光伏逆变器 关键性元器件 清单

光伏逆变器 关键性元器件 清单
光伏逆变器 关键性元器件 清单

光伏逆变器行业现状及发展趋势前景

一、光伏逆变器产业链结构分析 图表光伏发电用逆变器产业链结构 资料来源:产研智库 一、上游原材料 逆变器企业主要外购产品包括各种电子元器件、结构件、电气元器件、电线电缆等。 逆变器的主功率元件的选择至关重要,使用较多的功率元件有达林顿功率晶体管(BJT),功率场效应管(MOSFET),绝缘栅晶体管(IGBT)和可关断晶闸管(GTO)等,在小容量低压系统中使用较多的器件为MOSFET,在大容量系统中一般均采用IGBT模块,而在高压特大容量(1000KVA以上)系统中,一般均采用IGCT、GTO等作为功率元件。 图表光伏发电用逆变器主要原料 资料来源:产研智库 二、下游需求领域 图表光伏发电逆变器国内主要应用领域

资料来源:产研智库 三、产业链各环节传导机制 光伏逆变器上游为电力电子元器件、微电子芯片、集成电路、电力电容器、电抗器、变压器、机柜、机箱壳体制造等行业。该行业与上游行业的关联性较低,上游行业的影响主要体现在本行业采购成本。 逆变器行业与下游行业的发展密切相关,下游行业对本行业的发展具有较大的牵引和驱动作用,国家光伏项目建设与投资是决定本行业未来需求的重要部分,其需求变化直接决定了本行业未来的发展状况。 二、国外光伏逆变器市场格局 光伏逆变器的主要厂商分布在光伏安装的主要区域,包括德国、中国、美国等地。2015年,全球逆变器的主要产能集中在德国、中国、美国,其中SMA、阳光电源、华为占据前三位。国外厂商逆变器项目经验丰富,产品质量高,成本也相对较高。国内自主研发的光伏逆变器,成本较低、售后服务效率更高。从地域来看,预计未来新增光伏逆变器需求将主要来自美国、日本和中国等新兴市场国家。 2015年全球逆变器市场格局在领先厂商之间日趋巩固。全球逆变器需求在2015年上涨了33%,排名前10的光伏逆变器厂商市场份额提高到了75%,产业集中度不断提高,全球光伏逆变器出货量达2010年以来的最高值。 德国SMA继续保持其2015年全球最大光伏逆变器供应商的地位,但在出货量上继续损失市场份额。虽然SMA仍然在光伏逆变器收入上处于全球领导者地位,但其从逆变器出货排行榜流失的全球需求已转向中国。2015年出货量前十名厂商中有四个是中国企业,其中华为出货量领先。SMA业绩提升的主要得益于美国和其他快速增长的公用事业规模市场,该公司还更新了其逆变器产品组合,表示其在住宅、商业和公用事业规模市场都有竞争力产品推出。 图表2015全球10大光伏逆变器厂商出货量排名

太阳能逆变器开发思路和方案

内容摘要:摘要:针对光伏并网发电系统中关键部件——逆变器的结构设计与控制方法研 究进行了详细分析和阐述。从电网、光伏阵列以及用户对逆变器的要求出发,分析了各种不同的逆变器拓扑结构与控制方法,比较其运行效率和控制效果。对于目前国内外光伏发电系统中并网逆变器的研究现状、亟待解决的问题进行了阐述,指出光伏发电系统中并网逆变器高效可靠运行的发展方向。 摘要:针对光伏并网发电系统中关键部件——逆变器的结构设计与控制方法研究进行了详细分析和阐述。从电网、光伏阵列以及用户对逆变器的要求出发,分析了各种不同的逆变器拓扑结构与控制方法,比较其运行效率和控制效果。对于目前国内外光伏发电系统中并网逆变器的研究现状、亟待解决的问题进行了阐述,指出光伏发电系统中并网逆变器高效可靠运行的发展方向。关键词:光伏并网发电系统;逆变器;拓扑结构;最大功率点跟踪;孤岛效应 O 引言 由于传统能源的枯竭和人们对环境的重视,电力系统正面临着巨大变革,分布式发电将成为未来电力系统的发展方向。其中,光伏发电以其独特的优点,被公认为技术含量高、最有发展前途的技术之一 。但是光伏发电系统存在着初期投资大、成本较高等缺点,因而探索高性能、低造价的新型光电转换材料与器件是其主要研究方向之一。另一方面,进一步减少光伏发电系统自身损耗、提高运行效率,也是降低其发电成本的一个重要途径。逆变器效率的高低不仅影响其自身损耗,还影响到光电转换器件以及系统其他设备的容量选择与合理配置。因此,逆变器已成为影响光伏并网发电系统经济可靠运行的关键因素, 研究其结构与控制方法对于提高系统发电效率、降低成本具有极其重要的意义[5] 。 本文从电网、光伏阵列以及用户对于并网逆变器的要求出发,分析了不同的逆变器拓扑结构与控制方法,比较了其运行效率和控制效果。对于目前国内外光伏发电系统中并网逆变器的研究现状、亟 待解决的技术问题进行了综合,进一步指出了光伏发电系统中并网逆变器高效可靠运行的发展方向。 1 光伏发电系统对逆变器的要求光伏并网发电系统一般由光伏阵列、逆变器和控制器3 部分组成。逆变器是连接光伏阵列和电网的关键部件,它完成控制光伏阵列最大功率点运行和向电网注入正弦电流两大主要任务。 1 .1 电网对逆变器的要求逆变器要与电网相连,必须满足电网电能质量、防止孤岛效应和安全隔离接地3 个要求。为了避免光伏并网发电系统对公共电网的污染, 失真度的主要因素之一是逆变器的开关频率。在数控逆变系统中采用高速DSP等新型处理 器,可明显提高并网逆变器的开关频率性能,它已成 逆变器应输出失真度小的正弦波。影响波形 为实际系统广泛采用的技术之一;同时, 逆变器主功率元件的选择也至关重要。小容量低压系统较多地使用功率场效应管(MOSFET),它具有较低的通态压降和较高的开关频率;但MOsFET随着电压升高其通态 电阻增大,因而在高压大容量系统中一般采用绝缘栅双极晶体管(IGBT);而在特大容量系 统中,一般采用可关断晶闸管(GTO)作为功率元件[6]。 依据IEEE 2000-929 [7]和UL1741[8]标准,所有并网逆变器必须具有防孤岛效应的功能。孤岛效应是指当电网因电气故障、误操作或自然因素等原因中断供电时,光伏并网发电系统 未能及时检测出停电状态并切离电网,使光伏并网发电系统与周围

2018年全球光伏逆变器市场前景

2018年全球光伏逆变器市场前景 大家都知道,光伏逆变器在光伏电站中起到非常重要的作用。甚至可以称作为光伏电站的“大脑”。 光伏逆变器关系到光伏电站的长期可靠性、性能表现以及易管理性。不同的应用场景对逆变器的需求不同,并没有一个产品或者技术满足所有的应用和需求。 2017年中国电子产业连续三年位居全球逆变器出货量首位,2017年中国新增光伏装机容量达53GW,创下历史新高。 项目开发商、资产管理以及融资方在选择逆变器时更看重产品的易操作性和产品服务。逆变器厂商也试图在这两个方面做出差异化。数字化是目前逆变器产品最为热门的趋势,可帮助提高电站的性能、可靠性以及易管理性,同时允许电网公司了解电站的运行情况。

2017年零部件供应短缺加剧了本已紧张的供应形势,给一些逆变器厂商造成压力,同时也限制了逆变器价格的下降幅度。 以色列组件级电力电子(MLPE)制造商SolarEdge(纳斯达克:SEDG)继续保持强劲增长,2017年四季度毛利率创下新高。 《光伏杂志》与IHS Markit的资深太阳能分析师Cormac Gilligan共同探讨了2018年全球逆变器市场状况,并总结出影响逆变器市场格局的六大趋势。 01、中国将继续主宰逆变器市场。明年中国的逆变器出货量将达104吉瓦,占据全球市场

的半壁江山,继续领先。而住宅市场也将迅速崛起。 02、印度市场机会众多,但需考虑规模。印度正在紧随中国的脚步,给众多的国际性公司带来了机会。 03、规模固然重要,但敏捷却是关键。尽管逆变器市场有不少大佬,但小公司提供利基服务并进入一些特定市场的机会比比皆是。公司和产量规模必须伴随着敏捷性和灵活性才会更有生命力。 04、MLPE市场变得更艰难,发展性策略出现。由于中国在全球范围内加速布局其功率优化解决方案,2018年对MLPE的其他参与者而言变得更为艰难。他们必须加速与逆变器和组件供应商合作才能获得生存机会。 05、模块化设计使中央逆变器解决方案具有吸引力。模块化中央逆变器在2018年将继续稳步增长,这对特变电工和Fimer等公司是利好消息。 06、谨防零部件短缺。由于电动汽车和智能手机等产业的需求强劲,整个半导体行业均出现零部件短缺的现象。要提防此类短缺影响到逆变器市场。

华为光伏逆变器可靠性分析_解密华为光伏逆变器如何炼成

华为光伏逆变器可靠性分析_解密华为光伏逆变器如何炼成 太阳能发电系统通常直接暴露在室外环境工作,经常遇到高温、高寒、高湿、大风沙,淋雨,盐雾等恶劣气象条件。华为可靠性实验室业界首创开发出了温度、湿度、腐蚀性粉尘三综合应力试验设备,使得逆变器产品在恶劣场景应用具有卓越的适应能力。针对户外应用,采用高温、淋雨、带电温循、外场暴露等加速方法,验证了逆变器的长期可靠性,保证设备长期稳定运行。 一、温变影响机理温度不同,材料结构的分子运动的速度不同,在不同材料之间就出现膨胀系数、热传递性能的匹配差异,容易导致部件的卡紧件松弛。IGBT模块和散热器之间的热不匹配、不同材料的收缩或膨胀率不同,可诱发部件的变形或破裂、表面涂层开裂、气密性变差或泄漏、绝缘保护失效等。通常温度变化慢,影响不明显。急剧的温度变化可能会暂时或永久的影响设备的正常工作。 同时温度的快速变化,容易在单板,机壳等位置形成凝露,结水或结冰等现象,这对逆变器的运行带来较大的风险。 二、温变影响案例影响逆变器温度的主要是地域温差、昼夜温差、季节温差、天气变化如太阳、风、雨等形成的温差。同时自然散热在热源和器件、外壳之间也形成温差,导致逆变器个部件之间形成温差。在北方地区冬季温度较低,很多地方低于-20℃,夏季温度超过40℃,昼夜温差20℃、季节温差60℃,同时逆变器外壳的温升在20~30℃,内部IGBT 的温升在40~50℃。这样容易在内部腔体内形成温度差和各个部位的温度差,并且温度变化频繁,这些对产品材料的选择提出了严峻的挑战。 此外早晚开机功率输出,突变的阵雨及恶劣的天气变化,温变速率大,容易在一些部件上形成凝露,这也将影响逆变器的安全运行。 三、应对解决方案产品设计上要考虑温差的影响,同时考虑凝露风险,如单板集中、涂覆保护、内部风扇散热等多项措施。在验证方面一般采用高温淋雨试验和PTC带电温循试验来验证整机性能,作为查找薄弱点的主要方法。同时通过外场暴露来补充验证严酷环境的长期适应能力。

逆变器的基本知识

浅谈光伏发电系统用逆变器的基本知识 逆变器的概念 通常,把将交流电能变换成直流电能的过程称为整流,把完成整流功能的电路称为整流电路,把实现整流过程的装置称为整流设备或整流器。与之相对应,把将直流电能变换成交流电能的过程称为逆变,把完成逆变功能的电路称为逆变电路,把实现逆变过程的装置称为逆变设备或逆变器。 现代逆变技术是研究逆变电路理论和应用的一门科学技术。它是建立在工业电子技术、半导体器件技术、现代控制技术、现代电力电子技术、半导体变流技术、脉宽调制(PWM)技术等学科基础之上的一门实用技术。它主要包括半导体功率集成器件及其应用、逆变电路和逆变控制技术3大部分。 逆变器的分类 逆变器的种类很多,可按照不同的方法进行分类。 1.按逆变器输出交流电能的频率分,可分为工频逆变器、中频逆器和高频逆变器。工频逆变器的频率为50~60Hz的逆变器;中频逆变器的频率一般为400Hz到十几kHz;高频逆变器的频率一般为十几kHz到MHz。 2.按逆变器输出的相数分,可分为单相逆变器、三相逆变器和多相逆变器。3.按照逆变器输出电能的去向分,可分为有源逆变器和无源逆变器。凡将逆变器输出的电能向工业电网输送的逆变器,称为有源逆变器;凡将逆变器输出的电能输向某种用电负载的逆变器称为无源逆变器。 4.按逆变器主电路的形式分,可分为单端式逆变器,推挽式逆变器、半桥式逆变器和全桥式逆变器。 5.按逆变器主开关器件的类型分,可分为晶闸管逆变器、晶体管逆变器、场效应逆变器和绝缘栅双极晶体管(IGBT)逆变器等。又可将其归纳为“半控型”逆

变器和“全控制”逆变器两大类。前者,不具备自关断能力,元器件在导通后即失去控制作用,故称之为“半控型”普通晶闸管即属于这一类;后者,则具有自关断能力,即无器件的导通和关断均可由控制极加以控制,故称之为“全控型”,电力场效应晶体管和绝缘栅双权晶体管(IGBT)等均属于这一类。 6.按直流电源分,可分为电压源型逆变器(VSI)和电流源型逆变器(CSI)。前者,直流电压近于恒定,输出电压为交变方波;后者,直流电流近于恒定,输也电流为交变方波。 7.按逆变器输出电压或电流的波形分,可分为正弦波输出逆变器和非正弦波输出逆变器。 8.按逆变器控制方式分,可分为调频式(PFM)逆变器和调脉宽式(PWM)逆变器。 9.按逆变器开关电路工作方式分,可分为谐振式逆变器,定频硬开关式逆变器和定频软开关式逆变器。 10.按逆变器换流方式分,可分为负载换流式逆变器和自换流式逆变器。 逆变器的基本结构 逆变器的直接功能是将直流电能变换成为交流电能 逆变装置的核心,是逆变开关电路,简称为逆变电路。 该电路通过电力电子开关的导通与关断,来完成逆变的功能。电力电子开关器件的通断,需要一定的驱动脉冲,这些脉冲可能通过改变一个电压信号来调节。产生和调节脉冲的电路。通常称为控制电路或控制回路。逆变装置的基本结构,除上述的逆变电路和控制电路外,还有保护电路、输出电路、输入电路、输出电路等,如图2所示。 逆变器的工作原理。

光伏逆变器行业调研分析报告

光伏逆变器行业调研分析报告 摘要—— 该光伏逆变器行业调研报告仅针对xx区域分析,时间2016-2017年度。 目前,区域内拥有各类光伏逆变器企业794家,从业人员39700人。截至2017年底,区域内光伏逆变器产值184937.75万元,较2016年160550.18万元增长15.19%。产值前十位企业合计收入77866.50万元,较去年65007.93万元同比增长19.78%。 ...... 经过长期追赶的沉淀和积累,当今我国在相当一些领域与世界前沿科技的差距都处于历史最小时期,已经有能力并行跟进这一轮科技革命和产业变革,加速实现制造业转型升级和创新发展。《中国制造2025》始终贯穿一个主题,就是加快新一代信息通信技术与制造业的深度融合。与发达国家在工业3.0基础上迈向4.0不同,我国制造业还有相当一部分停留在3.0甚至2.0,只有部分领先行业可比肩4.0。实施《中国制造2025》,必须处理好2.0普及、3.0补课和4.0赶超的关系,强化工业基础能力,提高综合集成水平,以推广智能制造为切入点,培育新型生产方式,推动制造业数字化网络化智能化。

第一章宏观环境分析 一、宏观经济分析 1、制造业是振兴实体经济的主战场。新一轮科技革命和产业变革浪潮之下,数字经济、共享经济、产业协作正在重塑传统实体经济形态,全球制造业都处于转换发展理念、调整失衡结构、重构竞争优势的关键节点,我国制造业提质升级的任务十分紧迫。综合来看,我国的高铁、核电、信息通信等领域已经具备了全球竞争力,但其他多数领域在技术创新、质量品牌、环境友好等方面落后于发达国家,离制造强国的建设目标还有很大差距。我们务必彻底摒弃旧的思维观念和方式方法,着眼解决深层次矛盾和问题,深化供给侧结构性改革,淘汰落后产能,加快创新驱动,优化升级传统产业,培育壮大战略性新兴产业,发展更多适应市场需求的新技术、新业态、新模式,促进“中国制造”上升为“中国高端制造”。 2、2018年是贯彻党的十九大精神的开局之年,是实施“十三五”规划承上启下的关键一年。同时2018年也是改革开放40周年。我国经济发展取得历史性成就、发生历史性变革。要审视复杂局势,科学判断,正确决策,把握战略窗口期。在此背景下,要继续加快推进制造强国、网络强国建设,深入实施推进中国制造建设,解决深层次矛

光伏逆变器分类

逆变器作为光伏发电的重要组成部分,主要的作用是将光伏组件发出的直流电转变成交流电。目前,市面上常见的逆变器主要分为集中式逆变器与组串式逆变器,还有新潮的集散式逆变器。今天就针对三种逆变器来谈一谈各自的特点。 一、集中式逆变器 集中式逆变器顾名思义是将光伏组件产生的直流电汇总转变为交流电后进行升压、并网。因此,逆变器的功率都相对较大。光伏电站中一般采用500kW 以上的集中式逆变器。 (一)集中式逆变器的优点如下: 1.功率大,数量少,便于管理;元器件少,稳定性好,便于维护; 2.谐波含量少,电能质量高;保护功能齐全,安全性高; 3.有功率因素调节功能和低电压穿越功能,电网调节性好。 (二)集中式逆变器存在如下问题: 1.集中式逆变器MPPT电压范围较窄,不能监控到每一路组件的运行情况,因此不可能使每一路组件都处于最佳工作点,组件配置不灵活; 2.集中式逆变器占地面积大,需要专用的机房,安装不灵活; 3.自身耗电以及机房通风散热耗电量大。 二、组串式逆变器 组串式逆变器顾名思义是将光伏组件产生的直流电直接转变为交流电汇总后升压、并网。因此,逆变器的功率都相对较小。光伏电站中一般采用50kW以下的组串式逆变器。 (一)组串式逆变器优点: 1.不受组串间模块差异,和阴影遮挡的影响,同时减少光伏电池组件最佳工作点与逆变器不匹配的情况,最大程度增加了发电量; 2.MPPT电压范围宽,组件配置更加灵活;在阴雨天,雾气多的部区,发电时间长; 3.体积较小,占地面积小,无需专用机房,安装灵活; 4.自耗电低、故障影响小。

(二)组串式逆变器存在问题: 1.功率器件电气间隙小,不适合高海拔地区;元器件较多,集成在一起, 稳定性稍差; 2.户外型安装,风吹日晒很容易导致外壳和散热片老化; 3.逆变器数量多,总故障率会升高,系统监控难度大; 4.不带隔离变压器设计,电气安全性稍差,不适合薄膜组件负极接地系统。 三、集散式逆变器 集散式逆变器是近两年来新提出的一种逆变器形式,其主要特点是“集中 逆变”和“分散MPPT跟踪”。集散式逆变器是聚集了集中式逆变器和组串式逆变器两种逆变器优点的产物,达到了“集中式逆变器的低成本,组串式逆变器 的高发电量”。 (一)集散式逆变器优点: 1.与集中式对比,“分散MPPT跟踪”减小了失配的几率,提升了发电量; 2.与集中式及组串式对比,集散式逆变器具有升压功能,降低了线损; 3.与组串式对比,“集中逆变”在建设成本方面更具优势。 (二)集散式逆变器问题; 1.工程经验少。较前两类而言,尚属新形式,在工程项目方面的应用相对 较少; 2.安全性、稳定性以及高发电量等特性还需要经历工程项目的检验; 3.因为采用“集中逆变”,因此,占地面积大,需专用机房的缺点也存在 于集散式逆变器中。

2015年光伏逆变器发展现状及市场前景分析

中国光伏逆变器行业调查分析及发展趋势预测报告(2015-2020年) 报告编号:1589130

行业市场研究属于企业战略研究范畴,作为当前应用最为广泛的咨询服务,其研究成果以报告形式呈现,通常包含以下内容: 一份专业的行业研究报告,注重指导企业或投资者了解该行业整体发展态势及经济运行状况,旨在为企业或投资者提供方向性的思路和参考。 一份有价值的行业研究报告,可以完成对行业系统、完整的调研分析工作,使决策者在阅读完行业研究报告后,能够清楚地了解该行业市场现状和发展前景趋势,确保了决策方向的正确性和科学性。 中国产业调研网https://www.360docs.net/doc/2c6367633.html,基于多年来对客户需求的深入了解,全面系统地研究了该行业市场现状及发展前景,注重信息的时效性,从而更好地把握市场变化和行业发展趋势。

一、基本信息 报告名称:中国光伏逆变器行业调查分析及发展趋势预测报告(2015-2020年) 报告编号:1589130←咨询时,请说明此编号。 优惠价:¥7020 元可开具增值税专用发票 网上阅读:_NengYuanKuangChan/30/GuangFuNiBianQiWeiLaiFaZhanQuShiYuCe.html 温馨提示:如需英文、日文等其他语言版本,请与我们联系。 二、内容介绍 国际光伏逆变器市场仍然被外国公司寡头垄断,近年来出现的变化是过去是专业型企业主导的市场(SMA,Power-one,KACO等),现在ABB、GE、西门子、施耐德这些跨国巨头也纷纷加入,企业也在努力向欧美市场渗透,因此,行业内急剧扩容的产能对逆变器价格形成了较大的压力。 据中国产业调研网发布的中国光伏逆变器行业调查分析及发展趋势预测报告(2015 -2020年)显示,2014年全球光伏逆变器产量约为45.3GW,产量较上年同期增长11.3%。2014年受中国等市场光伏新增装机上升的影响,2014年全球光伏逆变器需求量达到44 GW,全球光伏逆变器需求增幅与生产增幅基本持平。 2013-2018年全球光伏逆变器产销统计及预测:GW 2014年全球光伏逆变器产品出货量达到44GW,较2013年同期增长11.5%,但是同期产品价格从0.17美元/瓦下降至0.15美元/瓦,产品单价降幅为11.8%。价格下滑幅度超过出货量增长幅度,因而2014年全球光伏逆变器市场规模出现小幅下滑。 2013-2018年全球光伏逆变器市场规模走势图 目前国内光伏并网逆变器市场规模较小,国内生产逆变器的厂商众多,但专门用于光伏发电系统的逆变器制造商并不多,但是不少国内企业已经在逆变器行业已经研究多年,已经具备一定的规模和竞争力,但在逆变器技术质量、规模上与国外企业仍具有较大差距。我国国内逆变器厂商进入者较多的领域是中小功率逆变器,其技术已与国外厂商处于同一水平。同时国内企业由于产能建设快,劳动力成本相对较低,在中小功率逆变器上具有较明显的竞争优势。

华为光伏逆变器的分类_华为光伏逆变器的技术和强项

华为光伏逆变器的分类_华为光伏逆变器的技术和强项 华为光伏逆变器位列光伏逆变器排行榜前十,那么你知道华为光伏逆变器有哪些技术和强项吗?又有哪些分类呢?本文首先介绍了华为光伏逆变器的分类,其次盘点了16条关于华为光伏逆变器的黑科技,具体的跟随小编一起来了解一下。 华为光伏逆变器的分类1、集中式逆变器 集中逆变技术是若千个并行的光伏组串被连到同一台集中逆变器的直流输入端,一般功率大的使用三相的IGBT功率模块,功率较小的使用场效应晶体管,同时使用DSP转换控制器来改善所产出电能的质量,使它非常接近于正弦波电流,一般用于大型光伏发电站(》10kW)的系统中。最大特点是系统的功率高,成本低,但由于不同光伏组串的输出电压、电流往往不完全匹配(特别是光伏组串因多云、树荫、污渍等原因被部分遮挡时),采用集中逆变的方式会导致逆变过程的效率降低和电户能的下降。同时整个光伏系统的发电可靠性受某一光伏单元组工作状态不良的影响。最新的研究方向是运用空间矢量的调制控制以及开发新的逆变器的拓扑连接,以获得部分负载情况下的高效率。 2、组串式逆变器 组串逆变器是基于模块化概念基础上的,每个光伏组串(1-5kw)通过一个逆变器,在直流端具有最大功率峰值跟踪,在交流端并联并网,已成为现在国际市场上最流行的逆变器。许多大型光伏电厂使用组串逆变器。优点是不受组串间模块差异和遮影的影响,同时减少了光伏组件最佳工作点与逆变器不匹配的情况,从而增加了发电量。技术上的这些优势不仅降低了系统成本,也增加了系统的可靠性。同时,在组串间引人“主-从”的概念,使得系统在单串电能不能使单个逆变器工作的情况下,将几组光伏组串联系在一起,让其中一个或几个工作,从而产出更多的电能。最新的概念为几个逆变器相互组成一个“团队”来代替“主从”的概念,使得系统的可靠性又进了一步。目前,无变压器式组串逆变器已占了主导地位。 3、微型逆变器 在传统的PV系统中,每一路组串型逆变器的直流输入端,会由10块左右光伏电池板串

光伏并网逆变器分类

光伏并网逆变器分类 并网逆变器是太阳能光伏系统中的关键部件,它将太阳能电池产生的直流电通过电力电子变换技术转换为能够直接并入电网、负载的交流能量。其性能,效率直接影响整个太阳能光伏系统的效率和性能。下面将从并网逆变器的分类来进行了解。 1、按照隔离方式分类 包括隔离式和非隔离式两类,其中隔离式并网逆变器又分为工频变压器隔离方式和高频变压器隔离方式。光伏并网逆变器发展之初多采用工频变压器隔离的方式,但由于其体积、重量、成本方面的明显缺陷。近年来高频变压器隔离方式的并网逆变器发展较快,非隔离式并网逆变器以其高效率、控制简单等优势也逐渐获得认可,目前已经在欧洲开始推广应用,但需要解决可靠性、共模电流等关键问题。 2、按照输出相数分类 可以分为单相和三相并网逆变器两类,中小功率场合一般多采用单相方式,大功率场合多采用三相并网逆变器。按照功率等级进行分类,可分为功率小于1kVA的小功率并网逆变器,功率等级1kVA~50kVA的中等功率并网逆变器和50kVA以上的大功率并网逆变器。 3、按照功率流向进行分类 分为单方向功率流和双方向功率流并网逆变器两类,单向功率流并网逆变器仅用作并网发电,双向功率流并网逆变器除可用作并网发电外,还能用作整流器,改善电网电压质量和负载功率因素。近几年双向功率流并网逆变器开始获得关注,是未来的发展方向之一。 4、按照拓扑结构分类 目前采用的拓扑结构包括:全桥逆变拓扑、半桥逆变拓扑、多电平逆变拓扑、推挽逆变拓扑、正激逆变拓扑、反激逆变拓扑等,其中高压大功率光伏并网逆变器可采用多电平逆变拓扑,中等功率光伏并网逆变器多采用全桥、半桥逆变拓扑,小功率光伏并网逆变器采用正激、反激逆变拓扑。 从技术层面讲,大功率并网逆变器和小功率并网逆变器是未来的两个主要发展方向,其中小功率光伏并网逆变器——微逆变器是最具发展潜力和市场应用前景的发展方向,高频化、高效率、高功率密度、高可靠性和高度智能化是未来的发展方向。

光伏逆变器概述(完整版)

光伏逆变器概述 工作原理及特点 工作原理: 逆变装置的核心,是逆变开关电路,简称为逆变电路。该电路通过电力电子开关的导通与关断,来完成逆变的功能。 特点: (1)要求具有较高的效率。 由于目前太阳能电池的价格偏高,为了最大限度的利用太阳能电池,提高系统效率,必须设法提高逆变器的效率。 (2)要求具有较高的可靠性。 目前光伏电站系统主要用于边远地区,许多电站无人值守和维护,这就要求逆变器有合理的电路结构,严格的元器件筛选,并要求逆变器具备各种保护功能,如:输入直流极性接反保护、交流输出短路保护、过热、过载保护等。 (3)要求输入电压有较宽的适应范围。 由于太阳能电池的端电压随负载和日照强度变化而变化。特别是当蓄电池老化时其端电压的变化范围很大,如12V的蓄电池,其端电压可能在10V~16V之间变化,这就要求逆变器在较大的直流输入电压范围内保证正常工作。 光伏逆变器分类 有关逆变器分类的方法很多,例如:根据逆变器输出交流电压的相数,可分为单相逆变器和三相逆变器;根据逆变器使用的半导体器件类型不同,又可分为晶体管逆变器、晶闸管逆变器及可关断晶闸管逆变器等。根据逆变器线路原理的不同,还可分为自激振荡型逆变器、阶梯波叠加型逆变器和脉宽调制型逆变器等。根据应用在并网系统还是离网系统中又可以分为并网逆变器和离网逆变器。为了便于光电用户选用逆变器,这里仅以逆变器适用场合的不同进行分类。

1、集中型逆变器 集中逆变技术是若干个并行的光伏组串被连到同一台集中逆变器的直流输入端,一般功率大的使用三相的IGB T功率模块,功率较小的使用场效应晶体管,同时使用DSP转换控制器来改善所产出电能的质量,使它非常接近于正弦波电流,一般用于大型光伏发电站(>10kW)的系统中。最大特点是系统的功率高,成本低,但由于不同光伏组串的输出电压、电流往往不完全匹配(特别是光伏组串因多云、树荫、污渍等原因被部分遮挡时),采用集中逆变的方式会导致逆变过程的效率降低和电户能的下降。同时整个光伏系统的发电可靠性受某一光伏单元组工作状态不良的影响。最新的研究方向是运用空间矢量的调制控制以及开发新的逆变器的拓扑连接,以获得部分负载情况下的高效率。 2、组串型逆变器 组串逆变器是基于模块化概念基础上的,每个光伏组串(1-5kw)通过一个逆变器,在直流端具有最大功率峰值跟踪,在交流端并联并网,已成为现在国际市场上最流行的逆变器。 许多大型光伏电厂使用组串逆变器。优点是不受组串间模块差异和遮影的影响,同时减少了光伏组件最佳工作点与逆变器不匹配的情况,从而增加了发电量。技术上的这些优势不仅降低了系统成本,也增加了系统的可靠性。同时,在组串间引人"主-从"的概念,使得系统在单串电能不能使单个逆变器工作的情况下,将几组光伏组串联系在一起,让其中一个或几个工作,从而产出更多的电能。 最新的概念为几个逆变器相互组成一个"团队"来代替"主-从"的概念,使得系统的可靠性又进了一步。目前,无变压器式组串逆变器已占了主导地位。 3、微型逆变器 在传统的PV系统中,每一路组串型逆变器的直流输入端,会由10块左右光伏电池板串联接入。当10块串联的电池板中,若有一块不能良好工作,则这一串都会受到影响。若逆变器多路输入使用同一个MPPT,那么各路输入也都会受到影响,大幅降低发电效率。在实际应用中,云彩,树木,烟囱,动物,灰尘,冰雪等各种遮挡因素都会引起上述因素,情况非常普遍。而在微型逆变器的PV系统中,每一块电池板分别接入一台微型逆变器,当电池板中有一块不能良好工作,则只有这一块都会受到影响。其他光伏板都将在最佳工作状态运行,使得系统总体效率更高,发电量更大。在实际应用中,若组串型逆变器出现故障,则会引起几千瓦的电池板不能发挥作用,而微型逆变器故障造成的影响相当之小。 4、功率优化器 太阳能发电系统加装功率优化器(Optimizer)可大幅提升转换效率,并将逆变器(Inverter)功能化繁为简降低成本。为实现智慧型太阳能发电系统,装置功率优化器可确实让每一个太阳能电池发挥最佳效能,并随时监控电池耗损状态。功率优化器是介于发电系统与逆变器之间的装置,主要任务是替代逆变器原本的最佳功率点追踪功能。功率优化器藉由将线路简化以及单一太阳能电池即对应一个功率优化器等方式,以类比式进行极为快速的最佳功率

光伏并网逆变器控制策略的研究

题目:光伏并网逆变器控制策略的研究

光伏并网逆变器控制策略的研究 摘要 世界环境的日益恶化和传统能源的日渐枯竭,促使了对新能源的开发和发展。具有可持续发展的太阳能资源受到了各国的重视,各国相继出台的新能源法对太阳能发展起到推波助澜的作用。其中,光伏并网发电具有深远的理论价值和现实意义,仅在过去五年,光伏并网电站安装总量已达到数千兆瓦。而连接光伏阵列和电网的光伏并网逆变器便是整个光伏并网发电系统的关键。 本文通过按主电路分类、按功率变换级数分类和按变压器分类的三大类划分逆变器的方法分别介绍了每个逆变器电路的拓扑结构。之后本文首先介绍了国内外并网逆变器的研究状况以及相关并网技术标准,比较了当前主流的控制技术。然后,详细的阐述了光伏并网发电逆变器系统的整体设计和各单元模块的设计,其中包括太阳能电池组、升压斩波电路、逆变电路和傅里叶变换。 在简要介绍了系统的结构拓扑和控制要求之后,论文重点研究了基于电流闭环的矢量控制策略,阐述了其拓扑结构、工作原理及运行模式。为了深入研究控制策略,分别建立了基于电网电压定向的矢量控制和基于虚拟磁链定向的矢量控制。最后,本文针对几种产生谐波的原因,对L、LC、LCL 三种滤波器进行了比较分析。 最后,本文对光伏并网的总系统进行了MATLAB仿真,由于时间的限制,只做出了通过间接控制电流从而达到控制有功无功公功率的仿真。 关键词:光伏并网,逆变器电路拓扑,电流矢量控制,谐波

PHOTOVOLTAIC (PV) GRID INVERTER CONTROL STRATEGY RESEARCH Abstract World deteriorating environment and the increasing depletion of traditional energy sources prompted the development of new energy and development. Solar energy resources for sustainable development has been national attention, solar countries have contributed to the severity of the introduction of the new energy law developments. Among them, the photovoltaic power generation has profound theoretical and practical significance, only in the past five years,the total installed photovoltaic power plant has reached thousands of megawatts. Connected PV array and grid PV grid-connected inverter is the whole key photovoltaic power generation system. Based classification by main circuit and the power level classification and Division of three categories classified by transformer inverter of methods each inverters circuit topologies are introduced.This article introduces the domestic and foreign research on grid-connected inverters and related technical standards for grid-connected, compared the current mainstream technology.Then detail a grid-connected photovoltaic inverter system design and the modular design, including solar arrays, chop-wave circuit, inverter circuits and Fourier transform. Briefly introduces the system topology and control requirements, this paper focuses on the current loop-based vector control strategies, describes the topological structure, working principle and its operating mode.In order to study the control strategies were established based on power system voltage oriented vector control based on virtual flux-oriented vector control.Finally, for several reasons for harmonic, l, LC, LCL compares and analyses the three types of filters. Keywords:Photovoltaic, inverters circuit topologies, current vector control, harmonic

华为光伏逆变器的分类

华为光伏逆变器的分类 ——深圳恒通源 有关逆变器分类的方法很多,例如:根据逆变器输出交流电压的相数,可分为单相逆变器和三相逆变器;根据逆变器使用的半导体器件类型不同,又可分为晶体管逆变器、晶闸管逆变器及可关断晶闸管逆变器等。根据逆变器线路原理的不同,还可分为自激振荡型逆变器、阶梯波叠加型逆变器和脉宽调制型逆变器等。根据应用在并网系统还是离网系统中又可以分为并网逆变器和离网逆变器。为了便于光电用户选用逆变器,这里仅以逆变器适用场合的不同进行分类。 1、集中式逆变器 集中逆变技术是若干个并行的光伏组串被连到同一台集中逆变器的直流输入端,一般功率大的使用三相的IGBT功率模块,功率较小的使用场效应晶体管,同时使用DSP转换控制器来改善所产出电能的质量,使它非常接近于正弦波电流,一般用于大型光伏发电站(>10kW)的系统中。最大特点是系统的功率高,成本低,但由于不同光伏组串的输出电压、电流往往不完全匹配(特别是光伏组串因多云、树荫、污渍等原因被部分遮挡时),采用集中逆变的方式会导致逆变过程的效率降低和电户能的下降。同时整个光伏系统的发电可靠性受某一光伏单元组工作状态不良的影响。最新的研究方向是运用空间矢量的调制控制以及开发新的逆变器的拓扑连接,以获得部分负载情况下的高效率。

2、组串式逆变器 组串逆变器是基于模块化概念基础上的,每个光伏组串(1-5kw)通过一个逆变器,在直流端具有最大功率峰值跟踪,在交流端并联并网,已成为现在国际市场上最流行的逆变器。 许多大型光伏电厂使用组串逆变器。优点是不受组串间模块差异和遮影的影响,同时减少了光伏组件最佳工作点与逆变器不匹配的情况,从而增加了发电量。技术上的这些优势不仅降低了系统成本,也增加了系统的可靠性。同时,在组串间引人"主-从"的概念,使得系统在单串电能不能使单个逆变器工作的情况下,将几组光伏组串联系在一起,让其中一个或几个工作,从而产出更多的电能。 最新的概念为几个逆变器相互组成一个"团队"来代替"主-从"的概念,使得系统的可靠性又进了一步。目前,无变压器式组串逆变器已占了主导地位。

光伏并网微逆变器关键技术分析

光伏并网微逆变器关键技术分析2010年11月11日来源:英伟力新能源科技(上海)有限公司作者:吴红飞 [责任编辑:Aglaia] 微逆变器区别于传统逆变器的特点 微逆变器的设计考虑因素 微逆变器的关键性技术 引言: 常见的光伏并网发电系统结构包括集中式、串式、多串式和交流模块式等几种方案。集中式、串式和多串式系统中,都存在光伏组件的串联和并联,因此系统的最大功率点跟踪时针对整个串并联光伏阵列,无法兼顾系统中每个光伏阵列,单个光伏阵列利用率低、系统抗局部阴影能力差,且系统扩展灵活性不够。光伏并网微逆变器(简称微逆变器)与单个光伏组件相连,可以将光伏组件输出的直流电直接变换成交流电并传输到电网,具有以下优点:(1)保证每个组件均运行在最大功率点,具有很强的抗局部阴影能力;(2)将逆变器与光伏组件集成,可以实现模块化设计、实现即插即用和热插拔,系统扩展简单方便;(3)并网逆变器基本不独立占用安装空间,分布式安装便于配置,能够充分利用空间和适应不同安装方向和角度的应用;(4)系统冗余度高、可靠性高,单个模块失效不会对整个系统造成影响。 微逆变器的概念由来已久,但最初并没有引起人们的注意,近年来随着太阳能发电技术的发展以及技术的进步,使得微逆变器十分具有吸引力。美国加州Petaluma的Enphase 从2008年开始微逆变器的商业化量产,并取得了不错的销售成绩,使得微逆变器获得了更广泛的认可,吸引了众多公司纷纷加入到微逆变器的研发行列,德国艾斯玛太阳能技术股份公司(SMASolarTechnology)2009年通过技术收购荷兰OKE-Services光伏系统电子开发商,进入了微逆变器市场。国内众多的光伏并网逆变器生产厂商主要从事大功率集中并网逆变器产品的开发,随着国内外微逆变器市场的日益火热,众多厂商也纷纷蠢蠢欲动,尝试开始微逆变器产品的开发,英伟力(Involar)新能源科技公司是国内最早从事微逆变器研究的公司,公司从2008年初开始微逆变器技术的开发,经过近两年的努力已完全自主掌握了微逆变器的核心技术,并于2010年5月份成功发布了其第一代产品MAC250,目前该款微逆变器产品已经推向市场。 微逆变器不同于传统大功率集中式逆变器,本文重点分析微逆变器的关键性技术。 微逆变器的特点及设计考虑因素 微逆变器区别于传统逆变器的特点:

光伏并网逆变器选型细则

并网逆变器选型细则 并网逆变器是将太阳能直流电转换为可接入交流市电的设备,是太阳能光伏发电站不可缺少的重要组成部分。以下对光伏电站设计过程中并网逆变器及其选型做比较详细的介绍和分析。 1.并网逆变器在光伏电站中的作用 光伏发电系统根据其应用模式一般可分为独立发电系统、并网发电系统以及混合系统,而并网发电系统的基本特点就是太阳电池组件产生的直流电经过并网逆变器转换成符合市电电网要求的交流电之后直接接入公共电网。 并网光伏电站的基本结构 并网逆变器功作用和功能 并网逆变器是电力、电子、自动控制、计算机及半导体等多种技术相互渗透与有机结合的综合体现,它是光伏并网发电系统中不可缺少的关键部分。并网逆变器的主要功能是: ◆最大功率跟踪 ◆DC-AC转换 ◆频率、相位追踪 ◆相关保护 2.并网逆变器分类 并网逆变器按其电路拓扑结构可以分为变压器型和无变压器型逆变器,其中变压器型又分为高频变压器型和低频变压器型。变压器型和无变压器型逆变器的主要区别在于安全性和效率两个方面。以下对三种类型逆变器做简单介绍: ◆高频变压器型 采用DC-AC-DC-AC的电路结构,设计较为复杂,采用较多的功率开关器件,因此损耗较大。 ◆低频变压器型 采用DC-AC-AC的电路结构,电路简单,采用普通工频变压器,具有较好的电气安全性,但效率较低。

◆无变压器型 采用DC-AC的电路结构,无电气隔离,电压范围较窄,但是损耗小、效率高。 3.并网逆变器主要技术指标 a. 使用环境条件 逆变器正常使用条件:包括工作温度、工作湿度以及逆变器的冷却方式等相关指标。 b. 直流输入最大电流 c. 直流输入最大电压 d. 直流输入MPP电压范围 逆变器对太阳能电池部分进行最大功率追踪(MPPT)的电压范围,一般小于逆变器允许的最大直流输入电压,设计电池组件的输出电压应当在MPP电压范围之内。 e. 直流输入最大功率 大于逆变器的额定输出功率,即通常所说的“逆变器功率”。为了充分利用逆变器的容量,设计接入并网逆变器的电池组件的标称功率可以等于直流侧输入最大功率。 f. 最大输入路数 指逆变器直流侧可接入的直流回路数目。 g. 额定输出电压 在规定的输入条件下,逆变器应输出的电压值。电压波动范围一般应:单相220V±5%,三相380±5%。 h. 额定输出功率 在规定的输出频率和负载功率因数下,逆变器应输出的额定电流值。 i. 额定输出频率 在并网系统中,额定输出频率要对应所并入的电网频率,而且当电网的频率和相位有微小波动时,逆变器输出的交流电应自动追踪电网的频率和相位。当检测到电网频率波动过大,逆变器将自动切离电网。我国的市电频率为50Hz,并网逆变器频率波动范围一般在±3%以内。 j. 最大谐波含量

光伏逆变器行业现状及发展趋势前景

、光伏逆变器产业链结构分析 图表 光伏发电用逆变器产业链结构 资料来源:产研智库 、上游原材料 逆变器企业主要外购产品包括各种电子元器件、结构件、电气元器件、电线电缆等。 逆变器的主功率元件的选择至关重要,使用较多的功率元件有达林顿功率晶体管 (BJT ),功率场效应管( MOSFET ),绝缘栅晶体管( IGBT )和可关断晶闸管( GTO )等, 在小容量低压系统中使用较多的器件为 MOSFET ,在大容量系统中一般均采用 IGBT 模块, 而在高压特大容量( 1000KV A 以上)系统中,一般均采用 IGCT 、GTO 等作为功率元件。 图表 光伏发电用逆变器主要原料 分类 细分种类 电子元器件 电阻、电容、集成电路、 IGBT 、印刷电路板及制成品等 结构件等 机柜、机箱、金属和非金属结构件、金属和非金属件模具 电气元器件 断路器及其相关辅件、变压器、电感、散热器等 电线类 电线、电缆 、下游需求领域 类别 应用领域 光伏并网逆变器 西部荒漠大型光伏并网发电站 国家金太阳工程 光伏建筑 BIPV 发电系统 政府绿色、环保示范项目 家庭屋顶小型发电站,自发自用 小型分布式发电系统 光伏离网逆变器 独立太阳能光伏电站

压器、体现在本行业采购成本。 逆变器行业与下游行业的发展密切相关,下游行业对本行业的发展具有较大的牵引和驱动作用,国家光伏项目建设与投资是决定本行业未来需求的重要部分,其需求变化直接决定了本行业未来的发展状况。 二、国外光伏逆变器市场格局 光伏逆变器的主要厂商分布在光伏安装的主要区域,包括德国、中国、美国等地。2015 年,全球逆变器的主要产能集中在德国、中国、美国,其中SMA 、阳光电源、华为占据前 三位。国外厂商逆变器项目经验丰富,产品质量高,成本也相对较高。国内自主研发的光伏逆变器,成本较低、售后服务效率更高。从地域来看,预计未来新增光伏逆变器需求将主要来自美国、日本和中国等新兴市场国家。 2015 年全球逆变器市场格局在领先厂商之间日趋巩固。全球逆变器需求在2015 年上涨了33%,排名前10 的光伏逆变器厂商市场份额提高到了75%,产业集中度不断提高,全球光伏逆变器出货量达2010 年以来的最高值。 德国SMA 继续保持其2015 年全球最大光伏逆变器供应商的地位,但在出货量上继续损失市场份额。虽然SMA 仍然在光伏逆变器收入上处于全球领导者地位,但其从逆变器出货排行榜流失的全球需求已转向中国。2015 年出货量前十名厂商中有四个是中国企业,其中华为出货量领先。SMA 业绩提升的主要得益于美国和其他快速增长的公用事业规模市场,该公司还更新了其逆变器产品组合,表示其在住宅、商业和公用事业规模市场都有竞争力产品推出。 图表2015全球10 大光伏逆变器厂商出货量排名

相关文档
最新文档