(DILAC)和总装实验室认可,是中国CB实验室,建立企业计

5、 动力电池系统技术规范

项目代号: 文件编号:EVPT-VD1.27 编写:时间: 校核:时间: 批准:时间: 天津易鼎丰动力科技有限公司

1. 文件范围 本文件规范了XX公司XX车型所用XX动力电池必须满足的技术性能要求。 2. 术语定义和及产品执行标准 2.2. 术语定义 2.1.1 电动汽车(electric vehicle, EV):指以车载能源为动力,由电动机驱动的汽车; 2.1.2 电芯(cell):一个单一的电化学电池最小的功能单元; 2.1.3 模组(module):指由多个电芯的并联组装集合体,是一个单一的机电单元; 2.1.4 电池组(battery pack):由一个或多个模组连接组成的单一机械总成; 2.1.5 电池管理系统(battery management system, BMS):指任何通过监控充电电池的状态、计算二次数据并报告该等数据、保护该等充电电池、设置报警信号、与设备中的其他子系统进行电子通信、控制充电电池内部的环境或平衡该等充电电池或环境等方式来管理该等充电电池的电子设备,包括软件、硬件和运算法则; 2.1.6 动力电池系统(battery system):动力电池系统是指由动力电池组、电池箱体、电池管理系 统、电器元件及高低压连接器等组成的总成部件,功能为接收和储存由车载充电机、发电机、制动能量回收装置或外置充电装置提供的高压直流电,并且为电驱动系统及电辅助系统提供高压直流电; 2.1.7 整车控制器(vehicle controller unit):检测控制电动汽车系统电路的控制器; 2.1.8 高电压(High Voltage, HV):特指电动汽车200VDC以上高压系统; 2.1.9 低电压(Low Voltage, LV):指任何信号或功率型能量低于50VDC,本文中特指整车12VDC电源系统; 2.1.10 荷电状态(state-of-charge, SOC):电池放电后剩余容量与全荷电容量的百分比; 2.1.11 寿命初始(Beginning Of Life, BOL):指动力电池系统刚交付使用的状态; 2.1.12 寿命终止(End Of Life, EOL):动力电池系统能量降低到初始能量的80%,或者实时峰值 功率低于初始峰值功率的85%时,视为寿命终止; 2.1.13 电磁兼容性(Electro-Magnetic Compatibility, EMC):在同一电子环境中,两种或多种电子 设备能互不干扰进行正常工作的能力; 2.1.14 高低压互锁(High Voltage Inter-Lock, HVIL):特指低压断电时,通过低压信号控制能够 同时将高压回路切断; 2.1.15 CAN(Controller Area Network):控制器局域网;

电动汽车用动力电池热特性测试规范

文件编号: 孚能科技有限公司企业标准 XXXXX—XXXX 电动汽车用动力电池 热特性测试规范 Traction battery for electric vehicles- Thermal requirements and test methods XXXX - XX - XX发布XXXX - XX - XX实施

目录 前言........................................................................... III 引言............................................................................ IV 电动汽车用动力电池热特性测试规范.. (1) 1 范围 (1) 2规范性引用文件 (1) 3术语和定义 (1) 4符号和缩略语 (3) 5试验条件 (3) 5.1一般条件 (3) 5.2测量仪器、仪表准确度 (4) 5.3测试过程误差 (4) 5.4数据记录与记录间隔 (4) 6试验准备 (4) 6.1 动力电池包试验准备 (4) 6.2 标准循环 (5) 7 实验方法 (5) 7.1 常温工况测试 (5) 7.2 低温工况测试 (6) 7.3 高温工况测试 (7) 7.4 动力电池系统热平衡测试 (8) 7.5 记录测试过程数据记录 (9) 附录A (数据性附录) (10) 表A.1 动力电池包测试关键参数输入表 (10) 表A.2 动力电池包测试试验数据输出表 (11) 表A.3 动力电池包测试试验数据输出表(过程温度变化) (11) 表A.4 动力电池包测试试验数据输出表(过程电量记录) (11)

5,动力电池系统技术标准规范

密级:项目内部 动力电池系统技术规范 项目代号: 文件编号:EVPT-VD1.27 编写:时间: 校核:时间: 批准:时间: 天津易鼎丰动力科技有限公司

1. 文件范围 本文件规范了XX公司XX车型所用XX动力电池必须满足的技术性能要求。 2. 术语定义和及产品执行标准 2.2. 术语定义 2.1.1 电动汽车(electric vehicle, EV):指以车载能源为动力,由电动机驱动的汽车; 2.1.2 电芯(cell):一个单一的电化学电池最小的功能单元; 2.1.3 模组(module):指由多个电芯的并联组装集合体,是一个单一的机电单元; 2.1.4 电池组(battery pack):由一个或多个模组连接组成的单一机械总成; 2.1.5 电池管理系统(battery management system, BMS):指任何通过监控充电电池的状态、计算二次数据并报告该等数据、保护该等充电电池、设置报警信号、与设备中的其他子系统进行电子通信、控制充电电池内部的环境或平衡该等充电电池或环境等方式来管理该等充电电池的电子设备,包括软件、硬件和运算法则; 2.1.6 动力电池系统(battery system):动力电池系统是指由动力电池组、电池箱体、电池管理系 统、电器元件及高低压连接器等组成的总成部件,功能为接收和储存由车载充电机、发电机、制动能量回收装置或外置充电装置提供的高压直流电,并且为电驱动系统及电辅助系统提供高压直流电; 2.1.7 整车控制器(vehicle controller unit):检测控制电动汽车系统电路的控制器; 2.1.8 高电压(High Voltage, HV):特指电动汽车200VDC以上高压系统; 2.1.9 低电压(Low Voltage, LV):指任何信号或功率型能量低于50VDC,本文中特指整车12VDC电源系统; 2.1.10 荷电状态(state-of-charge, SOC):电池放电后剩余容量与全荷电容量的百分比; 2.1.11 寿命初始(Beginning Of Life, BOL):指动力电池系统刚交付使用的状态; 2.1.12 寿命终止(End Of Life, EOL):动力电池系统能量降低到初始能量的80%,或者实时峰值 功率低于初始峰值功率的85%时,视为寿命终止; 2.1.13 电磁兼容性(Electro-Magnetic Compatibility, EMC):在同一电子环境中,两种或多种电子 设备能互不干扰进行正常工作的能力; 2.1.14 高低压互锁(High Voltage Inter-Lock, HVIL):特指低压断电时,通过低压信号控制能够 同时将高压回路切断; 2.1.15 CAN(Controller Area Network):控制器局域网; 2.1.16 DFMEA(Failure Mode and Effects Analysis):设计故障模式及失效分析; 2.1.17 MTBF(Mean Time Between Failure):平均无故障时间;

动力电池测试项目和测试标准

动力电池测试项目和测试标 准 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

测试项目 1.测试项目:循环特性(12℃*10Cycle): 测试方式:电池在12±2℃的环境下以的电流进行充放电循环10次,再将电池在常温下标准充放电一次 评价标准:解析结果:负极锂析出状态 2.测试项目:电池倍率放电特性测试 测试方式:池在室温下:①放电:CC 下限电压;②休止10min;③充电CC/上限电压截止④休止5min;⑤放电CC 下线电压;⑥休止10min;⑦调 整倍率至、1C、2C重复③~⑥步骤。 评价标准:放电容量,维持率 3.测试项目:电池温度放电特性测试 测试方式:电池在室温下以CC/CV 满充电至上限电压,截止; 然后分别在25℃、-20℃、-10℃、0℃、60℃的环境下放置2小时后进行放电至下限电 压。 评价标准:放电容量,维持率 4.测试项目:60℃/7天储存测试 测试方式:将电池厚度测定后在室温下进行标准充电和放电,再进行满充电,接着将电池在60±2℃的环境中储存7天,最后在室温下放 置2Hr后进行标准放电,记录储存前后放电容量,试验完成后进行尺 寸外观检查。 评价标准:残存容量≥80%,外观无漏液。参考项[恢复容量≥80%,内阻增加比例≤25%],厚度增加比例≤10% 5.测试项目:常温/30天储存测试 测试方式:将电池厚度测定后在室温下进行标准充电和放电,再进行满充电,接着将电池在常温的环境中储存30天,最后在室温下放置 进行标准放电,记录储存前后放电容量,试验完成后进行尺 寸、外观检查。 评价标准:残存容量≥90%。参考项[恢复容量≥95%,内阻增加比例≤25%] 6.测试项目:85℃*4H储存测试 测试方式:将电池厚度测定后在室温下进行标准充电和放电,再进行满充电,接着将电池在常温的环境中储存30天,最后在室温下放置 进行标准放电,记录储存前后放电容量,试验完成后进行尺 寸、外观检查。 评价标准:残存容量≥90%。参考项[恢复容量≥95%,内阻增加比例≤25%] 7.测试项目:高温高湿测试 测试方式:将电池厚度测定后在室温下进行标准充电和放电,再进行满充电,接着将电池在60±2℃/95%RH的环境中储存7Day,最后在

相关文档
最新文档