如何选拔和培养高中物理竞赛苗子

如何选拔和培养高中物理竞赛苗子
如何选拔和培养高中物理竞赛苗子

如何选拔和培养高中物理竞赛苗子

如何选拔和培养高中物理竞赛苗子

全国中学生物理竞赛创办于1984年。这项活动在调动广大中学生特别是优秀学生学习物理的兴趣和主动性,激发他们献身科学事业的雄心壮志,以及对培养能独立思考的有创造性的人才方面,发挥了重要的作用。高中物理教师有责任给有竞赛能力的学生提供发展的机会和学习的环境,指导好学生参加全国性的物理竞赛也是教师自身教学能力的一种体现。如何选择竞赛苗子和培养竞赛选手是能否出竞赛成绩的重要一环,下面就这两个问题谈谈笔者的几点看法。

一、科学选择竞赛苗子

竞赛苗子的选拔要科学化,如果单凭一两次例行性的测试就确定学生的竞赛能力,结果就会因匆忙上阵而造成人才和时间的浪费。为了做到有的放矢地进行选拔工作,笔者以为需要从以下几个方面去考虑:

首先,我们应该充分认识到“兴趣是最好的老师”,兴趣是学习的原动力,选择物理竞赛苗子首先应该考虑的是学生对物理学科的兴趣,作为学生,这种兴趣可能是多方面的,比如对科学技术的向往、对祖国发展和富饶的责任心以及对自身能力的肯定等等。学生从接触高中物理到参加全国中学生物理竞赛有两年的学习时间,这两年中,学习的知识面很广、很深,涉及解决问题的方法也很抽象,遇到诸多的困难也是可想而知的。这就需要学生自觉地钻研课外知识,积极主动地去处理各种物理问题,并以极大地毅力坚持下去,如果学生对物理学科没有浓厚的学习兴趣,这种执著的追求是不可能的。

其次,竞赛苗子的聪明和勤奋同等重要,我们教师不要以为凡是聪明的学生就一定是好的竞赛苗子,其实这是不完善的,聪明加勤奋才是成才的必要

由于前后两次接水量相等,有:

30·S0v0=t·S0'v' (2)

由方程(1)(2)可得t=30min

以上解法从物理学角度看似乎无懈可击,但与实际不符,是错误的。错误的根本原因是把雨滴当作了连续流体处理。众所周知,雨小并非是一条线的向下流,而是一滴一滴从云层上下落。所以雨滴下落速度的增加,并没有增大降雨量,只是增大了相邻两雨滴间的距离。所以正确的解法应如下:

如图4所示:AB为竖直下落时两雨滴间的距离,A'B'为有风时两雨滴间的距离。设单位面积上每分钟的降雨量为ρ,由于前后所接雨水量相等,有:30ρS0=t S'ρ

最后得:t=30.6min

作为指导教师,要注重培养学生综合分析问题和解决问题的能力,并要求学生去广泛阅读各科知识、积极观察和分析生活中的物理现象。

因此,指导教师要兼顾竞赛苗子的专业发展和各科全面发展的关系,通过物理学科的专业发展带动其它学科的进步。反过来又依靠其它学科的进步,丰富文化底蕴,增强科学素养,促进物理学科的专业发展,相辅相成,相得益彰,最终达到健全学生知识体系的目的。

(1)培养解题技巧和创造性思维

备赛的过程中当然少不了要做相当数量的习题,选择一本相对全面的参考书为蓝本也是十分必要的。在这个基础上,作为指导教师一定要让学生明白,解题是手段,通过解题锻炼透彻分析问题的能力、灵活融会贯通知识的能力和解决问题的能力、提高物理素养才是目的。精巧的解题技巧是解题方法的

的闪光之处,是灵感的火花。作为教师应当在学生的解题思维过程中予以恰当的点拨、引导,关键时候教师起到使学生茅塞顿开、画龙点睛的作用,而不是单单为了教会学生做几个难题或者罗列出以往的竞赛题并一一给出解答就算完成了任务。也不可把解题技巧归纳为解题方法(如综合法、对称法、微元法、逆向思维法、假设法、极限法等等)的灌输,要让学生通过自己的刻苦钻研去获得,并能在实际中灵活运用,这样才能激发学生的创造性思维,培养出有竞赛能力的选手。

以上是笔者在竞赛指导中几点体会,当然,指导教师科学素养程度的高低也直接影响到能否准确发现物理学科竞赛苗子并将其培养为竞赛型选手。所以,我们必须在实践的过程中不断探索和学习,并不断总结经验,不断学习新的知识来扩展、完善自己的知识体系。

参考文献:

1、《新编物理奥林匹克教程》湖南师范大学出版社罗维治

2、《中学物理教学论》湖南师范大学出版社罗维治

3、《谈高中物理竞赛指导》中学物理教学参考2001 谢宏

4、《联系实际解物理题》中学物理2002 李正安

2000年8月27日

3

2012年全国高中物理竞赛夏令营模拟试题

2010年全国高中物理竞赛模拟试题 (全卷10题,共200分,做题时间120分钟) 1.(10分)正点电荷q1和负点电荷-q2(q2>0)固定在x轴上,分居于垂直x轴的光滑绝缘薄板的两侧,带正电的小球也处于x轴上且靠着板,如图所示,起初,板处于负电荷不远处,球处于平衡,板开始沿x轴缓慢平移扩大与负电荷的距离,当距离扩大到L/3时,小球从x轴“逃逸”, 求比值q 1/q 2 。物体对电场的影响忽略,重力也不计。 2.(18分)步行者想要在最短的时间内从田野A处出发到田野B处,A、B两处相距1300m,一条直路穿过田野,A处离道路600m,B处离道路100m,步行者沿田野步行速度为3km/h,沿道路步行速度为6km/h,问步行者应该选择什么样的路径?最短时间为多少?讨论A、B两处位于道路同侧与异侧两种情况。 3.(16分)滑轮、重物和绳组成如图所示系统,重物1和2的质量已知:m1=4kg、m2=6kg,应如何 设置第三个重物的质量m 3 ,才能使系统处于平衡。滑轮和绳无重,滑轮摩擦不计,不在滑轮上的绳均处于水平或竖直。

4.(20分)一根长金属丝烧成螺距为h、半径为R的螺旋线,螺旋线轴竖直放置,珠子沿螺旋线滑下,求珠子的稳定速度υ ,金属丝与珠子之间的摩擦因数为μ。 5.(20分)用长1m的不可伸长的弹性轻线系上两个同样小球,使它们静止在光滑水平面上,彼此相距50cm,现使其中一个球沿着垂直与两球心连线方向,以速度υ =0.1m/s抛去,求经过3min后 两球速度。 6.(30分)质量为M的航天站和对接上的质量为m的卫星一起沿着圆轨道绕地球运行,其轨道半径为地球半径R的n倍(n=1.25)某一时刻,卫星沿运动方向从航天站上射出后,沿椭圆轨道运行,其远地点到地心距离为8nR。当质量之比m/M为何值时,卫星刚好绕地球转一圈后再次回到航天站。(m<M) 7.(20分)在循环1-2-3-1中1-2是等温线,2-3是等容线,3-1是绝热线,在此循 ;在循环1-3-4-1中,1-3是绝热线,3-4是等温线,4-1是等容环中热机效率为η 1 线,在此循环中热机效率为η ;求热机沿循环1-2-3-4-1的效率η。工作物质是理想的单 2 原子气体。

高中物理竞赛知识系统整理

物理知识整理 知识点睛 一.惯性力 先思考一个问题:设有一质量为m 的小球,放在一小车光滑的水平面上,平面上除小球(小球的线度远远小于小车的横向线度)之外别无他物,即小球水平方向合外力为零。然后突然使小车向右对地作加速运动,这时小球将如何运动呢? 地面上的观察者认为:小球将静止在原地,符合牛顿第一定律; 车上的观察者觉得:小球以-a s 相对于小车作加速运动; 我们假设车上的人熟知牛顿定律,尤其对加速度一定是由力引起的印象至深,以致在任何场合下,他都强烈地要求保留这一认知,于是车上的人说:小球之所以对小车有 -a s 的加速度,是因为受到了一个指向左方的作用力,且力的大小为 - ma s ;但他同时又熟知,力是物体与物体之间的相互作用,而小球在水平方向不受其它物体的作用, 物理上把这个力命名为惯性力。 惯性力的理解 : (1) 惯性力不是物体间的相互作用。因此,没有反作用。 (2)惯性力的大小等于研究对象的质量m 与非惯性系的加速度a s 的乘积,而方向与 a s 相反,即 s a m f -=* (3)我们把牛顿运动定律成立的参考系叫惯性系,不成立的叫非惯性系,设一个参考系相对绝对空间加速度为a s ,物体受相对此参考系 加速度为a',牛顿定律可以写成:a m f F '=+* 其中F 为物理受的“真实的力”,f*为惯性力,是个“假力”。 (4)如果研究对象是刚体,则惯性力等效作用点在质心处, 说明:关于真假力,绝对空间之类的概念很诡异,这样说牛顿力学在逻辑上都是显得很不严密。所以质疑和争论的人比较多。不过笔者建议初学的时候不必较真,要能比较深刻的认识这个问题,既需要很广的物理知识面,也需要很强的物理思维能力。在这个问题的思考中培养出爱因斯坦2.0版本的概率很低(因为现有的迷惑都被1.0版本解决了),在以后的学习中我们的同学会逐渐对力的概念,空间的概念清晰起来,脑子里就不会有那么多低营养的疑问了。 极其不建议想不明白这问题的同学Baidu 这个问题,网上的讨论文章倒是极其多,不过基本都是民哲们的梦呓,很容易对不懂的人产生误导。 二.惯性力的具体表现(选讲) 1.作直线加速运动的非惯性系中的惯性力 这时惯性力仅与牵连运动有关,即仅与非惯性系相对于惯性系的加速度有关。惯性力将具有与恒定重力相类似的特性,即与惯性质量正比。记为: s a m f -=* 2.做圆周运动的非惯性系中的惯性力 这时候的惯性力可分为离心力以及科里奥利力: 1)离心力为背向圆心的一个力: r m f 2ω=*

高中奥林匹克物理竞赛解题方法之七对称法

例1:沿水平方向向一堵竖直光滑的墙壁抛出一个弹性小球A , 抛出点离水平地面的高度为h ,距离墙壁的水平距离为s , 小球与墙壁发生弹性碰撞后,落在水平地面上,落地点距墙壁的水平距离为2s ,如图7—1所示. 求小球抛出时的初速度. 解析:因小球与墙壁发生弹性碰撞, 故与墙壁碰撞前后入射速度与反射速度具有对称性, 碰撞后小球的运 动轨迹与无墙壁阻挡时小球继续前进的轨迹相对称,如图7—1—甲所示,所以小球的运动可以转换为平抛运动处理, 效果上相当于小球从A ′点水平抛出所做的运动. 根据平抛运动的规律:?? ? ??==2 021gt y t v x 因为抛出点到落地点的距离为3s ,抛出点的高度为h 代入后可解得:h g s y g x v 2320 == 例2:如图7—2所示,在水平面上,有两个竖直光滑墙壁A 和B ,间距为d , 一个小球以初速度0v 从两墙正中间的O 点斜向上抛出, 与A 和B 各发生一次碰撞后正好落回抛出点O , 求小球的抛射角θ. 解析:小球的运动是斜上抛和斜下抛等三段运动组成, 若按顺序求解则相当复杂,如果视墙为一平面镜, 将球与墙的弹性碰撞等效为对平面镜的物、像移动,可利用物像对称的规律及斜抛规律求解. 物体跟墙A 碰撞前后的运动相当于从O ′点开始的斜上抛运动,与B 墙碰后落于O 点相当于落到O ″点,其中O 、O ′关于A 墙对称,O 、O ″对于B 墙对称,如图7—2—甲所示,于是有 ? ??==?? ???-==0221sin cos 200y d x gt t v y t v x 落地时θθ 代入可解得2 202arcsin 2122sin v dg v dg == θθ 所以抛射角 例3:A 、B 、C 三只猎犬站立的位置构成一个边长为a 的正三角形,每只猎犬追捕猎物的速度均为v ,A 犬想追捕B 犬,B 犬 想追捕C 犬,C 犬想追捕A 犬,为追捕到猎物,猎犬不断调整方向,速度方向始终“盯”住对方,它们同时起动,经多长时间可捕捉到猎物? 解析:以地面为参考系,三只猎犬运动轨迹都是一条复杂的曲线,但根据对称性,三只猎犬最后相交于 三角形的中心点,在追捕过程中,三只猎犬的位置构成三角形的形状不变,以绕点旋转的参考系来描述,可认为三角形不转动,而是三个顶点向中心靠近,所以只要求出顶点到中心运动的时间即可. 由题意作图7—3, 设顶点到中心的距离为s ,则由已知条件得 a s 3 3 = 由运动合成与分解的知识可知,在旋转的参考系中顶点向中心运动的速度为 v v v 2330cos = =' 由此可知三角形收缩到中心的时间为 v a v s t 32='= 此题也可以用递推法求解,读者可自己试解. 例4:如图7—4所示,两个同心圆代表一个圆形槽,质量为m ,内外半径几乎同为R. 槽内A 、B 两处分别放有一个质量也为m 的小球,AB 间的距离为槽的直径. 不计一切摩擦. 现将系统置于光滑水平面上,开始时槽静止,两小球具有垂直于AB 方向的速度v ,试求两小球第一次相距R 时,槽中心的速度0v . 解析:在水平面参考系中建立水平方向的x 轴和y 轴. 由系统的对称性可知中心或者说槽整体将仅在x 轴方向上 运动。设槽中心沿x 轴正方向运动的速度变为0v ,两小球相对槽心做角速度大小为ω的圆周运动,A 球处于

高中物理竞赛经典方法 2.隔离法

二、隔离法 方法简介 隔离法就是从整个系统中将某一部分物体隔离出来,然后单独分析被隔离部分的受力情况和运动情况,从而把复杂的问题转化为简单的一个个小问题求解。隔离法在求解物理问题时,是一种非常重要的方法,学好隔离法,对分析物理现象、物理规律大有益处。 赛题精讲 例1:两个质量相同的物体1和2紧靠在一起放在光滑水平桌面上,如图2—1所示,如果它们分别受到水平推力F 1和F 2作用,且F 1>F 2 , 则物体1施于物体2的作用力的大小为( ) A .F 1 B .F 2 C .12F F 2+ D .12F F 2 - 解析:要求物体1和2之间的作用力,必须把其中一个隔离出来分析。先以整体为研 究对象,根据牛顿第二定律:F 1-F 2 = 2ma ① 再以物体2为研究对象,有N -F 2 = ma ② 解①、②两式可得N = 12 F F 2 +,所以应选C 例2:如图2—2在光滑的水平桌面上放一物体A ,A 上再放一物体B ,A 、B 间有摩擦。施加一水平力F 于B ,使它相对于桌面向右运动,这时物体A 相对于桌面( ) A .向左动 B .向右动 C .不动 D .运动,但运动方向不能判断 解析:A 的运动有两种可能,可根据隔离法分析 设AB 一起运动,则:a =A B F m m + AB 之间的最大静摩擦力:f m = μm B g 以A 为研究对象:若f m ≥m A a ,即:μ≥A B B A m m (m m )g +F 时,AB 一起向右运动。 若μ< A B B A m m (m m )g + F ,则A 向右运动,但比B 要慢,所 以应选B 例3:如图2—3所示,已知物块A 、B 的质量分别为m 1 、m 2 ,A 、B 间的摩擦因数为μ1 ,A 与地面之间的摩擦因数为μ2 ,在水平力F 的推动下,要使A 、B 一起运动而B 不至下滑,力F 至少为多大? 解析: B 受到A 向前的压力N ,要想B 不下滑,需满足的临界条件是:μ1N = m 2g 。

高中奥林匹克物理竞赛解题方法 10图像法

高中奥林匹克物理竞赛解题方法 十、图像法 方法简介 图像法是根据题意把抽象复杂的物理过程有针对性地表示成物理图像,将物理量间的代数关系转变为几何关系,运用图像直观、形象、简明的特点,来分析解决物理问题,由此达到化难为易,化繁为简的目的,图像法在处理某些运动问题,变力做功问题时是一种非常有效的方法。 赛题精讲 例1:一火车沿直线轨道从静止发出由A 地驶向B 地,并停止在B 地。AB 两地相距s ,火 车做加速运动时,其加速度最大为a 1,做减速运动时,其加速度的绝对值最大为a 2,由此可可以判断出该火车由A 到B 所需的最短时间为 。 解析:整个过程中火车先做匀加速运动,后做匀减速运动,加速度最大时,所用时间最短,分段运动可用图像法来解。 根据题意作v —t 图,如图11—1所示。 由图可得1 1t v a = vt t t v s t v a 21)(21212 2=+== 由①、②、③解得2 121)(2a a a a s t += 例2:两辆完全相同的汽车,沿水平直路一前一后匀速行驶,速度为v 0,若前车突然以恒定 的加速度刹车,在它刚停住时,后车以前车刹车时的加速度开始刹车。已知前车在刹车过程中所行的距离为s ,若要保证两辆车在上述情况中不相碰,则两车在做匀速行驶时保持的距离至少为 ( ) A .s B .2s C .3s D .4s 解析:物体做直线运动时,其位移可用速度——时间图像 中的面积来表示,故可用图像法做。 作两物体运动的v —t 图像如图11—2所示,前车发 生的位移s 为三角形v 0Ot 的面积,由于前后两车的刹车 加速度相同,根据对称性,后车发生的位移为梯形的面积 S ′=3S ,两车的位移之差应为不相碰时,两车匀速行驶 时保持的最小车距2s. 所以应选B 。 ① ② ③ 图11—2

高中物理竞赛力学教程第二讲运动学

第二讲运动学 §2.1质点运动学的基本概念 2.1.1、参照物和参照系 要准确确定质点的位置及其变化,必须事先选取另一个假定不动的物体作参照,这个被选的物体叫做参照物。为了定量地描述物体的运动需要在参照物上建立坐标,构成坐标系。 通常选用直角坐标系O–xyz,有时也采用极坐标系。平面直角坐标系一般有三种,一种是两轴沿水平竖直方向,另一是两轴沿平行与垂直斜面方向,第三是两轴沿曲线的切线和法线方向(我们常把这种坐标称为自然坐标)。 2.1.2、位矢位移和路程 在直角坐标系中,质点的位置可用三个坐标x,y,z表示,当质点运动时,它的坐标是时间的函数 x=X(t)y=Y(t)z=Z(t) 这就是质点的运动方程。 质点的位置也可用从坐标原点O指向质点P(x、y、z)的有向线段来表示。如图2-1-1所示, 也是描述质点在空间中位置的物理量。的长度为质点到原点之间的距离,的方向由余弦、、决定,它们之间满足 当质点运动时,其位矢的大小和方向也随时间而变,可表示为=(t)。在直角坐标系中,设 分别为、、沿方向、、和单位矢量,则可表示为 位矢与坐标原点的选择有关。 研究质点的运动,不仅要知道它的位置,还必须知道它的位置的变化情况,如果质点从空间一点运动到另一点,相应的位矢由1变到2,其改变量为 称为质点的位移,如图2-1-2所示,位移是矢量,它是从初始位置指向终止位置的一个有向线段。它描写在一定时间内质点位置变动的大小和方向。它与坐标原点的选择无关。 2.1.3、速度 平均速度质点在一段时间内通过的位移和所用的时间之比叫做这段时间内的平均速度 平均速度是矢量,其方向为与的方向相同。平均速度的大小,与所取的时间间隔有关,因此须指明是哪一段时间(或哪一段位移)的平均速度。 瞬时速度当为无限小量,即趋于零时,成为t时刻的瞬时速度,简称速度 瞬时速度是矢量,其方向在轨迹的切线方向。 瞬时速度的大小称为速率。速率是标量。 2.1.4、加速度 平均加速度质点在时间内,速度变化量为,则与的比值为这段时间内的平均加速度

高中物理竞赛试题及答案

高中物理竞赛模拟试卷(一) 说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150 分,考试时间 120 分钟. 第Ⅰ卷(选择题 共 40 分) 一、本题共 10 小题,每小题 4 分,共 40 分,在每小题给出的 4 个选项中,有的小题只有一个选项正确,有的小题有多个选项正确,全部选对的得 4 分,选不全的得 2 分,有错选或不答的得 0 分. 1.置于水平面的支架上吊着一只装满细砂的漏斗,让漏斗左、右摆动,于是桌面上漏下许多砂子,经过一段时间形成一砂堆,砂堆的纵剖面最接近下图Ⅰ-1中的哪一种形状 2.如图Ⅰ-2所示,甲乙两物体在同一光滑水平轨道上相向运动,乙上连有一段轻弹簧,甲乙相互作用过程中无机械能损失,下列说法正确的有 A.若甲的初速度比乙大,则甲的速度后减到 0 B.若甲的初动量比乙大,则甲的速度后减到0 C.若甲的初动能比乙大,则甲的速度后减到0 D.若甲的质量比乙大,则甲的速度后减到0 3.特技演员从高处跳下,要求落地时必须脚先着地,为尽量保证安全,他落地时最好是采用哪种方法 A.让脚尖先着地,且着地瞬间同时下蹲 B.让整个脚板着地,且着地瞬间同时下蹲 C.让整个脚板着地,且着地瞬间不下蹲 D.让脚跟先着地,且着地瞬间同时下蹲 4.动物园的水平地面上放着一只质量为M 的笼子,笼内有一只质量为 m 的猴子.当猴以某一加速度沿竖直柱子加速向上爬时,笼子对地面的压力为F 1;当猴以同样大小的加速度沿竖直柱子加速下滑时,笼子对地面的压力为 F 2(如图Ⅰ-3),关于 F 1 和 F 2 的大小,下列判断中正确的是 A.F 1 = F 2>(M + m )g B.F 1>(M + m )g ,F 2<(M + m )g C.F 1>F 2>(M + m )g D.F 1<(M + m )g ,F 2>(M + m )g 5.下列说法中正确的是 A.布朗运动与分子的运动无关 B.分子力做正功时,分子间距离一定减小 C.在环绕地球运行的空间实验室里不能观察热传递的对流现象 D.通过热传递可以使热转变为功 6.如图Ⅰ-4所示,虚线a 、b 、c 代表电场中的三个等势面,相邻等势面之 图Ⅰ -3 图Ⅰ -4 图Ⅰ-2

高中物理竞赛经典方法 7对称法

七、对称法 方法简介 由于物质世界存在某些对称性,使得物理学理论也具有相应的对称性,从而使对称现象普遍存在于各种物理现象和物理规律中。应用这种对称性它不仅能帮助我们认识和探索物质世界的某些基本规律,而且也能帮助我们去求解某些具体的物理问题,这种思维方法在物理学中称为对称法。利用对称法分析解决物理问题,可以避免复杂的数学演算和推导,直接抓住问题的实质,出奇制胜,快速简便地求解问题。 赛题精析 例1:沿水平方向向一堵竖直光滑的墙壁抛出一个弹性小球A ,抛出点离水平地面的高度为h ,距离墙壁的水平距离为s ,小球与墙壁发生弹性碰撞后,落在水平地面上,落地点距墙壁的水平距离为2s ,如图7—1所示。求小球抛出时的初速度。 解析:因小球与墙壁发生弹性碰撞,故与墙壁碰撞前后入射速度与反射速度具有对称性,碰撞后小球的运动轨迹与无墙壁阻挡时小球继续前进的轨迹相对称,如图7—1—甲所示,所以小球的运动可以转换为平抛运动处理,效果上相当于小球从A ′点水平抛出所做的运动。 根据平抛运动的规律:02x v t 1y gt 2 =???=?? 因为抛出点到落地点的距离为3s ,抛出点的高度为h ,代入后可解得: v 0 = 3s 例2:如图7—2所示,在水平面上,有两个竖直光滑墙壁A 和B ,间距

为d ,一个小球以初速度v 0从两墙正中间的O 点斜向上抛出,与A 和B 各发生一次碰撞后正好落回抛出点O ,求小球的抛射角θ。 解析:小球的运动是斜上抛和斜下抛等三段运动组成,若按顺序求解则相当复杂,如果视墙为一平面镜,将球与墙的弹性碰撞等效为对平面镜的物、像移动,可利用物像对称的规律及斜抛规律求解。 物体跟墙A 碰撞前后的运动相当于从O ′点开始的斜上抛运动,与B 墙碰后落于O 点相当于落到O ″点,其中O 、O ′关于A 墙对称,O 、O ″对于B 墙对称,如图7—2—甲所示,于是有: 02 0x v cos t 1y v sin t gt 2 =θ??? ?=θ?-??,落地时x 2d y 0=??=? 代入可解得:sin2θ = 20 2gd v 所以,抛射角θ =1 2 arcsin 20 2gd v 例3:A 、B 、C 三只猎犬站立的位置构成一个边长为a 的正三角形,每只猎犬追捕猎物的速度均为v ,A 犬想追捕B 犬,B 犬想追捕C 犬,C 犬想追捕A 犬,为追捕到猎物,猎犬不断调整方向,速度方向始终“盯”住对方,它们同时起动,经多长时间可捕捉到猎物? 解析:以地面为参考系,三只猎犬运动轨迹都是一条复杂的曲线,但根据对称性,三只猎犬最后相交于三角形的中心点,在追捕过程中,三只猎犬的位置构成三角形的形状不变,以绕点旋转的参考系来描述,可认为三角形不转动,而是三个顶点向中心靠近,所以只要求出顶点到中心运动的时间即可。 由题意作图7—3 ,设顶点到中心的距离为s ,则由已知条件得: 由运动合成与分解的知识可知,在旋转的参考系中顶点向中心运动的速度为: v ′= vcos30° =

高中物理竞赛(解题方法:整体法)

高中奥林匹克物理竞赛解题方法 、整体法 方法简介 整体是以物体系统为研究对象,从整体或全过程去把握物理现象的本质和规律,是一种把具 有相互联系、相互依赖、相互制约、相互作用的多个物体,多个状态,或者多个物理变化过程组合 作为一个融洽加以研究的思维形式。整体思维是一种综合思维,也可以说是一种综合思维,也是多 种思维的高度综合,层次深、理论性强、运用价值高。因此在物理研究与学习中善于运用整体研究 分析、处理和解决问题,一方面表现为知识的综合贯通,另一方面表现为思维的有机组合。灵活运 用整体思维可以产生不同凡响的效果,显现“变”的魅力, 把物理问题变繁为简、变难为易。 赛题精讲 例1如图1—1所示,人和车的质量分别为m和M,人用水 平力F拉绳子,图中两端绳子均处于水平方向,不计滑轮质量及摩 擦,若人和车保持相对静止,且水平地面是光滑的,则车的加速度为 ________________________________________________ . 解析:要求车的加速度,似乎需将车隔离出来才能求解,事实 上,人和车保持相对静止,即人和车有相同的加速度,所以可将人和车看做一个整体,对整体用 牛顿第二定律求解即可 将人和车整体作为研究对象,整体受到重力、水平面的支持力和两条绳的拉力 向重力与支持力平衡,水平方向绳的拉力为2F,所以有: 2F=(M+m)a,解得: 2F a M m 例2用轻质细线把两个质量未知的小球悬挂起来,如图 1 —2所示,今对小球a持续施加一个向左偏下30°的恒力,并对小球b持续施加一个向右 偏上30°的同样大小的恒力,最后达到平衡,表示平衡状态的图可能是 ?在竖直方解析

高中物理竞赛运动的合成与分解相对运动

高中物理竞赛——运动的合成与分解、相对运动 (一)知识点点拨 (1)力的独立性原理:各分力作用互不影响,单独起作用。 (2)运动的独立性原理:分运动之间互不影响,彼此之间满足自己的运动规律 (3)力的合成分解:遵循平行四边形定则,方法有正交分解,解直角三角形等 (4)运动的合成分解:矢量合成分解的规律方法适用 A.位移的合成分解 B.速度的合成分解 C.加速度的合成分解 参考系的转换:动参考系,静参考系 相对运动:动点相对于动参考系的运动 绝对运动:动点相对于静参考系统(通常指固定于地面的参 考系)的运动 牵连运动:动参考系相对于静参考系的运动 (5)位移合成定理:S A对地=S A对B +S B对地 速度合成定理:V 绝对=V 相对 +V 牵连 加速度合成定理:a 绝对=a 相对 +a 牵连 (二)典型例题 (1)火车在雨中以30m/s的速度向南行驶,雨滴被风吹向南方,在地球上静止的观察者测得雨滴的径迹与竖直方向成21。角,而坐在火车里乘客看到雨滴的径迹恰好竖直方向。求解雨滴相对于地的运动。 提示:矢量关系入图 答案:83.7m/s (2)某人手拿一只停表,上了一次固定楼梯,又以不同方式上了两趟自动扶梯,为什么他可以根据测得的数据来计算自动扶梯的台阶数? 提示:V人对梯=n1/t1 V梯对地=n/t2 V人对地=n/t3 V人对地= V人对梯+ V梯对地 答案:n=t 2t 3 n 1 /(t 2 -t 3 )t 1 (3)某人驾船从河岸A处出发横渡,如果使船头保持跟河 岸垂直的方向航行,则经10min后到达正对岸下游120m的C 处,如果他使船逆向上游,保持跟河岸成а角的方向航行, 则经过12.5min恰好到达正对岸的B处,求河的宽度。 提示:120=V水*600 D=V船*600 答案:200m (4)一船在河的正中航行,河宽l=100m,流速u=5m/s,并在距船s=150m 的下游形成瀑布,为了使小船靠岸时,不至于被冲进瀑布中,船对水的最小速度为多少? 提示:如图船航行 答案:1.58m/s

高中物理竞赛解题方法之降维法例题

十三、降维法 方法简介 降维法是将一个三维图变成几个二维图,即应选两个合适的平面去观察,当遇到一个空间受力问题时,将物体受到的力分解到两个不同平面上再求解。由于三维问题不好想像,选取适当的角度,可用降维法求解。降维的优点是把不易观察的空间物理量的关系在二维图中表示出来,使我们很容易找到各物理量之间的关系,从而正确解决问题。 赛题精讲 例1:如图13—1所示,倾角θ=30°的粗糙斜面上放一物体,物体重为G ,静止在斜面上。现用与斜面底边平行的力F=G/2推该物体,物体恰好在斜面内做匀速直线运动,则物体与斜面间的动摩擦因数μ等于多少?物体匀速运动的方向如何? 解析:物体在重力、推力、斜面给的支持力和摩擦力四个力的作用下做匀速直线运动,所以受力平衡。但这四个力不在同一平面内,不容易看出它们之间的关系。我们把这些力分解在两个平面内,就可以将空间问题变为平面问题,使问题得到解决。 将重力沿斜面、垂直于斜面分解。我们从上面、侧面观察,图13—1—甲、图13—1—乙所示。 如图13—1—甲所示,推力F 与重力沿斜面的分力G 1的合力F ′为: G G F F 2 22 12 = += ' F ′的方向沿斜面向下与推力成α角, 则 ?=∴== 451 tan 1ααF G 这就是物体做匀速运动的方向 物体受到的滑动摩擦力与F ′平衡,即 2/2G F f = '= 所以摩擦因数:3 630cos 2/2=? ==G G F f N μ 例2:如图13—2所示,一个直径为D 的圆柱体,其侧面刻有螺距为h 的光滑的螺旋形凹槽,槽内有一小球,为使小球能自由下落,必须要以多大的加速度来拉缠在圆柱体侧面的绳子? 解析:将圆柱体的侧面等距螺旋形凹槽展开成为平面上的斜槽,如图13—2—甲所示,当圆柱体转一周,相当于沿斜槽下降一个螺距h ,当圆柱转n 周时,外侧面上一共移动的

高中物理竞赛辅导讲义 第 篇 运动学

高中物理竞赛辅导讲义 第2篇 运动学 【知识梳理】 一、匀变速直线运动 二、运动的合成与分解 运动的合成包括位移、速度和加速度的合成,遵从矢量合成法则(平行四边形法则或三角形法则)。 我们一般把质点对地或对地面上静止物体的运动称为绝对运动,质点对运动参考照系的运动称为相对运动,而运动参照系对地的运动称为牵连运动。以速度为例,这三种速度分别称为绝对速度、相对速度、牵连速度,则 v 绝对 = v 相对 + v 牵连 或 v 甲对乙 = v 甲对丙 + v 丙对乙 位移、加速度之间也存在类似关系。 三、物系相关速度 正确分析物体(质点)的运动,除可以用运动的合成知识外,还可充分利用物系相关速度之间的关系简捷求解。以下三个结论在实际解题中十分有用。 1.刚性杆、绳上各点在同一时刻具有相同的沿杆、绳的分速度(速度投影定理)。 2.接触物系在接触面法线方向的分速度相同,切向分速度在无相对滑动时亦相同。 3.线状交叉物系交叉点的速度,是相交物系双方运动速度沿双方切向分解后,在对方切向运动分速度的矢量和。 四、抛体运动: 1.平抛运动。 2.斜抛运动。 五、圆周运动: 1.匀速圆周运动。 2.变速圆周运动: 线速度的大小在不断改变的圆周运动叫变速圆周运动,它的角速度方向不变,大小在不断改变,它的加速度为a = a n + a τ,其中a n 为法向加速度,大小为2 n v a r =,方向指向圆心;a τ为切向加速度,大小为0lim t v a t τ?→?=?,方向指向切线方向。 六、一般的曲线运动 一般的曲线运动可以分为很多小段,每小段都可以看做圆 周运动的一部分。在分析质点经过曲线上某位置的运动时,可 以采用圆周运动的分析方法来处理。对于一般的曲线运动,向心加速度为2n v a ρ =,ρ为点所在曲线处的曲率半径。 七、刚体的平动和绕定轴的转动 1.刚体 所谓刚体指在外力作用下,大小、形状等都保持不变的物体或组成物体的所有质点之间的距离始终保持不变。刚体的基本运动包括刚体的平动和刚体绕定轴的转动。刚体的任

2017第34届全国中学生物理竞赛复赛理论考试试题和答案

2017第34届全国中学生物理竞赛复赛理论考试试题和答案

第34届全国中学生物理竞赛复赛理论考试试题解答 2017年9月16日 一、(40分)一个半径为r 、质量为m 的均质实心小圆柱被置于一个半径为R 、质量为M 的薄圆筒中,圆筒和小圆柱的中心轴均水平,横截面如图所示。重力加速度大小为 g 。试在下述两种情形下,求小圆柱质心在其平衡位置附近做微振动的频率: (1)圆筒固定,小圆柱在圆筒内底部附近作无滑滚动; (2)圆筒可绕其固定的光滑中心细轴转动,小圆柱仍在圆筒内底部附近作无滑滚动。 解: (1)如图,θ为在某时刻小圆柱质心在其横截面上到圆筒中心轴的垂线与竖直方向的夹角。小圆柱受三个力作用:重力,圆筒对小圆柱的支持力和静摩擦力。设圆筒对小圆柱的静摩擦 力大小为F ,方向沿两圆柱切点的 切线方向(向右为正)。考虑小圆柱质心的运动,由质心运动定理得 sin F mg ma θ-= ① R θ θ1 R

式中,a 是小圆柱质心运动的加速度。由于小圆柱与圆筒间作无滑滚动,小圆柱绕其中心轴转过的角度1 θ(规定小圆柱在最低点时1 0θ=)与θ之间的关系为 1 ()R r θθθ=+ ② 由②式得,a 与θ的关系为 22 12 2 ()d d a r R r dt dt θθ==- ③ 考虑小圆柱绕其自身轴的转动,由转动定理得 212 d rF I dt θ-= ④ 式中,I 是小圆柱绕其自身轴的转动惯量 2 12 I mr = ⑤ 由①②③④⑤式及小角近似 sin θθ≈ ⑥ 得 22 203() θθ+=-d g dt R r ⑦ 由⑦式知,小圆柱质心在其平衡位置附近的微振动是简谐振动,其振动频率为 1π6()g f R r =- ⑧ (2)用F 表示小圆柱与圆筒之间的静摩擦力的大小,1 θ和2 θ分别为小圆柱与圆筒转过的角度(规定

高中物理竞赛内容标准

高中物理竞赛内容标准 一、理论基础 力学 物理必修1 本模块是高中物理的第一模块。在本模块中学生,学生将进一步学习物理学的内容和研究方法,了解物理学的思想和研究方法,了解物理学在技术上的应用和物理学对社会的影响。 本模块的概念和规律是进一步学习物理的基础,有关实验在高中物理中具有基础性和典型性。要通过这些实验学习基本的操作技能,体验实验在物理学中的地位及实践人类在认识世界中的作用。 本模块划分两个四主题: ·运动的描述 ·相互作用与运动规律 ·抛体运动与圆周运动 ·经典力学的成就与局限性 (一)运动的描述 1.内容标准 (1)通过史实,初步了解近代实验科学产生的背景,认识实验对物理学发展的推动作用。 例1 了解亚里士多德、迪卡尔等关于力与运动的主要观点与研究方法。 例2 了解伽利略的实验研究工作,认识伽利略有关实验的科学思想和方法。 (2)通过对质点的认识,了解物理学中物理模型特点,体会物理模型在探索自然规律中的作用。 例3 在日常生活中,物体在哪些情况下可以看做质点? (3)经历匀变速直线运动的实验过程,理解参考糸、位移、时间、时刻、路程、速度、相对速度、加速度的概念及物理量的标矢性,掌握匀变速直线运动的规律,体会实验在发现自然运动规律中作用。 例4 用实验方法和图像方法研究物体的运动。

例5 通过实例描述物体的变速运动,运动的矢量性。 例6 通过史实及实验研究自由落体运动。 (4)能用公式和图像描述匀变速直线运动,掌握微元法,积分法等数学思想在研究物理问题中的重要性。 (5)对过位移、速度、加速度的学习,理解矢量与标量在物理学中重要性。掌握矢量的合成和分解。 例7 通过实例研究物体竖直上抛运动,体会物体在共线条件下的矢量合成与分解。 2.活动建议 (1)通过研究汽车的运行来分析交通事故的原因。 (2)通过实验研究自由落体运动的影响因素。 (3)通过查阅物理学史,了解并讨论伽利略对物体运动的研究在科学发展和人类进步上的重大意义。 (二)相互作用与运动规律 1.内容标准 (1)知道常见的形变,通过实验了解物体的弹性,知道胡克定律。 例1 调查在日常生活和生产中所用弹簧的形状及使用目的。 例2 制作弹簧秤并用胡克定律解释。 (2)通过实验认识滑动摩擦、静摩擦的规律,理解静摩擦力、滑动摩擦力、摩擦角的概念。能用动摩擦因数计算滑动摩擦力。 例3 设计实验测量摩擦力。体会摩擦力与摩擦角的实际意义。 (3)通过实验,理解力的合成与分解,掌握共点的平衡条件,物体平衡的种类。用力的合成与分解分析日常生活中的问题。 例4 通过实验,研究两个共点力在不同夹角时与合力的关系。 例5 调查日常生活和生产中平衡的类型,分析平衡原理。

高中物理竞赛 解题 方法

高中奥林匹克物理竞赛解题方法 五、极限法 方法简介 极限法是把某个物理量推向极端,即极大和极小或极左和极右,并依此做出科学的推理分析,从而给出判断或导出一般结论。极限法在进行某些物理过程的分析时,具有独特作用,恰当应用极限法能提高解题效率,使问题化难为易,化繁为简,思路灵活,判断准确。因此要求解题者,不仅具有严谨的逻辑推理能力,而且具有丰富的想象能力,从而得到事半功倍的效果。 赛题精讲 例1:如图5—1所示, 一个质量为m 的小球位于一质量可忽略的直立 弹簧上方h 高度处,该小球从静止开始落向弹簧,设弹簧的劲度 系数为k ,则物块可能获得的最大动能为 。 解析:球跟弹簧接触后,先做变加速运动,后做变减速运动,据此推理, 小球所受合力为零的位置速度、动能最大。所以速最大时有 mg =kx ① 图5—1 由机械能守恒有 22 1)(kx E x h mg k +=+ ② 联立①②式解得 k g m m g h E k 2 221?-= 例2:如图5—2所示,倾角为α的斜面上方有一点O ,在O 点放一至 斜面的光滑直轨道,要求一质点从O 点沿直轨道到达斜面P 点 的时间最短。求该直轨道与竖直方向的夹角β。 解析:质点沿OP 做匀加速直线运动,运动的时间t 应该与β角有关, 求时间t 对于β角的函数的极值即可。 由牛顿运动定律可知,质点沿光滑轨道下滑的加速度为 βcos g a = 该质点沿轨道由静止滑到斜面所用的时间为t ,则 OP at =22 1 所以β cos 2g OP t = ① 由图可知,在△OPC 中有 图5—2

) 90sin()90sin(βαα-+=- OC OP 所以) cos(cos βαα-=OC OP ② 将②式代入①式得 g OC g OC t )]2cos([cos cos 4)cos(cos cos 2βαααβαβα-+=-= 显然,当2,1)2cos(αββα= =-即时,上式有最小值. 所以当2α β=时,质点沿直轨道滑到斜面所用的时间最短。 此题也可以用作图法求解。 例3:从底角为θ的斜面顶端,以初速度0υ水平抛出一小球,不计 空气阻力,若斜面足够长,如图5—3所示,则小球抛出后, 离开斜面的最大距离H 为多少? 解析:当物体的速度方向与斜面平行时,物体离斜面最远。 以水平向右为x 轴正方向,竖直向下为y 轴正方向, 则由:gt v v y ==θtan 0,解得运动时间为θtan 0g v t = 该点的坐标为 θθ2202200tan 221tan g v gt y g v t v x ==== 由几何关系得:θθtan cos /x y H =+ 解得小球离开斜面的最大距离为 θθsin tan 220?=g v H 。 这道题若以沿斜面方向和垂直于斜面方向建立坐标轴,求解则更加简便。 例4:如图5—4所示,一水枪需将水射到离喷口的水平距离为3.0m 的墙外, 从喷口算起, 墙高为4.0m 。 若不计空气阻力,取 2/10s m g =,求所需的最小初速及对应的发射仰角。 解析:水流做斜上抛运动,以喷口O 为原点建立如图所示的 直角坐标,本题的任务就是水流能通过点A (d 、h )的最小初速度和发射仰角。 图5— 3 图5—4

高一物理竞赛讲义第3讲.教师版

第3讲运动的关联 温馨寄语 前面我们讨论了物理量以及物理量之间的关系,尤其是变化率变化量的关系。我们还学习了非常牛的几个方法:相对运动法,微元法,图像法。 然而,物理抽象思想除了物理量之外,还有一大块就是模型,而各种模型都有自己的一些特点,根据这些特点,决定了这些模型的运动学性质。探究这些性质就成了我们今天的主要任务。 知识点睛 一、分速度和合速度 首先速度作为矢量是可以合成和分解的。但是同样的作为矢量,速度的合成和分解,和力这个矢量有一点不同。这个不同在于,两个作用在同一个物体上的力,可以直接合成。但是同一个物体,已经知道在两个方向上的速度,最后的总速度,并不一定是这两个速度的矢量和。 (CPhO选讲)例如: (这里面速度是通过两个速度各自从矢量末端做垂线相交得到的) 第二个原则就是:合速度=真实的这个物体的运动速度矢量。

这里力和速度的区别是:我们看到的多个力,不见得是“合力”在各个方向上的投影;但是我们看到的多个速度,就是“合速度”在各个方向上的分速度。所以,当且仅当两个分速度相互垂直的时候,合速度等于两个分速度的矢量和。 这个东西大家可以这样想。遛狗的时候,每个狗的力是作用在一起的,所以遛狗越多,需要的力越大。但是每个狗都有个速度,最后遛狗人的速度和狗的速度大小还是差不多的,不会因为遛狗个数越多就速度越快…… 二、体现关联关系的模型 1.绳(杆)两端运动的关联:实际运动时合运动,由伸缩运动与旋转运动合成。 实际运动=旋转运动+伸缩运动 【例】吊苹果逗小孩儿有两种逗法,一种是伸缩,一种是摆动。 不难总结: 一段不可伸长的细绳伸缩运动速度相等——沿绳(杆)速度相等,转速无论多大不可改变绳子长度。 2.叠加运动的关联 先举个例子:如图的定滑轮,两边重物都在竖直运动,并且滑轮也在竖直运动,设两边重物位移分别沃为x 1x 2,轮中心的位移为x 。 不难由绳子长度不变得位移关系: 12 2x x x += 对应的必然有速度关系: 12 2v v v += 加速度关系: 12 2 a a a += 我们用运动关联的目的是为了使未知量变少。 物理学中非常重要的思想就是把现实中的物体抽象成为理想的模型,然后用物理原理以及模型对应的牵连关系来解决问题.常见的模型有杆,绳,斜面,等等. 3.轻杆 杆两端,沿着杆方向的速度相同\ 4.轻绳 绳子的两端也是沿着绳子的方向速度相同\.绳子中的力是可以突变的,突变的条件是剪断或者是突然绷紧等等. 5.斜面

全国中学生物理竞赛模拟题

2014年高中物理竞赛复赛模拟训练卷 一.(20分)在用质子 ) (1 1 P 轰击固定锂 ) (7 3 Li 靶的核反应中,(1)计算放出α粒子的反应能。(2) 如果质子能量为1兆电子伏特,问在垂直质子束的方向观测到α粒子的能量大约有多大? 有关原子核的质量如下: H 1 1,1.007825; He 4 2,4.002603; Li 7 3,7.015999。 二.(20分)2mol初始温度为270C,初始体积为20L的氦气,先等压膨胀到体积加倍,然后是绝热膨胀回到初始温度。(1)在P—V图上画出过程方程;(2)在这一过程中系统总吸收热量等于多少?(3)氦气对外界做的总功等于多少?其中绝热膨胀过程对外界做功是多少?

三.(15分)观测者S测得两个事件的空间和时间间隔分别为600m和8×10-7s,而观测者S1测得这两个事件同时发生。试求S1相对S的速度,以及S1测得这两个事件的空间距离。

四.(20分)神奇的自聚焦透镜:自聚焦透镜依靠折射率的恰当变化对近轴光线成像。该透镜呈圆柱状,截面半径为R,长为l。其折射率在截面内延半径方向呈抛物线状连续变小,可表示为

)2 11(22202r a n n r -= 式中n 0为中心的折射率,a 为比1小得多的正数。 (1) 求从圆心入射与圆柱平面夹角为0θ的光线在自聚焦透镜内传播的轨迹方程。 (2) 平行于z 轴的平行入射光经过自聚焦透镜后交汇于一点,求自聚焦透镜的焦距。 五.(20分)如图所示,有二平行金属导轨,相距l ,位于同一水平面内(图中纸面),处在磁感应强度为B 的匀强磁场中,磁场方向竖直向下(垂直纸面向里).质量均为m 的两金属杆ab 和cd 放

高中奥林匹克物理竞赛解题方法

高中奥林匹克物理竞赛解题方法 一、整体法 方法简介 整体是以物体系统为研究对象,从整体或全过程去把握物理现象的本质和规律,是一种把具有相互联系、相互依赖、相互制约、相互作用的多个物体,多个状态,或者多个物理变化过程组合作为一个融洽加以研究的思维形式。整体思维是一种综合思维,也可以说是一种综合思维,也是多种思维的高度综合,层次深、理论性强、运用价值高。因此在物理研究与学习中善于运用整体研究分析、处理和解决问题,一方面表现为知识的综合贯通,另一方面表现为思维的有机组合。灵活运用整体思维可以产生不同凡响的效果,显现“变”的魅力,把物理问题变繁为简、变难为易。 赛题精讲 例1:如图1—1所示,人和车的质量分别为m 和M , 人用水平力F 拉绳子,图中两端绳子均处于水平方向, 不计滑轮质量及摩擦,若人和车保持相对静止,且 水平地面是光滑的,则车的加速度为 . 解析:要求车的加速度,似乎需将车隔离出来才 能求解,事实上,人和车保持相对静止,即人和车有相同的加速度,所以可将人和车看做一个整体,对整体用牛顿第二定律求解即可. 将人和车整体作为研究对象,整体受到重力、水平面的支持力和两条绳的拉力.在竖直方向重力与支持力平衡,水平方向绳的拉力为2F ,所以有: 2F=(M+m)a ,解得: m M F a +=2 例2 用轻质细线把两个质量未知的小球悬挂起来,如图 1—2所示,今对小球a 持续施加一个向左偏下30°的恒力,并 对小球b 持续施加一个向右偏上30°的同样大 小的恒力,最后达到平衡,表示平衡状态的图可能是 ( )

解析表示平衡状态的图是哪一个,关键是要求出两条轻质细绳对小球a和小球b的拉力的方向,只要拉力方向求出后,。图就确定了。 先以小球a、b及连线组成的系统为研究对象,系统共受五个力的作用,即两个重力(m a+m b)g,作用在两个小球上的恒力F a、F b和上端细线对系统的拉力T1.因为系统处于平衡状态,所受合力必为零,由于F a、F b大小相等,方向相反,可以抵消,而(m a+m b)g的方向竖直向下,所以悬线对系统的拉力T1的方向必然竖直向上.再以b球为研究对象,b球在重力m b g、恒力F b和连线拉力T2三个力的作用下处于平衡状态,已知恒力向右偏上30°,重力竖直向下,所以平衡时连线拉力T2的方向必与恒力F b和重力m b g的合力方向相反,如图所示,故应选A. 例3有一个直角架AOB,OA水平放置,表面粗糙,OB竖直向下,表面光滑,OA上套有小环P,OB上套有小环Q,两个环的质量均为m,两环间由一根质量可忽略、不何伸长的细绳相连,并在某一位置平衡,如图1—4所示.现将P环向左移动一段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态相比,OA杆对P环的支持力N和细绳上的拉力T的变化情况是()A.N不变,T变大B.N不变,T变小 C.N变大,T变小D.N变大,T变大 解析先把P、Q看成一个整体,受力如图1—4—甲所示, 则绳对两环的拉力为内力,不必考虑,又因OB杆光滑,则杆在 竖直方向上对Q无力的作用,所以整体在竖直方向上只受重力和 OA杆对它的支持力,所以N不变,始终等于P、Q的重力之和。 再以Q为研究对象,因OB杆光滑,所以细绳拉力的竖直分量等 于Q环的重力,当P环向左移动一段距离后,发现细绳和竖直方向 夹角a变小,所以在细绳拉力的竖直分量不变的情况下,拉力T应变小.由以上分析可知应选B. 例4 如图1—5所示,质量为M的劈块, 其左右劈面的倾角分别为θ1=30°、θ2=45°, 质量分别为m1=3kg和m2=的两物块, 同时分别从左右劈面的顶端从静止开始下滑,

相关文档
最新文档