三相异步电动机的机械特性

三相异步电动机的机械特性
三相异步电动机的机械特性

三相异步电动机的机械特性

(一)机械特性方程

1)物理表达式:T=CTФmI2’ cosф2 (T是电磁作用的结果)

2)参数表达式:

3) 工程表达式:

——外施电源电压;

——电源频率;

——电机定子绕组参数;

——电机转子绕组参数。

(二)固有机械特性曲线

1.形状(根据工程表达式来说明)

AB段(s较大):为双曲线,T与S成反比。 BO段(s很小):为直线,T与S 成正比。

2.起动点A,n=0,S=1,

起动转矩倍数KT=TS/TN 一般取0.8~1.8

3.临界点B

临界转差率只与转子电阻有关. 取0.1~0.2

最大转矩与电源电压UI2有关。

过载能力λ=Tm/TN 取1.6~2.2

4.同步点O

n=n1 T=0 (理想的空载转速,旋转磁场的转速 )

5.额定点C

0< SN

在该点附近有TN=9550PN/nN

(三)人为机械特性

1、降低定子电压的人为机械特性——“变瘦”

当定子电压U1 降低时,电磁转矩T与U1 的平方成正比,故同步转速不变,Sm不变,最大转矩Tm 和起动转矩TS 随电压平方降低。其特性曲线(红色)所示。

2、转子串电阻的人为机械特性——“变软”

当转子回路串电阻时,同步点不变,Sm与转子电阻成正比,转速随电阻增加而减小,最大转矩Tm保持不变,在一定范围内起动转矩有所增加,其特性曲线(红色)所示

3、降低定子电压频率的人为机械特性——“变小”

降低定子电压频率时,同步转速随之下降,从而使得电机转速下降,但特性的硬度基本保持不变。

电动机在工作时要求主磁通保持不变,因此在降低频率的同时,定子电压也要随之降低。

三相异步电动机基本控制线路的安装与调试

三相异步电动机基本控制线路的安装与调试 任务1-1 三相异步电动机的单向运行控制 学习内容: 1、常用低压电器的基本结构、工作原理、图形符号和文字符号、主要技术参数及其应用; 2、三相异步电动机的启/停、点动/长动控制。 学习目标: 1、知道:常用低压电器的工作原理、图形符号和文字符号;常用低压电器的用途。 2、能根据控制要求正确选择低压电器。 3、了解:常用低压电器的基本结构;主要技术参数。 4、掌握三相异步电动机的启/停、点动/长动控制电路的原理。 学习重点:工作原理、图形符号、文字符号、选择使用。 学习难点:工作原理、选择使用 §1-1 机床电气控制中常用的低压电器 目标任务: 1、了解低压电器的基本知识,熟悉常用的低压电器种类; 2、熟悉常用的各种低压电器的结构及原理、符号、选用; 3、熟练掌握常用低压电器的使用。 相关知识: 1-1. 低压电器基本知识

凡是对电能的生产、输送、分配和应用能起到切换、控制、调节、检测以及保护等作用的电工器械,均称为电器。低压电器通常是指在交流1200V及以下、直流1500V及以下的电路中使用的电器。机床电气控制线路中使用的电器多数属于低压电器。 一、低压电器的分类 低压电器是指工作在交流电压1200V 、直流电压1500V 以下的各种电器。生产机械上大多用低压电器。低压电器种类繁多,按其结构、用途及所控制对象的不同,可以有不同的分类方式。 1 .按用途和控制对象不同,可将低压电器分为配电电器和控制电器。 用于电能的输送和分配的电器称为低压配电电器,这类电器包括刀开关、转换开关、空气断路器和熔断器等。用于各种控制电路和控制系统的电器称为控制电器,这类电器包括接触器、起动器和各种控制继电器等。 2 .按操作方式不同,可将低压电器分为自动电器和手动电器。 通过电器本身参数变化或外来信号(如电、磁、光、热等)自动完成接通、分断、起动、反向和停止等动作的电器称为自动电器。常用的自动电器有接触器、继电器等。 通过人力直接操作来完成接通、分断、起动、反向和停止等动作的电器称为手动电器。常用的手动电器有刀开关、转换开关和主令电器等。 3 .按工作原理可分为电磁式电器和非电量控制电器 电磁式电器是依据电磁感应原理来工作的电器,如接触器、各类电磁式继电器等。非电量控制电器的工作是靠外力或某种非电量的变化而动作的电器,如行程开关、速度继电器等。 二、低压电器的作用 控制作用、保护作用、测量作用、调节作用、指示作用、转换作用 三、低压电器的基本结构 电磁式低压电器大都有两个主要组成部分,即:感测部分──电磁机构和执行部分──触头系统。 1 .电磁机构 电磁机构的主要作用是将电磁能量转换成机械能量,带动触头动作,从而完成接通或分断电路的功能。 电磁机构由吸引线圈、铁心和衔铁 3 个基本部分组成。常用的电磁机构如图所示,可分为 3 种形式。 2. 直流电磁铁和交流电磁铁

三相异步电动机检修培训讲义

XX电力职业技术学校实践教学中心一、异步电动机的基本结构基本结构:定子定子铁心:嵌放绕组,提供磁路。定子绕组:产生旋转磁场。转子转子铁心:嵌放绕组,提供磁路。转子绕组:感应出电势、电流。转子绕组:笼型绕线型材料:铁心均由硅钢片叠压而成;三相异步机的结构第二部份第二部份三相异步电动机的拆卸与装配三相异步电动机的拆卸与装配一、三相异步电动机的一般拆卸步骤1. 切断电源卸下皮带2. 拆去接线盒内的电源接线和接地线3. 卸下底脚螺母、弹簧垫圈和平垫片4. 卸下皮带轮→→→→ →→ 5. 卸下前端盖可用大小适宜的扁凿,插在端盖突出的耳朵处,按端盖对角线依次向外撬,直至卸下前端盖。6. 卸下风叶罩。7. 卸下风叶。→→ →→ 8.卸下后端盖。9.卸下转子在抽出转子之前,应在转子下婧投ㄗ尤谱槎瞬恐垫上厚纸板,以免抽出转子时碰伤铁心和绕组。10.最后用拉具拆卸前后轴承及轴承内盖。→→ →→ 二端盖的拆装步骤1. 端盖的拆卸步骤: 拆卸端盖前,应在机壳与端盖接缝处做好标记。然后旋下固定端盖的螺丝。通常端盖上都有两个拆卸螺孔,用从端盖上拆下的螺丝旋进拆卸螺孔,就能将端盖逐步顶出来。若没有拆卸螺孔,可用大小适宜的扁凿,插在端盖突出的耳朵处,按端盖对角线依次向外撬,直至卸下端盖。但要注意,前后两个端盖拆下后要标上记号,以免将来安装时前后装错。 a a 拆前端盖拆前端盖 b b 拆后端盖拆后端盖2. 端盖的安装步骤端盖的安装步骤:1铲去端盖口的脏物;2铲去机壳口的脏物再对准机壳上的螺丝孔把端盖装上;3 插上螺丝按对角线一先一后把螺丝旋紧切不可有松有紧以免损伤端盖。 →→ →→→→注意事项: 在固定端盖螺丝时不可一次将一边端盖拧紧应将另一边端盖装上后两边同时拧紧。要随时转动转子看?涫欠衲芰榛钭悦庾芭浜蟮缍选H?风罩和风叶的拆卸步骤1.选择适当的旋具,旋出风罩与机壳的固定螺丝,即可取下风罩。2. 将转轴尾部风叶上的定位螺丝或销子拧下,用小锤在风叶四周轻轻地均匀敲打,风叶就可取下,如图所示。若是小型电动机,则风叶通常不必拆下,可随转子一起抽出。a a拆风罩拆风罩b b拆风叶拆风叶四转子的拆装步骤1. 转子的拆卸方法:1拆卸小型电动机的转子时,要一手握住转子,把转子拉出一些随后用另一只手托住转子铁心渐渐往外移如图所示。要注意,不能碰伤定子绕组。→→一、有关术语和基本参数1.线圈线圈是组成绕组的基本元件,用绝缘导线(漆包线)在绕线模上按一定形状绕制而成。一般由多匝绕成,其形状如图所示。它的两直线段嵌入槽内,是电磁能量转换部分,称线圈有效边;两端部仅为连接有效边的“过桥”,不能实现能量转换,故端部越长材料浪费越多;引线用于引入电流的接线。线圈图2.线圈组几个线圈顺接串联即构成线圈组,异步电机中最常见的线圈组是极相组。它是一个极下同一相的几个线圈顺接串联而成的一组线圈,见下图所示。一、记录绕组原始数据原始数据的内容有:铭牌数据、绕组数据和铁心数据判别绕组的结构型式单层绕组、双层绕组、绕组形式判别极数2P 看铭牌的型号、查结构由线圈节距推算出、万用表判断 1. 拆除旧绕组的方法冲压冷拆法冲压热拆法((11)冷拆法)冷拆法首先将电机加热100 ℃左右,选择被拆电机绕组的非接线端,用磨出刃口的扁鉴对齐槽口将非接线端的上层绕组端部剁掉,一定要对齐槽口,否则不易退出槽中线圈。

最新《电机与电气控制技术》第2版 习题解答 第二章 三相异步电动机复习课程

《电机与电气控制技术》第2版习题解答 第二章三相异步电动机 2-1三相异步电动机的旋转磁场是如何产生的? 答:在三相异步电动机的定子三相对称绕组中通入三相对称电流,根据三相对称电流的瞬时电流来分析由其产生的磁场,由于三相对称电流其大小、方向随正弦规律变化,由三相对称电流建立的磁场即合成磁极在定子内膛中随一定方向移动。当正弦交流电流变化一周时,合成磁场在空间旋转了一定角度,随着正弦交流电流不断变化,形成了旋转磁场。 2-2三组异步电动机旋转磁场的转速由什么决定?对于工频下的2、4、6、8、10极的三相异步电动机的同步转速为多少? 答:三相异步电动机旋转磁场的转速由电动机定子极对数P交流电源频率f1决定,具体公式为n1=60f1/P。 对于工频下的2、4、6、8、10极的三相异步电动机的同步转速即旋转磁场的转速n1分别为3000r/min、1500r/min、1000r/min、750r/min、600r/min。 2-3试述三相异步电动机的转动原理,并解释“异步”的意义。 答:首先,在三相异步电动机三相定子绕组中通入三相交流电源,流过三相对称电流,在定子内膛中建立三相旋转磁场,开始转子是静止的,由于相对运动,转子导体将切割磁场,在转子导体中产生感应电动势,又由于转子导体是闭合的,将在其内流过转子感应电流,该转子电流与定子磁场相互作用,由左手定则判断电磁力方向,转子将在电磁力作用下依旋转磁场旋转方向旋转。 所谓“异步”是指三相异步电动机转子转速n与定子旋转磁场转速n1之间必须有差别,且n

电动机、吹风机接线图解(含单相电容、三相异步电动机、单三相吹风机)

电动机、吹风机接线图解(含单相电容、三相异步电动机、单三相吹风机) 一、电动机接线一般常用三相交流电动机接线架上都引出6个接线柱,当电动机铭牌上标为Y形接法时,D6、D4、D5相连接,D1~D3接电源;为△形接法时,D6与D1连接,D4与D2连接,D5与D3连接,然后D1~D3接电源。可参见图1所示连接方法连接。 图1三相交流电动机Y形和△形接线方法 二、三相吹风机接线有部分三相吹风机有6个接线端子,接线方法如图2所示。采用△形接法应接入220V三相交流电源,采用Y形接法应接入380V三相交流电源。一般3英寸、3.5英寸、4英寸、4.5英寸的型号按此法接。其他吹风机应按其铭牌上所标的接法连接。图2三相吹风机六个引出端子接线方法 三、单相电容运转电动机接线单相电动机接线方法很多,如果不按要求接线,就会有烧坏电动机的可能。因此在接线时,一定要看清铭牌上注明的接线方法。 图247为IDD5032型单相电容运转电动机接线方法。其功率为60W,电容选用耐压500V、容量为4μF的产品。图3(a)为正转接线,图3(b)为反转接线。 图3IDD5032型单相电容运转电动机接线方法 四、单相电容运转电动机接线图4JX07A-4型单相电容运转电动机接线方法 图4是JX07A-4型单相电容运转电动机接线方法。电动机功率为60W,用220V/50Hz交流电源、电流为0.5A。它的转速为每分钟1400转。电容选用耐压400~500V、容量8μF的产品。图4(a)为正转接线,图4(b)为反转接线。 五、单相吹风机接线图5单相吹风机四个引出端子接线方法 有的单相吹风机引出4个接线端子,接线方法如图5所示。采用并联接法应接入110V交流电源,采用串联接法应接入220V交流电源。 六、Y100LY系列电动机接线目前,Y系列电动机被广泛应用。Y系列电动机具有体积小、外形美观、节电等优点。它的接线方式有两种:一种为△形,它的接线端子W2与U1相连,U2与V1相连,V2与W1相连,然后接电源;另一种为Y形,接线端子W2、U2、

三相异步电动机的七种调速方法及特点

三相异步电动机分类特点以及调速方法 三相异步电动机分类: 1、从调速的本质来看,不同的调速方式无非是改变交流电动机的同步转速或不改变同步转两种。不改变同步转速的调速方法有1)绕线式电动机的转子串电阻调速、2)斩波调速、3)串级调速以及应用电磁转差离合器、4)液力偶合器、5)油膜离合器等调速。不改变同步转速的调速方法在生产机械中广泛使用。 2、改变同步转速的有改变定子极对数的多速电动机,改变定子电压、频率的变频调速有能无换向电动机调速等。 3、从调速时的能耗观点来看,有1)高效调速方法与2)低效调速方法两种:高效调速指时转差率不变,因此无转差损耗,如多速电动机、变频调速以及能将转差损耗回收的调速方法(如串级调速等)。有转差损耗的调速方法属低效调速,如转子串电阻调速方法,能量就损耗在转子回路中;电磁离合器的调速方法,能量损耗在离合器线圈中;液力偶合器调速,能量损耗在液力偶合器的油中。一般来说转差损耗随调速范围扩大而增加,如果调速范围不大,能量损耗是很小的。 我们清楚三相异步电动机转速公式为: n=60f/p(1-s) 从上式可见,改变供电频率f、电动机的极对数p及转差率s均可太到改变转速的目的,下面松文机电具体介绍其七种调速方法。 一、变极对数调速方法:这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的。本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。 特点如下:1、具有较硬的机械特性,稳定性良好; 2、无转差损耗,效率高;3、接线简单、控制方便、价格低;4、有级调速,级差较大,不能获得平滑调速;5、可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。 二、变频调速方法:变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。本方法适用于要求精度高、调速性能较好场合。其特点:1、效率高,调速过程中没有附加损耗;2、应用范围广,可用于笼型异步电动机;3、 调速范围大,特性硬,精度高;4、 技术复杂,造价高,维护检修困难。 三、串级调速方法 :串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差,达到调速的目的。大部分转差功率被串入的附加电势所吸收,再利用产生附加的装置,把吸收的转差功率返回电网或转换能量加以利用。根据转差功率吸收利用方式,串级调速可分为

三相异步电动机正反转教案

教学内容备注 一、组织教学:(1 min ) 整顿课堂纪律,准备进入教学。 二、复习回忆:(5 min ) ¥ (1)自锁概念。(见课件) 点两名学生回答问题。 (2)生活中那些机械要求电动机有正反两个转向。 全班回答,归纳。 (3)如何实现电动机正反转。 电工实习时如何接正反转电路。 三、导入新课:(4min ) 通过刚才几个同学回答的问题,我们知道在日常生活中我们坐的电梯,以及各种生产机械常常要求具有上、下、左、右、前、后等相反方向的运动,这就要求电动机能实现可逆运行。因此我们今天要学习的新课内容是三相异步电动机正反转运行控制电路。(板书课题)。 四、授课内容:(30 min ) 一)单向连续运行(5min ) 1.电路图查考勤 : 指定学生回答问题,教师讲解补充。 : 讲述并创造问题环境,启发学生思考激发学生求知欲,引出课题,并实现新旧知识的过渡 & 展示课件 提问学生回答单向连续控制的原理,并要求掌握 >

2.工作原理: 1)合上QS,U,V,W三相控制有电 2)按下SB1,KM线圈吸合,KM 主触点闭合,电动机运转。 、 KM辅助常开触点闭合,自锁。 3)按下SB1,KM线圈断电,主触点、辅助触点断开,电动机停止 二)正反转运行 1.主电路(10min) ①在电工实训和电器变压器中我们学过电动机正反转接线联系,请 同学回答问题(2min) - ②“从主电路着眼”: 主电路中的KM1闭和时将三相电按L1、L2、L3的顺序引进; KM2闭和时将三相电按L3、L2、L1的顺序引进,与KM1比较,它改变了两相电流相序;故可知KM1和KM2控制正反转。(3min) 换相的方法:改变电源任意两相的接线。借此引出正反转,一台电动机,两种不同运行方向,对前面知识的加深学习. - 板书 用彩笔标出此内容为本课的重点,要求学生重点掌握。 用两种不同颜色粉笔在主回路画图区别正反向 ^ 提问,由此调动学生参与课堂积极性. 对比反问,加深学生印象 ,

三相电机七种调速方式

三相电机七种调速方式 一、变极对数调速方法 这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的,特点如下: 具有较硬的机械特性,稳定性良好; 无转差损耗,效率高; 接线简单、控制方便、价格低; 有级调速,级差较大,不能获得平滑调速; 可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。 本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。 二、变频调速方法 变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。其特点: 效率高,调速过程中没有附加损耗; 应用范围广,可用于笼型异步电动机; 调速范围大,特性硬,精度高; 技术复杂,造价高,维护检修困难。 本方法适用于要求精度高、调速性能较好场合。 三、串级调速方法 串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差,达到调速的目的。大部分转差功率被串入的附加电势所吸收,再利用产生附加的装置,把吸收的转差功率返回电网或转换能量加以利用。根据转差功率吸收利用方式,串级调速可分为电机串级调速、机械串级调速及晶闸管串级调速形式,多采用晶闸管串级调速,其特点为:可将调速过程中的转差损耗回馈到电网或生产机械上,效率较高; 装置容量与调速范围成正比,投资省,适用于调速范围在额定转速70-90的生产机械上;

调速装置故障时可以切换至全速运行,避免停产; 晶闸管串级调速功率因数偏低,谐波影响较大。 本方法适合于风机、水泵及轧钢机、矿井提升机、挤压机上使用。 四、绕线式电动机转子串电阻调速方法 绕线式异步电动机转子串入附加电阻,使电动机的转差率加大,电动机在较低的转速下运行。串入的电阻越大,电动机的转速越低。此方法设备简单,控制方便,但转差功率以发热的形式消耗在电阻上。属有级调速,机械特性较软。 五、定子调压调速方法 当改变电动机的定子电压时,可以得到一组不同的机械特性曲线,从而获得不同转速。由于电动机的转矩与电压平方成正比,因此最大转矩下降很多,其调速范围较小,使一般笼型电动机难以应用。为了扩大调速范围,调压调速应采用转子电阻值大的笼型电动机,如专供调压调速用的力矩电动机,或者在绕线式电动机上串联频敏电阻。为了扩大稳定运行范围,当调速在2:1以上的场合应采用反馈控制以达到自动调节转速目的。 调压调速的主要装置是一个能提供电压变化的电源,目前常用的调压方式有串联饱和电抗器、自耦变压器以及晶闸管调压等几种。晶闸管调压方式为最佳。调压调速的特点:调压调速线路简单,易实现自动控制; 调压过程中转差功率以发热形式消耗在转子电阻中,效率较低。 调压调速一般适用于100KW以下的生产机械。 六、电磁调速电动机调速方法 电磁调速电动机由笼型电动机、电磁转差离合器和直流励磁电源(控制器)三部分组成。直流励磁电源功率较小,通常由单相半波或全波晶闸管整流器组成,改变晶闸管的导通角,可以改变励磁电流的大小。 电磁转差离合器由电枢、磁极和励磁绕组三部分组成。电枢和后者没有机械联系,都能自由转动。电枢与电动机转子同轴联接称主动部分,由电动机带动;磁极用联轴节与负载轴对接称从动部分。当电枢与磁极均为静止时,如励磁绕组通以直流,则沿气隙圆周表面将形成若干对N、S极性交替的磁极,其磁通经过电枢。当电枢随拖动电动机旋转时,由于电枢与磁极间相对运动,因而使电枢感应产生涡流,此涡流与磁通相互作用产生转矩,带动有磁

三相异步电动机的使用、维护和检修教案

教案(首页) 授课班级机电高职1002 授课日期 课题序号 3.5 授课形式讲授授课时数 2 课题名称三相异步电动机的使用、维护和检修 教学目标1.了解三相异步电动机启动前的准备工作和启动时的注意事项。2.熟悉三相异步电动机运行中的监视项目。 3.熟悉三相异步电动机的定期检修内容。 4.了解三相异步电动机的常见故障以及处理方法。 教学重点1.了解三相异步电动机启动前的准备工作和启动时的注意事项。2.熟悉三相异步电动机运行中的监视项目。 教学难点1.了解三相异步电动机启动前的准备工作和启动时的注意事项。2.熟悉三相异步电动机运行中的监视项目。 教材内容更 新、补 充及删减 无 课外作业补充 教学后记无 送审记录 课堂时间安排和板书设计

复习5 导 入 5 新 授 60 练 习 15 小 结 5 一、电机选择原则 1、电源的原则 2、防护形式的选择 3、功率的选择 4、起动情况选择 5、转速的选择 二、电机的安装原则 三、电机的接地装置 四、电机的定期检查和保养 五、三相异步电机的常见故障及处理方法 课堂教学安排

课题序号课题名称第页共页教学过程主要教学内容及步骤 导入新授三相异步电动机在生产设备中长期不间断地工作,是目前工矿企业的主要动力装置,电动机的使用寿命是有限的,因为电动机轴承的逐渐磨损、绝缘材料的逐渐老化等等,这些现象是不可避免的。但一般来说,只要选用正确、安装良好、维修保养完善,电动机的使用寿命还是比较长的。在使用中如何尽量避免对电动机的损害,及时发现电动机运行中的故障隐患,对电动机的安全运行意义重大。因此,电动机在运行中的监视和维护,定期的检查维修,是消灭故障隐患,延长电动机使用寿命,减小不必要损失的重要手段。 一、电动机的选择原则 合理选择电动机是正确使用电动机的前提。电动机品种繁多,性能各异,选择时要全面考虑电源、负载、使用环境等诸多因素。对于与电动机使用相配套的控制电器和保护电器的选择也是同样重要的。 1.电源的选择 在三相异步电动机中,中小功率电动机大多采用三相380V电压,但也有使用三相22OV电压的。在电源频率方面,我国自行生产的电动机采用50Hz的频率,而世界上有些国家采用60Hz的交流电源。虽然频率不同不至于烧毁电动机,但其工作性能将大不一样。因此,在选择电动机时应根据电源的情况和电动机的铭牌正确选用。 2.防护型式的选择 由于工作环境不尽相同,有的生产场所温度较高、有的生产场所有大量的粉尘、有的场所空气中含有爆炸性气体或腐蚀性气体等等。这些环境都会使电动机的绝缘状况恶化,从而缩短电动机的使用寿命,甚至危及生命和财产的安全。因此,使用时有必要选择各种不同结构形式的电动机,以保证在各种不同的工作环境中能安全可靠地运行。电动机的外壳一般有如下型式: (1)开启型外壳有通风孔,借助和转轴连成一体的通风风扇使周围的空气与电动机内部的空气流通。此型电动机冷却效果好,适用于干燥无尘的场所。 (2)防护型机壳内部的转动部分及带电部分有必要的机械保护,以防止意外的接触。若电动机通风口用带网孔的遮盖物盖起来,叫网罩式;通风口可防止垂直下落的液体或固体直接进入电动机内部的叫防漏式;通风口可防止与垂直成100o范围内任何方向的液体或固体进入电动机内部的叫防溅式。(3)封闭式机壳严密密封,靠自身或外部风扇冷却,外壳带有散热片。适用于潮湿、多尘或含酸性气体的场合。 (4)防水式外壳结构能阻止一定压力的水进入电动机内部。 (5)水密式当电动机浸没在水中时,外壳结构能防止水进入电动机内部。 (6)潜水式电动机能长期在规定的水压下运行。 (7)防爆式电动机外壳能阻止电动机内部的气体爆炸传递到电动机外部,从而引起外部燃烧气体的爆炸。 3.功率的选择 课堂教学安排 课题序号课题名称第页共页

三相异步电动机反接制动课件

1.10 三相鼠笼式异步电动机制动控制线路 1.反接制动控制 三相交流异步电动机的反接制动是通过改变定子绕 组中的电流相序,使其产生一个与转子旋转方向相 反的电磁力矩来实现的。对于单方向旋转的电动机, 当转速下降到零时,应迅速切断电动机电源,否则 电动机将反向转动。因此,在控制线路中应有检测 速度的元件。在反接制动时,电动机定子绕组流过 的电流相当于全压直接起动的两倍,因此在制动过 程中在定子线路中串入电阻以降低制动电流。

1.10 三相鼠笼式异步电动机制动控制线路 右图为三相交流异 步电动机单向反接制 动控制线路。合上电 源开关QS,按下起动 按钮SB2,接触器 KM1线圈通电并自锁, 电动机起动,当转速 达到120r/min以上时, 速度继电器KV的常开 触点闭合,为制动做 好准备。

1.10 三相鼠笼式异步电动机制动控制线路 需要停机时,按下停止复合按钮SB1,KM1断电其 主触点打开,KM2通电并自锁其主触点通过反接制 动电阻R,使电动机得到反相序电源,形成反接制 动。当转速下降至100r/min以下时KV的常开触点打 开,切断KM2线圈支路,使电动机断电,制动过程 结束。图中KM1和KM2之间有电气互锁。

1.10 三相鼠笼式异步电动机制动控制线路 下图为三相交流异步电动机双向反接制动控制线路。 图中R既是反接制动电阻,也是起动限流电阻。KV1 和KV2分别是速度继电器KV的正转和反转常开触点。 合上电源开关QS,按下正转起动按钮SB2,中间继 电器K3得电并自锁,其常闭触点断开,K4线圈不能 得电,K3常开触点闭合,KM1线圈得电,KM1主触 点闭合,电动机串电阻降压起动。当电动机转速达到 一定值时,KV1闭合,K1得电自锁。这时由于K1、 K3的常开触点闭合,KM3得电,KM3主触点闭合,

《三相异步电动机反接制动控制线路》电子教材(精)

任务五 三相异步电动机反接制动控制线路 远志精密五金加工厂的铣床原来采用电磁离合器制动,停车时间短,对设备的冲击较大,生产主管要求维修电工班改进现有的铣床制动系统,维修电工班接到任务后,查阅资料,研究新的制动方式。 1.熟悉三相异步电动机反接制动的工作原理。 2.理解速度继电器的结构和工作原理。 3.能识别和选用元器件,进行外观检查器件的好坏,核查其型号与规格是否符合任务书要求。掌握常见低压电器的图形符号、文字符号、组成结构;控制器件的动作过程、控制原理。 4.能识读电气原理图,正确分析工作原理和过程。 5.能识读安装图、接线图,明确安装要求,确定元器件、电动机等安装位置,确保正确连接线路。按图纸、工艺要求、安全规范和设备要求,安装元器件,按图接线,实现控制线路的正确连接。 6.能正确使用仪表进行测试检查,验证电路安装的正确性,并能修正装接的错误点。按照安全操作规程正确通电试车。 7. 客观地进行考核评价,选出优秀的安装方案和优秀协作团队。 8.按照实训室管理规定,整理工具,清理施工现场。 学习情境一 三相异步电动机反接制动控制线路的认识 1. 能通过阅读工作任务单, 明确工作内容、工时和工艺等要求。 2. 了解速度继电器的的结构组成、工作原理。 3. 能识读三相异步电动机反接制动控制线路的电气控制原理图,并分析工作原理。 学习目标 任务描述 学习目标

维修电工班成员研究发现对于铣床这一类的机床主轴制动控制,其制动要求迅速, 且系统惯性较大,可以采用反接制动。 一、反接制动原理 在电动机断开电源停车时,若迅速将三相电源线任意两相对调,就会使得旋转磁场反向, 转矩方向亦随之改变,但转子由于惯性仍按原方向转动,所以电动机因转矩方向与旋转方向相反而处于制动状态,这种制动称为反接制动。图5-1-1所示线路为反接制动原理图。 PE QS 正转运行反接制动 L1 L2 L3 M 3~N S n F F n1 a) b) -电动机原转向 -旋 转磁场方向n n1U V W 图5-1-1 反接制动原理图 线路工作原理分析:图5-1-1(a )中QS 为倒顺开关,当QS 向上投合时,通入定子绕组的电源相序为L1—U 、L2—V 、L3—W 相, 电动机单向正常运行;当电动机需停车时,先拉开关QS ,使电动机的三相电源断开,随后,将开关QS 迅速向下投合,通过开关对调电源线为L1—V 、L2—U 相,此时旋转磁场方向因电源相序改变而反向,转子因惯性而仍按原方向旋转,此时产生的转矩方向与电动机原转子转动方向相反,对电动机起制动作用,电动机速度迅速减慢直至为零值。但如果开关在反接制动位置停留时间过长而没有及时分断,则电动机又将进入反转状态。为了避免这种现象,在实用电路中,一般都采用速度继电器进行反接制动的自动控制。 二、自动控制的反接制动工作原理 1. 动作流程图 知识准备 合上电源开关 按下启动按钮 按下停止按钮 电机制动 制动结束

三相异步电动机接线图

三相异步电动机接线图 2010年02月25日星期 10:49 A.M. 三相异步电机接线图:三相电动机的三相定子绕组每相绕组都有两个引出线头。 一头叫做首端,另一头叫末端。规定第一相绕组首端用D 1表示,末端用D 4表示;第二相绕组首端用D2表示,末端用D5表示;第三相绕组首末端分别用D3和D6来表示。这六个引出线头引入接线盒的接线柱上,接线柱相应地标出D1~D6的标记,见图(1)。三相定子绕组的六根端头可将三相定子绕组接成星形或三角形,星形接法是将三相绕组的末端并联起来,即将D4、D5、D6三个接线柱用铜片连结在一起,而将三相绕组首端分别接入三相交流电源,即将D1、D2、D3分别接入A、B、C相电源,如图(2)所示。而三角形接法则是将第一相绕组的首端D 1与第三相绕组的末端D6相连接,再接入一相电源;第二相绕组的首端D2与第一相绕组的末端D4相连接,再接入第二相电源;第三相绕组的首端D3与第二相绕组的末端D5相连接,再接入第三相电源。即在接线板上将接线柱D1和D6、D2和D4、D3和D5分别用铜片连接起来,再分别接入三相电源,如图(3)所示。一台电动机是接成星形还是接成三角形,应视厂家规定而进行,可以从电动机铭牌上查到。三相定子绕组的首末端是生产厂家事先设定好的,绝不可任意颠倒,但可将三相绕组的首末端一起颠倒,例如将三相绕组的末端D4、D5、D6倒过来作为首端,而将D1、D2、D3作为末端,但绝不可单独将一相绕组的首末端颠倒,否则将产生接线错误。如果接线盒中发生接线错误,或者绕组首末端弄错,轻则电动机不能正常起动,长时间通电造成启动电流过大,电动机发热严重,影响寿命,重则烧毁电动机绕组,或造成电源短路。

第二章交流电机练习参考答案

第二章交流电机练习 一、判断题(对的打√,错的打×) 1、三相异步电动机不管其转速如何改变,定子绕组上的电压、电流的频率及转子绕组中电势、电流的频率总是固定不变的。(×) 2、交流电动机由于通入的是交流电,因此它的转速也是不断变化的,而直流电动机则其转速是恒定不变的。(×) 3、单相电机一般需借用电容分相方能起动,起动后电容可要可不要。(√) 4、异步电机转子的转速永远小于旋转磁场的转速。(×) 5、三相笼型异步电动机的电气控制线路,如果使用热继电器作过载保护,就不必再装设熔断器作短路保护。(×) 6、转差率S是分析异步电动机运行性能的一个重要参数,当电动机转速越快时,则对应的转差率也就越大。(×) 7、三相异步电动机在起动时,由于某种原因,定子的一相绕组断路,电动机还能起动,但是电动机处于很危险的状态,电动机很容易烧坏。(√) 8、异步是指转子转速与磁场转速存在差异。(√) 9、三相异步电动机为交流电机,同步电机为直流电机。(×) 10、正在运行的三相异步电动机突然一相断路,电动机会停下来。(×) 二、填空题 1、笼型异步电机的降压起动方法有:定子绕组串自耦变压器(电阻、电抗)、星三角、延边三角形的降压起动。 2、三相同步电动机所带的负载越轻,转子转速不变。同步电动机的常用启动方法是异步起动,同步运行。 3、电机转子转速和旋转磁场的转速的差称为转差。当三相异步电动机的转差率S=1时,电动机处于停止状态,当S趋近于零时,电动机处于同步状态。 4、三相异步电动机的调速方法有:改变电源频率调速、改变转差率调速、改变极对数调速。 5、反接制动时,当电机接近于转速为零时,应及时退出反接制动防止电机反转。 6、三相异步电动机的制动方法列举出三种方法:反馈制动、能耗制动、反接制动。 7、三相异步电动机进行变极调速时,将定子绕组串联时,磁极对数大(大或小),电动机可

Y系列三相异步电动机使用说明书

Y系列三相异步电动机使用说明书 l、电动机的安装 1.1安装前的准备工作 电动机开箱前应检查包装是否完整无损,有无受潮的现象,开罩后应小心清除电动机上的尘土和防锈层,仔细检查在运输过程中有无变形和损坏,紧固件有无松动或脱落,转子转动是否灵活,铭牌数据是否符合要求,并用500VMQ表测量高压电阻,绝缘电阻应不低于1MQ 否则应对绕组进行干燥处理,但是处理温度不超过J20℃。 1.2电动机的安装场地和安装基础 电动机的安装场地海拔高度应不超过100()m;一般用途的电动机的安装场地要干燥、洁净,电动机周围应通风良好,与其它设备要留有一定的间隔,以便于检查,监视和清扫,环境温度在40℃以下,并需防止强烈的辐射;安装基础要坚固、结实,有一定的刚度,安装面应平整,以保证电机的平衡运行。 I.3电动机的接线 1.3.1电动机应妥善接地,接线盒内右下方及机座外壳有接地装置,必要时亦可利用电动机底脚或法兰盘紧固螺栓接地,以保证电动机的安全运行。 1.4电动机与机械负载的联接 1.4.1电动机可采用联轴器,正齿轴或皮带与负载机械联接,双轴伸电动机的风扇端只允许采用联轴器传动。 1.4.2采用联轴器联接时,电动机轴中心线与负载机械的轴中心线要重合,以免电动机在动行中产生强烈振动,联轴动和不正常的声音等。器的安装偏差为:2极电动机允许偏差0.015mm,4、6、8极电动机偏差0.04mm。 1.4.3立式安装的电动机,轴伸只允许采用联轴器与机械负载联接。 2、电动机的起动 2.1电动机起动前的检查 2.1.1新安装或停用三个月以上的电动机起动前应检查绝缘电阻,测得绝缘电阻值不小于1MQ。 2.1.2检查电动机的紧固螺钉是否拧紧,轴承是否缺油,电动机的接线是否符合要求,外壳是否可靠接地或接零。 2.1.3检查联轴器的螺钉和销钉是否紧固,皮带联接处是否良好,松紧是否合适,机组转动是否灵活,有无卡位,窜动和不正常的声音等。 2.1.4检查熔断器的额定电流是否符合要求,安装是否牢固可靠。 2.1.5检查起动设备接线是否正确,起动装置是否灵活,触点接触是否良好,起动设备的金属处壳是否可靠接地或接零。 2.1.6检查三相电源电压是否正常,电压是否过高过低或三相电压不对称等。 2.1.7上述任何一项有问题,都必须彻底解决,在确认准备工作无误时方可起动。 2.2起动时的注意事项

三相异步电动机控制电路图

三相异步电动机的控制 1.直接启动控制电路 直接启动即启动时把电动机直接接入电网,加上额定电压,一般来说, 电动机的容量不大于直接供电变压器容量的20%~30%时,都可以直接启 动。 1).点动控制 合上开关QF ,三相电源被引入控 制电路,但电动机还不能起动。按下按钮SF ,接触器KM 线圈通电,衔铁吸合,常开主触点接通,电动机定子接入 三相电源起动运转。松开按钮SF , 图5-13 点动控制 接触器KM 线圈断电,衔铁松开,常开主触点断开,电动机因断电而停转。 2).直接起动控制 (1)起动过程。按下起动按钮SF ,接触器KM 线圈通电,与SF 并联的KM 的辅助常开触点闭合,以保 证松开按钮SF 后KM 线圈持续通电,串联在电动机回路中的KM 的主触点持续闭合,电动机连续运转,从而实现连续运转控制。 (2)停止过程。按下停止按钮SS ,接触器KM 线圈断电,与SF 并联的KM 的辅助常开触点断开,以保 证松开按钮SS 后KM 线圈持续失电,串联在电动机回路中的KM 的主触点持续断开,电动机停转。 与SF 并联的KM 的辅助常开触点的这种作用称为自锁。 图示控制电路还可实现短路保护、过载保护和零压 保护。 图5-14直接起动控制 ? 起短路保护的是串接在主电路中的熔断器FU 。一旦电路发生短路故障,熔体立即熔断,电动机立即停转。 ? 起过载保护的是热继电器KH 。当过载时,热继电器的发热元件发热,将其常闭触点断开,使接触器KM 线圈断电,串联在电动机回路中的KM 的主触点断开,电动机停转。同时KM 辅助触点也断开,解除自锁。故障排除后若要重新起动,需按下KH 的复位按钮,使KH 的常闭触点复位(闭合)即可。 ? 起零压(或欠压)保护的是接触器KM 本身。当电源暂时断电或电压严重下降时,接触器KM 线圈的电磁吸力不足,衔铁自行释放,使主、辅触点自行复位,切断电源,电动机停转,同时解除自锁。

三速电动机控制电路

三速电动机的启动 YD系列变级多速三相异步电动机是全国统一设计的产品,主要用于要求多种转速的机械设备装置。它利用改变电动机定子绕组的接线以改变其极数的方法变速.具有随负载-的不同要求而有级地变化功率和转速的特性,从而达到功率的合理匹配和简化变速系统。电动机的转速有双速、三速、四速三种。当机械设备的合理转速为中低速时,由于电动机功率相应较小,所以可以有效节约电能。本文介绍三速电动机的启动控制电路。 YD系列多速电动机的功率容量最小的不到1kW,最大的70kW~80kW。启动时先从低速挡开始,然后根据设备对转速的要求,依次启动中速挡和高速挡。因低速启动时电动机功率较小,所以启动电流较小。因电动机已具有一定转速,后启动中、高速档时。启动电流也不是特别大。因此通常情况下,各挡启动电路无须采用降压限流启动方式。 YD系列三速电动机有9个接线端子,图是三相电源与电动机接线端子在不同转速时的连接关系,图中L1、L2和L3是三相380V电源,没有连线的端子在各自的转速状态下被悬空。图2和图3分别是启动电路的一次、二次电路图。启动前,绿灯HG点亮,指示控制电路正常。启动时,先按下低速启动按钮SB2,接触器KM1吸合动作.其主触点将三相电源接至电动机的U1、V1、W1端,由图1可见,电

动机在8极低速下启动运行。辅助触点KM1-1进行自保持:KM1-2接通中间继电器lKA的线圈回路,并由1KA一2对其自保持。1KA 的触点1KA-4切断绿灯HG电源,绿灯熄灭;触点1KA一1闭合.白灯HW点亮,指示电动机在8极低速下运行:触点1KA-3闭合.是允许电动机中速启动的信号。 如果低转速不能满足设备要求。可接着启动中速挡。按一下中速启动按钮SB3(SB3是具有动合和动断双触点的按钮),接触器KMl线圈断电释放,接触器KM2得电吸合,并由KM2-1保持。KM2的主触点将电源接至电动机的U2、V2、W2端,电动机在6极中速下启动运行。KM2-2接通中间继电器2KA的线圈回路,并由2KA-2对其自保持。2KA的触点2KA-5切断白灯HW电源,白灯熄灭;触点2KA -1闭合,黄灯HY点亮,指示电动机在6极中速下运行:触点2KA -3闭合,是允许电动机高速启动的信号。 如果需要更高的转速,可接着按压按钮SB4(SB4也是具有动合和动断双触点的按钮),之后接触器KM2线圈断电释放,接触器KM3、KM4同时得电吸合,并由KM3-2保持。KM3的主触点将电源接至电动机的U3、V3、W3端,KM4.的主触点将U1、V1、Wl端短接,这种接线效果如同图l中4极高速状态。KM3的辅助触点KM3-3使黄灯熄灭,KM3-1使红灯点亮,指示电动机在4极高速下启动运行。

三相异步电动机接线图

三相异步电动机接线图 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

三相异步电动机接线图 2010年02月25日星期 10:49 A.M. 三相异步电机接线图:三相电动机的三相定子绕组每相绕组都有两个引出线头。一头叫做首端,另一头叫末端。规定第一相绕组首端用D 1表示,末端用D 4表示;第二相绕组首端用D2表示,末端用D5表示;第三相绕组首末端分别用D3和D6来表示。这六个引出线头引入接线盒的接线柱上,接线柱相应地标出D1~D6的标记,见图(1)。三相定子绕组的六根端头可将三相定子绕组接成星形或三角形,星形接法是将三相绕组的末端并联起来,即将D4、D5、D6三个接线柱用铜片连结在一起,而将三相绕组首端分别接入三相交流电源,即将D1、D2、D3分别接入A、B、C相电源,如图(2)所示。而三角形接法则是将第一相绕组的首端D 1与第三相绕组的末端D6相连接,再接入一相电源;第二相绕组的首端D2与第一相绕组的末端D4相连接,再接入第二相电源;第三相绕组的首端D3与第二相绕组的末端D5相连接,再接入第三相电源。即在接线板上将接线柱D1和 D6、D2和D4、D3和D5分别用铜片连接起来,再分别接入三相电源,如图(3)所示。一台电动机是接成星形还是接成三角形,应视厂家规定而进行,可以从电动机铭牌上查到。三相定子绕组的首末端是生产厂家事先设定好的,绝不可任意颠倒,但可将三相绕组的首末端一起颠倒,例如将三相绕组的末端D4、D5、D6倒过来作为首端,而将D1、D2、D3作为末端,但绝不可单独将一相绕组的首末端颠倒,否则将产生接线错误。如果接线盒中发生接线错误,或者绕组首末端弄错,轻则电动机不能正常起动,长时间通电造成启动电流过大,电动机发热严重,影响寿命,重则烧毁电动机绕组,或造成电源短路。 三相电机接线图 2011年05月20日星期五 15:07 电机接线盒 电机y接时,接线盒里,连接片的连接方式

第三单元三相异步电动机的启动与反转

第三单元 三相异步电动机的启动与反转 三、课堂探析 (一)探析问题 【问题一】 三相异步电动机启动与负载转矩有哪些关系?是否负载越大,启动电流越大? 【解题思路】: (1)根据启动转子电流的公式220 2 2 202X r E I st += 可知,转子启动电流与负载大小无关,它只与E 20、r 2和 X 20这几个量有关,E 20的大小决定于电源电压、r 2和X 20决定于电动机本身参数。 (2)根据电动机磁动势平衡方程式102211N I N I N I ? ? ? =+可以得到I 1st ,从而得到电动机启动电流的大小是由电机本身参数、电源电压大小决定而与负载大小无关。 【解题过程】: 启动电流是指n =0时的定子电流,它与电机本身参数、电源电压大小有关,与负载大小无关。负载大小对启动的影响表现在如负载转矩大于电机的启动转矩,电机将无法启动,此时n =0,定转子长时间承受很大的启动电流,很快烧坏电机; 如果电机带重负载启动,虽然电机启动转矩比负载转矩大一些,但电机加速过程慢,启动时间长,会引起电机过热。 【归纳总结】: (1)启动电流不是转子启动电流而是定子启动电流; (2)定子启动电流的分析必须要通过先分析转子启动电流,再通过电动机磁动势平衡方程式才能得到。 【问题二】 三相异步电动机在轻载启动和重载启动时,启动转矩是否相等?为什么? 【解题思路】: 根据电动机的机械特性曲线,可以看出起动转矩的大小与负载的大小无关,启动转矩只于电源电压、电动机的结构、转子的起动电流和转子启动瞬间的功率因数有关。 【解题过程】: 启动转矩相等。在启动瞬间转子启动电流和转子绕组的功率因数是相等的,由起动转矩公式 st st m T st I C T 22cos ?φ=可知启动转矩也是相等的,起动转矩与负载大小无关。 【归纳总结】: 既可以用机械特性解题,也可以用转矩公式来解题,两种方法何以相互验证。 【问题三】 若三相异步电动机在额定电压下启动,其启动电流是额定电流的6倍,问启动时的电磁转矩是否也为额定电磁转矩的6倍?为什么? 【解题思路】: 起动转矩与启动电流不成正比关系。注意启动电流是电动机的定子电流,而决定启动转矩的是电动机的转子启动电流,所以分析是要从转子侧进行分析。 【解题过程】: 起动转矩不是额定转矩的6倍。根据电磁转矩公式可得到起动转矩公式为st st m T st I C T 22cos ?φ=,而 220 2 2 22cos X r r st += ?,在启动时转子感抗达到最大,所以启动时的功率因数st 2cos ?很小,因此启动转 矩达不到额定转矩的6倍,一般只有3~4倍。 【归纳总结】: 做此类的题目要理清思路,要知道为什么起动电流会很大,这个分析要通过磁路;为什么起动电流大而启动转矩并不是很大,要通过电磁转矩公式分析。

相关文档
最新文档