测井方法原理全面.doc

测井方法原理全面.doc
测井方法原理全面.doc

测井方法原理

一名词解释

R0孔隙中100%含水时的地层电阻率;R w地层水电阻率

地层因素:F=R0

R w

视电阻率:电阻率值既不可能等于某一岩层的真电阻率,,也不是电极周围各部分介质电阻率的平均值,而是在离电极装置一定距离范围内各介质电阻率综合影响的结果。

岩石体积物理模型:根据测井方法的探测特性和储集层的组成,按其物理性质的差异,把实际岩石简化为对应的性质均匀的几个部分,研究每一部分对测量结果的贡献,并把测量结果看成是各部分贡献的总和。

绝对渗透率:岩石孔隙中只有一种流体时测量的渗透率。

有效渗透率:当两种或两种以上的流体同时通过岩石时,对其中某一流体测得的渗透率。相对渗透率:岩石的有效渗透率与绝对渗透率之比值称为相对渗透率。

周波跳跃:在正常情况下,第一接收器R1和第二接收器R2应该被弹性振动的同一个波峰的前沿所触发。由于某种原因,造成声波的能量发生严重衰减。当首波衰减到只能触发接收器R1而不能触发接收器R2时,接收器R2便可能被第二个或者后续波峰所触发,于是造成时波差值显著增大。由于每跳越一个波峰,在时间上造成的误差正好是一个周期。故称之为周波跳跃。

标准测井:在一个油田或一个区域内,为了研究岩性变化、构造形态和大段油层组的划分等工作,常使用几种测井方法在全地区的各口井中,用相同的深度比例(1:500)及相同的横向比例,对全井段进行测井,这种组合测井叫标准测井。

减速长度:由快中子减速成热中子所经过的直线距离的平均值。

扩散长度:从产生热中子起到其被俘获吸收为止,热中子移动的距离。

热中子寿命:从热中子生成开始到它被俘获吸收为止所经过的平均时间叫热中子寿命。

含氢指数:单位体积的任何岩石或矿物中氢核数与同样体积的淡水中氢核数的比值。

统计起伏(放射性涨落):由于地层中放射性元素的衰变是随机的,因此,在一定时间间隔内衰变的原子核数,即放射出的伽马射线数,不可能完全相同。但从统计的角度来看,它基本上围绕着一个平均值在一定的范围内波动。

二、填空

1.根据勘探目的不同,通常分为石油测井、煤田测井、金属和非金属测井、水文测井、工程测井等几大类。

2.测井技术发展根据采集系统特点大致可以分为模拟测井、数字测井、数控测井、成像测井。

3.测井包括岩性测井(自然电位SP、自然伽马GR、井径测井CAL);孔隙度测井(声波、密度DEN、中子测井CNL);电阻率测井(普通视电阻率测井Ra、微电极系列测井ML、侧向测井LL、感应测井IL)。

4.整个测井工作可以分为两个阶段:资料录取阶段和资料解释阶段。

5.井内自然电位产生的原因:①地层水和泥浆含盐浓度不同而引起的扩散电动势和吸附电动势。②地层压力与泥浆柱压力不同而引起的过滤电动势。

6.电极系可以分为梯度电极系和电位电极系。

7.深三侧向电阻率测井主要反映原地层电阻率;浅三侧向电阻率测井主要反映侵入带的电阻率。

8.主电极的长度决定电流层的厚度,即主电极长度决定了分层能力。电极系直径小,泥浆层

厚度大,那么Ra则小,反之直径大,Ra则升高。

9.六线圈系比双线圈系增加了一对补偿线圈和聚焦线圈。

10.微电阻率测井是指探测深度较浅的一类测井方法,主要是探测储集层冲洗带、侵入带的电阻率。

11.微电阻率测井包括:微电极系测井、微侧向测井、邻近侧向测井、微球形聚焦测井。

12.微电位探测范围约为8-10cm,而微梯度的探测范围约为4-5cm.

13.声波测井包括声速测井和声幅测井

14.岩石中声波传播的影响因素:岩性、孔隙度、岩石的地质时代、岩层埋藏深度。

15.只要在仪器外壳上加上刻槽和适当选择较大源距,就可使滑行波首先到达接收换能器。

16.从解谱仪输出的信号送至照相记录设备进行记录,最后输出四个量:自然伽马总计数率;钍含量、铀含量、钾含量。

17.密度测井测量的是伽马源放出的伽马射线与周围物质相互作用之后所产生的散射伽马射线强度。

18.伽马射线穿过物质时,根据能量不同,主要产生光电效应、康普顿效应、以及电子对效应。

19.为了克服井眼对密度测井的影响,常采用推靠装置、将伽马源放在一个带定向窗口的铅瓶内,定向发射、定向接收、增强散射伽马强度。

20.中子测井包括中子—中子伽马测井(中子超热中子测井、中子热中子测井)、中子---伽马测井

21.中子与物质的作用主要有三种形式:非弹性作用、弹性散射、辐射俘获。

22.中子与物质作用的阶段:快中子的减速过程、热中子的扩散及俘获

23.氢是所有元素中最强的中子减速剂。

24.能够储存石油和天然气的岩石必备的两个条件:一是具有储存油气的孔隙、孔洞和裂缝等空间场所;二是孔隙、孔洞和裂缝间必须相互连通,在一定差压下能够形成油气流动的通道。

25.储集层的基本参数:孔隙度、渗透率、饱和度、储集层的厚度。

26.四性:岩性、物性、含油性和电性

27.储集层评价与要点:岩性评价、储层物性评价、储层含油性评价、储层油气产能评价

28.煤的工业组分分析包括:煤层水分、灰分、挥发分、固定碳。

29.煤田常用测井方法:自然伽马、自然电位、密度、侧向、声波等

30.水文测井方法:视电阻率、自然电位、密度、声速测井

31.煤田测井和水文测井方法首先要解决岩性划分和地层划分问题。

三论述

1.自然电位曲线特征:

曲线关于地层中点对称;当地层较厚(大于4倍井径)时,可以用半幅点法确定地层界面;随地层厚度的变小,自然电位曲线幅度下降,曲部顶部变尖,底部变宽,自然电位小于静自然电位。

2.自然电位的影响因素:

①岩性:在条件相同下,纯砂岩的自然电位异常幅度最大,随着砂岩中泥质含量的增加,自然电位异常幅度逐渐减小。

②温度:同样的岩层,由于埋藏深度不同,其温度不同。

③地层电阻率:岩层厚度变薄,或岩层电阻率增高,自然电位异常幅度降低。

④井径扩大和泥浆侵入:都会使曲线幅度变小。

3.油水界面的确定方法

①自然电位测井:一般含水砂岩的自然电位幅度比含油砂岩的自然电位幅度要高。据此可判断油水层。

②电阻率测井:高侵R X0>R t对应水层;低侵R X0

③用深浅三测向重叠法定性判断油水层:油层和水层的泥浆侵入性质不同(R mf>R w时),油层多表现为减阻侵入,水层多为增阻侵入,深侧向视电阻率大于浅侧向视电阻率为油层,反之为水层。

④中子伽马测井:因为油水层的含氢量基本上是相同的,只有地层谁的矿化度高时,水层的含氯量显著大于油层,油层和水层的中子伽马测井计数率值才有明显的差别(水层中的中子伽马测井计数率值大于油层的中子伽马测井计数率值),所以只有在地层水矿化度比较高的情况下,才能利用中子伽马测井曲线划分油水界面,区分油水层。

4.估算泥质含量的方法

①自然电位测井:泥质含量及其存在状态与砂岩井段产生的扩散吸附电动势有直接关系。因而用自然电位曲线可以估计泥质含量。

②自然伽马测井:由于泥质颗粒小,具有较大的比面。使它对放射性物质有较大的吸附能力,并且沉积时间长,有充分时间与溶液中的放射物质一起沉积下来,所以泥质有很高的放射性。

I GR=(GR-GRmin)/(GRmax-GRmin)

Vsh=(2^(GcuR*Vsh')-1)/((2^GcuR)-1)

式中,GR---目的层自然伽马值;GRmin-----纯砂岩层自然伽马值、GRmax------纯泥岩层自然伽马值;GCUR----希尔奇指数、IGR—自然伽马相对值。

③自然伽马能谱测井:地层中的泥质含量与钍或钾的含量有较好的线性关系,而与地层的铀含量关系较为复杂,所以一般不用铀含量求泥质含量,而用总计数率、钍含量和钾含量的测井值计算泥质含量。

④密度测井:V s?=U?U ma(1??)

U s??U ma

U体积光电吸收截面;

5.阿尔奇通式:F=R0

R w =a

?m

; I=R t R t

R0

=b

S w n

=b

(1?S0)n

联合得:S w=(abR w

R t?m

)1n?

a为比例系数,与岩性有关;m为胶结系数;?为岩石孔隙度;b为系数,仅与岩性有关;n 为饱和度指数;R t为含油岩石的电阻率;R0孔隙中100%含水时的地层电阻率;

意义:一是奠定了测井定量解释的基础;二是架起来孔隙度测井与电阻率测井之间的桥梁。

6.侧向测井原理:在主供电电极两侧上加上两个屏蔽电流,并向屏蔽电极供以相同极系的电流,使其电位与主电极相等,迫使主电极电流不能在井眼中上下流动,而呈水平片状进入地层,把井的分流作用和围岩影响减到最小。

7.感应测井原理

把地层看成一个环绕井轴的大线圈。把装有发射和接收线圈的井下仪器放入井中,对发射线圈通以交流电,在发射线圈周围地层中产生交变磁场?1,这个交变磁场通过地层,在地层中感应出电流I1,形成涡流。涡流在地层中流动产生交变磁场?2,穿过接收线圈R,并在R 中感应出电流,从而被记录。

8.感应测井曲线特征:曲线对称,正对岩层处视电阻率增大;随着地层厚度的变化,曲线幅度随着地层厚度的增大而增大。当厚度大于5m以上,岩层的视电阻率接近真电导率,而且曲线的半幅度点为地层界面点。

9.声波时差测井曲线特征

1.曲线关于地层中心对称,岩层的界面位于曲线急剧变化处。

2.岩层不均匀或有夹层时,岩层对应的时差曲线出现相应变化。

3.受界面附近井径影响,时差曲线不反映真值。

4.识别气层或裂缝带。

10.比较CBL和VDL的异同

相同点:都是用来测量套管外水泥的胶结情况,检查固井质量。

不同点:CBL:确定水泥上返高度,由声系和电子线路组成,源距1m,单发射单接收装置,声波到达首位为滑行波。

VDL:提供水泥环第一与第二界面的胶结情况,源距1.5m,一个发射换能器,2个接收换能器,声波次序为套管波,地层波,泥浆波。

11.沉积岩的自然放射强度规律

①随泥质含量的增加而增加

②随有机物含量的增加而增加

③随钾盐和某些放射物矿物的增加而增加

12.自然伽马测井曲线特征

①曲线关于地层中点对称

②高放射性地层,对着地层中心曲线有一极大值,并随着地层厚度的增加而增加,当大于3倍的井径时,极大值为常数,只与岩石的自然放射性强度成正比。

③当大于3倍的井径时,由曲线的半幅度点确定的地层厚度为真厚度。

13.自然伽马相对值与粒度中值的关系

?GR=GR?GR min

GR max?GR min

14.补偿密度测井脊线图交会点偏离脊线的情况

①当泥饼密度小于岩石密度时,泥饼的影响使得长、短源距计数率有所提高,且因短源距计数率的增高更显著,于是,图上的交会点将偏离所探测岩石的实际密度值而落在脊线右上方。

②当泥饼的密度大于岩石密度时,泥饼的影响使得长、短源距计数率更低,且因短源计数率的降低更显著,于是,图上的交会点将落在脊线左下方。

15.确定岩层孔隙度

①密度测井:?=ρma?ρb

ρma ?ρf

ρma骨架密度、ρb岩层体积密度、ρf孔隙流体密度

②声波测井:威利公式

?=?t??t ma ?t f??t ma

?t为地层声波时差,?t f为孔隙中流体的声波时差,?t ma为岩石骨架的声波时差

16.中子测井的原理:孔隙度不同,超热中子在中子源周围的分布不同。孔隙度越大,含氢量越多,减速长度越小,则在源附近的超热中子越多。相反,孔隙度越小,减速长度越大,则在较远的空间形成有较多的超热中子。

17.判断气层

①中子伽马测井:气层中的含氢密度小,中子伽马测井显示计数率高。

②声波测井:由于天然气会导致声波幅度的衰减和传播速度降低,因而在气层在声波测井曲线上呈现出周波跳跃或时差增大现象。

③气层的电阻率明显高于围岩和水层的电阻率

④密度曲线与中子曲线重叠识别天然气层:由于天然气密度小,密度测井反应值比较低,而

中子测井曲线上气层表现为低孔隙度,因此二者重叠可识别气层。

18.识别岩性

①井径测井:泥岩层和某些松散岩层常常由于钻井时泥浆的浸泡和冲刷造成井壁坍塌,使实际井径大于钻头直径,出现井径扩大;渗透性岩层,常常由于泥浆滤液向岩石渗透,在井壁上形成泥饼,使实际井径小于钻头直径,出现井径缩小;而在致密岩层处,变化不大,实际井径接近钻头直径。

②自然电位曲线以泥岩为基线,纯砂岩的负异常最大。

③三测向测井中曲线比普通电阻率测井曲线受井眼、围岩厚度、侵入影响小,纵向分辨能力强,适于划分薄层。三测向曲线上视电阻率急剧变化处定位高阻层的界面位置。

④由于各类岩石声波速度不同,所以根据声速曲线可以划分不同岩性的岩石:砂岩一般显示低时差;泥岩显示为高时差;页岩介于砂岩与泥岩之间,砾岩一般具有低时差,且越致密时差越低。

⑤利用自然伽马测井曲线划分岩性,主要是根据岩层中泥质含量的不同进行的。

(U ma是已知的)

⑥密度测井:U ma=U

(1??)

地球物理测井重点知识

第一章自然电位 1 石油钻井中产生自然电场的主要原因是什么?扩散电动势ED扩散吸附式电动势EDA和过滤电动势EF产生的机理和条件是什么? 自然电位形成原因:由于泥浆与地层水的矿化度不同,在钻开岩层后,在井壁附近两种不同矿化度的溶液发生电化学反应,产生电动势,形成自然电场. 一般地层水为NaCL溶液,当不同浓度的溶液在一起时存在使浓度达到平衡的自然趋势,即高浓度溶液中的离子要向低浓度溶液一方迁移,这种过程叫离子扩散. 在扩散过程中,各种离子的迁移速度不同,如氯离子迁移速度大于钠离子(后者多带水分子),这样在低浓度溶液一方富集氯离子(负电荷)高浓度溶液富集钠离子(正电荷),形成一个静电场,电场的形成反过来影响离子的迁移速度,最后达到一个动态平衡,如此在接触面附近的电动势保持一定值,这个电动势叫扩散电动势记为Ed 同样离子将要扩散,但泥岩对负离子有吸附作用,可以吸附一部分氯离子,扩散的结果使浓度小的一方富集大量的钠离子而带正电,浓度大的一方富集大量的氯离子而带负电,这样在泥岩薄膜形成扩散吸附电动势记为Eda 此外还有过滤电动势,这种电动势是在压力差作用下泥浆滤液向地层渗入时产生的,只有在压力差较大时才考虑过滤电动势的影响. 2 影响SP曲线幅度的因素是什么?想想在SP曲线解释过程中,如何把影响因素考虑进去,从而得到与实际相符的结论? 在自然电位测井时一般把测量电极N放在地面上,电极M用电缆放在井下,提升M电极,沿井轴测量自然电位(M电位)随深度变化的曲线叫自然电位曲线(SP).影响因素: 1 溶液成分的影响; 2岩性的影响 砂岩 泥岩 3温度的影响; 4地层电阻率的影响 5地层厚度影响 厚度增加SP增加 6井眼的影响 井径扩大截面积增加,泥浆电阻变小,SP变小 3 SP的单位是什么?毫普 第二章普通电阻率测井 1 岩石的电阻率和岩性有什么关系?沉积岩属于什么导电类型? 沉积岩石在水中沉淀的岩石碎屑或者矿物经胶结压实而成,其结构可视为矿物骨架与空隙中流体的组合。 导电良好的矿物按导电性质不同可分为三大类: 导电良好的矿物:金属矿物等,硫化矿,氧化矿,石墨和高级煤 粘土:除粘土,金属矿物外沉积岩骨架中的矿物电阻率很高,可视为不导电,因此,粘土矿物的成分,含量以及分布是影响岩石电阻率的因素之一。 不导电的矿物:石英,长石,云母,方解石,白云石,岩盐,石膏,无水石膏等。大量存在。碳酸盐基本属于不导电类型。

测井

绪论 ?储集层的基本参数(孔、渗、饱、有效厚度)、相关参数的定义 孔隙度φ:岩石内孔隙体积占岩石总体积的百分比(%) (1)总孔隙度:总孔隙体积/岩石总体积(φt) (2)有效孔隙度:有效孔隙体积/岩石总体积(φe) (3)次生孔隙度:次生孔隙体积/岩石总体积(φ2)。 渗透率k:描述岩石允许流体通过能力的参数, 单位:μm2 (或达西D ),常用10-3 μm2 (毫达西mD) (1)绝对渗透率:只有一种流体时测得。测井上一般指绝对渗 透率; (2)有效渗透率(相渗透率):存在多种流体时对其中一种所 测,一般用ko、kg、kw表示; (3)相对渗透率:有效/绝对,用kro、krg、krw表示。 饱和度S:储层中某相流体体积占孔隙体积的百分比(%)。 含水饱和度Sw,含油气饱和度Sh(So、Sg) (1)原状地层:Sh=1-Sw (Sh=So+Sg) (2)冲洗带: Shr=1-Sxo (残余油气Shr、含水Sxo) (3)可动油气: Shm=Sxo-Sw , Shm=Sh-Shr (4)束缚水Swirr: Sw=Swm+Swirr 有效厚度he: (1)岩层厚度:岩层上、下界面间的距离。界面常以岩性、孔隙 度、渗透率等参数的变化为显示特征; (2)有效厚度:目前经济技术条件下能产出工业价值油气的储层 实际厚度。常由确认的油气层总厚度扣除无生产价值的夹层厚度 后得到。 孔隙度、饱和度和有效厚度等还可用来计算地质储量; 孔隙度、渗透率合称储层物性; 孔隙度与饱和度的乘积表示某相流体占岩石体积的百分比, 如φSw表示岩石中水的相对体积。 ?储集层分类(主要两大类)、特点(岩性、物性、电性等) 1. 储集层:(储层、渗透层) 具有储存油气水的空间,同时这些空间又互相连通(流体可在 其中运移)的岩层。 两大特点:孔隙性、渗透性。 2. 储集层分类及特点 碎屑岩储集层:(40%储量,也称孔隙性储集层) (1)岩石类型:砂岩为主,砾岩、粉砂岩、泥质砂岩等; (2)围岩:一般为泥岩,性质稳定,常做为参考值; (3)特点:粒间孔隙为主,孔隙度较大(10~30%),分布均匀,各种物性和泥浆侵入等基本为各向同性;测井评价效果较好、技术较成熟。 碳酸盐岩储集层:(50%储量、60%产量,裂缝性储集层) (1)岩石类型:渗透性石灰岩、白云岩及其过渡岩性; (2)围岩:致密的碳酸盐岩;

测井仪器方法及原理重点

精品课程作业: 第一章双测向测井 习题一 1.为什么要测量地层的电阻率? 2.测量地层电阻率的基本公式是什么? 3.普通电阻率测井测量地层电阻率要受到那些因素的影响? 4.聚焦式电阻率测井是如何实现对主电流聚焦?如何判断主电流处于聚焦 状态? 5.画出双测向电极系,说明各电极的名称及作用。 6.为什么双测向的回流电极B和参考电极N要放在无限远处?“无限远处” 的含义是什么? 7.为什么说监控回路是一个负反馈系统?系统的增益是否越高越好? 8.为什么说浅屛流源是一个受控的电压源? 9.试导出浅屛流源带通滤波器A3的传递函数。 10.已知该带通滤波器的中心频率为128Hz,求带通宽度、 11.为什么说深测向的屛流源是一个受控的电流源。 12.监控回路由几级电路组成?各起何作用? 13.试画出电流检测电路的原理框图,说明各单元的功用? 14.双测向测井仪为什么要选用两种工作频率? 15.测量地层冲洗带电阻率的意义是什么? 16.和长电极距的电阻率测井方法相比,微电阻率测井方法有什么异同? 17.为了模拟冲洗带电阻率R xo为1000Ω·m和31.7Ω·m,计算出微球形聚 焦测井仪的相应刻度电阻值R(K=0.041m)。 18.为了测量地层真电阻率,应当选用何种电极系? 19.恒流工作方式有什么优点? 20.求商工作方式有什么有缺点? 21.给定地层电阻率变化范围为0.5~5000Ω·m,电极系常数为0.8m,测量 误差δ为5%,屛主流比n为103,试计算仪器参数:G、G v、G I、W0max、W lmax、r、E(用求商式)。 第二章感应测井 习题二 1.在麦克斯韦方程组中,忽略了介质极化的影响,试分析这种做法的合理 性。 2.已知感应测井的视电导率韦500(Ms/m),按感应测井公式计算地层的真 电导率,要求相对误差小于1%。 3.单元环的物理意义是什么? 4.相敏检波器可以从感应测井信号中检出有用信号,那么,为什么在设计 线圈系时好要把信噪比作为一个重要的设计指标? 5.画出1503双感应测井仪深感应部分的电路原理框图,说明各部分电路功 能。 6.证明:在发射线圈两端并接谐振电容可以提高发射电流强度。 7.补偿刻度法的应用范围σ<X L,其中σ为电导率刻度值,X L为刻度环感抗, 用阻抗圆图的方法证明之。 8.在线圈系对称的条件下,试导出五因子褶积滤波因子的计算公式。

(完整word版)测井方法原理及应用分类

测井方法的主要分类 1. 电法测井,又分自然电位测井、普通电阻率测井、侧向(聚焦电阻率)测井、感应测井、介电测井、电磁波测井、地层微电阻率扫描测井、阵列感应测井、方位侧向测井、地层倾角测井、过套管电阻率测井等(频率:从直流0~1.1GHZ)。 2. 声波测井,又分声速测井、声幅测井、长源距声波全波列测井、水泥胶结评价测井、偶极(多极子)声波测井、反射式声波井壁成像测井、井下声波电视、噪声测井等(频率由高向低发展,20KHZ~1.5KHZ)。 3. 核测井,种类繁多,主要分三大类:伽马测井、中子测井和核磁共振测井,伽马测井具体如下:自然伽马测井、自然伽马能谱测井、密度测井、岩性密度测井、同位素示踪测井等。 中子测井具体包括:超热中子测井、热中子测井、中子寿命测井、中子伽马测井、C/O比测井、PND-S测井、中子活化测井等。 发展趋势:中子源-记录伽马谱类(非弹性散射、俘获伽马、活化伽马等不同时间测量)。 4. 生产测井,主要分为三大类:生产动态测井、工程测井、产层评价测井。 1

生产动态测井方法主要有:流量计、流体密度计、持水率计、温度计、压力计、井下终身监测器等。 工程测井方法主要有:声幅、变密度测井仪、水泥胶结评价测井仪、磁定位测井仪、多臂微井径仪、井下超声电视、温度计、放射性示踪等。 产层评价方法测井:硼中子寿命、C/O比测井、脉冲中子能谱(PNDS)、过套管电阻率、地层测试器、其它常规测井方法组合等。 5. 随钻测井,大部分实现原理与常规电缆测井相同,实现方式上有许多特殊性。 2

测井方法主要特征总结归类表 3

4

5

测井解释原理

测井解释原理 一: 储集层定义:具有连通孔隙,既能储存油气,又能使油气在一定压差下流动的岩层。 必须具备两个条件: (1)孔隙性(孔隙、洞穴、裂缝) 具有储存油气的孔隙、孔洞和裂缝等空间场所。 (2)渗透性(孔隙连通成渗滤通道) 孔隙、孔洞和裂缝之间必须相互连通,在一定压差下能够形成油气流动的通道。储集层是形成油气层的基本条件,因而储集层是应用测井资料进行地层评价和油气分析的基本对象。 储集层的分类 ?按岩性:–碎屑岩储集层、碳酸盐岩储集层、特殊岩性储集层。 ?按孔隙空间结构:–孔隙型储集层、裂缝型储集层和洞穴型储集层、裂缝-孔洞型储集层。 碎屑岩储集层 ?1、定义:–由砾岩、砂岩、粉砂岩和砂砾岩组成的储集层。 ?2、组成:–矿物碎屑(石英、长石、云母) –岩石碎屑(由母岩类型决定) –胶结物(泥质、钙质、硅质) ?3、特点:–孔隙空间主要是粒间孔隙,孔隙分布均匀,岩性和物性在横向上比较稳定。 ?4、有关的几个概念 –砂岩:骨架由硅石组成的岩石都称为砂岩。骨架成份主要为SiO 2 –泥岩(Shale):由粘土(Clay)和粉砂组成的岩石。 –砂泥岩剖面:由砂岩和泥岩构成的剖面。 碳酸盐岩储集层

?1、定义:–由碳酸盐岩石构成的储集层。 ?2、组成:–石灰岩(CaCO 3)、白云岩Ca Mg(CO 3)2)、泥灰岩 ?3、特点:–储集空间复杂 有原生孔隙:分布均匀(如晶间、粒间、鲕状孔隙等) 次生孔隙:形态不规则,分布不均匀(裂缝、溶洞等) –物性变化大:横向纵向都变化大 ?4 、分类 按孔隙结构: ?孔隙型:与碎屑岩储集层类似。 ?裂缝型:孔隙空间以裂缝为主。裂缝数量、形态及分布不均匀,孔隙度、渗透率变化大。 ?孔洞型:孔隙空间以溶蚀孔洞为主。孔隙度可能较大、但渗透率很小。 ?洞穴型:孔隙空间主要是由于溶蚀作用产生的洞穴。 ?裂缝-孔洞型:裂缝、孔洞同时存在。 碳酸盐岩储集空间的基本类型 砂泥岩储集层的孔隙空间是以沉积时就存在或产生的原生孔隙为主; 碳酸盐岩储集层则以沉积后在成岩后生及表生阶段的改造过程中形成的次生孔隙为主。 碳酸盐岩储集层孔隙空间的基本形态有三种:孔隙及吼道、裂缝和洞穴。 碳酸盐岩储集层孔隙结构类型有:孔隙型、裂缝型、裂缝- 孔隙型、及裂缝- 洞穴型 常规测井在孔隙型/裂缝型碳酸盐岩中的特征(简答): 孔隙型储集层:在曲线形状方面表现为圆滑的“U”字形,如电阻率呈“U”字形降低,这与裂缝发育段的尖刺状电阻率起伏形成强烈的反差;在测井值方面表现为二高两低,即时差、中子孔隙度增高,电阻率和岩石体积密度降低。特点:曲线光滑,单层明显是以小孔为主的储层的主要特征,分层明显,表面看较好。 裂缝型储集层: 电阻率测井响应:微电极测井曲线在裂缝发育段呈现明显的正幅度差,且常伴有显著的锯齿

测井方法原理全面.doc

测井方法原理 一名词解释 R0孔隙中100%含水时的地层电阻率;R w地层水电阻率 地层因素:F=R0 R w 视电阻率:电阻率值既不可能等于某一岩层的真电阻率,,也不是电极周围各部分介质电阻率的平均值,而是在离电极装置一定距离范围内各介质电阻率综合影响的结果。 岩石体积物理模型:根据测井方法的探测特性和储集层的组成,按其物理性质的差异,把实际岩石简化为对应的性质均匀的几个部分,研究每一部分对测量结果的贡献,并把测量结果看成是各部分贡献的总和。 绝对渗透率:岩石孔隙中只有一种流体时测量的渗透率。 有效渗透率:当两种或两种以上的流体同时通过岩石时,对其中某一流体测得的渗透率。相对渗透率:岩石的有效渗透率与绝对渗透率之比值称为相对渗透率。 周波跳跃:在正常情况下,第一接收器R1和第二接收器R2应该被弹性振动的同一个波峰的前沿所触发。由于某种原因,造成声波的能量发生严重衰减。当首波衰减到只能触发接收器R1而不能触发接收器R2时,接收器R2便可能被第二个或者后续波峰所触发,于是造成时波差值显著增大。由于每跳越一个波峰,在时间上造成的误差正好是一个周期。故称之为周波跳跃。 标准测井:在一个油田或一个区域内,为了研究岩性变化、构造形态和大段油层组的划分等工作,常使用几种测井方法在全地区的各口井中,用相同的深度比例(1:500)及相同的横向比例,对全井段进行测井,这种组合测井叫标准测井。 减速长度:由快中子减速成热中子所经过的直线距离的平均值。 扩散长度:从产生热中子起到其被俘获吸收为止,热中子移动的距离。 热中子寿命:从热中子生成开始到它被俘获吸收为止所经过的平均时间叫热中子寿命。 含氢指数:单位体积的任何岩石或矿物中氢核数与同样体积的淡水中氢核数的比值。 统计起伏(放射性涨落):由于地层中放射性元素的衰变是随机的,因此,在一定时间间隔内衰变的原子核数,即放射出的伽马射线数,不可能完全相同。但从统计的角度来看,它基本上围绕着一个平均值在一定的范围内波动。 二、填空 1.根据勘探目的不同,通常分为石油测井、煤田测井、金属和非金属测井、水文测井、工程测井等几大类。 2.测井技术发展根据采集系统特点大致可以分为模拟测井、数字测井、数控测井、成像测井。 3.测井包括岩性测井(自然电位SP、自然伽马GR、井径测井CAL);孔隙度测井(声波、密度DEN、中子测井CNL);电阻率测井(普通视电阻率测井Ra、微电极系列测井ML、侧向测井LL、感应测井IL)。 4.整个测井工作可以分为两个阶段:资料录取阶段和资料解释阶段。 5.井内自然电位产生的原因:①地层水和泥浆含盐浓度不同而引起的扩散电动势和吸附电动势。②地层压力与泥浆柱压力不同而引起的过滤电动势。 6.电极系可以分为梯度电极系和电位电极系。 7.深三侧向电阻率测井主要反映原地层电阻率;浅三侧向电阻率测井主要反映侵入带的电阻率。 8.主电极的长度决定电流层的厚度,即主电极长度决定了分层能力。电极系直径小,泥浆层

阵列感应测井原理及应用

阵列感应测井原理及应用 摘要:本文探讨了阵列感应测井原理,论述了在判断地层水矿化度方面的应用效果,阵列感应在使用中也存在一些缺陷,阵列感应在处理中,人为因素较大,不同的参数处理结果差异较大,这就造成了阵列感应在使用过程中对解释有一定的误导,引起对阵列感应可靠性的怀疑,这在以后的处理方法中有待改进。 关键词:阵列感应测井矿化度应用效果 一、阵列感应测井原理简介 阵列感应测井的最基本原理与普通感应测井原理类似,但它在硬件上采用简单的三线圈系结构,这种线圈系没有硬件聚焦功能,它采用数学方法对呈不对称形状的纵向响应曲线进行软件聚焦处理。它由7组接收线圈对和1个共用的发射线圈组成,实际上相当于具有7种线圈距的三线圈系。在接收线圈系的设计上充分考虑了以下几个问题:(1)、消除直藕信号;(2)、三线圈子阵列纵向特性的频率响应没有盲频;(3)、要有若干子阵列分别反映浅部和深部地层信息;(4)、各接收子阵列之间的间距应按一定规律变化和分布;(5)、离发射线圈较远的接收子阵列应考虑发射功率和接收信号的强度。 高分辨率阵列感应测井仪在硬件设计时充分考虑了上述因素,它的每个接收线圈系都由两个相互对称的线圈组成,即一个主接收线圈和一个辅助接收线圈,它利用了两个线圈电磁场叠加原理,来实现消除直藕信号影响的目的。在线圈系的排列上设计了最小线圈距为6in,最大线圈距为94in,在这两个线圈距之间采用了近似于指数形式的线圈系分布,即全部子阵列间距为6in、10in、15.7in、24.5in、38.5in、60in、94in。这种排列方式不仅有利于采集浅部地层和深部地层信号,而且有利于径向有效信息的均匀采样。发射信号是加到一个单独的发射线圈上的,这种方法能使发射器的有效功率变为最大,由发射线圈发射出的是一个形状为方形的电压波形(即方波),发射波采用方波是由于其具有较高的发射频率,对于给定的电压能使发射线圈的功率变为最大。而且它具有宽的频谱,它包括了方波频率(约等于10KHZ)及所有的奇次谐波的能量,因此每个线圈可以在10、30、50、70、90、110、130、150KHZ共8个频率下同时进行工作。 在阵列感应测井中,接收线圈子阵列接收到测量信号为复信号,即R信号和X信号,R信号也称为实部信号,与发射电流相位相同或相反;X信号又叫虚部信号,与发射电流相位垂直。该阵列感应测井仪器在测井数据采集方面使用了先进的多道全数字化采集技术,能够同时采集7组子阵列在8个工作频率上的R信号和X信号,共112个测量信号。再对这些原始测量信号进行“软件聚焦”,就可得出三种纵向分辨率和六种探测深度的阵列感应合成曲线。 二、在判断地层水矿化度方面的应用效果 根据前期理论和实际经验可知:在渗透性地层中,当井筒内泥浆柱的压力大

地球物理测井_简答题

电测井 怎样利用双侧向测井判断油水层? 【油层一般为泥浆低侵,深双侧向结果主要反映原状地层电阻率的变化,浅双侧向的探测深度较浅,主要反映井壁附近侵入带电阻率的变化,故在油层处,深三侧向的读数高于浅三侧向的读数,曲线出现“正幅度差”。而水层一般为泥浆高侵,曲线出现“负幅度差”。】 在感应测井中,以六线圈系为例简述复合线圈系相对于双线圈系存在的优点。 【六线圈系增加了聚焦线圈和补偿线圈,可分别用来改善仪器的纵向分层能力和径向探测深度,它相对于双线圈系来说纵向分层能力较强,且探测深度也更深。】 1.感应测井是在什么样的生产需求下产生与发展的(与双侧向的对比)? 感应测井适合于井眼介质不导电的情况下(空气钻井、淡水泥浆或油基泥浆),测量地层的电导率。更适合于区分低阻油、水层.感应测井供交流电流测量;普通电阻率测井、侧向测井供直流电流测量。 为了提高纵向分层能力,不漏掉薄层和求准目的层厚度,既能真实判断渗透层及岩性,又能准确地测出冲洗带电阻率等目的,就发展了一些测量冲洗带电阻率的测井仪器,因为它们探侧的范围小,又叫做微电阻率测井。 侧向测井总结 1、测量条件:盐水泥浆、高阻薄层 2、测量物理量:沿井深变化的电阻率 3、测量值:电流聚焦测量深、中、浅三种不同径向电阻率Rt、Ri、Rxo 4、作用:用于划分岩性、地层对比等 1.绘图并说明感应测井的原理? 1. 感应测井是根据电磁感应原理,探测地层电导率的一种测井方法。其基本原理是 ●感应测井的井下仪器中装有线圈系,线圈系由发射线圈T和接收线圈R组成,T、R之间的距离叫线圈距。 ●在发射线圈T中通以交变电流i0(通常为20kHz),该电流将在周围介质中形成一个交变电磁场Ф1,处在交变电磁场中的导电介质便会感应出环形电流i1(涡流)。 ●i1也将形成二次磁场Ф2,并在接收线圈R中产生感应电流i2。接收线圈R中感应电流i2的大小和环形电流i1大小有关,而i1的强度又取决于岩石的导电强度。因此,测量R中的感应电流或电动势,便可以了解岩层的导电性。 2.双侧向电阻率测井电极系的结构及其测量原理?(原理加图) (1) M(1) M11、、MM22(M(M11’’、、MM22’’) ) 为测量电极,为测量电极,AA11、、AA22(A(A11’’、、AA22’’) ) 为屏蔽电极,发出与为屏蔽电极,发出与II00极性相同的屏极性相同的屏蔽电流蔽电流IIss。。屏蔽电极的不同组合可以完成屏蔽电极的不同组合可以完成深、浅深、浅侧向测井侧向测井。。 (2)进行深侧向测井时,进行深侧向测井时,AA11、、AA22合并为上屏蔽电极合并为上屏蔽电极,,AA11’’、、AA22’’合并为下屏蔽电极,得到深侧向视电合并为下屏蔽电极,得到深侧向视电阻率曲线阻率曲线RRlldlld;; (3)进行浅侧向测井时,进行浅侧向测井时,AA11、、AA11’’合并为屏蔽电极,合并为屏蔽电极,极性与极性与AA00相同,AA22、、AA22’’为回路电极,极性与为回路电极,极性与AA00相反,,得到深侧向视电阻率曲线得到深侧向视电阻率曲线RRllslls;; (4)双侧向测井适用于电阻率高和侵入深的地层,双侧向测井适用于电阻率高和侵入深的地层,但仍然受钻井液滤液和围岩的影响,其纵向分辨但仍然受钻井液滤液和围岩的影响,其纵向分辨率为2424英寸。 (5)双侧向测井常常和自然伽马测井或自然电位测双侧向测井常常和自然伽马测井或自然电位测井组合进行测量井组合进行测量。。 1.自然电位产生的原因是什么? 答:自然电位产生的原因是复杂的(1分),对于油井来说,主要有以下两个原因: 1)地层水含盐浓度和钻井液含盐浓度不同(1分),引起粒子的扩散作用和岩石颗粒对粒子的吸

地球物理测井复习题答案

1、简述扩散电动势形成的机理 答:在扩散过程中,各种离子的迁移速度不同,如氯离子迁移速度大于钠离子(后者多带水分子),这样在低浓度溶液一方富集氯离子(负电荷),高浓度溶液富集钠离子(正电荷),形成一个静电场,电场的形成反过来影响离子的迁移速度,最后达到一个动态平衡,如此在接触面附近的电动势保持一定值,这个电动势叫扩散电动势,记为Ed 2、简述为什么当水淹时,自然电位曲线出现基线偏移现象? 答:如图所示,水淹层位与未水淹层位浓度分别为Cw’、Cw。则有E=Ed-Ed’-Ed”,Cw’浅侧向,该层为油层;反之为水层。油层电阻率高,水层电阻率低;而且油、水层的泥浆侵入性质也不同,水层多为增阻侵入,油层多为减阻侵入;侧向测井曲线在油层幅度高,在水层幅度低。 6、简述感应测井的原理 答:感应测井原理:给发射圈T通以等幅交流电,在它周围的导电介质中就会形成交变电场。由于磁场变化导电介质中产生无限多个以线圈轴线为中心的水平环状感应电流,涡流产生的交变电磁场将在接受线圈R中产生感应电动势。这个电动势的大小与涡流电流大小成正比,而涡流大小又与介质电导率成正比,所以R线圈中产生的感应电动势与介质电导率成正比。 7、简述单发双收和双发双收声系的差别 答、单发双收声系能直接测量岩层的声波速度或时差,得到的速度为源距内平均值,分辨率好。但受井眼不规律影响,仪器记录点与实际传播路径中点不在同一深度上,即存在深度误差。 双发双收声系可消除井径变化对测量结果的影响,可消除深度误差;但对薄层分辨率低,对于低速地层出现盲区。 8、简述利用相对比值方法评价固井质量的方法

地球物理测井课程设计报告

《测井方法原理》课程设计 指导老师: 专业: 班级: 姓名: 年月日

一、课程设计的目的和基本要求 本课程设计是地球物理测井教学环节的延续(独立设课),目的是巩固课堂所学的理论知识,加深对测井解释方法的理解,会用所学程序设计语言完成设计题目的程序编写,利用现有绘图软件完成数据成图,对所得结果做分析研究,最终完成报告一份。 二、课程设计的主要内容 1. 运用所学测井知识对某油田实际测井资料进行(手工)定性和(计算机)定量分析。 2. 使用自然伽马、自然电位、井径及微电阻率测井曲线进行岩性识别。 3. 使用自然伽马、自然电位、井径及微电阻率测井曲线进行储层划分,用声波速度、密度及中子曲线进行储层物性评价。 4. 根据划分出的渗透层,读出储层电阻率值。并根据阿尔奇公式计算裸眼井原始含油饱和度和剩余油饱和度。 5. 上述岩性识别、物性评价及含油气性评价定量分析程序要求学生用所学C语言独立编写。 三、基本原理 “四性”关系及其研究方法: 1.岩性评价 岩性是指岩石的性质类型等,包括细砂岩、粉砂岩、粗砂岩等,同时还包括碎屑成分、填隙物、粒间孔发育、颗粒分选、颗粒磨圆度、接触关系、胶结类型等方面。通过划分岩性和分析岩心资料总结岩性规律,其研究主要依据岩心资料,地质资料和测井资料等。通过分析取心井的岩心资料和地质资料以及测井曲线的响应特征来识别岩性,并建立在取心井上的泥质含量预测解释模型。一般常用岩性测井系列的自然伽马GR、自然电位SP、井径CAL 曲线来识别岩性。 a.定性分析 定性划分岩性是利用测井曲线形态特征和测井曲线值相对大小,从长期生产实践中积累起来的划分岩性的规律性认识。首先要掌握岩性区域地质的特点,如井剖面岩性特征、基本岩性特征、特殊岩性特征、层系和岩性组合特征及标准层特征等。其次,要通过钻井取心和岩屑录井资料与测井资料作对比分析,总结出用测井资料划分岩性的地区规律。表1为砂泥岩剖面上主要岩石测井特征,在应用表中总结的特征时不能等量齐观,而应针对某一具体岩性找到有别于其他岩性的一两种特征。

《地球物理测井》

《地球物理测井》综合复习资料 一、名词解释 1、 水淹层(P18) 地层压力 指地层孔隙流体压力。 ?=H f f gdh h P 0 )(ρ 2、 3、 有效渗透率(P169) 地层含有多相流体时,对其中一种流体测量的渗透率 可动油饱和度 地层可动油气体积占地层孔隙体积的百分比。w xo m o S S S -= 4、 5、 泥浆低侵 侵入带电阻率小于原状地层电阻率. 6、 热中子寿命 热中子自产生到被介质的原子核俘获所经历的时间 7、 泥质含量 二、填空 1、 储集层必须具备的两个基本条件是(具有储存石油和天然气的空间)和(孔隙或缝洞之间连同),描述储集层的基本参数有(孔隙度)、(含油气饱和度)、(渗透率)和(岩层厚度)等。P167 2、 地层三要素_倾角、_倾向、_走向 3、 岩石中主要的放射性核素有U,TH 和K 等。沉积岩的自然放射性主要与岩石的泥质有关。 4、 声波时差Δt 的单位是___________,电阻率的单位是___________。 5、 渗透层在微电极曲线上有基本特征是 RLML>R2ML __。 6、 在高矿化度地层水条件下,中子-伽马测井曲线上,水层的中子伽马计数率______油层的中子伽马计数率;在热中子寿命曲线上,油层的热中子寿命______水层的热中子寿命。 7、 A2.25M0.5N 电极系称为_底部梯度电极系__电极距L=______2.5M______。 8、 视地层水电阻率定义为Rwa=________,当Rwa ≈Rw 时,该储层为________层。 9、 1- Sxo ﹦hr S ,Sxo-Sw ﹦mo S ,1-Sw ﹦h S 。 10、 对泥岩基线而言,渗透性地层的SP 可以向正或负方向偏转,它主要取决于___________和__________的相对矿化度。在Rw ﹤Rmf 时,SP 曲线出现_____异常。 11、 应用SP 曲线识别水淹层的条件为注入水与原始地层水的矿化度__________。 12、 储层泥质含量越高,其绝对渗透率_________。 13、 在砂泥岩剖面,当渗透层SP 曲线为正异常时,井眼泥浆为____________,水层的泥浆侵入特征是__________。 14、 地层中的主要放射性核素分别是__________、__________、_________。沉积岩的泥质含量越高,地层放射性__________。 15、 电极系A2.25M0.5N 的名称__________________,电极距_______。 16、 套管波幅度_______,一界面胶结_______。 17、 在砂泥岩剖面,油层深侧向电阻率_________浅侧向电阻率。 18、 裂缝型灰岩地层的声波时差_______致密灰岩的声波时差。 19、 微电极曲线主要用于_____________、___________。 20、 气层声波时差____大(周波跳跃)___,密度值____低___,中子孔隙度__低_______,深电阻率____高_____,中子伽马计数率___低_____。

测井原理与应用

测井原理与应用 测井技术:应用物理方法研究油气田钻井地质剖面和井的技术状况,寻找并监测油气层开发的一门应用技术。Well drilling 测井:矿场地球物理物探:地面地球物理 地层地球物理特性:1、电化学特性2、导电特性3、介电特性4、声学特性5、核特性6、磁特性7、热特性 特性随岩层的岩性、物性及所含流体特性的不同而变化。 测井方法:物理方法:1、电法测井2、声波测井3、核测井4、生产测井 测井用途: 一、评价油气层;(1)定性分析,划分渗透层、裂缝带,地层对比 地层对比:在横向上进行地层追踪的过程 (2)定量计算参数,储集层是具有一定的孔隙度和渗透率的地层(3)确定油气层的有效厚度(4)预测产能(5)研究构造和沉积环境 二、油藏描述;研究油气藏的生储盖条件,储量计算; 三、油气田开发的问题;(1)剩余油的确定及分布预测(2)开发井网调整措施研究(3)水淹层识别及水淹级别的判别 四、油气井工程中的问题;(1)地层压力,岩石强度,井壁稳定,固井质量(2)评价压裂酸化和封堵效果(3)注采井的流体动态监测(4)随钻实现了地质导向,消除了以往的盲目钻井(5)检查套管损伤 五、其他作用 电法测井:以研究岩石及其孔隙流体的导电性,介电特性及电化学特性为基础的一大类测井方法。 电化学特性:自然电位测井(SP) 介电特性:电磁波传播测井(EPT) 导电特性:双侧向电阻率测井(DLL)=聚焦测井、微球开聚焦电阻率测井(MSFL)、感应测井(DIL)、阵列感应式成像测井(AIT)、随钻电阻率测井(LWD)、套管电阻率测井(CHFR)、方位电阻率测井(ARI)、地层倾角测井(SHDT)、地层微电阻率扫描测井(FMS)井径曲线(CAL)钻头直径(BITS) 自然电位:井中自然电场产生的电位

(完整word版)测井考试小结(测井原理与综合解释)

一、名词解释 1、测井:油气田地球物理测井,简称测井well logging ,是应用物理方法研究油气田钻井地质剖面和井的技术状况,寻找油气层并监测油气层开发的一门应用技术。 2、电法测井:是指以研究岩石及其孔隙流体的导电性、电化学性质及介电性为基础的一大类测井方法,包括以测量岩层电化学特性、导电特性和介电特性为基础的三小类测井方法。 3、声波测井:是通过研究声波在井下岩层和介质中的传播特性,来了解岩层的地质特性和井的技术状况的一类测井方法。 4、核测井:是根据岩石及其孔隙流体的核物理性质,研究钻井地质剖面,勘探石油、天然气、煤以及铀等有用矿藏的地球物理方法,是地球物理测井的重要组成部分。 5、储集层:在石油工业中,储集层是指具有一定孔隙性和渗透性的岩层。例如油气水层。 6、高侵:当地层孔隙中原来含有的流体电阻率较低时,电阻率较高的钻井液滤液侵入后,侵入带岩石电阻率升高,这种钻井液滤液侵入称为钻井液高侵,R XO

第三章 中子测井

第三章 中子测井 概述 中子测井利用中子与地层物质相互作用的各种效应,测量地层特性的测井方法的总称。 根据中子测井仪器记录的对象不同可以分为: ??? ?? ? ?—伽马能谱测井—中子—伽马测井—中子—超热中子测井—中子—热中子测井—中子 按仪器结构特征的不同,可以分为普通中子测井,贴井壁中子测井,补偿中子测井等。 从中子源发出的高能中子与地层物质的原子核发生各种作用,其结果是高能中子逐步减弱为超热中子和热中子,或被原子核吸收,发生核反应。中子与物质相互作用的类型有:非弹性散射;弹性散射;核俘获引起的核反应等。 探测仪器记录的低能中子的数量或原子核俘获中子发出的伽马射线的强度与地层对中子的减速能力和吸收特性有关。中子测井正是利用了这些特性对地层进行探测的。 1)中子测井测量地层孔隙度的原理 氢核与中子的质量几乎相等,是最强的减速物质。因此,中子测井的结果将反映地层的含氢量。在油层或水层中,储集空间中被含氢核的油或水充填,这样储集体中含氢量的多少反映岩石孔隙度的大小。因此,中子测井是一种孔隙度测井方法。 2)油层和气层对中子的减速能力的差异非常明显,因此中子测井也是一种指示油气层的测井方法。 3)氯是地层中重要的中子吸收物质,氯是大多数地层水的主要离子成分,可见中子测井对于划分油水层也有重要作用。 4)中子与地层中的原子核发生非弹性散射,使原子核处于激发态,在退激时发出伽马射线。这些伽马射线的能量,反映靶原子核的能级结构。因不同的原子核其能级结构是不同的,因此发出的伽马射线的能量也是不同的。我们把这种不同原子核发生的伽马射线称为特征伽马射线。测量地层发射的伽马射线的能谱,就可以分析地层中元素的成分。 例如:碳核的特征伽马射线为 Er 43 .4= 氧核的特征伽马射线为 Mev Er 13.6= 对于给定的中子源,中子与地层中的碳核和氧核发生非弹性散射次数的多少,取决于地层中相应核素的多少,取决于地层中相应的核素的丰度。即特征伽马射线的强度取决于地层中碳核、氧核的数目。显然,油层与水层单位体积中的碳核和氧核的数目是不同的。 我们通过探测 c r E ,与 o r E ,的强度比,就可以定性判断地层是水层还是油层。这是碳氧比测井的原理。 §1中子测井基本原理 普通中子测井是利用地层中氢核对快中子的减速能力测量地层的含氢指数,进而确定地层孔隙度的测井方法。 一、地层的含氢指数 自然界中,对中子减速能力最强的核素是氢核,岩石中的氢核的多少就决定了地层对中子的主要减速能力。为了度量地层对中子的减速能力,引入几个概念。 1.含氢量,含氢指数 ①含氢量:单位体积中氢核的数目。

【题库】地球物理测井试题库

二、填空 1、 储集层必须具备的两个基本条件是孔隙性和_含可动油气_,描述储集层的基本参数有岩性,孔隙度,含油气孔隙度,有效厚度等。 2、 地层三要素倾角,走向,倾向 3、 岩石中主要的放射性核素有铀,钍,钾等。沉积岩的自然放射性主要与岩石的_泥质含量含量有关。 4、 声波时差Δt 的单位是微秒/英尺、微秒/米,电阻率的单位是欧姆米。 5、 渗透层在微电极曲线上有基本特征是_微梯度与微电位两条电阻率曲线不重合_。 6、 在高矿化度地层水条件下,中子-伽马测井曲线上,水层的中子伽马计数率_大于油层的中子伽马计数率;在热中子寿命曲线上,油层的热中子寿命长于_水层的热中子寿命。 7、 A2.25M0.5N 电极系称为_底部梯度电极系,电极距L=2.5米。 8、 视地层水电阻率定义为Rwa= Rt/F ,当Rwa ≈Rw 时,该储层为水层。 9、 1- Sxo ﹦Shr ,Sxo-Sw ﹦Smo ,1-Sw ﹦Sh 。 10、 对泥岩基线而言,渗透性地层的SP 可以向正或负方向偏转,它主要取决于地层水和泥浆滤液的相对矿化度。在Rw ﹤Rmf 时,SP 曲线出现负异常。 11、 应用SP 曲线识别水淹层的条件为注入水与原始地层水的矿化度不同。 12、 储层泥质含量越高,其绝对渗透率越低。 13、 在砂泥岩剖面,当渗透层SP 曲线为正异常时,井眼泥浆为盐水泥浆_,水层的泥浆侵入特征是低侵。 14、 地层中的主要放射性核素分别是铀,钍,钾。沉积岩的泥质含量越高,地层放射性越高。 15、 电极系A2.25M0.5N 的名称底部梯度电极系,电极距2.5米。 16、 套管波幅度低_,一界面胶结好。 17、 在砂泥岩剖面,油层深侧向电阻率_大于_浅侧向电阻率。 18、 裂缝型灰岩地层的声波时差_大于_致密灰岩的声波时差。 19、 微电极曲线主要用于划分渗透层,确定地层有效厚度。 20、 气层声波时差_高,密度值_低,中子孔隙度_低,深电阻率_高,中子伽马计数率_高_。 21、 如果某地层的地层压力大于_正常地层压力,则此地层为高压异常。 22、 油层的中子伽马计数率低于地层水矿化度比较高的水层的中子伽马计数率,油层电阻率大于地层水矿化度比较高的水层电阻率。 23、 地层三要素_倾角,倾向,走向。 24、 单位体积地层中的含氯量越高,其热中子寿命越短。 25、 h s φ=_________,t R F =_________。 一、填空题 26、 以泥岩为基线,渗透性地层的SP 曲线的偏转(异常)方向主要取决于_泥浆滤液_和 地层水的相对矿化度。 当R w >R mf 时,SP 曲线出现__正_异常,R w

测井方法原理

测井方法原理 一名词解释 地层因素:F=孔隙中100%含水时的地层电阻率;地层水电阻率 视电阻率:电阻率值既不可能等于某一岩层的真电阻率,,也不是电极周围各部分介质电阻率的平均值,而是在离电极装置一定距离范围内各介质电阻率综合影响的结果。 岩石体积物理模型:根据测井方法的探测特性和储集层的组成,按其物理性质的差异,把实际岩石简化为对应的性质均匀的几个部分,研究每一部分对测量结果的贡献,并把测量结果看成是各部分贡献的总和。 绝对渗透率:岩石孔隙中只有一种流体时测量的渗透率。 有效渗透率:当两种或两种以上的流体同时通过岩石时,对其中某一流体测得的渗透率。相对渗透率:岩石的有效渗透率与绝对渗透率之比值称为相对渗透率。 周波跳跃:在正常情况下,第一接收器R1和第二接收器R2应该被弹性振动的同一个波峰的前沿所触发。由于某种原因,造成声波的能量发生严重衰减。当首波衰减到只能触发接收器R1而不能触发接收器R2时,接收器R2便可能被第二个或者后续波峰所触发,于是造成时波差值显著增大。由于每跳越一个波峰,在时间上造成的误差正好是一个周期。故称之为周波跳跃。 标准测井:在一个油田或一个区域内,为了研究岩性变化、构造形态和大段油层组的划分等工作,常使用几种测井方法在全地区的各口井中,用相同的深度比例(1:500)及相同的横向比例,对全井段进行测井,这种组合测井叫标准测井。 减速长度:由快中子减速成热中子所经过的直线距离的平均值。 扩散长度:从产生热中子起到其被俘获吸收为止,热中子移动的距离。 热中子寿命:从热中子生成开始到它被俘获吸收为止所经过的平均时间叫热中子寿命。 含氢指数:单位体积的任何岩石或矿物中氢核数与同样体积的淡水中氢核数的比值。 统计起伏(放射性涨落):由于地层中放射性元素的衰变是随机的,因此,在一定时间间隔内衰变的原子核数,即放射出的伽马射线数,不可能完全相同。但从统计的角度来看,它基本上围绕着一个平均值在一定的范围内波动。 二、填空 1.根据勘探目的不同,通常分为石油测井、煤田测井、金属和非金属测井、水文测井、工程测井等几大类。 2.测井技术发展根据采集系统特点大致可以分为模拟测井、数字测井、数控测井、成像测井。 3.测井包括岩性测井(自然电位SP、自然伽马GR、井径测井CAL);孔隙度测井(声波、密度DEN、中子测井CNL);电阻率测井(普通视电阻率测井Ra、微电极系列测井ML、侧向测井LL、感应测井IL)。 4.整个测井工作可以分为两个阶段:资料录取阶段和资料解释阶段。 5.井内自然电位产生的原因:①地层水和泥浆含盐浓度不同而引起的扩散电动势和吸附电动势。②地层压力与泥浆柱压力不同而引起的过滤电动势。 6.电极系可以分为梯度电极系和电位电极系。 7.深三侧向电阻率测井主要反映原地层电阻率;浅三侧向电阻率测井主要反映侵入带的电阻率。 8.主电极的长度决定电流层的厚度,即主电极长度决定了分层能力。电极系直径小,泥浆层

相关文档
最新文档