直线的参数方程练习题有答案

直线的参数方程练习题有答案
直线的参数方程练习题有答案

直线的参数方程

1.设直线l 过点A (2,-4),倾斜角为5

6π,则直线l 的参数方程是____________.

解析:直线l 的参数方程为?

??

x =2+t cos 5

6

π,

y =-4+t sin 5

6

π

(t 为参数),

即???x =2-32t y =-4+1

2t ,(t 为参数).

答案:???x =2-32t y =-4+1

2t

,(t 为参数)

2.设直线l 过点(1,-1),倾斜角为5π

6

,则直线l 的参数方程为____________.

解析:直线l 的参数方程为???

x =1+t cos

6

y =-1+t sin 5π

6,(t 为参数),

即???x =1-32t y =-1+1

2t ,(t 为参数)

答案:???x =1-32t y =-1+1

2t

,(t 为参数)

3.已知直线l 经过点P (1,1),倾斜角α=π

6

. 写出直线l 的参数方程;

解:①直线l 的参数方程为?????x =1+3

2t

y =1+12t

,(t 是参数).

4.已知直线l 经过点P ????12,1,倾斜角α=π

6

, 写出直线l 的参数方程. [解] (1)直线l 的参数方程为???x =12+t cos π

6

y =1+t sin π6,(t 为参数),即???x =12+3

2

t y =1+1

2t ,(t 为参

数).2分

5.已知直线l 的斜率k =-1,经过点M 0(2,-1).点M 在直线上,则直线l 的参数方程为____________.

解析:∵直线的斜率为-1, ∴直线的倾斜角α=135°. ∴cos α=-

22,sin α=2

2

. ∴直线l 的参数方程为???x =2-22t

y =-1+2

2t ,(t 为参数).

答案:???x =2-22t y =-1+2

2

t ,(t 为参数)

6.已知直线l :???x =-3+32t

y =2+1

2t

,(t 为参数) , 求直线l 的倾斜角;

解:(1)由于直线l :?

??x =-3+t cos π

6

y =2+t sin

π

6

(t 为参数)表示过点M 0(-3,2)且斜率

为tan π

6

的直线,

故直线l 的倾斜角α=π

6

.

7.若直线的参数方程为?

??x =3+1

2

t

y =3-3

2

t

,(t 为参数),则此直线的斜率为( )

A.3 B .- 3 C.33

D .-33

解析:选

B.直线的参数方程???

x =3+1

2

t

y =3-3

2t

,(t

为参数)可化为标准形式

???x =3+???

?-1

2(-t )y =3+32

(-t ),(-t 为参数).

∴直线的斜率为- 3.

8.化直线l 的参数方程???x =1+3t ,

y =3+6t

(t 为参数)为参数方程的标准形式.

解:由???x =1+3t ,y =3+6t ,

????

?x =1+

332+(

6)2

(32+(6)2 t ),

y =3+

6

32+(6)2

(32+(6)2 t ).

令t ′=32+(6)2 t ,

得到直线l 的参数方程的标准形式为

???x =1+155

t ′y =3+

105

t ′,(t ′为参数). 9.化直线l 的参数方程?

???

?x =2-3t y =1+t (t 为参数)为参数方程的标准形式.

解:

10.已知直线l 经过点P (1,1),倾斜角α=π

6

.

①写出直线l 的参数方程;

②设l 与圆x 2+y 2=4相交于A ,B 两点,求点P 到A ,B 两点的距离之积.

解:①直线l 的参数方程为???x =1+32t

y =1+1

2t

,(t 是参数).

②把直线l 的参数方程???x =1+32t ,

y =1+1

2t

代入圆x 2

+y 2

=4,整理得t 2

+(

3+1)t -2=

0,t 1,t 2是方程的根,t 1·t 2=-2.

∵A ,B 都在直线l 上,设它们对应的参数分别为t 1和t 2,∴|P A |·|PB |=|t 1|·|t 2|=|t 1t 2|=2.

11.已知在直角坐标系xOy 中,曲线C 的参数方程为?

????x =1+4cos θ

y =2+4sin θ,(θ为参数),直线

l 经过定点P (3,5),倾斜角为π

3

.

(1)写出直线l 的参数方程和曲线C 的标准方程;

(2)设直线l 与曲线C 相交于A ,B 两点,求|PA |·|PB |的值.

解:(1)曲线 C :(x -1)2+(y -2)2=16,

直线l :???x =3+1

2t

y =5+3

2

t ,(t 为参数).

(2)将直线l 的参数方程代入圆C 的方程可得t 2+(2+33)t -3=0,设t 1,t 2是方程的两个根,则t 1t 2=-3,

所以|P A ||PB |=|t 1||t 2|=|t 1t 2|=3.

12.已知曲线C 的极坐标方程为ρ=1,以极点为平面直角坐标系原点,极轴为x 轴正

半轴,建立平面直角坐标系,直线l 的参数方程是?

???

?x =-1+4t y =3t ,(t 为参数),则直线l

与曲线C 相交所截得的弦长为________.

解析:曲线C 的直角坐标方程为x 2+y 2=1,将????

?x =-1+4t y =3t

,代入x 2+y 2=1中得

25t 2-8t =0,解得t 1=0,t 2=8

25

.故直线l 与曲线C 相交所截得的弦长l =42+32·|t 2-t 1|=5×825=8

5

.

答案:85

13.已知斜率为1的直线l 过椭圆x 24+y 2

=1的右焦点,交椭圆于A ,B 两点,求弦AB

的长度.

解:因为直线l 的斜率为1,所以直线l 的倾斜角为π

4.

椭圆x 24+y 2

=1的右焦点为(3,0),直线

l 的参数方程为???x =3+22t

y =22t

,(t 为参

数),代入椭圆方程x 24

+y 2

=1,

?

???

3+22t 2

4

+???

?22t 2

=1, 整理,得5t 2+26t -2=0. 设方程的两实根分别为t 1,t 2, 则t 1+t 2=-265,t 1·t 2=-2

5,

|t 1-t 2|=(t 1+t 2)2-4t 1t 2 =

????-2652

+85=85

所以弦长AB 的长为8

5.

14.已知直线l 经过点P ????12,1,倾斜角α=π

6,圆C 的极坐标方程为ρ=2·cos ???

?θ-π

4. (1)写出直线l 的参数方程,并把圆C 的方程化为直角坐标方程; (2)设l 与圆C 相交于A ,B 两点,求点P 到A ,B 两点的距离之积.

[解] (1)直线l 的参数方程为???x =12+t cos π6y =1+t sin π6,(t 为参数),即???x =12+3

2

t y =1+1

2t ,(t 为参

数).2分

由ρ=2cos ????θ-π

4得ρ=cos θ+sin θ, 所以ρ2=ρcos θ+ρsin θ, 得x 2+y 2=x +y ,

即圆C 的直角坐标方程为????x -122

+????y -122

=1

2

.5分

(2)把???x =12+32t ,y =1+1

2t

代入????x -122

+????y -122

=12,得t 2

+12t -1

4=0,7分 设A 、B 两点对应的参数分别为t 1、t 2,则t 1t 2=-1

4,

所以|P A |·|PB |=|t 1·t 2|=1

4

.10分

15.(2016·高考江苏卷)在平面直角坐标系xOy 中,已知直线l 的参数方程为

???x =1+12

t ,

y =32t

(t 为参数),椭圆C 的参数方程为?

????x =cos θ

y =2sin θ(θ为参数).设直线l 与椭圆

C 相交于A ,B 两点,求线段AB 的长.

[解] 椭圆C 的普通方程为

x 2+

y 2

4

=1. 将直线l 的参数方程?

??x =1+12t ,

y =3

2

t

代入x 2

+y 24=1,得(1+12t )2+????32t 24=1,即7t 2

+16t =0,解得t 1=0,t 2=-16

7

.

所以AB =|t 1-t 2|=16

7

.

16.直线?

????x =2+3t

y =-1+t ,(t 为参数)上对应t =0,t =1两点间的距离是( )

A .1 B.10 C .10

D .2 2

解析:选B.将t =0,t =1代入参数方程可得两点坐标为(2,-1)和(5,0) ∴d =

(2-5)2+(-1-0)2=

10.

17.在直角坐标系中,以原点为极点,x 轴的正半轴建立极坐标系,已知曲线C :

ρsin 2θ=2a cos θ(a >0),过点P (-2,-4)的直线

l 的参数方程为:???x =-2+22t

y =-4+2

2

t ,(t

为参数),直线l 与曲线C 分别交于M ,N 两点.

(1)写出曲线C 的直角坐标方程和直线l 的普通方程; (2)若|PM |,|MN |,|PN |成等比数列,求a 的值.

解:(1)曲线的极坐标方程变为ρ2sin 2θ=2aρcos θ,化为直角坐标方程为y 2=2ax ,

直线???x =-2+22t

y =-4+2

2

t ,(t 为参数)化为普通方程为y =x -2.

(2)将???x =-2+22t y =-4+2

2

t ,代入y 2

=2ax 得

t 2-22(4+a )t +8(4+a )=0.

则有t 1+t 2=22(4+a ),t 1t 2=8(4+a ), 因为|MN |2=|PM |·|PN |, 所以(t 1-t 2)2=t 1·t 2,

即(t 1+t 2)2-4t 1t 2=t 1t 2,(t 1+t 2)2-5t 1t 2=0, 故8(4+a )2-40(4+a )=0, 解得a =1或a =-4(舍去). 故所求a 的值为1.

18.已知直线l 1:?

????x =1+3t y =2-4t ,(t 为参数)与直线l 2:2x -4y =5相交于点B ,且点A (1,

2),则|AB |=________.

解析:将?

????x =1+3t

y =2-4t ,代入2x -4y =5,

得t =12,则B ????52,0.而A (1,2),得|AB |=5

2

.

答案:52

19.如图所示,已知直线l 过点P (2,0),斜率为4

3,直线l 和抛物线y 2=2x 相交于A ,

B 两点,设线段AB 的中点为M ,求: ①P ,M 间的距离|PM |;②点M 的坐标

解:①由题意,知直线l 过点P (2,0),斜率为4

3

设直线l 的倾斜角为α,则tan α=4

3,

cos α=35,sin α=4

5

∴直线l 的参数方程的标准形式为

?

??x =2+35

t

y =45

t ,(t 为参数).(*) ∵直线l 和抛物线相交,

∴将直线l 的参数方程代入抛物线方程y 2=2x 中, 整理得8t 2-15t -50=0,Δ=152+4×8×50>0. 设这个二次方程的两个根为t 1,t 2, 由根与系数的关系得t 1+t 2=158,t 1t 2=-254

. 由M 为线段AB 的中点, 根据t 的几何意义,得|PM |=??

??t 1+t 22=1516. ②因为中点M 所对应的参数为t M =15

16,

将此值代入直线l 的参数方程的标准形式(*),

得???x =2+35×1516=4116

y =45×1516=3

4,

即M ????4116,34.

20.以直角坐标系原点O 为极点,x 轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l 的参数方程为?????x =12+t cos α

y =t sin α,(t 为参数,0<α<π),曲线C 的极坐标

方程ρ=2cos θ

sin 2θ

.

(1)求曲线C 的直角坐标方程;

(2)设直线l 与曲线C 相交于A ,B 两点,当α变化时,求|AB |的最小值. 解:(1)由ρ=2cos θ

sin 2θ得ρ2sin 2θ=2ρcos θ,所以曲线C 的直角坐标方程为y 2=2x .

(2)将直线l 的参数方程代入y 2=2x ,得t 2sin 2α-2t cos α-1=0, 设A ,B 两点对应的参数分别为t 1,t 2, 则t 1+t 2=2cos αsin 2α,t 1·t 2=-1

sin 2α,

所以|AB |=|t 1-t 2| =(t 1+t 2)2-4t 1t 2 =

4cos 2αsin 4

α+4sin 2α=2

sin 2α

, 当α=π

2时,|AB |取得最小值2

直线参数方程t的几何意义44095

1、直线参数方程的标准式 (1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是 ???+=+=α αsin cos 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) P 0P=t ∣P 0P ∣=t 为直线上任意一点. (2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2, 则P 1P 2=t 2-t 1 ∣P 1P 2∣=∣t 2-t 1∣ (3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3 则P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=221t t + (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<0 2、直线参数方程的一般式 过点P 0(00,y x ),斜率为a b k = 的直线的参数方程是 ???+=+=bt y y at x x 00 (t 为参数) 点击直线参数方程: 一、直线的参数方程 问题1:(直线由点和方向确定) 求经过点P 0(00,y x ),倾斜角为α的直线l 设点P(y x ,)是直线l 上任意一点,(规定向上的 方向为直线L 的正方向)过点P 作y 轴的平行线,过 P 0作x 轴的平行线,两条直线相交于Q 点. 1)当P P 0与直线l 同方向或P 0和P 重合时, P 0P =|P 0P| 则P 0Q =P 0Pcos α Q P =P 0Psin α 2)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P 同时改变符号 P 0P =-|P 0P| P 0Q =P 0Pcos α Q P =P 0Psin α 仍成立 设P 0P =t ,t 为参数, 又∵P 0Q =0x x -, 0x x -=tcos α Q P =0y y - ∴ 0y y -=t sin α 即???+=+=α α sin cos 00t y y t x x 是所求的直线l 的参数方程 ∵P 0P =t ,t 为参数,t 的几何意义是:有向直线l 上从已知点P 0(00,y x )到点 P(y x ,)的有向线段的数量,且|P 0P|=|t| ①当t>0时,点P 在点P 0的上方; x y ,) x

(推荐)高中数学直线与方程知识点总结

直线与方程 1、直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x 轴平行或重合时, 规定α= 0°. 2、倾斜角α的取值范围: 0°≤α<180°. 当直线l与x轴垂直时, α= 90°. 3、直线的斜率: 一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是 k = tanα ⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0; ⑵当直线l与x轴垂直时, α= 90°, k 不存在. 由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在. 4、直线的斜率公式: 给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率: 斜率公式: k=y2-y1/x2-x1 两条直线的平行与垂直 1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即 注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L2 2、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,

如果它们的斜率互为负倒数,那么它们互相垂直,即

直线的点斜式方程 1、 直线的点斜式方程:直线l 经过点),(000y x P ,且斜率为k )(00x x k y y -=- 2、、直线的斜截式方程:已知直线l 的斜率为k ,且与y 轴的交点为),0(b b kx y += 3.2.2 直线的两点式方程 1、直线的两点式方程:已知两点),(),,(222211 y x P x x P 其中),(2121y y x x ≠≠ y-y1/y-y2=x-x1/x-x2 2、直线的截距式方程:已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b ,其中0,0≠≠b a 3.2.3 直线的一般式方程 1、直线的一般式方程:关于y x ,的二元一次方程0=++C By Ax (A ,B 不同时为0) 2、各种直线方程之间的互化。 3.3直线的交点坐标与距离公式 3.3.1两直线的交点坐标 1、给出例题:两直线交点坐标 L1 :3x+4y-2=0 L1:2x+y +2=0 解:解方程组 3420 2220x y x y +-=??++=? 得 x=-2,y=2

高中数学直线与圆的方程知识点总结

高中数学直线与圆的方 程知识点总结 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

高中数学之直线与圆的方程 一、概念理解: 1、倾斜角:①找α:直线向上方向、x 轴正方向; ②平行:α=0°; ③范围:0°≤α<180° 。 2、斜率:①找k :k=tan α (α≠90°); ②垂直:斜率k 不存在; ③范围: 斜率 k ∈ R 。 3、斜率与坐标:1 21 22121tan x x y y x x y y k --=--= =α ①构造直角三角形(数形结合); ②斜率k 值于两点先后顺序无关; ③注意下标的位置对应。 4、直线与直线的位置关系:222111:,:b x k y l b x k y l +=+= ①相交:斜率21k k ≠(前提是斜率都存在) 特例----垂直时:<1> 0211=⊥k k x l 不存在,则轴,即; <2> 斜率都存在时:121-=?k k 。 ②平行:<1> 斜率都存在时:2121,b b k k ≠=; <2> 斜率都不存在时:两直线都与x 轴垂直。 ③重合: 斜率都存在时:2121,b b k k ==; 二、方程与公式: 1、直线的五个方程:

①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可; ②斜截式:b kx y += 将已知截距k b 与斜率),0(直接带入即可; ③两点式:),(21211 21 121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接带入即可; ④截距式: 1=+b y a x 将已知截距坐标),0(),0,( b a 直接带入即可; ⑤一般式:0=++C By Ax ,其中A 、B 不同时为0 用得比较多的是点斜式、斜截式与一般式。 2、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可 3、距离公式: ①两点间距离:2 2122121)()(y y x x P P -+-= ②点到直线距离:2 2 00B A C By Ax d +++= ③平行直线间距离:2 2 21B A C C d +-= 4、中点、三分点坐标公式:已知两点),(),,(2211y x B y x A ①AB 中点),(00y x :)2 ,2( 2 121y y x x ++ ②AB 三分点),(),,(2211t s t s :)3 2,32(2 1 21y y x x ++ 靠近A 的三分点坐标 )3 2,32(2 121 y y x x ++ 靠近B 的三分点坐标 中点坐标公式,在求对称点、第四章圆与方程中,经常用到。 三分点坐标公式,用得较少,多见于大题难题。 5.直线的对称性问题

直线和圆的方程测试题

西中高一(14)(15)班《直线与圆的方程》单元测试 韩世强 时间:120分钟 满分:150分 一、选择题:本大题共10小题,每小题5分,共50分. 1.在直角坐标系中,直线033=-+y x 的倾斜角是( ) A . 6 π B . 3 π C . 6 5π D . 3 2π 2.如下图,在同一直角坐标系中表示直线y =ax 与y =x +a ,正确的是( ) 3.若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( ) A .1 B .13- C .2 3 - D .2- 4. 若直线023022=--=++y x y ax 与直线 平行,那么系数a 等于( ) A .3- B .6- C .2 3 - D .3 2 5. 圆x 2+y 2 -4x =0在点P (1,3)处的切线方程为( ) +3y -2=0 +3y -4=0 -3y +4=0 -3y +2=0 6 若圆C 与圆1)1()2(2 2=-++y x 关于原点对称,则圆C 的方程是( ) A .1)1()2(2 2=++-y x B .1)1()2(2 2=-+-y x C .1)2()1(2 2=++-y x D .1)2()1(2 2 =-++y x 7.已知两圆的方程是x 2 +y 2 =1和x 2 +y 2 -6x -8y +9=0,那么这两个圆的位置关系是( ) A .相离 B .相交 C .外切 D .内切 8.过点(2,1)的直线中,被圆x 2 +y 2 -2x +4y =0截得的最长弦所在的直线方程为( ) A .3x -y -5=0 B .3x +y -7=0 C .x +3y -5=0 D .x -3y +1=0 9.若点A 是点B (1,2,3)关于x 轴对称的点,点C 是点D (2,-2,5)关于y 轴对称的点,则|AC |=( )

高二立体几何与直线方程的知识点总结

立体几何初步1、柱、锥、台、球的结构特征 2、空间几何体的三视图 定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、 俯视图(从上向下) 注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度; 俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度; 侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。 3、空间几何体的直观图——斜二测画法 斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变; ②原来与y轴平行的线段仍然与y平行,长度为原来的一半。 4、柱体、锥体、台体的表面积与体积 (1)几何体的表面积为几何体各个面的面积的和。 (2)特殊几何体表面积公式(c为底面周长,h为高, ' h为斜高,l为母线) ()l r r S+ =π2 圆柱表 ()l r r S+ =π 圆锥表 ()2 2R Rl rl r S+ + + =π 圆台表 (3)柱体、锥体、台体的体积公式 V Sh = 柱, 2 V Sh r h π == 圆柱, 1 3 V Sh = 锥, h r V2 3 1 π = 圆锥 ' 1 () 3 V S S h =++ 台 '22 11 ()() 33 V S S h r rR R h π =++=++ 圆台 (4)球体的表面积和体积公式: 3 4 = 3 V R π 球; 2 4 S R π = 球面

二、点、直线、平面之间的关系 (一)、立体几何网络图: 1、线线平行的判断: (1)、平行于同一直线的两直线平行。 (3)、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。 (6)、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。(12)、垂直于同一平面的两直线平行。 2、线线垂直的判断: (7)、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。 (8)、在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直。 (10)、若一直线垂直于一平面,这条直线垂直于平面内所有直线。 补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。 3、线面平行的判断:(2)、如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。 (5)、两个平面平行,其中一个平面内的直线必平行于另一个平面。 判定定理: 性质定理: ★判断或证明线面平行的方法 ⑴利用定义(反证法):lα=? I,则l∥α (用于判断); ⑵利用判定定理:线线平行线面平行(用于证明); ⑶利用平面的平行:面面平行线面平行(用于证明); ⑷利用垂直于同一条直线的直线和平面平行(用于判断)。 2线面斜交和线面角:l∩α = A 2.1 直线与平面所成的角(简称线面角):若直线与平面斜交, 则平面的斜线与该斜线在平面内射影的夹角θ。 2.2 线面角的范围:θ∈[0°,90°] 注意:当直线在平面内或者直线平行于平面时,θ=0°; 当直线垂直于平面时,θ=90° 4、线面垂直的判断: ⑼如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。 ⑾如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。 ⒁一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⒃如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面。 图2-3 线面角

直线的参数方程及其应用举例

直线的参数方程及应用 问题1:(直线由点和方向确定) 求经过点P 0(00,y x ),倾斜角为α的直线l 设点P(y x ,)是直线l 上任意一点,方向为直线L 的正方向)过点P 作y P 0作x 轴的平行线,两条直线相交于Q 点. 1)当P P 0与直线l 同方向或P 0和P 重合时, P 0P =|P 0P | 则P 0Q =P 0Pcos α Q P =P 02)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P P 0P =-|P 0P | P 0Q =P 0Pcos α Q P =P 0Psin α 设P 0P =t ,t 为参数, 又∵P 0Q =0x x -, 0x x -=tcos α Q P =0y y - ∴ 0y y -=t sin α 即? ??+=+=αα sin cos 00t y y t x x 是所求的直线l 的参数方程 ∵P 0P =t ,t 为参数,t 的几何意义是:有向直线l 上从已知点P 0(00,y x )到点 P(y x ,)的有向线段的数量,且|P 0P |=|t| ① 当t>0时,点P 在点P 0的上方; ② 当t =0时,点P 与点P 0重合; ③ 当t<0时,点P 在点P 0的下方; 特别地,若直线l 的倾斜角α=0时,直线?+=0t x x ④ 当t>0时,点P 在点P 0的右侧; ⑤ 当t =0时,点P 与点P 0重合; ⑥ 当t<0时,点P 在点P 0的左侧; 问题2:直线l 上的点与对应的参数t 是不是一 对应关系? 我们把直线l 看作是实数轴, 以直线l 向上的方向为正方向,以定点 这样参数t 便和这条实数轴上的点P 一一对应关系. 问题3:P 1、P 2为直线l 上两点所对应的参数分别为t 1、t 2 , x x

高二数学直线和圆的方程综合测试题

高二数学《直线和圆的方程》综合测试题 一、 选择题: 1.如果直线l 将圆:04222=--+y x y x 平分,且不通过第四象限,那么l 的斜率取值范围是( ) A .]2,0[ B .)2,0( C .),2()0,(+∞-∞ D .),2[]0,(+∞-∞ 2.直线083=-+y x 的倾斜角是( ) A. 6π B. 3 π C. 32π D. 65π 3. 若直线03)1(:1=--+y a ax l ,与02)32()1(:2=-++-y a x a l 互相垂直, 则a 的值为( ) A .3- B .1 C .0或2 3 - D .1或3- 4. 过点)1,2(的直线中被圆04222=+-+y x y x 截得的弦长最大的直线方程 是( ) A.053=--y x B. 073=-+y x C. 053=-+y x D. 053=+-y x 5.过点)1,2(-P 且方向向量为)3,2(-=的直线方程为( ) A.0823=-+y x B. 0423=++y x C. 0132=++y x D. 0732=-+y x 6.圆1)1(22=+-y x 的圆心到直线x y 3 3 = 的距离是( ) A. 2 1 B. 23 C.1 D. 3 7.圆4)1()3(:221=++-y x C 关于直线0=-y x 对称的圆2C 的方程为:( ) A. 4)1()3(22=-++y x B. 4)3()1(22=-++y x C. 4)3()1(22=++-y x D. 4)1()3(22=++-y x

8.过点)1,2(且与两坐标轴都相切的圆的方程为( ) A .1)1()1(22=-+-y x B .25)5()5(22=-++y x C .1)1()1(22=-+-y x 或25)5()5(22=-+-y x D .1)1()1(22=-+-y x 或25)5()5(22=-++y x 9. 直线3y kx =+与圆22(2)(3)4x y -+-=相交于N M ,两点,若≥||MN 则k 的取值范围是( ) A .3 [,0]4 - B .[ C .[ D .2 [,0]3 - 10. 下列命题中,正确的是( ) A .方程 11 =-y x 表示的是斜率为1,在y 轴上的截距为2的直线; B .到x 轴距离为5的点的轨迹方程是5=y ; C .已知ABC ?三个顶点)0,3(),0,2(),1,0(-C B A ,则 高AO 的方程是0=x ; D .曲线023222=+--m x y x 经过原点的充要条件是0=m . 11.已知圆0:22=++++F Ey Dx y x C ,则0==E F 且0

高一数学必修2直线与方程知识点总结

高一数学必修 2 直线与方程知识点总结 (一)高一数学必修2 直线与方程知识点总结一、直线与方程 (1)直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时, 我们规定它的倾斜角为0 度。因此,倾斜角的取值范围是0180 (2)直线的斜率 ①定义:倾斜角不是90 的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k 表示。即。斜 率反映直线与轴的倾斜程度。 当时,; 当时,; 当时,不存在。②过两点的直线的斜率公式:注意下面四点:(1) 当时,公式右边无意义,直线的斜率不存在,倾斜角为90 (2)k 与P1、P2 的顺序无关;(3) 以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。 (3)直线方程 ①点斜式:直线斜率k,且过点注意:当直线的斜率为0 时,k=0 ,直线的方程是y=y1 。 当直线的斜率为90 时,直线的斜率不存在,它的方程不能用点斜式表示. 但因l 上每一点的横坐标都

等于x1 ,所以它的方程是x=x1 。 ②斜截式:,直线斜率为k,直线在y 轴上的截距为b ③两点式:()直线两点,④截矩式: 其中直线与轴交于点, 与轴交于点, 即与轴、轴的截距分别为。 ⑤ 一般式:(A ,B 不全为0) 注意:各式的适用范围特殊的方程如: 平行于x 轴的直线:(b 为常数); 平行于y 轴的直线:(a 为常数); (5)直线系方程:即具有某一共同性质的直线(一)平行直线系 平行于已知直线(是不全为0 的常数)的直线系:(C 为常数) (二)垂直直线系 垂直于已知直线(是不全为0 的常数)的直线系:(C 为常数) (三)过定点的直线系 (ⅰ )斜率为k 的直线系:,直线过定点; (ⅱ )过两条直线,的交点的直线系方程为 (为参数),其中直线不在直线系中。 (6)两直线平行与垂直

直线和圆的方程测试题(含答案解析)

直线与圆的方程测试题 (本试卷满分150分,考试时间120分钟) 一、单项选择题(本大题共18小题,每小题4分,共72分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出,错选、多选或未选均无分. 1.点M 1(2,-5)与M 2(5,y)之间的距离是5,则y=( ) A.-9 B.-1 C.-9或-1 D. 12 2. 数轴上点A 的坐标是2,点M 的坐标是-3,则|AM|=( ) A.5 B. -5 C. 1 D. -1 3. 直线的倾斜角是3 2π,则斜率是( ) A.3-3 B.3 3 C.3- D.3 4. 以下说法正确的是( ) A.任意一条直线都有倾斜角 B. 任意一条直线都有斜率 C.直线倾斜角的范围是(0,2 π) D. 直线倾斜角的范围是(0,π) 5. 经过点(4, -3),斜率为-2的直线方程是( ) A. 2x+y+2=0 B.2x-y-5=0 C. 2x+y+5=0 D. 2x+y-5=0 6. 过点(2,0)且与y 轴平行的直线方程是( ) A.x=0 B.y=0 C.x=2 D.y=2 7. 直线在y 轴上的截距是-2,倾斜角为0°,则直线方程是( ) A.x+2=0 B.x-2=0 C.y+2=0 D.y-2=0 8. “B ≠0”是方程“Ax+By+C=0表示直线”的( ) A.充分非必要条件 B.必要非充分条件 C.充分且必要条件 D.非充分非必要条件 9. 直线3x-y+2 1=0与直线6x-2y+1=0之间的位置关系是( ) A.平行 B.重合 C.相交不垂直 D.相交且垂直 10.下列命题错误.. 的是( ) A. 斜率互为负倒数的两条直线一定互相垂直 B. 互相垂直的两条直线的斜率一定互为负倒数 C. 两条平行直线的倾斜角相等 D. 倾斜角相等的两条直线平行或重合 11. 过点(3,-4)且平行于直线2x+y-5=0的直线方程是( ) A. 2x+y+2=0 B. 2x-y-2=0 C. 2x-y+2=0 D.2x+y-2=0 12. 直线ax+y-3=0与直线y=2 1x-1垂直,则a=( ) A.2 B.-2 C. 21 D. 2 1- 13. 直线x=2与直线x-y+2=0的夹角是( )

直线与方程例题解析

第三章:直线与方程的知识点 一、基础知识 倾斜角与斜率 1. 当直线l 与x 轴相交时,我们把x 轴正方向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时, 我们规定它的倾斜角为0°. 则直线l 的倾斜角α的范围是0απ≤<或),0[πα∈ 2. 倾斜角不是90°的直线的斜率,等于直线的倾斜角的正切值,即tan k θ=. 如果知道直线上两点 1122(,),(,)P x y P x y ,则有斜率公式2 1 21y y k x x -=-. 特别地是,当12x x =,12y y ≠时,直线与x 轴垂直,斜率k 不存在;当12x x ≠,12y y =时,直线与y 轴垂直,斜率k =0. 注意:直线的倾斜角α=90°时,斜率不存在,即直线与y 轴平行或者重合. 当α=90°时,斜率k =0;当090α?<,随着α的增大,斜率k 也增大;当90180α?<

直线的方程知识点及题型归纳总结

直线的方程知识点及题型归纳总结 知识点精讲 一、基本概念 斜率与倾斜角 我们把直线y kx b =+中k 的系数k (k R ∈)叫做这条直线的斜率,垂直于x 轴的直线,其斜率不存在。 x 轴正方向与直线向上的方向所成的角叫这条直线的倾斜角。倾斜角[)0,απ∈,规定与x 轴平行或重合 的直线的倾斜角为0,倾斜角不是 2 π 的直线的倾斜角的正切值叫该直线的斜率,常用k 表示,即tan k α=。 当0k =时,直线平行于轴或与轴重合; 当0k >时,直线的倾斜角为锐角,倾斜角随k 的增大而增大; 当0k <时,直线的倾斜角为钝角,倾斜角k 随的增大而减小; 二、基本公式 1. 111222(,),(,)P x y P x y 两点间的距离公式 12||PP =2. 111222(,),(,)P x y P x y 的直线斜率公式 121212tan (,)2 y y k x x x x π αα-= =≠≠- 3.直线方程的几种形式 (1)点斜式:直线的斜率k 存在且过00(,)x y ,00()y y k x x -=- 注:①当0k =时,0y y =;②当k 不存在时,0x x = (2)斜截式:直线的斜率k 存在且过(0,)b ,y kx b =+ (3)两点式: 11 2121 y y x x y y x x --=--,不能表示垂直于坐标轴的直线。 注:211121()()()()x x y y x x y y --=--可表示经过两点1122(,),(,)P x y Q x y 的所有直线 (4)截距式: 1x y a b +=不能表示垂直于坐标轴及过原点的直线。 (5)一般式:2 2 0(0)Ax By C A B ++=+≠,能表示平面上任何一条直线(其中,向量(,)n A B =r 是这 条直线的一个法向量)

圆与方程测试题及答案

圆与方程测试题 一、选择题 1.若圆C的圆心坐标为(2,-3),且圆C经过点M(5,-7),则圆C的半径为(). A.5B.5 C.25 D.10 2.过点A(1,-1),B(-1,1)且圆心在直线x+y-2=0上的圆的方程是(). A.(x-3)2+(y+1)2=4 B.(x+3)2+(y-1)2=4 C.(x-1)2+(y-1)2=4 D.(x+1)2+(y+1)2=4 3.以点(-3,4)为圆心,且与x轴相切的圆的方程是(). A.(x-3)2+(y+4)2=16 B.(x+3)2+(y-4)2=16 C.(x-3)2+(y+4)2=9 D.(x+3)2+(y-4)2=19 4.若直线x+y+m=0与圆x2+y2=m相切,则m为(). A.0或2 B.2 C.2D.无解 5.圆(x-1)2+(y+2)2=20在x轴上截得的弦长是(). A.8 B.6 C.62D.43 6.两个圆C1:x2+y2+2x+2y-2=0与C2:x2+y2-4x-2y+1=0的位置关系为(). A.内切B.相交C.外切D.相离 7.圆x2+y2-2x-5=0与圆x2+y2+2x-4y-4=0的交点为A,B,则线段AB的垂直平分线的方程是(). A.x+y-1=0 B.2x-y+1=0 C.x-2y+1=0 D.x-y+1=0 8.圆x2+y2-2x=0和圆x2+y2+4y=0的公切线有且仅有(). A.4条B.3条C.2条D.1条 9.在空间直角坐标系中,已知点M(a,b,c),有下列叙述: 点M关于x轴对称点的坐标是M1(a,-b,c); 点M关于y oz平面对称的点的坐标是M2(a,-b,-c); 点M关于y轴对称的点的坐标是M3(a,-b,c); 点M关于原点对称的点的坐标是M4(-a,-b,-c). 其中正确的叙述的个数是(). A.3 B.2 C.1 D.0 10.空间直角坐标系中,点A(-3,4,0)与点B(2,-1,6)的距离是(). A.243B.221C.9 D.86 二、填空题 11.圆x2+y2-2x-2y+1=0上的动点Q到直线3x+4y+8=0距离的最小值为. 12.圆心在直线y=x上且与x轴相切于点(1,0)的圆的方程为. 13.以点C(-2,3)为圆心且与y轴相切的圆的方程是. 14.两圆x2+y2=1和(x+4)2+(y-a)2=25相切,试确定常数a的值. 15.圆心为C(3,-5),并且与直线x-7y+2=0相切的圆的方程为. 16.设圆x2+y2-4x-5=0的弦AB的中点为P(3,1),则直线AB的方程是.

高三总复习直线与圆的方程知识点总结

直线与圆的方程 一、直线的方程 1、倾斜角: ,围0≤α<π, x l //轴或与x 轴重合时,α=00 。 2、斜率: k=tan α α与κ的关系:α=0?κ=0 已知L 上两点P 1(x 1,y 1) 0<α< 02 >?k π P 2(x 2,y 2) α= κπ ?2 不存在 ?k= 1 212x x y y -- 022

二、两直线的位置关系 (说明:当直线平行于坐标轴时,要单独考虑) 2、L 1 到L 2的角为0,则1 21 21tan k k k k ?+-= θ(121-≠k k ) 3、夹角:1 21 21tan k k k k +-= θ 4、点到直线距离:2 2 00B A c By Ax d +++= (已知点(p 0(x 0,y 0),L :AX+BY+C=0) ①两行平线间距离:L 1=AX+BY+C 1=0 L 2:AX+BY+C 2=0?2 221B A c c d +-= ②与AX+BY+C=0平行且距离为d 的直线方程为Ax+By+C ±022 =+B A d ③与AX+BY+C 1=0和AX+BY+C 2=0平行且距离相等的直线方程是 02 2 1=++ +C C BY AX 5、对称:(1)点关于点对称:p(x 1,y 1)关于M (x 0,y 0)的对称)2,2(1010Y Y X X P --'

直线与方程知识点总结(学生版)

I直线方程知识点总结 一、基础知识梳理 知识点 1:直线的倾斜角与斜率 ( 1)倾斜角:一条直线向上的方向与X 轴的所成的最小正角,叫做直线的倾斜角,范围为 ( 2)斜率:当直线的倾斜角不是900时,则称倾斜角的为该直线的斜率,即k=tan 注记:所有直线都有倾斜角,但不是所有直线都有斜率.(当=90 0时,k 不存在)(3)过两点 p1(x1,y1),p2(x2,y2)(x1≠ x2)的直线的斜率公式: k=tan y 2 y 1(当x 1=x2时,k不存在,此时直线的倾斜角为900) . x2x1 知识点 2:直线的方程名称方程 斜截式y=kx+b 点斜式y-y0=k( x-x0) 两点式y y 1 =y y1 y2y1y2y1 截距式x y +=1 a b 一般式Ax+By+C=0已知条件局限性 k——斜率 b——纵截距 (x0, y0)——直线上 已知点, k——斜率 (x1,y1) ,(x2,y2)是直线上 两个已知点 a——直线的横截距 b——直线的纵截距 A C C ,,分别为 B A B A、 B 不能同时为零斜率、横截距和纵截距 直线的点斜式与斜截式不能表示斜率不存在(垂直于x 轴)的直线;两点式不能表示平行或重合两坐标轴的直线;截距式不能表示平行或重合两坐标轴的直线及过原点的直线。 二、规律方法提炼 1、斜率的求法一般有两种方式 ( 1)已知倾斜角,利用k tan ;(2)已知直线上两点,利用 k y2y 1 ( x1 x 2 ) x2x1 2、求直线的一般方法 (1)直接法:根据已知条件选择适当的直线方程,选择时应注意方程表示直线的局限性; (2)待定系数法:先设直线方程,根据已知条件求出待定系数,最后先出直线方程; 3、与直线方程有关的最值问题的求解策略: ○1 首先,应根据问题的条件和结论,选取适当的直线方程形式,同时引进参数; ○2 然后,可以通过建立目标函数,利用函数知识求最值;或通过数形结合思想求最值. II两直线的位置关系

最新直线与方程和圆与方程-知识点总结

第三章 直线与方程 (1)直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0°.因此,倾斜角的取值范围是0180α?≤

题型 参数方程求解曲线弦长

题型6 求直线与曲线相交弦的长 【例17.6.1】求直线12,12x t y t =+??=-?(t 为参数)被圆3cos ,3sin x y αα=??=? (α为参数)截得的弦长. 【分析】把参数方程转化为普通方程来判断位置关系,利用圆心距与半径求出弦长. 【详解】把直线方程12,12x t y t =+??=-?化为普通方程为2x y +=.将圆3cos ,3sin x y αα=??=? 化为普通方程为229x y +=.圆心O 到直线的距离d ==∴ 弦长L ===. 所以直线12,12x t y t =+??=-?被圆3cos ,3sin x y αα=??=? 截得的弦长为 【评注】消去参数可得普通方程,在关于正弦余弦函数时常利用平方和关系消参. 【变式1】过点P (-3,0)且倾斜角为30°的直线和曲线1,()1x t t t y t t ?=+????=-?? 为参数相交于A 、B 两点.求线段AB 的长. 【分析】由已知过点P (-3,0)且倾斜角为30°的直线可以写出直线的标准参数方程,并根据参数的几何意义求解弦长. 【详解】直线的参数方程为3,()12 x s y s ?=-????=??为参数,曲线1,()1x t t t y t t ?=+????=-??为参数可以化为224x y -=.将直线的参数方程代入上式, 得2100s -+=.设A 、B 对应的参数分别为12s s ,, ∴121210s s s s +==. AB 12s s =-= . 【评注】掌握直线、圆、圆锥曲线的参数方程及简单的应用,并熟练把它们的参数方程转化为普通方程, 由于直线的参数方程为标准参数方程,即s 为直线上的点到13,2??- ?? ?点的距离.就可以直接通过求两点的参数之差求得弦长.在解题时要注意应用参数的几何意义,还要注意是否为标准方程. 【变式2】直线???--=+=t y t x 3141 (为参数t )被曲线)4cos(2πθρ+=所截的弦长为___________ . 【分析】消掉t 可以得到直线的普通方程,而曲线)4cos(2πθρ+= 则需要用两角和的余弦公式展开转化. 【详解】消去t 得直线的方程为3410x y ++=, 由)cos cos sin sin cos sin 444πππρθθθθθ?=+=-=-??,两边同乘ρ,得2cos sin ρρθρθ=-,

高二数学知识点总结大大全(必修)

高二数学会考知识点总结大全(必修) 第1章空间几何体1 1 .1柱、锥、台、球的结构特征 1. 2空间几何体的三视图和直观图 11 三视图: 正视图:从前往后 侧视图:从左往右 俯视图:从上往下 22 画三视图的原则: 长对齐、高对齐、宽相等 33直观图:斜二测画法 44斜二测画法的步骤: (1).平行于坐标轴的线依然平行于坐标轴; (2).平行于y轴的线长度变半,平行于x,z轴的线长度不变; (3).画法要写好。 5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图 1.3 空间几何体的表面积与体积 (一)空间几何体的表面积 1棱柱、棱锥的表面积:各个面面积之和 2 圆柱的表面积 3 圆锥的表面积2r rl Sπ π+ = 4 圆台的表面积2 2R Rl r rl Sπ π π π+ + + = 5 球的表面积2 4R Sπ = (二)空间几何体的体积 1柱体的体积h S V? = 底 2锥体的体积h S V? = 底 3 1 3台体的体积h S S S S V? + + =) 3 1 下 下 上 上 ( 4球体的体积3 3 4 R Vπ = 第二章直线与平面的位置关系 2.1空间点、直线、平面之间的位置关系 2.1.1 2 2 2r rl Sπ π+ =

1 平面含义:平面是无限延展的 2 平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图) (2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。 3 三个公理: (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为 A ∈L B ∈L => L α A ∈α B ∈α 公理1作用:判断直线是否在平面内 (2)公理2:过不在一条直线上的三点,有且只有一个平面。 符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。 公理2作用:确定一个平面的依据。 (3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据 2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点; 异面直线: 不同在任何一个平面内,没有公共点。 2 公理4:平行于同一条直线的两条直线互相平行。 符号表示为:设a 、b 、c 是三条直线 a ∥ b c ∥b 强调:公理4实质上是说平行具有传递性,在平面、空间这个性质 D C B A α L A · α C B · A · α α 共面 =>a ∥c

相关文档
最新文档