函数证明问题专题训练

函数证明问题专题训练
函数证明问题专题训练

函数证明问题专题训练

⑴.代数论证问题

⑴.关于函数性质的论证

⑵.证明不等式

6.已知函数()f x 的定义域为R ,其导数()f x '满足0<()f x '<1.设a 是方程()f x =x 的根.

(Ⅰ)当x >a 时,求证:()f x <x ;

(Ⅱ)求证:|1()f x -2()f x |<|x 1-x 2|(x 1,x 2∈R ,x 1≠x 2);

(Ⅲ)试举一个定义域为R 的函数()f x ,满足0<()f x '<1,且()f x '不为常数. 解:(Ⅰ)令g (x )=f (x ) -x ,则g`(x )=f `(x ) -1<0.故g (x )为减函数,又因为g (a )=f(a )-a =0,所以当x >a 时,g (x )<g (a )=0,所以f (x ) -x <0,即()f x

(Ⅱ)不妨设x 1<x 2,由(Ⅰ)知g (x )为减函数,所以 g (x 2)<g (x 1),即f (x 2)-x 2<f (x 1)-x 1,所以 f (x 2)-f (x 1)<x 2-x 1;又因为`()f x >0,所以()f x 为增函数,所以0<f (x 2)-f (x 1)<x 2-x 1,所以|1()f x -2()f x |<|x 1-x 2|.

(Ⅲ)本小题没有统一的答案,满足题设条件的函数有无穷多个.如f (x )=11sin 2

4

x x +

1.设函数

)

(x f 的定义域为R,对任意实数βα,有

()()2(

)(

)2

2

f f f f αβ

αβ

αβ+-+=,且1()3

2

f π=,0)2

(=πf .

⑴.求证:)()()(x f x f x f --==-π

⑵.若02

x π

≤<

时,0)(>x f ,求证: )(x f 在],0[π上单调递减;

2.已知函数()f x 的定义域为R ,其导数()f x '满足0<()f x '<1.设a 是方程

()f x =x

的根.

⑴.当x >a 时,求证:()f x <x ;

⑵.求证:|1()f x -2()f x |<|x 1-x 2|(x 1,x 2∈R ,x 1≠x 2);

⑶.试举一个定义域为R 的函数()f x ,满足0<()f x '<1,且()f x '不为

常数.

解:⑴.令g (x )=f (x ) -x ,则g`(x )=f `(x ) -1<0.故g (x )为减函数,又g (a )=f(a )-a =0,故当x >a 时,g (x )<g (a )=0,故f (x ) -x <0,即()f x x <. ⑵.不妨设x 1<x 2,由⑴知g (x )为减函数,故g (x 2)<g (x 1),即f (x 2)-x 2<f (x 1)-x 1,故 f (x 2)-f (x 1)<x 2-x 1;又`()f x >0,故()f x 为增函数,故0<f (x 2)-f (x 1)<x 2-x 1,故|1()f x -2()f x |<|x 1-x 2|.

⑶.本小题没有统一的答案,满足题设条件的函数有无穷多个.如

11

()sin 24

f x x x =

+.

3.已知直线10x y --=为曲线()log a f x x b =+在点(1(1))f ,处的一条切线.

⑴.求a ,b 的值; ⑵.若函数()y f x =

的图象1C 与函数()n

g x mx x

=+

(n >0)的图象2C 交于

11()P x y ,,22()Q x y ,两点,其中1x <2x ,过

PQ 的中点R 作x 轴的垂线分别交1C ,

2C 于点M 、N ,设C 1在点M 处的切线的斜率为1k ,C 2在点N 处的切线的斜率为2k ,求证:1k <2k .

解:⑴.直线10x y --=的斜率为1,且过(10),点,又1

()ln f x x a '=,故1

1ln log 10

a a

b ?=???+=?,故e 0a b ==,; ⑵.

PQ

的中点为

1212

(

)()ln 22x x y y f x x ++=,,,故1212

122(ln )x x x k x x x +='==

+,12

12222

1222()()()2

x x x x x x n

n n

k mx m m x x ++===+=-=-

,由210x x >>,故21212()2x x x x +>,则212

n k m x x >-

,则212122112()()()n x x x x k m x x x x -->--

2121()n n

mx mx x x =+-+21y y =-21ln ln x x =-2

1ln x x =,又

2211

211

212

12(1)

2()()1x

x x x x x k x x x ---==++

, 法一:令2(1)()ln 1t r t t t

-=-+,21x t x =>1,则2

2

2

14(1)()(1)(1)t r t t t t t -'=-=++,因t >1时,()

r t '

>0,故()r t 在[1)+∞,上单调递增,故()r t >(1)0r =,则2k >1k .

法二:令()(1)ln 2(1)r t t t t =+--,21

x t x =>1,1

()ln 1r t t t '=+-则,因2

21111

(ln )t t t t t

t

-'+=-=

,故t >1时,1(ln )0t t

'+>,故1ln t t

+在[1)+∞,上单调递增,从而1ln 1t t

+->0,

即()0r t '>,于是)(t r 在[1)+∞,上单调递增,故()r t >(1)0r =即(1)ln t t +>2(1)t -,

ln t >

2(1)

1

t t -+,则2k >1k . 4.函数)(x f 的定义域为R ,并满足以下条件:①对任意R x ∈,有0)(>x f ;②对任意x 、R y ∈,有y x f xy f )]([)(=;③1()13

f >则 ⑴.求)0(f 的值;

⑵.求证:)(x f 在R 上是单调增函数;

⑶.若0a b c >>>,且2b ac =,求证:()()2()f a f c f b +>.

解法一:⑴.令2,0==y x 得,2)]0([)0(f f =,故(0)0f >,则(0)1f =; ⑵.任取1x ,),(2+∞-∞∈x ,且21x x <.设112211,33

x p x p ==,则21p p <,

12()()f x f x -= 1

2

121111()()[()][()]3333

p p f p f p f f -=-,因1

()13f >,12p p <,故

12()()f x f x <,则()f x 在R 上是单调增函数;

⑶.由⑴⑵知,()(0)1f b f >=,又()1f b >,因()()[()]a

b c

f a f b f b b

=?=,

()()c

f c f b b

=?= [()]c

b f b

,故()()[()][()]a c

b b f a f

c f b f b +=+>

,而

2a c b +>==,

故f b >=,故()()2()fa

fc fb +>;

解法二:⑴.因对任意x ,y R ∈,有y x f xy f )]([)(=,故()(1)[(1)]x f x f x f =?=,故当0=x 时0)]1([)0(f f =,因任意x R ∈,0)(>x f ,故(0)1f =; ⑵.因1

()13

f >,311

(1)(3)[()]133

f f f =

?=>,故()[(1)]x f x f =是R

上单调增函数,

即)(x f 是R 上单调增函数;

⑶.c a c a f f f c f a f +>+=+)]1([2)]1([)]1([)()(,而2a c b +>==,故

2()f b >=,故()()2()f a f c f b +>.

5.定义在区间(0,)+∞上的函数()f x 满足:①.()f x 不恒为零;②.对任何实数x ,q 都有)()(x qf x f q =.

⑴.求证:方程()0f x =有且只有一个实根;

⑵.若1a b c >>>,且a ,b ,c 成等差数列,求证:2()()()f a f c f b ?<; ⑶.若()f x 单调递增,且0m n >>时,有|()||()|2|(

)|2

m n

f m f n f +==,求证:

32m <<

解:⑴.取1x =,2q =,有2(1)(2)f f =,即(1)0f =,故1为方程()0f x =的一个根,若存在另一个实根10≠x ,使得1()0f x ≠对任意的11((0,)x x ∈+∞都成立,且10(0)q x x q =≠,有10()()0f x qf x ==,因0()0f x =恒成立,1()0f x ≡,与体积矛盾,故()0f x =有且只有一个实根1x =;

⑵.因1a b c >>>,不妨设1

q a b =,2

q c b =,则10q >,20q >,故

1

2

()()()()q q f a f c f b f b ?= 212()q q f b =?,又2a c b +=,故2

2

()04

a c ac

b --=-<,故2a

c b <,故122q q b b +<,则10q <+ 22q <,故2

1221(

)12

q q q q +≤<,故2

()()()fafc f b <;

⑶.因(1)0f =,则()f x 在(0,)+∞上单调递增,当(0,1)x ∈时,()0f x <;当

(1,)x ∈+∞时,()0f x >,又|()||()|f m f n =,故()()f m f n =,()()f m f n =-,因0m n >>,故()f m =- ()f n ,令1q m b =,2q n b =,1b ≠且120q q ≠,则

12()()()()()0f m f n q q f b f mn +=+==,故1mn =.01n m <<<,因

2|()|2|(

)|2m n f m f +=且1m >,12m n +>=,又()f m = 2()2m n

f +,故2()[()]2m n f m f +=,则2

()2

m n m +=,即2242m m mn n =++,故24m m -- 22n =,

由01n <<得,20421m m <--<,因1m >,故32m <<

6.设函数2()f x ax bx c =++,,,a b c 都是正实数,且(1)1f =.

⑴.若0x >,证明:1()()1f x f x

≥;

⑵.若正实数1x ,2x ,3x 满足1231x x x =,证明:123()()()1f x f x f x ≥. 分析:22111()()()()f x f ax bx c a

b c x

x x =++++,利用基本不等式可以证明之;由1231x x x =可以得到三个数之间的关系,

分为都等于1和不都相等,若不全相等不妨设11x >,21x <,再利用第一问的结论进行证明. 证明:⑴.因

(1)1f =,故

1

a b c ++=,当0x >时,

22111

()()()()f x f ax bx c a b c x x x

=++++=

222222111

()()()()1a b c ab x bc x ca x a b c x x x

++++++++≥++=,当且仅当1x =时取得

等号.

⑵.①若1231x x x ===,则显然有123()()()1f x f x f x ≥.

②若1x ,2x ,3x 不全相等,则其中必有1i x >,1j x <,,{1,2,3}()i j i j ∈≠,不妨设11x >,21x <,因1231x x x =,故由⑴可知,123()()1f x x f x ≥,因,,a b c 为正实数,故任意取0x >有()()0f x f x >,故只需证1212()()()f x f x f x x ≥即可.因

22

121122()()()(f x f x ax bx c ax bx =+++

222222222121212121212)()()()c a x x b x x c ab x x x x bc x x ca x x +=++++++++,

12(1)()(f f x x a b =++

222222222221212121212121212)()()(1)(1)c ax x bx x c a x x b x x c ab x x x x bc x x ca x x ++=++++++++,故2222121212121212121212()()()(1)(1)(1)f x f x f x x abx x x x x x bc x x x x ca x x x x =+--++--++--=2212121212(1)(1)(1)(1)(1)(1)0abx x x x bc x x ca x x --+--+-->,故1212()()()f x f x f x x ≥,

又3()0f x >,故123123()()()()()1f x f x f x f x x f x >≥.

点评:代数证明是高考压轴题的热点,对学生要求很高.本题是函数与不等式,特别是与二次函数有关,新课程标准中对于二次函数和函数与方程要求都很高,因此与二次函数有关的题型应该是高考的热点,特别是压轴题的首选.

7.设函数()f x 的定义域为(0,)+∞,当(0,)x ∈+∞时,恒有[()]2f f x x =成立,且过()f x 图象上任意两点的直线的斜率都大于1,求证: ⑴.()f x 为增函数; ⑵.()f x x >; ⑶.4()3

3

2

f x x <

<. 证:⑴.设120x x <<,故1212

()()

10f x f x k x x -=

>>-,故12()()f x f x <,故()f x 为增

函数;

⑵.若存在0(0,)x ∈+∞,使00()f x x ≤,则

①当00()0f x x =>时,则00[()]()f f x f x =,即002x x =,故00x =与00x >矛盾; ②当00()f x x <时,由⑴知,()f x 为增函数,故00[()]()f f x f x <,即002x x <,故00x <,此时与00x >矛盾,故必有()f x x >. ⑶.由⑵得,()0f x x >>,故

[()]()

1()f f x f x f x x

->-,故[()]()()f f x f x f x x ->-,即

2()x f x -> ()f x x -,故

()3

2

f x x <,同理{[()]}[()][()]()f f f x f f x f f x f x ->-,即2()22f x x x ->- ()f x ,故4()3f x x >,故4()3

32

f x x <

<. 8.设()f x 定义在区间[0,1]上,(0)(1)0f f ==,且对任意a ,b [0,1]()a b ∈≠,

|()()|f a f b -< ||a b -.

⑴.求证:|()|min{,1}f x x x <-;

⑵.求证:对于任意,[0,1]x y ∈,1|()()|2

f x f y -<.

解:⑴.由已知可知,对任意的[0,1]x ∈,有|()||()(1)||1|1f x f x f x x =-<-=-,因此,对任意的[0,1]x ∈,有|()|min{,1}f x x x <-;

⑵.证:对于任意,[0,1]x y ∈,有1

|()()|2

f x f y -<.若1||2

x y -≤,则有

|()()||f x f y x -<- 1|2

y ≤;若1||2x y ->,假设112x <≤,1

02y ≤<,则|()|m i n

f x <

{,1}1x x x -=-,|()|f y < min{,1}y y y <-=,故|()()||()||()|f x f y f x f y -≤+ 111()2

x y x y =-+=--<

. 9.已知函数()f x 是在(0,)+∞上处处可导的函数,若'()()x f x f x ?>在0x >上恒成立.

⑴.求证:函数()

()f x g x x

=

在(0,)+∞上是增函数; ⑵.当120,0x x >>时,证明:1212()()()f x f x f x x +<+; ⑶.已知不等式ln(1)x x +<在1x >-且0x ≠时恒成立,求证:

22

2222111ln 2ln 3ln 4234

++ 2

*2

1ln(1)()(1)2(1)(2)

n n n N n n n ++

+>∈+++. 解:⑴.2'()()'()0f x x f x g x x -=>,故函数()()(0,)f x g x x

=+∞在上是增函数; ⑵.因()()f x g x x =

在(0,)+∞上是增函数,故112112

()()f x f x x x x x +<+,则111212()()x f x f x x x x <

?++,212212()()f x f x x x x x +<

+,则221212

()()x

f x f x x x x

121112()()n n f x x x f x x x x x +++<

+++,则1

11212()()n n

x f x f x x x x x x

+++

+,故

22()f x x <

1212()n n f x x x x x x ++++++,则2

21212()()n n

x f x f x x x x x x

+++

+,故

1212()n n f x x x x x x +++>+++

()n n f x x ,故1212()()n

n n n

x f x f x x x x x x

+++

+,相加后

得:12()()()n f x f x f x +++ 12()n f x x x <+++,故

1122331212ln ln ln ln ()ln(n n n x x x x x x x x x x x x x +++

+<++

++ )n x ++,令

21(1)n x n =

+有222

2

222

22

11111(ln 2ln 3ln 4ln(1))(234

(1)2

n n -++++

+<++ 22

222

222

211

111

111

111

)ln()()ln(34(1)23(1)23(1)2132

n n n +++

?+++

<+++

?+++++??1111)()()(1)1222(1)(2)

n

n n n n n n +

<--=-+++++,故222222111ln 2ln 3ln 4234+++

+

2

*2

1ln(1)()(1)2(1)(2)

n n n N n n n +>∈+++. (方法二):222ln(1)ln(1)ln 411ln 4()(1)(1)(2)(1)(2)12

n n n n n n n n n ++>≥=-+++++++,故

222211ln 2ln 323++ 2

2

22

1111ln 4ln 4ln(1)ln 4()4(1)222(2)

n n n n n ++

+>-=+++,又1ln 411n >>

+,故221

ln 22

+ 22

2*

222

111ln 3ln 4ln(1)()34

(1)2(1)(2)

n n n N n n n +++

+>∈+++. 10.已知函数b

c bx x a x f -++-=1

)1()(2(,,a b c N ∈)的图像按向量(1,0)e =-平移后得到

的图像关于原点对称,且3)3(,2)2(<=f f . ⑴.求,,a b c 的值;

⑵.设0||1,0||1x t <<<≤,求证:|)1(|||||+<-++tx f x t x t ; ⑶.设x 是正实数,求证:22)1()]1([-≥+-+n n n x f x f .

解:⑴.函数)(x f 的图像按(1,0)e =-平移后得到的图像所对应的函数式为

c

bx ax x f ++=+1

)1(2.因函数)(x f 的图像平移后得到的图像关于原点对称,故

)1()1(+-=+-x f x f ,即c

bx ax c x b x a ++-

=+-+-1

)(1)(22.因a N ∈,故012>+ax .故c bx c bx --=+-,故0c =.又2)2(=f ,故

21

=++b

c a .故b a 21=+,故12-=b a ①.又321

4)3(<+=

b

a f .故

b a 614<+②.由①,②及,a b N ∈,得1,1==b a . ⑵.1

1

)1()(2-+-=x x x f ,故tx tx tx f 1)1(+=+.故

11|(1)|||||||f tx tx tx tx tx +=+

=+≥2=,当且仅当1||=tx 时,上式取等号.但1||0,1||0≤<<+tx f .由于

||2)(2|)||(|22222x t x t x t x t S -++=-++=,当||||x t ≥时,244S t =≤;当|

|||x t <时,244S x =<.故|)1(|2||||+<≤-++tx f x t x t ,即|)1(|||||+<-++tx f x t x t . ⑶.1n =时,结论显然成立.当2n ≥时,

11

11[(1)](1)()()n n n n n n n f x f x x x C x x x

-+-+=+-+=

22221122421221411111n n n n n n n n n n n n n n n n n C x C x C x C x C x C C x x x x x x ----------?+?+???+?+?=++???++?12241212

2242

111111[()()()[2(22

n n n n n n n n n n n n n C x C x C x C C x x x x --------=++++???++≥?++???+1121)]22n n n n n n n C C C C --=++???+=-.

11.设定义在[0,2]上的函数()f x 满足下列条件:①对于[0,2]x ∈,总有

(2)()f x f x -=,且()1f x ≥,(1)3f =;②对于,[1,2]x y ∈,若3x y +≥,则()()(2)1f x f y f x y +≤+-+.

证明:⑴.对于,[0,1]x y ∈,若1x y +≤,则()()()1f x y f x f y +≥+-; ⑵.1

2

()13

3

n n f ≤

+(*n N ∈); ⑶.[1,2]x ∈时,1()136f x x ≤≤-.

证明:⑴.由(2)()f x f x -=知,函数()f x 图像关于直线1x =对称,则根据②可知:对于,[0,1]x y ∈,若1x y +≤,则()()()1f x y f x f y +≥+-.设12,[0,1]x x ∈,

且12x x <,则21[0,1]x x -∈.因

2112111211()()[()]()()()1()f x f x f x x x f x f x f x x f x -=+--≥+--- 21()10f x x =--≥,故()f x 在[0,1]上是不减函数.

⑵.因111111111(

)()()()13()233333333

n n n n n n n n

f f f f f -=++≥++-≥-,故11

()33n f ≤? 122211211221122112

()()()113333333333333

n n n n n n n n n f f f ----+≤++≤≤+++=+-=+. ⑶.对于任意(0,1]x ∈,则必存在正整数n ,使得111

33

n n x -≤≤.因()f x 在(0,1)

上是不减函数,故111

()()()33

n n f f x f -≤≤,由⑴知,

11121

()16161333

n n n f x --≤+=+≤+.由①可得(2)1f ≥,在②中,令2x y ==,得(2)1f ≤,故(2)1f =.而(2)(0)f f =,故(0)1f =,又1()(0)3n f f ≥,故1

()13

n f ≥,

故[0,1]x ∈时,1()61f x x ≤≤+.因[1,2]x ∈时,2[0,1]x -∈,且()(2)f x f x =-,故1(2)6(2)1136f x x x ≤-≤-+=-,因此[1,2]x ∈时,1()136f x x ≤≤-.

12.已知()(1)n f x x n =>,1000

()()n n

g x nx x x x -=-+(0x 为已知正实数). ⑴.当0x >时,求证:()()f x g x ≥;

⑵.当1n >,正实数12x x ≠时,求证:1212()22n n

n x x x x

++>; ⑶.当0m n >>,正实数12x x ≠时,求证:1

1

1212

()()22m m n n

m

n

x x x x ++>. 证:⑴.令

1000

()()()()n n n

u x f x g x x nx x x x -=-=---,

'1111

00()()n n n n u x nx nx n x x ----=-=-,①00x x <<时,因'()0u x <,故()u x 是减函数;

②0x x >时,因'()0u x >,故()u x 是增函数;故0x x =时,

()u x 取得最小值为0()u x ,即0()()0u x u x ≥=,故()()f x g x ≥;

命题与证明练习题1及答案教学文稿

命题与证明练习题1 及答案

精品资料 仅供学习与交流,如有侵权请联系网站删除 谢谢2 命题与证明 一、填空 1.把命题“三边对应相等的两个三角形全等”写成“如果……,那么……”的形式是________________________________________________________________________. 2.命题“如果2 2 a b = ,那么a b =”的逆命题是________________________________. 3.命题“三个角对应相等的两个三角形全等” 是一个______命题(填“真”或“假”). 4.如图,已知梯形ABCD 中, AD ∥BC, AD =3, AB =CD =4, BC =7,则∠B =_______. 5.用反证法证明“b 1∥b 2”时,应先假设_________. 6.如图,在ΔABC 中,边AB 的垂直平分线交AC 于E, ΔABC 与ΔBEC 的周长分别为24和14,则AB =________. 7.若平行四边形的两邻边的长分别为16和20, 两长边间的距离为8,则两短边的距离为__________. 8.如图,在ΔABC 中,∠ABC =∠ACB =72°, BD 、CE 分别是∠ABC 和∠ACB 的平分线,它们的交点为F,则图中等腰三角形有______个. 二、选择题 1.下列语句中,不是命题的是( ) A.直角都等于90° B.面积相等的两个三角形全等 C.互补的两个角不相等 D.作线段AB 2.下列命题是真命题的是( ) A.两个等腰三角形全等 B.等腰三角形底边中点到两腰距离相等 C.同位角相等 D.两边和一角对应相等的两个三角形全等 3.下列条件中能得到平行线的是( ) ①邻补角的角平分线;②平行线内错角的角平分线;③平行线同位角的平分线; ④平行线同旁内角的角平分线. A. ①② B. ②④ C. ②③ D. ④ 4.下列命题的逆命题是真命题的是( ) A.两直线平行同位角相等 B.对顶角相等 C.若a b =,则22a b = D.若(1)1a x a +>+,则1x > 5.三角形中,到三边距离相等的点是( ) A.三条高的交点 B.三边的中垂线的交点 C.三条角平分线的交点 D.三条中线的交点 6.下列条件中,不能判定两个直角三角形全等的是( ) A.两条直角边对应相等 B.斜边和一锐角对应相等 C.斜边和一条直角边对应相等 D.面积相等 7.△ABC 的三边长,,a b c 满足关系式()()()0a b b c c a ---=,则这个三角形一定是( ) A.等腰三角形 B.等边三角形 C.等腰直角三角形 D.无法确定 8.如图,点E 在正方形ABCD 的边AB 上,若EB 的长为1, EC 的长为2,那么正方形ABCD 的面积是( ) 35三、解答题(每题8分,共32分) 1.判断下列命题是真命题还是假命题,若是假命题,请举一个反例说明. (1)有一个角是60°的等腰三角形是等边三角形. (2)有两个角是锐角的三角形是锐角三角形. 2.如图, BD ∥AC,且BD =1 2 AC, E 为AC 中点,求证:BC =DE.

(完整版)八年级数学四边形证明题专项练习

卓越个性化教案 GFJW0901 学生姓名 彭 年级 初二 授课时间 教师姓名 刘 课时 2 课 题 四边形证明题专题 教学目标 熟悉四边形的性质和判定,了解线段和角度证明的方法。 重 点 掌握各种特殊四边形的性质和判定。熟悉线段和角度数量关系的证明方法 难 点 运用平行、三角形全等、特殊三角形性质、四边形性质进行证明。 【 课堂练习】: 1.已知:在矩形ABCD 中,AE ⊥BD 于E , ∠DAE=3∠BAE ,求:∠EAC 的度数。 2.已知:直角梯形ABCD 中,BC=CD=a 且∠BCD=60?,E 、F 分别为梯形的腰AB 、 DC 的中点,求:EF 的长。 3、已知:在等腰梯形ABCD 中,AB ∥DC , AD=BC ,E 、F 分别为AD 、BC 的中点,BD 平分∠ABC 交EF 于G ,EG=18,GF=10 求:等腰梯形ABCD 的周长。 4、已知:梯形ABCD 中,AB ∥CD ,以AD , AC 为邻边作平行四边形ACED ,DC 延长线 交BE 于F ,求证:F 是BE 的中点。 5、已知:梯形ABCD 中,AB ∥CD ,AC ⊥CB ,AC 平分∠A ,又∠B=60?,梯形的周长是20cm, 求:AB 的长。 6、从平行四边形四边形ABCD 的各顶点作对角线的垂线AE 、 _ F _ B _ D _ C _ G _ A _ B _ D _ C _ E _ F _ D _ A _ B _ C _ E _ F _A _ B _ D _ C _ D _ C

7、已知:梯形ABCD 的对角线的交点为E 若在平行边的一边BC 的延长线上取一点F ,使S ABC ?=S EBF ?,求证:DF ∥AC 。 8、在正方形ABCD 中,直线EF 平行于 对角线AC ,与边AB 、BC 的交点为E 、F , 在DA 的延长线上取一点G ,使AG=AD , 若EG 与DF 的交点为H , 求证:AH 与正方形的边长相等。 9、若以直角三角形ABC 的边AB 为边, 在三角形ABC 的外部作正方形ABDE , AF 是BC 边的高,延长FA 使AG=BC ,求证:BG=CD 。 10、正方形ABCD ,E 、F 分别是AB 、AD 延长线 上的一点,且AE=AF=AC ,EF 交BC 于G ,交AC 于K ,交CD 于H ,求证:EG=GC=CH=HF 。 11、在正方形ABCD 的对角线BD 上,取BE=AB , 若过E 作BD 的垂线EF 交CD 于F , 求证:CF=ED 。 12、平行四边形ABCD 中,∠A 、∠D 的平分线相交于 _ E _ A _B _ F _ D _ C _ C _ D _ A _B G _ E _ F _ H _ E _ D _ B _ C _ A _ G _ F _ C _ D _ A _ B _ E _ F _ E _ A _ j _ H _ G _ K _ B _ C _A _ F _ E

命题与证明练习题1及答案

命题与证明 一、填空 1.把命题“三边对应相等的两个三角形全等”写成“如果……,那么……”的形式是________________________________________________________________________. 2.命题“如果2 2 a b = ,那么a b =”的逆命题是________________________________. 3.命题“三个角对应相等的两个三角形全等” 是一个______命题(填“真”或“假”). 4.如图,已知梯形ABCD 中, AD ∥BC, AD =3, AB =CD =4, BC =7,则∠B =_______. 5.用反证法证明“b 1∥b 2”时,应先假设_________. 6.如图,在ΔABC 中,边AB 的垂直平分线交AC 于E, ΔABC 与ΔBEC 的周长分别为24和14,则AB =________. 7.若平行四边形的两邻边的长分别为16和20, 两长边间的距离为8,则两短边的距离为__________. 8.如图,在ΔABC 中,∠ABC =∠ACB =72°, BD 、CE 分别是∠ABC 和∠ACB 的平分线,它们的交点为F,则图中等腰三角形有______个. 二、选择题 1.下列语句中,不是命题的是( ) A.直角都等于90° B.面积相等的两个三角形全等 C.互补的两个角不相等 D.作线段AB 2.下列命题是真命题的是( ) A.两个等腰三角形全等 B.等腰三角形底边中点到两腰距离相等 C.同位角相等 D.两边和一角对应相等的两个三角形全等 3.下列条件中能得到平行线的是( ) ①邻补角的角平分线;②平行线内错角的角平分线;③平行线同位角的平分线; ④平行线同旁内角的角平分线. A. ①② B. ②④ C. ②③ D. ④ 4.下列命题的逆命题是真命题的是( ) A.两直线平行同位角相等 B.对顶角相等 C.若a b =,则22a b = D.若(1)1a x a +>+,则1x > 5.三角形中,到三边距离相等的点是( ) A.三条高的交点 B.三边的中垂线的交点 C.三条角平分线的交点 D.三条中线的交点 6.下列条件中,不能判定两个直角三角形全等的是( ) A.两条直角边对应相等 B.斜边和一锐角对应相等 C.斜边和一条直角边对应相等 D.面积相等 7.△ABC 的三边长,,a b c 满足关系式()()()0a b b c c a ---=,则这个三角形一定是( ) A.等腰三角形 B.等边三角形 C.等腰直角三角形 D.无法确定 8.如图,点E 在正方形ABCD 的边AB 上,若EB 的长为1, EC 的长为2,那么正方形ABCD 的面积是( ) 三、解答题(每题8分,共32分) 1.判断下列命题是真命题还是假命题,若是假命题,请举一个反例说明. (1)有一个角是60°的等腰三角形是等边三角形. (2)有两个角是锐角的三角形是锐角三角形. 2.如图, BD ∥AC,且BD =1 2 AC, E 为AC 中点,求证:BC =DE.

菱形的判定专项练习30题(有答案)ok

菱形的判定专项练习30题(有答案) 1.如图,梯形ABCD中,AD∥BC,BA=AD=DC=BC,点E为BC的中点. (1)求证:四边形ABED是菱形; (2)过A点作AF⊥BC于点F,若BD=4cm,求AF的长. 2.如图,四边形ABCD中,对角线AC、BD相交于点O,且AC⊥BD.点M,N分别在BD、AC上,且AO=ON=NC,BM=MO=OD. 求证:BC=2DN. 3.如图,在△ABC中,AB=AC,D,E,F分别是BC,AB,AC的中点. (1)求证:四边形AEDF是菱形; (2)若AB=12cm,求菱形AEDF的周长. 4.如图,在?ABCD中,EF∥BD,分别交BC,CD于点P,Q,交AB,AD的延长线于点E,F.已知BE=BP.求证:(1)∠E=∠F; (2)?ABCD是菱形. 菱形的判定--- 1

5.如图,在△ABC中,D是BC的中点,E是AD的中点,过点A作AF∥BC,AF与CE的延长线相交于点F,连接BF. (1)求证:AF=DC; (2)若∠BAC=90°,求证:四边形AFBD是菱形. 6.已知平行四边形ABCD中,对角线BD平分∠ABC,求证:四边形ABCD是菱形. 7.如图,在一个含30°的三角板ABC中,将三角板沿着AB所在直线翻转180°得到△ABF,再将三角板绕点C顺时针方向旋转60°得到△DEC,点F在AC上,连接AE. (1)求证:四边形ADCE是菱形. (2)连接BF并延长交AE于G,连接CG.请问:四边形ABCG是什么特殊平行四边形?为什么? 8.如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是为E F,并且DE=DF.求证:四边形ABCD是菱形. 9.如图,在△ABC中,DE∥BC,分别交AB,AC于点D,E,以AD,AE为边作?ADFE交BC于点G,H,且EH=EC. 求证:(1)∠B=∠C; (2)?ADFE是菱形. 菱形的判定--- 2

《三角形》证明题专题训练

《三角形》证明题专题训练 名字_____________ 第一组 简单角度计算 1.如图,∠1=40°,∠2=25°,∠A=35°,求∠BDC 的度数。 2.如图,∠A=80°,∠B=25°,∠C=30°,求∠BDC 的度数。 3.如图,AB ∥CD ,∠BAE=∠DCE=45°,求∠E 的度数. 4.如图,在△ABC 中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=158°,求∠EDF 的度数. 第二组 折叠问题 5.如图,将一长方形纸片按如图方法折叠,BC 、BD 为折痕,求∠CBD 的度数; 6.如图,把△ABC 沿DE 折叠,请求出∠A 与∠1+∠2之间的数量关系。 第三组 三角形内角外角平分线夹角 7.如图,△ABC 的两条内角平分线交于点P ,求证:∠P=90°+ ∠A ; 8.如图,△ABC 的两条外角平分线交于点P ,求证:∠P=90°+ ∠A ; 9.如图,△ABC 的一条内角平分线与一条外角平分线交于点P ,求证:∠P= ∠A 第四组 三角形边长大小比较 10.如图,点P 是△ABC 内任意一点,说明:PA+PB+PCA>2 1(AB+BC+AC) ; 11.如图,AC 和BD 相交于点O ,说明:AC+BD >AB+CD 。 第五组 三角形中线平分面积

12.如图,CD 、DE 、EF 分别是△ABC 、△ACD 、△ADE 的中线,若△AFE 的面积为12cm ,求ABC S ?; 13.如图,已知∠1=∠2=∠3,∠FDE=43°,∠DEF=64°,求△ABC 的各内角度数。 14.如图,AD=1,DC=2,AB=4,△ABC 的面积等于△DEC 的面积的2倍,求BE 的长。 15.如图,长方形ABCD 的长为a ,宽为b ,E 、F 分别是BC 和CD 的中点,求四边形ABGD 面积。 第六组 多边形周长 16.如图,在三角形ABC 中,AD 是BC 边上的中线,三角形ABD 的周长比三角形ACD 的周长小5,求出AC 与AB 的边长的差。 17. 如图,六边形ABCDEF 的六个角都是120°,边长AB =2,BC =8,CD =11,DE =6,EF=4,FA=12,求出△PGH 的周长。 第七组 三角板组合 18.如图,把一幅三角板按如图方式放置,求∠1的度数。 19.如图,把一幅三角板按如图方式放置,求两条斜边所形成的钝角α的度数。 20.如图,将两块三角板的直角顶点重合,当三角板AOB 绕点O 旋转时, 写出∠BOC 与∠AOD 之间的数量关系 第八组 三角形一边上角平分线与高线的夹角 21.如图,AF 、AD 分别是?ABC 的高和角平分线,且∠B =36°,∠C=76°,求∠DAF 的度数; 22.如图,在△ABC 中, AD ⊥BC 于D ,AE 平分∠DAC ,∠BAC=800,∠B=600,求∠AEC 的度数. 23. 如图,在△ABC 中, AD ⊥BC 于D ,AE 平分∠DAC ,∠B>∠C ,求证:∠DAE=2 1(∠B-∠C ) 第九组 利用三角形面积相等求底、高 24.如图,AB ⊥BC ,CD ⊥AD ,AB=4cm ,CD=3cm ,AE=5cm ,求CE 的长。 25.如图,AD ⊥BC ,BE ⊥AC ,CF ⊥AB ,BC =16,AD =3,BE =4,CF =6,求△ABC 的周长。 26.如图,△ABC 中,AB=2cm ,BC=4cm ,△ABC 的高AD 与CE 的比是多少? 第十组 方位角中的三角形 27.如图,有甲、乙、丙、丁四个小岛,乙、丙在甲的正东方,丁在丙的正北方,甲岛在丁岛的南偏西52°方向,乙岛在丁岛的南偏东40°方向。丁岛分别在甲岛和乙岛的什么方向;

线面垂直习题精选

. . . . . 线面垂直的证明中的找线技巧 ◆ 通过计算,运用勾股定理寻求线线垂直 1 如图1,在正方体 1111ABCD A B C D -中,M 为1CC 的中点,AC 交BD 于点O ,求证:1A O ⊥平面MBD . 证明:连结MO ,1A M ,∵DB ⊥ 1A A ,DB ⊥AC ,1A A AC A =, ∴DB ⊥平面 11A ACC ,而1 AO ?平面11A ACC ∴DB ⊥1A O . 设正方体棱长为a ,则22132A O a =,2 234MO a =. 在Rt △11A C M 中,2 21 94 A M a =.∵22211A O MO A M +=,∴1AO OM ⊥. ∵OM ∩DB =O ,∴ 1A O ⊥平面MBD . 评注:在证明垂直关系时,有时可以利用棱长、角度大小等数据,通过计算来证明. ◆ 利用面面垂直寻求线面垂直 2 如图2,P 是△ABC 所在平面外的一点,且PA ⊥平面ABC ,平面PAC ⊥平面PBC .求证:BC ⊥平面PAC . 证明:在平面PAC 作AD ⊥PC 交PC 于D . 因为平面PAC ⊥平面PBC ,且两平面交于PC , AD ?平面PAC ,且AD ⊥PC , 由面面垂直的性质,得AD ⊥平面PBC . 又∵BC ?平面PBC , ∴AD ⊥BC . ∵PA ⊥平面ABC ,BC ?平面ABC ,∴PA ⊥BC . ∵AD ∩PA =A ,∴BC ⊥平面PAC . (另外还可证BC 分别与相交直线AD ,AC 垂直,从而得到BC ⊥平面PAC ). 评注:已知条件是线面垂直和面面垂直,要证明两条直线垂直,应将两条直线中的一条纳入一个平面中,使另一条直线与该平面垂直,即从线面垂直得到线线垂直.在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,通过本题可以看到,面面垂直?线面垂直?线线垂直. 一般来说,线线垂直或面面垂直都可转化为线面垂直来分析解决,其关系为:线线垂直???→←???判定性质 线面垂直???→←??? 判定性质 面面垂直.这三者之间的关系非常密切,可以互相转化,从前面推出后面是判定定理,而从后面推出前面是性质定理.同学们应当学会灵活应用这些定理证明 问题.下面举例说明. 3 如图1所示,ABCD 为正方形,SA ⊥平面ABCD ,过 A 且垂直于SC 的平面分别交S B S C S D ,,于 E F G ,,. 求证:AE SB ⊥,AG SD ⊥. 证明:∵SA ⊥平面ABCD , ∴SA BC ⊥.∵AB BC ⊥,∴BC ⊥平面SAB .又∵AE ?平面SAB ,∴BC AE ⊥.∵SC ⊥平面AEFG ,∴SC AE ⊥.∴AE ⊥平面SBC .∴AE SB ⊥.同理可证AG SD ⊥. 评注:本题欲证线线垂直,可转化为证线面垂直,在线线垂直与线面垂直的转化中,平面起到了关键作用,同学们应多注意考虑线和线所在平面的特征,从而顺利实现证明所需要的转化. 4 如图2,在三棱锥A-BCD 中,BC =AC ,AD =BD , 作BE ⊥CD ,E为垂足,作AH ⊥BE 于H.求证:AH ⊥平面BCD . 证明:取AB 的中点F,连结CF ,DF . ∵ AC BC =,∴CF AB ⊥. ∵AD BD =,∴DF AB ⊥. 又CF DF F =,∴AB ⊥平面CDF . ∵CD ?平面CDF ,∴CD AB ⊥. 又CD BE ⊥,BE AB B =, ∴CD ⊥平面ABE ,CD AH ⊥. ∵AH CD ⊥,AH BE ⊥,CD BE E =, ∴ AH ⊥平面BCD .

命题与证明知识点总结

命题、定理与证明的知识点总结 一、知识结构梳理 二、知识点归类 知识点一定义的概念对于一个概念特征性质的描述叫做这个概念的定义。如:“两点之间线段的长度,叫做这两点之间的距离”是“两点之间的距离”的定义。 注意:定义必须严密的,一般避免使用含糊不清的语言,例如“一些”、“大概”、“差不多”等不能在定义中出现。 知识点二命题的概念 叙述一件事情的句子(陈述句),要么是真的,要么是假的,那么称这个陈述句是一个命 如“你是一个学生”、“我们所使用是教科书是湘教版的”等。 注意:(1)命题必须是一个完整的句子。 (2)这个句子必须对某事情作出肯定或者否定的判断,二者缺一不可。 知识点三命题的结构 每个命题都有题设和结论两部分组成。题设是已知的事项,结论是由已知事项推断出的事项。一般地,命题都可以写出“如果------,那么-------”的形式。有的命题表面上看不具有“如果------,那么-------”的形式,但可以写成这种形式。如:“对顶角相等”,改写成“如果两个角是对顶角,那么这两个角相等”。 例把下列命题改写成“如果------,那么-------”的形式,并指出条件与结论。 1、同角的余角相等 2、两点确定一条直线 知识点四真命题与假命题 如果一个命题叙述的事情是真的,那么称它是真命题;如果一个命题叙述的事情是假的,那么称它是假命题 注意:真、假命题的区别就在于其是否是正确的,在判断命题的真假时,要注意把握这点。

知识点五证明及互逆命题的定义 1、从一个命题的条件出发,通过讲道理(推理),得出它的结论成立,这个过程叫作证明。 注意:证明一个命题是假命题的方法是举反例,即找出一个例子,它符合命题条件,但它不满足命题的结论,从而判断这个命题是假命题。 2、一个命题的条件和结论分别是另一个命题的结论和条件,这两个命题称为互逆的命题,其 中的一个命题叫作另一个命题的逆命题。 注意:一个命题为真不能保证它的逆命题为真,逆命题是否为真,需要具体问题具体分析。 例说出下列命题的逆命题,并指出它们的真假。 (1)直角三角形的两锐角互余;(2)全等三角形的对应角相等。 类型一: 例、判断下列语句在表述形式上,哪些对事情作了判断?哪些没有对事情作出判断? (1)对顶角相等; (2)画一个角等于已知角;(3)两直线平行,同位角相等; (4),两条直线平行吗? (5)鸟是动物; (6)若,求的值; (7)若,则.思路点拨:通过本题熟悉命题的定义 解析:句子(1)(3)(5)(7) 对事情作了判断,句子(2)(4)(6)没有对事情作出判断.其中(1)(3)(5)判断是正确的,(7)判断是错误的. 【变式1】下列语句中,哪些是命题,哪些不是命题? (1)若a<b,则; (2)三角形的三条高交于一点;(3)在ΔABC中,若AB>AC,则∠C >∠B吗?

菱形证明专题训练

- - 优质资料 绝密★启用前 乐学教育菱形证明专题训练 1. 已知:如图,在四边形ABCD 中,AB ∥CD ,E ,F 为对角线AC 上两点,且AE =CF ,DF ∥BE ,AC 平分∠ BAD.求证:四边形ABCD 为菱形. 【答案】∵AB ∥CD , ∴∠BAE =∠DCF. ∵DF ∥BE , ∴∠BEF =∠DFE , ∴∠AEB =∠CFD. 又∵AE =CF , ∴△AEB ≌∠CFD , ∴AB =CD. ∵AB ∥CD , ∴四边形ABCD 是平行四边形. ∵AC 平分∠BAD , ∴∠BAE =∠DAF. 又∠BAE =∠DCF , ∴∠DAF =∠DCF , ∴ AD =CD , ∴四边形ABCD 是菱形. 2. 如图,矩形ABCD 中,点O 为AC 的中点,过点O 的直线分别与AB ,CD 交于点E ,F ,连 接BF 交AC 于点M ,连接DE ,BO .若∠COB =60°,FO =FC . 求证: (1)四边形EBFD 是菱形; 【答案】连接OD .∵点O 为矩形ABCD 的对角线AC 的中点, ∴B ,D , O 三点共线且BD =DO =CO =AO . 在矩形ABCD 中,AB ∥DC ,AB =DC ,∴∠FCO =∠EAO . 在△CFO 和△AEO 中,

第2页共20页※ ※ 请 ※ ※ 不 ※ ※ 要 ※ ※ 在 ※ ※ 装 ※ ※ 订 ※ ※ 线 ※ ※ 内 ※ ※ 答 ※ ※ 题 ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ .. .. .. .. .. .. . o .. .. .. .. .. .. . o .. .. .. .. .. .. . 外 .. .. .. .. .. .. . o .. .. .. .. .. .. . o .. .. .. .. .. .. . 装 .. .. .. .. .. .. . o .. .. .. .. .. .. . o .. .. .. .. .. .. . 订 .. .. .. .. .. .. . o .. .. .. .. .. .. . o .. .. .. .. .. .. . 线 .. .. .. .. .. .. . o .. .. .. .. .. .. . o .. .. .. .. .. .. .. o .. .. .. .. .. .. .. o .. .. .. .. .. .. .. o .. .. .. .. .. .. .. .. .. .. .. . ∴△CFO≌△AEO,∴FO=EO. 又∵BO=DO,∴四边形BEFD是平行四边形. ∵BO=CO,∠COB=60°, ∴△COB是等边三角形.∴∠OCB=60°. ∴∠FCO=∠DCB-∠OCB=30°. ∵FO=FC,∴∠FOC=∠FCO=30°. ∴∠FOB=∠FOC+∠COB=90°. ∴EF⊥BD.∴平行四边形EBFD是菱形. (2)MB∶OE=3∶2. 【答案】∵BO=BC,∴点B在线段OC的垂直平分线上. ∵FO=FC,∴点F在线段OC的垂直平分线上. ∴BF是线段OC的垂直平分线. ∴∠FMO=∠OMB=90°. ∴∠OBM=30°.∴OF=BF. ∵∠FOC=30°,∴FM=OF. ∴BM=BF-MF=2OF-OF=OF. 即FO=EO,∴BM∶OE=3∶2. 3. 如图,在△ABC中,∠ABC=90°,BD为AC边上的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG,DF.求证:四边形BGFD是菱形. 【答案】∵FG∥BD,BD=FG,∴四边形BGFD是平行四边形. ∵CF⊥BD,AG∥BD,∴CF⊥AG.又∵∠ABC=90°,点D是AC的中点,∴BD=DF=AC, ∴平行四边形BGFD是菱形.

线面垂直--经典练习题(精选.)

1.如图,在四棱锥P ABCD -中,底面ABCD 是直角梯形,90BCD ∠=?,AB CD ∥,又1AB BC PC ===,2PB =,2CD =,AB PC ⊥. (Ⅰ)求证:PC ⊥平面ABCD ; (Ⅱ)求PA 与平面ABCD 所成角的大小; (Ⅲ)求二面角B PD C --的大小. 2.如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 为直角梯形,且AB CD ∥,90BAD ∠=?,2PA AD DC ===,4AB =. (Ⅰ)求证:BC PC ⊥; (Ⅱ)求PB 与平面PAC 所成角的正弦值; (Ⅲ)求点A 到平面PBC 的距离. 3.在直四棱柱1111ABCD A B C D -中,AB CD ∥,1AB AD ==,12D D CD ==,AB AD ⊥. (Ⅰ)求证:BC ⊥平面1D DB ; (Ⅱ)求1D B 与平面11D DCC 所成角的大小.

9.如图,在三棱锥P -ABC 中,△PAC 和△PBC 是边长为2的等边三角形,AB =2,O 是AB 中点. (1)在棱PA 上求一点M ,使得OM ∥平面PBC ; (2)求证:平面PAB ⊥平面ABC . 10.如图所示,三棱锥V -ABC 中,AH ⊥侧面VBC ,且H 是△VBC 的垂心,BE 是VC 边上的高. 求证:VC ⊥AB ; 11.如图,在直三棱柱111C B A ABC -中,1AB BB =,1AC ⊥平面D BD A ,1为AC 的中点. (1)求证://1C B 平面BD A 1; (2)求证:⊥11C B 平面11A ABB ; 提示:11A C 中点和1B A 连 D A C B S E F G A 1 B 1 C 1 A B C D

初中数学命题与证明的知识点

初中数学命题与证明的知识点 一、选择题 1.下列说法正确的是() A.若a>b,则a2>b2 B.若三条线段的长a、b、c满足a+b>c,则以a、b、c为边一定能组成三角形 C.两直线平行,同旁内角相等 D.三角形的外角和为360° 【答案】D 【解析】 【分析】 利用特例对A进行分析,利用三角形三边关系、平行线的性质、三角形外角的性质分别对B、C、D进行分析判断. 【详解】 A、若a>b,则不一定有a2>b2,比如a=0,b=﹣1,故本选项错误; B、若三条线段的长a、b、c满足a+b>c,则以a、b、c为边不一定能组成三角形,故本选项错误; C、两直线平行,同旁内角互补,故本选项错误; D、三角形的外角和为360°,故本选项正确; 故选:D 【点睛】 本题考查真假命题的判断,解题的关键是根据相关知识对命题进行分析判断. 2.下列命题中逆命题是假命题的是() A.如果两个三角形的三条边都对应相等,那么这两个三角形全等 B.如果a2=9,那么a=3 C.对顶角相等 D.线段垂直平分线上的任意一点到这条线段两个端点的距离相等 【答案】C 【解析】 【分析】 首先写出各命题的逆命题(将每个命题的题设与结论调换),然后再证明各命题的正误.因为相等的角不只是对顶角,所以此答案是假命题,继而得到正确答案. 【详解】 解:A、逆命题为:如果两个三角形全等,那么这两个三角形的三条边都对应相等.是真命题; B、逆命题为:如果a=3,那么a2=9.是真命题; C、逆命题为:相等的角是对顶角.是假命题; D、逆命题为:到线段两个端点的距离相等的点在这条线段垂直平分线上.是真命题. 故选C.

菱形练习题(含答案)

特殊的平行四边形——菱形 一.菱形的定义:有一组邻边相等的平行四边形叫做菱形. 二.菱形的性质:菱形具有平行四边形一切性质,此外,它还具有如下特殊性质: 1.菱形的四条边相等。 2.菱形的两条对角线互相垂直,且每一条对角线平分一组对角。 3.菱形是轴对称图形也是中心对称图形,两条对角线所在的直线是它的两条对称轴。 三.菱形的判定办法:1.用菱形的定义:有一组邻边相等的平行四边形是菱形; 2.四条边都相等的四边形是菱形; 3.对角线垂直的平行四边形是菱形; 4.对角线互相垂直平分的四边形是菱形。 四.菱形的面积:等于两条对角线乘积的一半.(有关菱形问题可转化为直角三角形或 等腰三角形的问题来解决.),周长=边长的4倍 复习: 1.如图,在ABC △中,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于F ,且AF DC =,连接CF . (1)求证:D 是BC 的中点;(2)若AB AC =,试猜测四边形ADCF 的形状,并证明. 解答:(1)证明:AF BC ∥,AFE DBE ∴∠=∠.∵E 是AD 的中点,AE DE ∴=. 又AEF DEB ∠=∠,AEF DEB ∴△≌△.AF DB ∴=.∵AF DC =,DB DC ∴=. (2)解:四边形ADCF 是矩形,证明:∵AF DC ∥,AF DC =,∴四边形ADCF 是平 行四边形.∵AB AC =,D 是BC 的中点,AD BC ∴⊥.即90ADC ∠=.∴四边形ADCF 是矩形. 菱形例题讲解: 1.已知点D 在△ABC 的BC 边上,DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F .若AD 平分∠BAC , 试判断四边形AEDF 的形状,并说明理由. 解答:四边形AEDF 是菱形,∵DE ∥AC ,∠ADE=∠DAF ,同理∠DAE=∠FDA ,∵AD=DA , ∴△ADE ≌△DAF ,∴AE=DF ; ∵DE ∥AC ,DF ∥AB ,∴四边形AEDF 是平行四边形,∴∠DAF=∠FDA .∴AF=DF .∴平行四边形AEDF 为菱形. 2.已知:如图,在梯形ABCD 中,AB ∥CD ,BC=CD ,AD ⊥BD ,E 为AB 中点,求证:四边形BCDE 是菱形. 证明:∵AD ⊥BD ,∴△ABD 是Rt △∵E 是AB 的中点,∴BE=DE ,∴∠EDB=∠EBD , ∵CB=CD ,∴∠CDB=∠CBD ,∵AB ∥CD ,∴∠EBD=∠CDB , ∴∠EDB=∠EBD=∠CDB=∠CBD ,∵BD=BD ,∴△EBD ≌△CBD (ASA ),∴BE=BC , ∴CB=CD=BE=DE ,∴菱形BCDE .(四边相等的四边形是菱形) 3.如图,△ABC 与△CDE 都是等边三角形,点E 、F 分别在AC 、BC 上,且EF ∥AB , (1)求证:四边形EFCD 是菱形;(2)设CD=4,求D 、F 两点间的距离. 解答:(1)证明:∵△ABC 与△CDE 都是等边三角形,∴ED=CD=CE .∵EF ∥AB ∴∠EFC=∠ACB=∠FEC=60°, ∴EF=FC=EC ∴四边形EFCD 是菱形. (2)解:连接DF ,与CE 相交于点G ,由CD=4,可知CG=2, ∴ ∴. 4.如图,平行四边形ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别相交于点E 、F .求证:四边形AFCE 是菱形. 证明:∵AE ∥FC .∴∠EAC=∠FCA .又∵∠AOE=∠COF ,AO=CO ,∴△AOE ≌△COF . ∴EO=FO .又EF ⊥AC ,∴AC 是EF 的垂直平分线. ∵EF 是AC 的垂直平分线.∴四边形AFCE 为菱形 5.在 ABCD 中,E F ,分别为边AB CD ,的中点,连接DE BF BD ,,. (1)求证:ADE CBF △≌△. (2)若AD BD ⊥,则四边形BFDE 是什么特殊四边形?请证明你的结论. 解:(1)在平行四边形ABCD 中,∠A =∠C ,AD =CB ,AB =CD .∵E ,F 分别为AB ,CD 的中点∴AE =CF , (S A S )A E D C F B ∴△≌△. (2)若AD ⊥BD ,则四边形BFDE 是菱形. 证明:AD BD ⊥,ABD ∴△是Rt △, 且AB 是斜边(或90ADB ∠=),E 是AB 的中点,12 DE AB BE ∴==.由题意可EB DF ∥且EB DF =, ∴四边形BFDE 是平行四边形,∴四边形BFDE 是菱形. O D C B A

八年级上册几何证明题专项练习

八年级上册几何证明题专项练习 1.如图,△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上.求证:△CDA≌△CEB. 2.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD. 3.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D. (1)求证:AC∥DE; (2)若BF=13,EC=5,求BC的长. 4.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D. 5.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB 求证:AE=CE.

6.如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC. 7.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB. 8.如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上,求证:DE=DF. 9.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF. 10.如图,已知∠CAB=∠DBA,∠CBD=∠DAC. 求证:BC=AD.

11.如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE. 12.如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF. 13.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2. (1)求证:BD=CE; (2)求证:∠M=∠N. 14.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E. 求证:△ACD≌△CBE. 15.如图,四边形ABCD中,E点在AD上,∠BAE=∠BCE=90°,且BC=CE,AB=DE.求证:△ABC≌△DEC.

线面垂直面面垂直知识点总结经典例题及解析高考题练习及答案第次补课

直线、平面垂直的判定与性质 【知识梳理】 一、直线与平面垂直的判定与性质 1、 直线与平面垂直 (1)定义:如果直线l 与平面α内的任意一条直线都垂直,我们就说直线l 与平面α互相垂直,记作l ⊥α,直线l 叫做平面α的垂线,平面α叫做直线l 的垂面。如图,直线与平面垂直时,它们唯一公共点P 叫做垂足。 (2)判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。 结论:如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面,记作.//a b b a αα? ?⊥?⊥? (3)性质定理:垂直于同一个平面的两条直线平行。即,//a b a b αα⊥⊥?. 由定义知:直线垂直于平面内的任意直线。 2、 直线与平面所成的角 平面的一条斜线和它在平面上的射影所成的锐角或者直角叫做这条直线和这个平面所成的角。一条直线垂直于平面,该直线与平面所成的角是直角;一条直线和平面平行,或在平面内,则此直线与平面所成的角是0 0的角。 3、 二面角的平面角 从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。如果记棱为l ,那么两个面分别为αβ、的二面角记作l αβ--.在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的射线,则两射线所构成的角叫做叫做二面角的平面角。其作用是衡量二面角的大小;范围:0 0180θ≤≤. 二、平面与平面垂直的判定与性质 1、定义:一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面垂直. 2、判定:一个平面过另一个平面的垂线,则这两个平面垂直。简述为“线面垂直,则面面垂直”,记作 l l βαβα⊥? ?⊥??? . 3、性质:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直,记作l m m m l αβαββα⊥??=? ?⊥??? ?⊥? I . 【经典例题】 【例1】(2012浙江文)设l 是直线,a,β是两个不同的平面 ( ) A .若l ∥a,l ∥β,则a ∥β B .若l ∥a,l ⊥β,则a ⊥β C .若a ⊥β,l ⊥a,则l ⊥β D .若a ⊥β, l ∥a,则l ⊥β 【答案】B

(专题精选)初中数学命题与证明的难题汇编含答案

(专题精选)初中数学命题与证明的难题汇编含答案 一、选择题 1.下列命题中,真命题的是() A.两条直线被第三条直线,同位角相等 B.若a⊥b,b⊥c,则a⊥c C.点p(x,y),若y=0,则点P在x轴上 D a,则a=﹣l 【答案】C 【解析】 【分析】 根据平行线的性质对A进行判断;根据平行线的判定方法对B进行判断;根据x轴上点的坐标特征对C进行判断;根据二次根式的性质对D进行判断. 【详解】 A、两条平行直线被第三条直线,同位角相等,所以A选项为假命题; B、在同一平面内,若a⊥b,b⊥c,则a∥c,所以B选项为假命题; C、点p(x,y),若y=0,则点P在x轴上,所以C选项为真命题; D a,则a=0或a=1,所以D选项为假命题. 故选:C. 【点睛】 本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可. 2.“两条直线相交只有一个交点”的题设是() A.两条直线 B.相交 C.只有一个交点 D.两条直线相交 【答案】D 【解析】 【分析】 任何一个命题,都由题设和结论两部分组成.题设,是命题中的已知事项,结论,是由已知事项推出的事项. 【详解】 “两条直线相交只有一个交点”的题设是两条直线相交. 故选D. 【点睛】 本题考查的知识点是命题和定理,解题关键是理解题设和结论的关系. 3.下列命题中正确的是().

A.所有等腰三角形都相似B.两边成比例的两个等腰三角形相似C.有一个角相等的两个等腰三角形相似D.有一个角是100°的两个等腰三角形相似【答案】D 【解析】 【分析】 根据相似三角形进行判断即可. 【详解】 解:A、所有等腰三角形不一定都相似,原命题是假命题; B、两边成比例的两个等腰三角形不一定相似,原命题是假命题; C、有一个角相等的两个等腰三角形不一定相似,原命题是假命题; D、有一个角是100°的两个等腰三角形相似,是真命题; 故选:D. 【点睛】 本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理. 4.下列命题是假命题的是() A.有一个角为60?的等腰三角形是等边三角形 B.等角的余角相等 C.钝角三角形一定有一个角大于90? D.同位角相等 【答案】D 【解析】 【分析】 【详解】 解:选项A、B、C都是真命题; 选项D,两直线平行,同位角相等,选项D错误,是假命题, 故选:D. 5.下列命题是假命题的是() A.四个角相等的四边形是矩形 B.对角线相等的平行四边形是矩形 C.对角线垂直的四边形是菱形 D.对角线垂直的平行四边形是菱形 【答案】C 【解析】 试题分析:A.四个角相等的四边形是矩形,为真命题,故A选项不符合题意; B.对角线相等的平行四边形是矩形,为真命题,故B选项不符合题意; C.对角线垂直的平行四边形是菱形,为假命题,故C选项符合题意;

菱形证明专题训练

菱形证明专题训练

————————————————————————————————作者: ————————————————————————————————日期:

绝密★启用前 乐学教育菱形证明专题训练 1.已知:如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且 AE=CF,DF∥BE,AC平分∠BAD.求证:四边形ABCD为菱形.? 【答案】∵AB∥CD, ∴∠BAE=∠DCF.?∵DF∥BE, ∴∠BEF=∠DFE,?∴∠AEB=∠CFD. 又∵AE=CF,?∴△AEB≌∠CFD, ∴AB=CD.?∵AB∥CD,?∴四边形ABCD是平行四边形. ∵AC平分∠BAD, ∴∠BAE=∠DAF.?又∠BAE=∠DCF, ∴∠DAF=∠DCF,?∴AD=CD, ∴四边形ABCD是菱形. 2.如图,矩形ABCD中,点O为AC的中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.若∠COB=60°,FO=FC. 求证: (1)四边形EBFD是菱形; 【答案】连接OD.∵点O为矩形ABCD的对角线AC的中点, ∴B,D, O三点共线且BD=DO=CO=AO. 在矩形ABCD中,AB∥DC,AB=DC,∴∠FCO=∠EAO. 在△CFO和△AEO中,?∴△CFO≌△AEO,∴FO=EO.?又∵BO=DO,∴四边形BEFD是平行四边形. ∵BO=CO,∠COB=60°,?∴△COB是等边三角 形.∴∠OCB=60°.?∴∠FCO=∠DCB-∠OCB=30°.?∵FO=FC,∴∠FOC=∠FCO=30°.?∴∠FOB=∠FOC+∠COB=90°. ∴EF⊥BD.∴平行四边形EBFD是菱形. (2)MB∶OE=3∶2. 【答案】∵BO=BC,∴点B在线段OC的垂直平分线上. ∵FO=FC,∴点F在线段OC的垂直平分线上. ∴BF是线段OC的垂直平分线.?∴∠FMO=∠OMB=90°.?∴∠OBM=30°.∴OF=BF.?

初中几何证明题专项练习

初中几何证明题专项练习 1.如图,△ABC、△CDE均为等腰直角三角形,∠ACB=∠ DCE=90°,点E在AB上.求证:△CDA≌△CEB. 2.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD. 3.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D. (1)求证:AC∥DE; (2)若BF=13,EC=5,求BC的长. 4.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.

5.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB 求证:AE=CE. 6.如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC. 7.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB. 8.如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE ⊥DF,点E,F分别在AC,BC上,求证:DE=DF.

9.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF. 10.如图,已知∠CAB=∠DBA,∠CBD=∠DAC. 求证:BC=AD. 11.如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.

12.如图,AB∥CD,E是CD上一点,BE交AD于点F, EF=BF.求证:AF=DF. 13.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2. (1)求证:BD=CE; (2)求证:∠M=∠N. 14.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E. 求证:△ACD≌△CBE.

相关文档
最新文档