第14章细胞周期的调控与癌细胞

第14章细胞周期的调控与癌细胞
第14章细胞周期的调控与癌细胞

第十四章2012

细胞周期的调控与癌细胞

第一节细胞增殖的调控

一、MPF的发现及其作用(P421,299)

MPF(maturation-promoting factor)

——促成熟因子

细胞促分裂因子(mitosis-promoting factor)

M期促进因子(M phase-promoting factor)

染色体超前凝集现象(premature chromosome condensation,PCC)——M期细胞与间期细胞的融合实验,导致染色体不同程度的凝集。

G1期细胞与M期细胞融合

G1期PCC呈细单线状

S期细胞与M期细胞融合

S期PCC呈粉末状

G2期细胞与M期细胞融合

G2期PCC呈双线染色体状

(P424)

1988年,从非洲爪蟾中实验分离MPF,并证明主要成分为p32和p45两种蛋白,二者相互结合后,表现出蛋白激酶活性,可以使多种蛋白质底物磷酸化。

二、p34cdc2激酶的发现及其与MPF的关系(P424,301)

1、cdc基因(cell division cycle)的发现:

L.Hartwell,P. Nurse;酵母温度敏感突变株

2、cdc基因的表达产物

p34cdc2 ,本身不具有蛋白激酶活性,当与p56cdc13结合后,可以使得多种蛋白底物磷酸化,又称p34cdc2激酶;

3、p34cdc2与MPF的关系(P424)

免疫实验和序列分析证明:

p34cdc2与p32为同源蛋白

4、细胞周期蛋白(cyclin)与MPF(P425)

1983年,Tim Hunt在海胆中发现两种细胞周期蛋白(cyclin A,B),广泛分布于各种真核生物中,含量随细胞周期而变化,间期积累,分裂期消失。

序列分析表明,周期蛋白B与p45是同源物。

MPF由2个亚单位:

——Cdc2蛋白(催化亚单位)和周期蛋白B(调节亚单位)组成,二者结合具有蛋白激酶活性。

The Nobel Prize in Physiology or Medicine 2001

"for their discoveries of key regulators of the cell cycle"

三、周期蛋白(cyclin)(P425,302)

1、分类:发现众多周期蛋白,表达时期不同,功能多样:

G1期周期蛋白:只在G1期表达,调节G1/S,存在时间较短;

M期周期蛋白:间期表达和积累,调节M,存在时间较长。

2、周期蛋白分子结构

(1)均含有一段保守的氨基酸序列——周期蛋白框(cyclin box), 约100氨基酸残基,介导周期蛋白和周期蛋白依赖性蛋白激酶(CDK激酶)结合;

(2)M期周期蛋白分子近N端含有一段由9个氨基酸残基组成的破坏框(destruction box)

RXXLGXIXN

参与由泛素介导的周期蛋白的降解。

(3)G1期周期蛋白分子不含破坏框,但C端含有PEST序列,与该类蛋白的更新有关。

3、cyclin在细胞周期中的变化(P426)

不同的周期蛋白在细胞周期中表达的时期不同,且与不同的CDK结合,调节不同的CDK激酶活性。

四、CDK和CDK抑制因子(p427,303)

1、定义

CDK激酶(cyclin-dependent kinase)

——细胞中的该类蛋白与周期蛋白结合(作为调节亚单位),表现出蛋白激酶活性;

不同的CDK激酶结合不同的周期蛋白,执行不同的调节功能。

2、CDK激酶分子结构(P428)

具有类似的CDK激酶结构域(CDK kinase domain),该域中的PSTAIRE序列非常保守,可结合周期蛋白;

存在被磷酸化修饰的位点,对酶活性起到调节作用。

五、细胞周期运转调控(P429,304)

CDK激酶对细胞周期起核心调控作用;

不同的CDK激酶在细胞的不同时期表现出活性,从而对细胞周期的不同时期进行调节。(一)G2/M期转化和CDK1激酶的调节

1、CDK1激酶的周期性

MPF=CDK1 or p34cdc2+周期蛋白B

p34cdc2——含量稳定;

周期蛋白B——含量周期性变化;

CDK1激酶活性依赖于周期蛋白B的积累

2、CDK1激酶的功能(P430)

催化某些蛋白质特异位点的丝氨酸/苏氨酸残基,改变其结构和启动其功能,实现调控细胞周期的目的。

如:

组蛋白H1 磷酸化→促进染色体凝集

核纤层蛋白磷酸化→促使核纤层解聚

核仁蛋白磷酸化→促使核仁解体

见P430 表14-2

3、CDK激酶活性的调节因素

周期蛋白和CDK激酶的结合(先决条件)

Wee1/Mik1激酶和CAK(CDK激活激酶)催化CDK的Thr14、Tyr15和Thr161磷酸化

磷酸酶Cdc25催化Thr14、Tyr15去磷酸化

CDK表现出激酶活性

(二)M期周期蛋白与细胞分裂中期向后期转换(P431,306)

分裂中期,M期周期蛋白A和B迅速降解,CDK1激酶活性丧失。被CDK1激酶磷酸化的蛋白质去磷酸化,细胞从M期向后期转化。

周期蛋白A和B的降解依赖于泛素化途径,分子结构中的破坏框起到重要调节作用

后期促进复合物(APC)(P432)

组分在分裂间期中表达,多种组分,但只在M期才表现出活性,可能受到CDK激酶活性的调节。

APC活性受到多种因素的综合调节。如Cdc20的正调控和纺锤体装配检验点的检控。(三)G1/S期转化与G1期周期蛋白依赖性CDK(自学)

(四)S/G2/M期转换与DNA复制检验点(自学)

“为什么有丝分裂中DNA只能复制一次?”

——DNA复制执照因子学说

细胞质中的Mcm蛋白(minichromosome maintenance protein)等因子,在M期核膜破裂时,与染色质结合,使之获得DNA复制必需的执照;

进入S期后,随着DNA复制,“执照”信号不断消失,在G2期,细胞核不再含有该信号,DNA复制结束并不再起始。只能等到下一个M期才能重新获得“执照”。

六、其他因素在细胞周期调控中的作用(p437,310)

1、原癌基因和抑癌基因

均是细胞生命活动所必需的基因,产物对细胞增殖和分化起着重要的调控作用;

原癌基因非正常表达,可导致细胞转化,增殖过程异常,甚至癌变;

抑癌基因表达产物对细胞增殖起负性调节作用。

2、外界因素:

辐射、化学物质、病毒、温度、pH变化等。

本节完

第十四章第二节2012

癌细胞

肿瘤(tumor)在致瘤因素作用下,细胞在基因水平上失去对其生长的正常调控,导致异常增生,形成肿块。

? 良性肿瘤:生长缓慢,与周围组织边界明显。

? 恶性肿瘤:癌症(cancer),生长快、具有迁移性。

? 据2001年卫生事业发展情况统计公报,恶性肿瘤为城市地区居民死因第一位。

? 肿瘤组织由实质和间质两部分构成,实质是肿瘤细胞,间质由结缔组织和血管组成。

癌的类群

1、癌——组织的外表面和内表面生长的癌

如肺癌、乳腺癌、结肠癌

2、瘤——中胚层形成的组织中形成的癌

如骨、软骨、脂肪、结缔组织、肌组织

3、淋巴瘤和白血病——淋巴和血液里面产生的癌。白血病主要是幼稚血细胞大量增殖并侵犯正常组织。

一、癌细胞的基本特征

(一)细胞生长和分裂失去控制

不产生凋亡反应,细胞永生,核质比例增大(1:1),分裂快速;

(二)具有侵润性和扩散性

细胞间粘着性下降,侵润周围健康组织,或者通过血液和淋巴循环在其他部位粘着和增殖。

(三)细胞间相互作用改变

水解基底膜成分,间隙连接消失,异常表达膜受体蛋白,粘着别处细胞,逃避免疫监督

(四)蛋白表达谱系或蛋白活性改变

往往出现胚胎细胞中表达的蛋白,具有较高的端粒酶活性,某些恶性增殖、扩散相关的蛋白;mRNA转录谱系的改变

不同种类的癌细胞,mRNA转录谱系存在差异

存在广泛的异质性

(五)体外培养的恶性转化细胞的特征

永生、可以悬浮培养、失去接触抑制,分裂期细胞增多。

染色体异常

癌细胞染色体常常出现染色体的缺失和增加,即非整倍性(aneuploidy),并且不会因此而进入凋亡。

自分泌激活

能够分泌刺激自身增殖的生长因子促进自身分裂,培养中往往可以无血清生长。

二、癌基因与抑癌基因

(一)原癌基因和癌基因

1、原癌基因(proto-oncogene)的发现

在劳氏肉瘤病毒中发现一个Src基因,可以导致被感染的鸡体内产生肿瘤。

在鸡体细胞基因组内也发现一个与病毒Src同源性很高的基因片段,不具有致癌能力,称为细胞癌基因(cellular oncogene)或者原癌基因(proto-ongogene)。

随着多种病毒癌基因(v-oncogene)的发现,在真核细胞中陆续发现100多种原癌基因。

2、原癌基因proto-oncogene:

A normal cellular gene that encodes a protein usually in involved in regulation of cell growth or differentiation and that can be mutated into a cancer-promoting oncogene, either by changing the protein-coding segment or by altering its expression.

from《Molecular Cell Biology (5th Edition)》

2、癌基因(oncogene)

A gene whose product is involved either in thansforming cells in culture or in inducing cancer in animals. Most oncogenes are mutant forms of normal genes (proto-oncogenes) that encode proteins involved in the control of cell growth or division.

from《Molecular Cell Biology (5th Edition)》

3、原癌基因向癌基因的转化

——原癌基因的激活

①点突变激活——原癌基因的编码区发生突变,从而使产物的性质和活性发生变化;

②强启动子插入激活——改变了结构基因表达方式和表达的量;

③染色体易位和重排——使本不在一起的基因序列同原癌基因串连,可能合成新的蛋白质或者融合蛋白,改变了基因的自然活性;

④原癌基因扩增——拷贝数大量增加,转录水平大大提高。

(二)抑癌基因

正常细胞增殖过程中的负调控因子,它编码的蛋白质抑制细胞生长和阻止细胞癌变。如果突变,细胞由于丧失增殖的负调控而过度增殖。

癌基因是细胞分裂、肿瘤发生的“加速器”——油门

抑癌基因是细胞生长和恶化的“制动器”——刹车

p53基因是是迄今发现与人类肿瘤相关性最高的基因。该基因编码一种分子质量为53kDa的磷酸化蛋白质,命名为P53。

p53基因——基因组的卫士

p53蛋白——相对分子量53X103的多肽;

缺失导致Li-Fraumeni综合征;

p53基因的消除是许多肿瘤细胞转向完全恶化过程中一个重要步骤;

p53基因的功能:

激活一些分裂相关基因如p21;

指导遗传损伤的细胞进入凋亡;

p53基因和癌症放射化学治疗中的作用。

三、肿瘤的发生是基因突变逐渐积累的结果

(一)物理化学致癌物

1、化学致癌物

辐射对癌的诱发

包括来自太阳的紫外线、外层空间的宇宙射线、自然发生的放射性元素的放射线、医疗军事和实验中的高能辐射(如X光)。

(二)肿瘤发生遗传学

1、体细胞突变学说

致癌因子引起体细胞基因突变,使正常体细胞转化为前癌细胞,然后在一些促癌因素作用下,发展成癌细胞。该学说认为肿瘤起源于一个突变细胞(单克隆性),是突变细胞的单克隆增殖细胞群。

原发型肿瘤细胞内相同的染色体畸变、遗传标记和同工酶支持该学说。

过于简单,只注重外界致癌因素,忽略了细胞内部的遗传因素,无法解释遗传性肿瘤。

2、二次突变学说

认为肿瘤需要两次或者两次以上的突变才能发生。

遗传型的肿瘤,第一次突变发生在生殖细胞或者父母遗传而来,该个体的所有体细胞实质上都是潜在的前癌细胞,任何体细胞如果再发生第二次突变,就会转化为癌细胞。因而具有家族性、多发性、双侧性、早发性特点。

非遗传型肿瘤是由于第一次突变发生在成体的某个体细胞中,这个体细胞增殖的细胞克隆为前癌细胞,如果在这个细胞或者克隆再发生第二次突变,则可能形成肿瘤。因此具有发病迟、散发、单发、单侧性特点。

具有较广的临床证实,但是仍然忽视了遗传因素的作用。

3、癌基因学说

多步致癌假说(多次打击学说)

细胞癌变往往需要多个癌基因的协同作用,要经过多阶段的演变,不同阶段涉及不同癌基因的激活。换句话说,不同癌基因的激活在时间和空间上进行一定的配合,共同表达才能形成癌细胞表型。

四、肿瘤干细胞

14章完

细胞周期调控

2001年诺贝尔生理学和医学奖

细胞周期调控 一、背景介绍 2001年诺贝尔生理学医学奖授予美国西雅图弗瑞德·哈钦森癌症研究中心的Leland H Hartwell、英国伦敦皇家癌症研究基金会的Sir Paul M. Nurse和R. Timothy Hunt,以表彰获奖者们在细胞周期调控方面的卓越发现和贡献。 Leland (1939年生)在上世纪60年代末便认识到用遗传学方法研究细胞周期的可能性。他采用啤酒酵母细胞建立系统模型,经过一系列试验,分离出细胞周期基因发生突变的酵母细胞。Hartwell和其他科学家相继发现了100多种与细胞周期调控相关的CDC基因族。其中,Hartwell发现的CDC28调控细胞周期G1期进程的第一步,故又称为“start”基因。另外,Hartwell在研究酵母细胞对辐射的敏感性基础上,提出了著名的“checkpoint”概念,即当DNA受损时,细胞周期会停止。这一现象的生理意义在于,在细胞进入下一个细胞周期之前能有足够的时间进行DNA修复。后来,Hartwell将“checkpoint”的概念扩展到调控并保障细胞周期各期之间的正确顺序。 Sir Paul (1949年生)继Hartwell之后在70年代中期采用非渊粟酒裂殖酵母细胞为模型,发现了cdc2基因在细胞分裂(从G2期到有丝分裂期)调控方面起重要作用。后来,他发现cdc2与Hartwell在啤酒酵母中发现的“start”基因相同,还可调控从G1期到S期的转变。因此,cdc2基因可调控细胞周期的不同阶段。 1987年,Nurse分离出人类的相应基因——CDK1。Nurse发现CDK的活性依赖可逆性的磷酸化反应。基于这些理论,又有一些人类的CDK分子相继被发现。R. Timothy Hunt(1943年生)在80年代早期发现了第一个周期蛋白分子。周期蛋白是一种在细胞周期中周期性产生和降解的蛋白质。周期蛋白与CDK分子结合,调节CDK的活性。Hunt首先发现,在海胆细胞中周期蛋白在细胞周期中会发生周期性的降解,这是调控细胞周期的重要机制。Hunt在其他物种中也发现了周期蛋白,这些周期蛋白在进化过程中高度保守。 3位诺贝尔奖获得者创建了细胞周期调控的分子机制。CDK分子的含量在细胞周期中是恒定的,但是它的活性却因周期蛋白的调控作用而不同。周期蛋白和CDK分子共同驱动细

细胞周期调控蛋白在肿瘤放射治疗中的研究进展

周期调控蛋白在肿瘤放射治疗中的研究进展 摘要:细胞周期调控蛋白的异常表达是导致细胞周期调控机制受到破坏的原因 之一,与恶性肿瘤的发生密切相关。现认为,癌症等恶性肿瘤可能是一类细胞周期性疾病。细胞周期蛋白在肿瘤的发生发展中所扮演的角色日益成为人们关注的焦点, 很多相关蛋白和基因经射线照射后会导致细胞周期发生改变。细胞对电离辐射的敏感性,最重要的是DNA修复和电离辐射引发的信号转导机制,导致基因表达、细胞周期进程和细胞凋亡进程的改变。电离辐射能够激活DNA修复,阻止细胞周期进程过大引起细胞凋亡,而这些事件和效应的改变多与辐射敏感蛋白有关。可见,作为信号级联反应节点上的多种辐射敏感蛋白质的表达情况,对电离辐射抑制肿瘤细胞增殖和肿瘤发生发展,具有至关重要的作用。肿瘤对射线的反应称为肿瘤的放射敏感性,是肿瘤放射治疗的核心问题。同一类肿瘤,分化程度越低,增殖能力越强,即肿瘤细胞生长越快对放疗越敏感。处于G2期和M期的细胞对放疗最敏感,Gl期次之,S期不敏感,G0期对放射抗拒。因此,将肿瘤细胞同步化并使其处于一个对放射线敏感的细胞周期可能是一种提高肿瘤放射治疗效果的重要途径。 关键词:细胞周期调控蛋白;肿瘤细胞;辐射 1 引言 近年来,随着肿瘤综合治疗的理论和技术的发展,放疗和手术﹑化疗﹑生物治疗并列为肿瘤治疗的四大手段,70%以上的肿瘤病人在病情的不同阶段需要放射治疗。细胞周期的监控和驱动机制的紊乱是肿瘤细胞失控性生长的根本性原因,放射线对生物体的作用有直接作用和间接作用,肿瘤细胞及其他细胞﹑组织﹑器官等在经过一定剂量的放射线照射后会引起一系列的变化,来达到治疗的效果。尤其是作用于细胞周期效果更为显著,细胞周期是一系列的蛋白及相关酶的调控时期,因此照射后,对周期调控蛋白﹑基因及相关蛋白酶会有一定的影响。细胞周期的紊乱将导致肿瘤性增生。Cyclin是细胞周期活动及真核细胞关卡控制的中心因子之一,其异常原因包括基因突变﹑表达异常﹑自身结构异常稳定性改变以及表达时相紊乱等。Cyclin异常引起细胞周期失控,细胞无限增值,凋亡停止,最终导致细胞恶性转化和肿瘤形成。细胞周期监测点的功能缺陷为肿瘤细胞提供了生长优势,然而,有研究发现,许多抗癌药物或辐射会破坏G2期的检查点,从而导致肿瘤细胞死亡。本文对一些相关调控蛋白在不同肿瘤细胞中经临床辐射照射后的生物学特性变化作了简介,可作为相关实验的参考。 2 肿瘤细胞周期调控蛋白的特点 2.1 周期调控蛋白的生物学特性

细胞分裂和细胞周期习题

第九章细胞分裂和细胞周期习题 一、选择题 A-九-1. 有丝分裂前期的最主要特征是()。 A. 核仁. 核膜. 核仁组织者都要消失 B. 染色质凝缩成染色体 C. 核糖体解体 D. 中心体消失 A-九-2. 细胞周期包括()两个主要时期。 A. G1期和G2期 B. 间期和M期 C. 间期和S期 D. M期和G1期 B-九-3. 虽然不同的细胞有不同的细胞周期,但一般来说,都是()。 A. G1期长,S期短 B. S期长,G2期短 C. S期长,M期短 D. M期长,G1期短 A-九-4. 在细胞周期中,核仁、核膜要消失,这一消失出现在()。 A. G1期 B. S期 C. G2期 D. M期 A-九-5. 在有丝分裂过程中,姐妹染色单体着丝粒的分开发生于()。 A. 前期 B. 中期 C. 后期 D. 末期 C-九-6. 同步生长于M期的HeLa细胞与另一同步生长的细胞融合,除看到中期染色体外还见到凝缩成粉末状的染色体,推测这种同步生长的细胞是处于()。 A. G1期 B. S期 C. G2期 D. M期 C-九-7. P53基因抑制受损伤细胞进入G2期的机制是()。 A. 通过P21基因作用于周期蛋白 B. 通过抑制P21基因的启动

C. P53蛋白直接作用于周期蛋白 D. P53与P21共同作用于周期蛋白A-九-8. 成熟促进因子是在()合成的。 A. G1期 B. S期 C. G2期 D. M期 B-九-9. 在有丝分裂的哪个时期染色体最分散()。 A. 前期 B. 前中期 C. 中期 D. 后期 B-九-10. 下列减数分裂过程中,要发生染色体减数,此过程发生在()。 A. 前期Ⅰ B. 中期Ⅰ C. 后期I D. 后期Ⅱ B-九-11. 染色体出现成倍状态发生于细胞周期中的()。 A. G2期和早M期 B. G1期和S期 C. 晚M期和G1期 D. G0期和G1期 B-九-12. 在减数分裂的粗线期,()。 A. 常发生姐妹染色体单体的交换从而导致重组配子的产生 B. 常发生姐妹染色体单体的交叉从而导致重组配子的产生 C. RNA聚合酶明显增多 D. 组蛋白成倍增加 B-九-13. 在有丝分裂中,()。 A. 细胞周期长短主要由S期长短决定 B. 这个时期对不利条件敏感导致G1期阻滞 C. S期的长短与染色体的倍数有关

第14章细胞周期的调控与癌细胞

第十四章2012 细胞周期的调控与癌细胞 第一节细胞增殖的调控 一、MPF的发现及其作用(P421,299) MPF(maturation-promoting factor) ——促成熟因子 细胞促分裂因子(mitosis-promoting factor) M期促进因子(M phase-promoting factor) 染色体超前凝集现象(premature chromosome condensation,PCC)——M期细胞与间期细胞的融合实验,导致染色体不同程度的凝集。 G1期细胞与M期细胞融合 G1期PCC呈细单线状 S期细胞与M期细胞融合 S期PCC呈粉末状 G2期细胞与M期细胞融合 G2期PCC呈双线染色体状 (P424) 1988年,从非洲爪蟾中实验分离MPF,并证明主要成分为p32和p45两种蛋白,二者相互结合后,表现出蛋白激酶活性,可以使多种蛋白质底物磷酸化。 二、p34cdc2激酶的发现及其与MPF的关系(P424,301) 1、cdc基因(cell division cycle)的发现: L.Hartwell,P. Nurse;酵母温度敏感突变株 2、cdc基因的表达产物 p34cdc2 ,本身不具有蛋白激酶活性,当与p56cdc13结合后,可以使得多种蛋白底物磷酸化,又称p34cdc2激酶; 3、p34cdc2与MPF的关系(P424) 免疫实验和序列分析证明: p34cdc2与p32为同源蛋白 4、细胞周期蛋白(cyclin)与MPF(P425) 1983年,Tim Hunt在海胆中发现两种细胞周期蛋白(cyclin A,B),广泛分布于各种真核生物中,含量随细胞周期而变化,间期积累,分裂期消失。 序列分析表明,周期蛋白B与p45是同源物。

细胞周期调控与肿瘤发生

细胞周期调控与肿瘤发生 细胞周期(cell cycle)是细胞生命活动的基本过程,指从细胞分裂结束开始,到下一次细胞分裂结束为止的过程,DNA合成和细胞分裂是细胞周期的两个主要事件。在进化过程中,细胞发展并建立了一系列的调控机制,以确保细胞周期严格有序地交替和各时期依次有序变更。细胞的调控机制主要以蛋白质的相互作用为基础,以信号传递引起一系列级联反应为主要过程,以对整个过程的监督和控制为主要表现形式。 人们对细胞周期的调控是从MPF的发现开始的。最初,人们对MPF有以下两种解释: 1、细胞分裂期(M期)细胞中的一种能够使染色体凝集的因子,称为细胞促分裂因子(mitosis-promoting factor,MPF)或M期促进因子(M-phase-promoting factor,MPF)。 2、成熟的卵细胞中的一种可以诱导卵母细胞成熟的物质,称为卵细胞促成熟因子(matuation-promoting factor,MPF)。 但是,随着对MPF的深入研究,科学家又给出了新的解释:MPF是一种能够促进细胞有丝分裂或G2/M转换的周期蛋白激酶,含有两个亚单位,一个是催化亚单位,一个是调节亚单位。催化亚单位的激酶活性要通过与调节亚单位的结合才能体现出来。MPF的调节亚单位就是细胞周期蛋白(cyclin)。 cyclin是一类随细胞周期变化周而复始出现和消失的蛋白质。目前,人们已相继克隆和分离数十种cyclin,这些不同的cyclin在细胞周期中表达的时期不同,执行的功能各异。但各种周期蛋白之间有共同的结构特点,即均含有一段约100个氨基酸残基的保守序列,称为周期蛋白框(cyclin box)。周期蛋白框介导cyclin 与CDK(周期蛋白依赖性蛋白激酶)的结合,不同的周期蛋白框识别不同的CDK,组成不同的周期蛋白-CDK复合体,表现不同的CDK激酶活性。M期cyclin白分子的近N端含有一段9个氨基酸组成的特殊序列,称为破坏框(destruction box),参与泛素介导的周期蛋白A和B的降解。G1期cyclin分子的C端含有一段特殊的序列,可能与G1期cyclin的更新有关。 而周期蛋白依赖性蛋白激酶(cyclin-dependent kinase,CDK),是蛋白质激酶家族中的一员,有三个重要的功能域,其中第二功能域结合cyclin,和cyclin 协同作用,是细胞周期调控中的重要因子。CDK可以和cyclin结合形成异二聚体,其中CDK为催化亚基,cyclin为调节亚基,不同的cyclin-CDK复合物,通过CDK活性调节不同底物磷酸化,从而实现对细胞周期的调控。 在细胞周期中,CDK激酶的活性受到多种因素的综合调节。cyclin与CDK 的结合是CDK激酶活性的必要条件和先决条件,但并不是充分条件。如果仅仅是cyclin和CDK的结合,并不能激活CDK激酶的活性,因为激酶活性的体现还需要激酶本身的修饰(如磷酸化和去磷酸化)及一些细胞周期蛋白依赖性激酶抑制因子(CDK inhibition,CDKI,可以通过抑制CDK激酶的活性,对细胞周期起负调控作用)的去除等。 细胞周期是一个高度有序的运转过程。如前所述,它的正确运转是在适宜的环境中通过对cyclin-CDK复合物的活性进行精确调控来实现的。cyclin、CDK 的异常表达、CDK抑制因子的缺失等都将使细胞周期发生紊乱,细胞的增殖失控,最终发生癌变。 肿瘤是一类以细胞生长和增殖失控为主要特征的疾病,细胞在增殖、分化和

细胞周期调控的研究进展a

生命科学 Chinese Bulletin of Life Sciences 第17卷 第4期2005年8月 Vol. 17, No. 4Aug., 2005 细胞周期调控的研究进展 高 燕,林莉萍,丁 健* (中国科学院上海生命科学研究院药物研究所,国家新药研究重点实验室, 中国科学院研究生院,上海201203) 摘 要:细胞周期是一种非常复杂和精细的调节过程,有大量调节蛋白参与其中。此过程的核心是细胞周期依赖性蛋白激酶(CDKs)。CDKs 的激活又依赖于另一类呈细胞周期特异性或时相性表达的细胞周 期蛋白(cyclins),而CDKs 调节的关键步骤是细胞周期检查点。PLKs 是多种细胞周期检查点的主要调节因子,Aurora 蛋白激酶主要在细胞有丝分裂期起作用。本文就上述因素在细胞周期进程中的作用作一综述。 关键词:细胞周期;调控;细胞周期检查点中图分类号:Q 253 文献标识码:A A review: cell cycle regulation GAO Yan, LIN Li-Ping, DING Jian* (State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institues for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 201203, China) Abstract: The cell cycle is a complex and elaborate process involving numerous regulatory proteins as directors.Central to this process are the cyclin-dependent kinases (CDKs), which are activated in a cyclin-dependent manner at special points of the cell cycle. Cyclin protein levels rise and fall during the cell cycle and in the way they periodically activate CDKs. Furthermore, the cell cycle checkpoint is also discussed as a key process in the regulation of CDKs. PLKs are important mediators for various cell cycle checkpoints, while Aurora kinases have emerged as essential regulators of cell division. Here, we reviewed the effects of above factors on cell cycle regulation. Key words: cell cycle; regulation; cell cycle checkpoint 收稿日期:2005-01-22;修回日期:2005-03-09 作者简介:高 燕(1974—),女,博士研究生;林莉萍(1962—),女,博士,副研究员;丁 健(1953—),男,研究员,博士生导师,*通讯作者。 文章编号 :1004-0374(2005)04-0318-05 1 概述 细胞周期是指一次有丝分裂结束到下一次有丝分裂的结束, 细胞由一个分裂为两个子细胞。细胞的分裂由两个连续的过程组成,即DNA 复制及染色体的分离。一个细胞周期包括准备阶段的间期和有丝分裂期(图1)。间期包括G 1、S 和G 2期。G 1期时,细胞为遗传物质DNA 的合成作准备,而DNA 的合成是在S 期完成。G 2期主要完成蛋白质的合成,为细胞进入有丝分裂期作准备。有丝分裂期(M 期)又分为前期、中期、后期和末期,以完成染色体的凝集,中心粒移至细胞核对立的两极,核仁解体,核膜消失(前期);纺锤体形成和染色体排列于其间(中期);姐妹染色单体分开并移向两极(后期);子核形成和胞质分裂(末期)。另外,G 1期的

浅谈细胞周期调控

浅谈细胞周期调控 朱春森 摘要:近年来有关细胞周期调控机制研究进展较快,细胞周期调控可分为G1期调控和非G1期调控。在G1期调控中,细胞周期蛋白依赖性激酶复合体CDK激活后,通过Rb蛋白和转录因子启动基因转录。P16、p21、p15等蛋白通过抑制CDK的活性而发挥作用。P53蛋白和mdm2蛋白协同调节细胞周期活动。细胞周期的停滞或细胞凋亡对维护基因组稳定有重要意义。 关键词:细胞周期调控 Cyclin CDK CDI 调控机制 细胞周期调控是指各种调控因子通过自身的激活和灭活,使细胞启动和完成细胞周期重要事件,并保障这些事件按次序正常进行。细胞周期调控对维护基因组的稳定有着重要的意义。 1. 细胞周期调控的分子基础 细胞周期调控的分子基础包括细胞周期蛋白(Cyclin)、细胞周期蛋白依赖蛋白激酶(CDK)和细胞周期蛋白依赖蛋白激酶抑制物(CDI)。它们分别包括CyclinA、CDK17和p21、p27、p18等,p53和视网膜母细胞瘤蛋白(pRb)也参与细胞周期调控。 1.1 Cyclin 周期蛋白不仅仅起激活CDK的作用,还决定了CDK何时、何处、将何种底物磷酸化,从而推动细胞周期的前进。目前从芽殖酵母、裂殖酵母和各类动物中分离出的周期蛋白有30余种,在 脊椎动物中为A 1-2、B 1-3 、C、 D 1-3 、E 1-2 、F、G、H等。分为G 1 型、G 1 /S型S型和M型4类(见表 1)。各类周期蛋白均含有一段约100个氨基酸的保守序列,称为周期蛋白框,介导周期蛋白与CDK结合。 表1不同类型的周期蛋白 *包括D1-3,各亚型cyclin D,在不同细胞中的表达量不同,但具有相同的功效 1.2 CDK CDC2与细胞周期蛋白结合才具有激酶的活性,称为细胞周期蛋白依赖性激酶(CDK),因此CDC2又被称为CDK1,激活的CDK1可将靶蛋白磷酸化而产生相应的生理效应。这些效应的最终结果是细胞周期的不断运行。因此,CDK激酶和其调节因子又被称作细胞周期引擎。目前发现的CDK 在动物中有7种。各种CDK分子均含有一段相似的激酶结构域,这一区域有一段保守序列,即PSTAIRE,与周期蛋白的结合有关。 1.3 CDKI CDKI家族即细胞周期蛋白依赖激酶抑制剂家族,目前发现的CDKIS按其结构和功能不同分为两类:一类为INK4(Inhibito:of CDK4)家族,包括pl6、pls、p18、p19四名成员,其蛋白结

细胞周期分析原理和分析结果解释

细胞周期分析原理和分析结果解释 1、细胞周期指由细胞分裂结束到下一次细胞分裂结束所经历的过程,所需的时间叫细胞周期时间。 可分为四个阶段(见图): ① G1期(gap1),指从有丝分裂完成到期DNA复制之前的间隙时间; ② S期(synthesis phase),指DNA复制的时期; ③ G2期(gap2),指DNA复制完成到有丝分裂开始之前的一段时间; ④ M期又称D期(mitosis or division),细胞分裂开始到结束。 2、从增殖的角度来看,可将高等动物的细胞分为三类: ①连续分裂细胞,在细胞周期中连续运转因而又称为周期细胞,如表皮生发层细胞、部分骨髓细胞。 ②休眠细胞暂不分裂,但在适当的刺激下可重新进入细胞周期,称G0期细胞,如淋巴细胞、肝、肾细胞等。 ③不分裂细胞,指不可逆地脱离细胞周期,不再分裂的细胞,又称终端细胞,如神经、肌肉、多形核细胞等等。 细胞周期的时间长短与物种的细胞类型有关,如:小鼠十二指肠上皮细胞的周期为10小时,人类胃上皮细胞24小时,骨髓细胞18小时,培养的人了成纤维细胞18小时,CHO 细胞14小时,HeLa细胞21小时。不同类型细胞的G1长短不同,是造成细胞周期差异的主要原因。 3、流式细胞结果图各参数的意义: 前面讲过,常用的流式细胞术分析细胞周期的方法是依据细胞DNA含量(横坐标)来分析的:

G1期:细胞DNA复制还没有开始,也是DNA含量最少的,即流式检测结果图的第一个峰; S 期:细胞开始复制,到完成复制,是一个一倍DNA到二倍DNA的过程,在流式结果图中显示期跨度特别大(第二个不高但很宽的峰); G2期:DNA复制完成至分裂的一段时间,此时细胞内含二倍DNA,在流式结果图中的第二个峰; M期:细胞分裂过程,此时细胞内也是二倍DNA,用DNA含量的方法是无法与G2期分开,所以有第三峰明显升高时报告:G2/M期阻滞。 上图是DOS系统下分析细胞周期的一个示意图。不同的机器分析结果参数表示略有不同,但主要看G1、G2、S三个期的数值即可。 1、纵坐标Cell Number:即计数到的有效细胞数; 2、横坐标DNA Content:即DNA量,为什么用DNA量来区别各周期我们等下再讲; 3、G1、G2、S三期在上图已经用箭头标示; 4、右侧数字含义:Mean G1=195.4即G1期DNA含量平均值为195.4;%G1=73.6即G1期细胞数占总数的73.6%;以此类推……

细胞周期,癌症与诺贝尔奖

细胞周期,癌症与诺贝尔奖 2001年的诺贝尔生理医学奖授予了3位研究细胞周期并取得卓越成就的科学家,他们的工作使我们对细胞增殖及其与癌症的关系有了更深刻的理解,从而为我们找到治愈癌症之路指明方向。但是,他们的工作究竟有多重要,而有那么多的科学家在这一领域中工作,为什么独独是这3位而不是其它人得到这个全世界科学家都梦寐以求的这个荣誉呢?我们就来看看他们到底都做了些什么。 2001年诺贝尔生理医学奖获奖者(从左至右)Leland Hartwell、Tim Hunt和Paul Nurse。 一、细胞周期 所谓细胞周期(cell cycle)是指连续分裂细胞从一次有丝分裂结束到下一次有丝分裂结束所经历的整个过程。在这个过程中,细胞遗传物质复制并加倍,且在分裂结束时平均分配到两个子细胞中去。细胞周期又可以分为间期(interphase)和有丝分裂期(M phase)。从一次有丝分裂结束到下一次有丝分裂开始的时期就是间期。这一时期,在光学显微镜下看不到细胞有明显的变化,但此时期的细胞内却正在进行一系列的生化活动,主要的活动围绕制造完全相同的又一套遗传物质展开。这一期以DNA合成为标志,又分为G1期,S期和G2期。而在光学显微镜下可以看到的只是M期,经过分裂期,加倍的染色体和其他细胞组分被平均分配到两个完全一样的子细胞中。换句话,通过分裂,形成了一个新细胞。 事实上早在1841年,时任职于柏林大学的波兰神经内科学家和生物学家罗伯特·里麦克(Robert Remak,1815-1865)就报道了细胞分裂现象,并得出结论,细胞分裂是细胞增殖的方式也是机体生长发育的“根本动力”;更有意义的是,他在此时就已经认为肿瘤组织中细胞的形成机制“几乎与正常动物组织相同”。不过,由于受观察手段得的限制,人们还不可能了解到有丝分裂间期中发生的生化事件,而又由于在显微镜下染色体的变化是如此规律,因此,认为细胞的增殖活动主要发生在形态变化明显的有丝分裂期就不难理解了。直到1953年,Howard和Pelc才发现蚕豆根尖细胞分裂中遗传物质DNA的复制发生于静止期中的一个时期,这一时期与有丝分裂期在时间上存在前后两个间隙。由此,他们第一次明确的提出了细胞周期的概念,并将细胞周期划分为上述的4个时期,其中的S期即是DNA合成的时

7_细胞分裂与细胞周期

细胞分裂与细胞周期Cell Division and Cell Cycle 染色体正确复制与分离 细胞增殖的调控

内容 ?有丝分裂过程 ?染色体的运动 ?细胞周期各个时相的特点 ?细胞周期调控 ?细胞周期调控系统的分子组成 ?细胞周期调控机制 ?新的细胞周期如何起始 ?原癌基因和抑癌基因 ?正常细胞增殖与死亡的失衡

一、细胞分裂 (一)细胞分裂的类型 1.无丝分裂、有丝分裂、减数分裂 2.无丝分裂同样是高等生物组织细胞的正常分裂 方式 分裂迅速、能量消耗少、分裂的细胞仍可以执行功 能。存在于人体创伤愈合、癌变及衰老组织中,也 存在于上皮组织、肌肉组织和肝脏中。

(二)有丝分裂的过程 1.有丝分裂(mitosis)保障了染色体完整、均等地分配到两个子细胞中 2.过程:包括细胞核分裂和细胞质分裂(1)前期prophase 特征:染色质凝集、分裂极确定、核仁缩小并解体

?主要事件: ?完成DNA复制的染色质开始凝集,染色单体 通过着丝粒结合。DNA的着丝粒序列形成着 丝粒。 ?中心体完成复制,开始向两极运动 ?中心体,由一对中心粒及其周围的无定形 物质构成,中心粒可能进行微管的组装, 无定形物质中包含大量的与中心体结构和 功能相关的蛋白,如微管蛋白、微管结合 蛋白、马达蛋白等。

?中心体是微管组织中心(MTOC),与细胞 形态维持、细胞运动、有丝分裂密切相关。 ?星体(aster)由中心体及其发出的放射状 排列的微管构成。 ?马达蛋白推动星体沿微管分离,形成有丝 分裂的两极。 ?rRNA合成停止,蛋白翻译水平下降

细胞周期调控(图文并茂)

第四节:细胞周期调控 佚名 一、研究背景 Rao和Johnson(1970、1972、1974)将Hela细胞同步于不同阶段,然后与M期细胞混合,在灭活仙台病毒介导下,诱导细胞融合,发现与M期细胞融合的间期细胞产生了形态各异的早熟凝集染色体(prematurely condensed chromosome,PCC),这种现象叫做早熟染色体凝集(premature chromosome condensation)。 G1期PCC为单线状,因DNA未复制。 S期PCC为粉末状,因DNA由多个部位开始复制。 G2期PCC为双线染色体,说明DNA复制已完成。 图13-15 不同形态的PCC 不仅同类M期细胞可以诱导PCC,不同类的M期细胞也可以诱导PCC产生,如人和蟾蜍的细胞融合时同样有这种效果,这就意味着M期细胞具有某种促进间期细胞进行分裂的因子,即成熟促进因子(maturation promoting factor,MPF)。 早在1960s,Yoshio Masui发现成熟蛙卵的提取物能促进未成熟卵的胚胞破裂(Germinal Vesicle Breakdown,GVBD),后来Sunkara将不同时期Hela细胞的提取液注射到蛙卵母细胞中,发现G1和S期的抽取物不能诱导GVBD,而G2和M期的则具有促进胚胞破裂的功能,它将这种诱导物质称为有丝分裂因子(MF)。后来在CHO细胞,酵母和粘菌中也提取出相同性质的MF。这类物质被统称为MPF。 1960s Leland Hartwell以芽殖酵母(图13-16)为实验材料,利用阻断在不同细胞周期阶段的温度敏感突变株(在适宜的温度下和野生型一样),分离出了几十个与细胞分裂有关的基因(cell division cycle gene,CDC)。如芽殖酵母的cdc28基因,在G2/M转换点发挥重要的功能。Hartwell还通过研究酵母菌细胞对放射线的感受性,提出了checkpoint(细胞周期检验点)的概念,意指当DNA受到损伤时,细胞周期会停下来。

细胞周期与肿瘤增殖的关系

细胞周期与肿瘤增殖的关系 细胞增殖是细胞生命活动的重要特征之一。细胞通过有丝分裂、无丝分裂和减数分裂来达到增值的目的,细胞在分裂之前必须进行各种必要的物质准备,然后才能进行细胞分裂。通过一系列的分裂,如此周而复,始细胞的数量不断增加。这种细胞物质累积与细胞分裂的循环过程,称为细胞增殖。从一次细胞分裂结束开始,经过物质积累的过程,直到下一次细胞结束为止,称为一个细胞周期(cell cycle)。一个细胞周期既是一个细胞的整个生命过程。 肿瘤是机体的细胞异常增殖形成的新生物,常表现为机体局部的异常组织团块(肿块)。肿瘤性增殖与非肿瘤性增殖有重要区别,表现在: 1.肿瘤性增殖与机体不协调,对机体有害; 2.肿瘤性增殖一般是克隆性的; 3.肿瘤的细胞形态、代谢和功能均有异常,不同程度地失去了分化成熟的能力; 4.肿瘤细胞生长旺盛,失去控制具有相对的自主性,即使引起肿瘤性增殖的初始因素已消除,仍能持续生长。 众所周知肿瘤的最主要特征就是无限增殖,也就是说:肿瘤细胞具有永生化(immortalization)的特性。染色体末端存在称为端粒(telomere)的DNA重复序列,其长度随细胞的每一次分裂逐渐缩短。细胞分裂一定次数后,端粒短缩到一定程度,细胞死亡。生殖细

胞具有端粒酶活性,可使缩短的端粒长度恢复,但大多数体细胞没有端粒酶活性,体外培养细胞只能分裂大约50次。许多恶性肿瘤细胞都含有端粒酶活性,可能使其端粒不会缩短,这与肿瘤细胞的永生化有关。肿瘤细胞永生使细胞周期发生紊乱,细胞的增殖体系不受控制。 研究发现一个细胞周期分为四个时相,即G1期、S期、G2期和M期。在G1期的晚期阶段有一个特定时期如果细胞连续分裂,则可以通过这个特定时期,进入S期,开始合成DNA,并继续前进,直到完成细胞分裂。这个特定时期被称为限制点(R点)或检验点。限制点被认为是G1期晚期的一个基本事件。细胞只有在内在和外在因素的共同作用下才能完成这一基本事件,任何因素影响到这一基本事件的完成都将严重影响细胞从G1期向S期的转换。肿瘤细胞的发生可能是由于在这个限制点时的内在或者外在因素的改变使得细胞的分裂方向发生改变,现在已知的致癌因素有三个方面:物理因素、化学因素和生物因素。例如物理因素中的射线、化学因素中的烷化剂和酰化剂都有可能影响到R点的功能,使细胞发生癌变。G1期之后的正常细胞有三个去向:分化、持续增殖、暂不增殖(G0期细胞或休眠细胞)细胞癌变后将向着持续增殖的方向走去,不再受到细胞内各种机制的控制,使细胞永生! 细胞增殖是受到细胞核基因的控制的,在核基因中有原癌基因和抑癌基因与细胞的肿瘤发生有关,这些基因在正常的时候不会引起肿瘤,它们编码的产物是对促进细胞生长增殖十分重要的蛋白质,如生长因子、生长因子受体、信号转导蛋白和转录因子。当这些基因发生

相关文档
最新文档