高考圆锥曲线解题技巧总结

高考圆锥曲线解题技巧总结
高考圆锥曲线解题技巧总结

第五篇 高考解析几何万能解题套路

解析几何——把代数的演绎方法引入几何学,用代数方法来解决几何问题。

与圆锥曲线有关的几种典型题,如圆锥曲线的弦长求法、与圆锥曲线有关的最值(极值)问题、与圆锥曲线有关的证明问题以及圆锥曲线与圆锥曲线有关的证明问题等,在圆锥曲线的综合应用中经常见到。

第一部分:基础知识

1.概念

特别提醒:(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F 1,F 2的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数,a b ,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向; (2)在椭圆中,a 最大,222

a b c =+,在双曲线中,c 最大,222c a b =+。

2.圆锥曲线的几何性质:

(1)椭圆(以122

22=+b

y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),

四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2

a x c

=±; ⑤离心率:c e a

=,椭圆?01e <<,e 越小,椭圆越圆;e 越大,椭圆越扁。 (2)双曲线(以22221x y a b

-=(0,0a b >>)为例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等时,

称为等轴双曲线,其方程可设为22,0x y k k -=≠;④准线:两条准线2a x c

=±; ⑤离

心率:c e a

=,双曲线?1e >,等轴双曲线?e =e 越小,开口越小,e 越大,开口越大;⑥两条渐近线:b y x a

=±。 (3)抛物线(以22(0)y px p =>为例):①范围:0,x y R ≥∈;②焦点:一个焦

点(,0)2

p ,其中p 的几何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点(0,0);④准线:一条准线2p x =-; ⑤离心率:c e a

=,抛物线?1e =。

3.直线与圆锥曲线的位置关系:

判断?的大小。

特别提醒:(1)直线与双曲线、抛物线只有一个公共点时的位置关系有两种情形:相切和相交。如果直线与双曲线的渐近线平行时,直线与双曲线相交,但只有一个交点;如

果直线与抛物线的轴平行时,直线与抛物线相交,也只有一个交点;(2)过双曲线22

22b y a x -=1外一点00(,)P x y 的直线与双曲线只有一个公共点的情况如下:①P 点在两条渐近线之间且不含双曲线的区域内时,有两条与渐近线平行的直线和分别与双曲线两支相切的两条切线,共四条;②P 点在两条渐近线之间且包含双曲线的区域内时,有两条与渐近线平行的直线和只与双曲线一支相切的两条切线,共四条;③P 在两条渐近线上但非原点,只有两条:一条是与另一渐近线平行的直线,一条是切线;④P 为原点时不存在这样的直线;

(3)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条平行于对称轴的直线。

4、焦半径(圆锥曲线上的点P 到焦点F 的距离)的计算方法:利用圆锥曲线的第二定义,转化到相应准线的距离,即焦半径r ed =,其中d 表示P 到与F 所对应的准线的距离。

5、弦长公式:若直线y kx b =+与圆锥曲线相交于两点A 、B ,且12,x x 分别为A 、B 的横坐标,12,y y 分别为A 、B 的纵坐标,则

,特别地,焦点弦(过

焦点的弦):焦点弦的弦长的计算,一般不用弦长公式计算,而是将焦点弦转化为两条焦半径之和后,利用第二定义求解。

例 过抛物线24

1x y -=的焦点作倾斜角为α的直线l 与抛物线交于A 、B 两点,旦|AB|=8,求倾斜角α.

特别提醒:因为0?>是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、

?>!

对称问题时,务必别忘了检验0

第二部分:解析几何万能解题套路

解析几何——把代数的演绎方法引入几何学,用代数方法来解决几何问题。正是在这一

设想的指引下,笛卡儿创建了解析几何的演绎体系。

高考解析几何剖析:

1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题;

2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。

有了以上两点认识,我们可以毫不犹豫地下这么一个结论,那就是解决高考解析几何问题无外乎做两项工作:

1、几何问题代数化。

2、用代数规则对代数化后的问题进行处理。

二、高考解析几何解题套路及各步骤操作规则

步骤一:(一化)把题目中的点、直线、曲线这三大类基础几何元素用代数形式表示出来(“翻译”);

口诀:见点化点、见直线化直线、见曲线化曲线。

1、见点化点:“点”用平面坐标系上的坐标表示,只要是题目中提到的点都要加以坐标

..

化;

..

2、见直线化直线:“直线”用二元一次方程表示,只要是题目中提到的直线都要加以方.

程化

..;

3、见曲线化曲线:“曲线(圆、椭圆、抛物线、双曲线)”用二元二次方程表示,只要

是题目中提到的曲线都要加以方程化

...;

步骤二:(二代)把题目中的点与直线、曲线从属关系

....用代数形式表示出来;如果某个点在某条直线或曲线上,那么这个点的坐标就可代入这条直线或曲线的方程。

口诀:点代入直线、点代入曲线。

1、点代入直线:如果某个点在某条直线上,将点的坐标代入这条直线的方程;

2、点代入曲线:如果某个点在某条曲线上,将点的坐标代入这条曲线的方程;

这样,每代入一次就会得到一个新的方程,方程逐一列出后,这些方程都是获得最后答案的基础,最后就是解方程组的问题了。

在方程组的求解中,有时候能够直接求解,如果不能直接求解的,则采用下面这套等效规则来处理可以达到同样的处理效果,并让方程组的求解更简单,具体过程:

1、点代入这两个点共同所在的直线:把这两个点共同所在直线用点斜式方程(如

)表示出来,将这两个点的坐标分别代入这条直线的方程;

2、将这条直线的方程代入这条曲线的方程,获得一个一元二次方程

20(0)

++=≠;

ax bx c a

a≠;

3、把这个一元二次方程的二次项系数不等于零的条件列出来(0)

、把这个一元二次方程的判别式列出来;

把直线方程代入曲线方程,得形如的一元二次方程:

①当时,直线与曲线有一个交点;

②当时,直线与曲线相切;

③当时,直线与曲线有两个交点;

④当时,或当时,直线与曲线无交点;

如果某个点的坐标为,而

已知为坐标原点,为椭圆

半轴上的焦点,过且斜率为的直线与交与两点,点满足

.

(I)证明:点在上;

(II)设点关于点的对称点为,证明:四点在同一圆上.

【命题意图】本题考查直线方程、平面向量的坐标运算、点与曲线的位置关系、曲线交点坐标求法及四点共圆的条件。

【解析】(I),的方程为代入并化简得. …………………………2分设,

由题意得

所以点的坐标为.

满足方程,故点在椭圆上…6分

(II)由和题设知,的垂直平分线的方程为

. ①

设的中点为的垂直平分线的方程为

. ②

由①、②得的交点为. …………………………9分

又 ,

所以

由此知四点在以为圆心,为半径的圆上. ……………12分

【点评】本题涉及到平面向量,有一定的综合性和计算量,相对来讲比较有利的方面,也就是这道题的特点是没有任何的未知参数,我们看这道题椭圆完全给出,直线过了椭圆焦点,并且斜率也给出,平时做题斜率不给出,需要通过一定条件求出来,或者根本求不出来,这道题都给了,这个跟平时做的不太一样,反而同学不知道怎么下手,完成有难度。这两问出的非常巧妙,一个证明点在椭圆上的问题,还有一个四点共圆,这都是平时很少涉及到的解析几何本质的内容。让学生掌握解析几何的本质,其实就是用代数方法研究几何的问题,什么是四点共圆?首先在同一个圆上,首先找到圆心,四个点找圆心不好找,最简单的两个点怎么找?这是平时的知识,怎么找距离相等的点,一定在中垂线,两个中垂线交点必然是圆心,找到圆心再距离四个点距离相等,这就是简单的计算问题,方法确定以后计算量其实比往年少。

建议:

多练多体会!

(2009)(22)(本小题满分12分)

)0(122

22>>=+b a b y a x 33 22 (Ⅰ)求a,b 的值;

(Ⅱ)C 上是否存在点P ,使得当l 绕F 转到某一位置时,有→→→+=OB OA OP

成立? 若存在,求出所有的P 的坐标与l 的方程;若不存在,说明理由。

已知椭圆C: 的离心率为 ,过右焦点F 的直线l 与C 相交于A 、B 22两点,当l 的斜率为1时,坐标原点O 到l 的距离为

(2010文)(20)(本小题满分12分)

设1F ,2F 分别是椭圆E :2

x +2

2y b =1(0b<1<)的左、右焦点,过1F 的直线l 与E 相交于A 、B 两点,且2AF ,AB ,2BF 成等差数列。 (Ⅰ)求AB (Ⅱ)若直线l 的斜率为1,求b 的值。

(2012文)(20)(本小题满分12分)

设抛物线C :x 2=2py (p >0)的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点。

(I )若∠BFD =90°,△ABD 的面积为42,求p 的值及圆F 的方程;

(II )若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值。

21.(2013课标全国Ⅰ,文21)(本小题满分12分)已知圆M :(x +1)2+y 2=1,圆N :(x -

1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .

(1)求C 的方程;

(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |.

(2013课标全国2理)(20)(本小题满分12分)

平面直角坐标系xOy 中,过椭圆22

22:1(0)x y M a b a b

+=>>右焦点的直线

0x y +=交M 于,A B 两点,P 为AB 的中点,且OP 的斜率为12

(Ⅰ)求M 的方程;

(Ⅱ),C D 为M 上的两点,若四边形ACBD 的对角线CD AB ⊥,求四边形的最大值。

(2014文、理)20. (本小题满分12分)

设1F ,2F 分别是椭圆()222210y x a b a b

+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N.

(Ⅰ)若直线MN 的斜率为34

,求C 的离心率; (Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求a,b .

(2014预测题)21.(本题满分12分)已知椭圆C 的中心在坐标原点,焦点在x 轴上,离心率

2e =

,且点(2,0)P -在椭圆C 上.

(Ⅰ)求椭圆C 的方程; (Ⅱ)已知A 、B 为椭圆C 上的动点,当PA PB ⊥时,求证:直线AB 恒过一个定点.并求出该定点的坐标.

圆锥曲线解题技巧和方法综合(方法讲解+题型归纳,经典)

圆锥曲线解题方法技巧归纳 第一、知识储备: 1. 直线方程的形式 (1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。 (2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈ ②点到直线的距离d = ③夹角公式:2121 tan 1k k k k α-= + (3)弦长公式 直线 y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =- = 或12AB y y =- (4)两条直线的位置关系 ①1212l l k k ⊥?=-1 ② 212121//b b k k l l ≠=?且 2、圆锥曲线方程及性质 (1)、椭圆的方程的形式有几种?(三种形式) 标准方程:22 1(0,0)x y m n m n m n +=>>≠且 2a = 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种 标准方程:22 1(0)x y m n m n +=?< 距离式方程: 2a = (3)、三种圆锥曲线的通径你记得吗?

22 222b b p a a 椭圆:;双曲线:;抛物线: (4)、圆锥曲线的定义你记清楚了吗? 如:已知21F F 、是椭圆13 42 2=+y x 的两个焦点,平面内一个动点M 满足221=-MF MF 则 动点M 的轨迹是( ) A 、双曲线; B 、双曲线的一支; C 、两条射线; D 、一条射线 (5)、焦点三角形面积公式:1 2 2tan 2 F PF P b θ ?=在椭圆上时,S 1 2 2cot 2 F PF P b θ ?=在双曲线上时,S (其中222 1212121212||||4,cos ,||||cos |||| PF PF c F PF PF PF PF PF PF PF θθθ+-∠==?=?) (6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为 “左加右减,上加下减”。 (2)0||x e x a ±双曲线焦点在轴上时为 (3)11||,||22 p p x x y ++抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形你清楚吗? 第二、方法储备 1、点差法(中点弦问题) 设() 11,y x A 、()22,y x B ,()b a M ,为椭圆13 42 2=+y x 的弦AB 中点则有 1342 12 1=+y x ,1342 22 2=+y x ;两式相减得( )()03 4 2 2 2 1 2 2 21=-+-y y x x ? ()() ()() 3 4 21212121y y y y x x x x +-- =+-?AB k =b a 43- 2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什 么?如果有两个参数怎么办? 设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,

高考圆锥曲线中的最值和范围问题的专题

高考专题圆锥曲线中的最值和范围问题 ★★★高考要考什么 1 圆锥曲线的最值与范围问题 (1)圆锥曲线上本身存在的最值问题: ①椭圆上两点间最大距离为2a (长轴长). ②双曲线上不同支的两点间最小距离为2a (实轴长). ③椭圆焦半径的取值范围为[a -c ,a +c ],a -c 与a +c 分别表示椭圆焦点到椭圆上的点的最小距离与最大距离. ④抛物线上的点中顶点与抛物线的准线距离最近. (2)圆锥曲线上的点到定点的距离的最值问题,常用两点间的距离公式转化为区间上的二次函数的最值问题解决,有时也用圆锥曲线的参数方程,化为三角函数的最值问题或用三角形的两边之和(或差)与第三边的不等关系求解. (3)圆锥曲线上的点到定直线的距离的最值问题解法同上或用平行切线法. (4)点在圆锥曲线上(非线性约束条件)的条件下,求相关式子(目标函数)的取值范围问题,常用参数方程代入转化为三角函数的最值问题,或根据平面几何知识或引入一个参数(有几何意义)化为函数进行处理. (5)由直线(系)和圆锥曲线(系)的位置关系,求直线或圆锥曲线中某个参数(系数)的范围问题,常把所求参数作为函数,另一个元作为自变量求解. 与圆锥曲线有关的最值和范围问题的讨论常用以下方法解决: (1)结合定义利用图形中几何量之间的大小关系; (2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的参数适合的不等式(组),通过解不等式组得出参数的变化范围; (3)函数值域求解法:把所讨论的参数作为一个函数、一个适当的参数作为自变量来表示这个函数, 通过讨论函数的值域来求参数的变化范围。 (4)利用代数基本不等式。代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思; (5)结合参数方程,利用三角函数的有界性。直线、圆或椭圆的参数方程,它们的一个共同特点是 均含有三角式。因此,它们的应用价值在于: ①通过参数θ简明地表示曲线上点的坐标; ②利用三角函数的有界性及其变形公式来帮助求解诸如最值、范围等问题; (6)构造一个二次方程,利用判别式?≥0。 ★★★突破重难点 【练习】1、点A (3,2)为定点,点F 是抛物线y 2=4x 的焦点,点P 在抛物线y 2=4x 上移动,若|P A|+|PF| 取得最小值,求点P 的坐标。若A (1,3)为定点,点F 是抛物线y 2=4x 的焦点,点P 在抛物线y 2=4x 上移动,若|P A|+d|取得最小值,其中d 是点P 到准线的距离,求点P 的坐标 2.已知A (3,2)、B (-4,0),P 是椭圆x y 22 259 1+=上一点,则|P A |+|PB|的最大值为() A .10 B .105- C .105+D .1025+ 3.已知双曲线22 1169 x y -=,过其右焦点F 的直线l 交双曲线于AB ,若|AB |=5,则直线l 有() A .1条 B .2条 C .3条 D .4条 4.已知点P 是抛物线y 2=4x 上一点,设P 到此抛物线的准线的距离为d 1,到直线x +2y+10=0的距离为d 2,则d 1+d 2的最小值为()

高考数学中圆锥曲线重要结论的最全总结

高考数学圆锥曲线重要结论 一、定义:第一定义:平面内到两定点F1(-c,0),F2(c,0)的距离和为定值(大于两定点间的距离|F1F2|)2a的点的轨迹叫椭圆,两定点叫椭圆的焦点,两焦点间的距离叫焦距,与坐标轴的交点叫顶点。 第二定义:平面内到一个定点F的距离与到定直线1的距离比为常数e(0

高中数学圆锥曲线解题技巧方法总结及高考试题和答案

高中数学圆锥曲线解题技巧方法总结及高考试题和答案2圆锥曲线形的面积最大值为1时,则椭圆长轴的最小值为__(答:b。如 (1)短轴长为,于双曲线5S,1.圆锥曲线的两定义: ) 22,tan第一定义中要重视“括号”内的限制条件:椭圆中,22xy2(2)双曲线(以()为,,1ab,,0,02a与两个定点F,F的距离的和等于常数,且此常22122aby2练习:点P是双曲线上上一点,为 x,,1F,F2a数一定要大于,当常数等于时,轨迹FFFF例):?范围:或;?焦点:两个xayR,,,12xa,,121212;?对称性:两条对称轴,一焦点(,0),cxy,,0,0F,当常数小于时,无轨迹;双曲线是线段FFF=24,求的周双曲线的两个焦点,且 PFPF1212,PFF1212个对称中心(0,0),两个顶点,其中实轴长为(,0),a中,与两定点F,F的距离的差的绝对值等于常数长。 12b2,虚轴长为2,特别地,当实轴和虚轴的长相等a8、抛物线中与焦点弦有关的一些几何图形的性质:(1)2a2a,且此常数一定要小于|FF|,定义中的“绝12时,称为等轴双曲线,其方程可设为以过焦点的弦为直径的圆和准线相切;(2)设AB为焦2a2a对值”与,|FF|不可忽视。若,|FF|,则21212a点弦, M为准线与x轴的交点,则?AMF,?BMF;(3)22;?准线:两条准线; ?x,,xykk,,,,02a轨迹是以F,F为端点的两条射线,若,|FF|,1212设AB为焦点弦,A、B在准线上的射影分别为A,B,c11则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双c若P为AB的中点,则PA?PB;(4)若AO的延长线11e,1离心率:e,,双曲线,等轴双曲线,曲线的一支。 a,则BC平行于x轴,反之,若过B点平行交准线于C2222如方程表示的(6)(6)8xyxy,,,,,,于x轴的直线交准线于C点,则A,O,C三点共线。,越小,开口越小,越大,开口越 大;e,2ee,曲线是_____(答:双曲线的左支) b ?两条渐近线:。 yx,,9、弦长公式:若直线与圆锥曲线相交于两ykxb,,a2.圆锥曲线的标准方程(标准方程是指中心

圆锥曲线常用结论

圆锥曲线常用结论 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

圆锥曲线常用结论(自己选择) 一、椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是 以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、 P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一 点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点, 连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶 点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。

(完整版)圆锥曲线高考题及答案

数学圆锥曲线测试高考题选讲 一、选择题: 1. (2006全国II )已知双曲线 x 2a 2- y 2 b 2=1的一条渐近线方程为y =4 3x ,则双曲线的离心率为( ) (A )53 (B )43 (C )54 (D )3 2 2. (2006全国II )已知△ABC 的顶点B 、C 在椭圆x 2 3 +y 2 =1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在 BC 边上,则△ABC 的周长是( ) (A )2 3 (B )6 (C )4 3 (D )12 3.(2006全国卷I )抛物线2 y x =-上的点到直线4380x y +-=距离的最小值是( ) A . 43 B .75 C .8 5 D .3 4.(2006广东高考卷)已知双曲线2239x y -=,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于( ) B. 3 C. 2 D. 4 5.(2006辽宁卷)方程22520x x -+=的两个根可分别作为( ) A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率 D.两椭圆的离心率 6.(2006辽宁卷)曲线 221(6)106x y m m m +=<--与曲线22 1(59)59x y m m m +=<<--的( ) (A)焦距相等 (B) 离心率相等 (C)焦点相同 (D)准线相同 7.(2006安徽高考卷)若抛物线2 2y px =的焦点与椭圆22 162 x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 8.(2006辽宁卷)直线2y k =与曲线2222 918k x y k x += (,)k R ∈≠且k 0的公共点的个数为( ) (A)1 (B)2 (C)3 (D)4 二、填空题: 9. (2006全国卷I )双曲线2 2 1mx y +=的虚轴长是实轴长的2倍,则m = 。 10. (2006上海卷)已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,左焦点为(F ,右顶点为(2,0)D ,

圆锥曲线经典例题及总结(全面实用,你值得拥有!)

圆锥曲线 1.圆锥曲线的两定义: 第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1(0a b >>)。 方程22 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方程 22Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。 (3)抛物线:开口向右时2 2(0)y px p =>,开口向左时2 2(0)y px p =->,开口向上时 22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在分母大的坐标轴上。 (2)双曲线:由x 2,y 2 项系数的正负决定,焦点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 提醒:在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。 4.圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两 个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2a x c =±; ⑤离心率:c e a =,椭圆?01e <<, e 越小,椭圆越圆;e 越大,椭圆越扁。 (2)双曲线(以22 2 21x y a b -=(0,0a b >>)为例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为 22 ,0x y k k -=≠;④准线:两条准线2a x c =±; ⑤离心率:c e a =,双曲线?1e >,等轴双曲线 ?e =e 越小,开口越小,e 越大,开口越大;⑥两条渐近线:b y x a =±。 (3)抛物线(以2 2(0)y px p =>为例):①范围:0,x y R ≥∈;②焦点:一个焦点(,0)2 p ,其中p 的几何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点(0,0);

高考圆锥曲线解题技巧和方法综合

圆锥曲线的解题技巧 一、常规七大题型: (1)中点弦问题 具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为 , ,代入方程,然 后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。 如:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02 020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 典型例题 给定双曲线。过A (2,1)的直线与双曲线交于两点 及 ,求线段 的中点 P 的轨迹方程。 (2 构成的三角形问题,常用正、余弦定理搭桥。 ,为焦点,,。 (1 (2)求 的最值。 (3)直线与圆锥曲线位置关系问题 直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。 典型例题 (1)求证:直线与抛物线总有两个不同交点 (2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。 (4)圆锥曲线的相关最值(范围)问题 圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。 <1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。

(完整版)高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线 一、考点(限考)概要: 1、椭圆: (1)轨迹定义: ①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为: ; ②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数是离心 率用集合表示为: ; (2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 (3)参数方程:(θ为参数); 3、双曲线: (1)轨迹定义: ①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表示为: ②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:

(2)标准方程和性质: 注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线: (1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为 : (2)标准方程和性质: ①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;

二、复习点睛: 1、平面解析几何的知识结构: 2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。

高考数学竞赛圆锥曲线中与焦点弦相关的问题

与焦点弦相关的问题 8.椭圆、双曲线、抛物线的焦点弦性质(定值1) 问题探究8 已知椭圆22 143 x y +=,1F 为椭圆之左焦点,过点1F 的直线交椭圆于A ,B 两点,是否存在实常数λ,使AB FA FB λ=?恒成立.并由此求∣AB ∣的最小值.(借用柯西不等式) 实验成果 动态课件 椭圆的焦点弦的两个焦半径倒数之和为常数 11112 ||||AF BF ep += 备用课件 双曲线的焦点弦的两个焦半径倒数之和为常数 AB 在同支 11112 ||||AF BF ep += AB 在异支 11112 | |||||AF BF ep -= 备用课件 抛物线的焦点弦的两个焦半径倒数之和为常数 112 ||||AF BF ep += 备用课件

9.椭圆、双曲线、抛物线的正交焦点弦性质(定值2) 问题探究9 已知椭圆22 143 x y +=,1F 为椭圆之左焦点,过点1F 的直线12,l l 分别交椭圆于A ,B 两点和C ,D 两点,且12l l ⊥,是否存在实常数λ,使AB CD AB CD λ+=?恒成立.并由此求 四边形ABCD 面积的最小值和最大值. 实验成果 动态课件 椭圆互相垂直的焦点弦倒数之和为常数 ep e CD AB 22||1||12 -= + 备用课件 双曲线互相垂直的焦点弦倒数之和为常数 ep e CD AB 2| 2|||1||12-=+ 备用课件 抛物线互相垂直的焦点弦倒数之和为常数 ep e CD AB 22||1||12 -= + 备用课件

10.椭圆、双曲线、抛物线的焦点弦与其中垂线性质(定值 3) 问题探究10 已知椭圆22 143 x y +=,1F 为椭圆之左焦点,过点1F 的直线交椭圆于A ,B 两点,AB 中垂线交x 轴于点D ,是否存在实常数λ,使1AB F D λ=恒成立? 实验成果 动态课件 设椭圆焦点弦AB 的中垂线交长轴于点D ,则∣DF ∣与∣AB ∣之比为离心率的一半(F 为焦点) 备用课件 设双曲线焦点弦AB 的中垂线交焦点所在直线于点D ,则∣DF ∣与∣AB ∣之比为离心率的一半(F 为焦点) 备用课件 设抛物线焦点弦AB 的中垂线与对称轴交于点D ,则∣DF ∣与 ∣AB ∣之比为离心率的一半(F 为焦点) 备用课件

圆锥曲线经典结论总结(教师版)

椭圆与双曲线的对偶性质--(必背的经典结论) 高三数学备课组 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直 径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切 点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c -,2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和 A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即020 2y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是 22 00002222x x y y x y a b a b +=+.

高考圆锥曲线解题技巧总结

第五篇 高考解析几何万能解题套路 解析几何——把代数的演绎方法引入几何学,用代数方法来解决几何问题。 与圆锥曲线有关的几种典型题,如圆锥曲线的弦长求法、与圆锥曲线有关的最值(极值)问题、与圆锥曲线有关的证明问题以及圆锥曲线与圆锥曲线有关的证明问题等,在圆锥曲线的综合应用中经常见到。 第一部分:基础知识 1.概念 特别提醒:(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F 1,F 2的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数,a b ,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向; (2)在椭圆中,a 最大,222 a b c =+,在双曲线中,c 最大,222c a b =+。 2.圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0), 四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2 a x c =±; ⑤离心率:c e a =,椭圆?01e <<,e 越小,椭圆越圆;e 越大,椭圆越扁。 (2)双曲线(以22221x y a b -=(0,0a b >>)为例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等时, 称为等轴双曲线,其方程可设为22,0x y k k -=≠;④准线:两条准线2a x c =±; ⑤离 心率:c e a =,双曲线?1e >,等轴双曲线?e =e 越小,开口越小,e 越大,开口越大;⑥两条渐近线:b y x a =±。 (3)抛物线(以22(0)y px p =>为例):①范围:0,x y R ≥∈;②焦点:一个焦 点(,0)2 p ,其中p 的几何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点(0,0);④准线:一条准线2p x =-; ⑤离心率:c e a =,抛物线?1e =。

2019届高考数学理总复习微专题5 高考中的圆锥曲线问题

微专题5高考中的圆锥曲线问题 一、选择题(每小题5分,共20分) 1.已知双曲线C:-=1(a>0,b>0)过点(,),其实轴的两个端点与虚轴的一个端点组成一个等边三角形,则双曲线C的标准方程是() A.-y2=1 B.x2-=1 C.-=1 D.-=1 2.设F1,F2是双曲线-=1(a>0,b>0)的左、右焦点,P为双曲线右支上一点,若∠F1PF2=90°,c=2,=3,则双曲线的两条渐近线的夹角为() A. B. C. D. 3.已知椭圆+=1(a>b>0)的中心为O,一个焦点为F,若以O为圆心,|OF|为半径的圆与椭圆恒有公共点,则椭圆的离心率的取值范围是() A.[,1) B.(0,] C.[,1) D.(0,] 4.已知M,N为双曲线-y2=1上关于坐标原点O对称的两点, P为双曲线上异于M,N的点,若直线PM的斜率的取值范围是[,2],则直线PN的斜率的取值范围是() A.(,) B.[-,-] C.[,] D.[-,-]∪[,] 二、填空题(每小题5分,共10分) 5.已知离心率为的椭圆C:+=1(0

7.(12分)如图5-1,已知椭圆C:+=1(a>b>0)的离心率为,且过点P(2,-1). (1)求椭圆C的标准方程; (2)设点Q在椭圆C上,且PQ与x轴平行,过P点作两条直线分别交椭圆C于A(x1,y1),B(x2,y2)两点,若直线PQ 平分∠APB,求证:直线AB的斜率是定值,并求出这个定值. 图5-1 8.(12分)已知椭圆C:+=1(a>b>0)的一个焦点为F1(-,0), 且过点T(,). (1)求椭圆C的方程; (2)设P(0,-1),直线l与椭圆C交于A,B两点,且|PA|=|PB|.求△OAB(O为坐标原点)的面积S的取值范围. 9.(12分)如图5-2,AB为抛物线x2=2py(p>0)的弦,且以AB为直径的圆恒过原点O(A,B均不与O重合),△AOB 面积的最小值为16. (1)求抛物线的方程; (2)设过点A,B的切线的交点为M,试问点M是否在某定直线上?若在,求出该直线的方程;若不在,请说明理由. 图5-2 10.(12分)已知圆(x+2)2+y2=36的圆心为B,A(2,0),C为圆上任意一点,线段AC的垂直平分线l与线段CB的交点为P. (1)求点P的轨迹Γ的方程; (2)已知Q为曲线Γ上一动点,M(3,0),过O(O为坐标原点)作线段QM的垂线交曲线Γ于E,D两点,求的取值范围. 答案

高三圆锥曲线知识点总结

高三圆锥曲线知识点 总结 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第八章 《圆锥曲线》专题复习 一、椭圆方程. 1. 椭圆的第一定义: 为端点的线段 以无轨迹方程为椭圆21212121212121,2, 2,2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+ 2.椭圆的方程形式: ①椭圆的标准方程: i. 中心在原点,焦点在x 轴上:)0(12 2 22 b a b y a x =+. ii. 中心在原点,焦点在y 轴 上:)0(12 22 2 b a b x a y =+ . ②一般方程:)0,0(12 2 B A By Ax =+.③椭圆的参数方程: 2 22 2+ b y a x ?? ?==θ θsin cos b y a x (一象限θ应是属于2 0π θ ). 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 3.椭圆的性质: ①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±.②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2.③焦点:)0,)(0,(c c -或),0)(,0(c c -.④焦距:2221,2b a c c F F -==.⑤准线: c a x 2±=或c a y 2±=.⑥离心率:)10( e a c e =.⑦焦半径: i. 设),(00y x P 为椭圆 )0(12 22 2 b a b y a x =+ 上的一点,21,F F 为左、右焦点,则: 证明:由椭圆第二定义可知:)0()(),0()(0002 200201 x a ex x c a e pF x ex a c a x e pF -=-=+=+=归 结起来为“左加右减”. ii.设),(00y x P 为椭圆 )0(12 22 2 b a a y b x =+上的一点,21,F F 为上、下焦点,则: ⑧通径:垂直于x 轴且过焦点的弦叫做通径: 2 22b d a =;坐标:22(,),(,)b b c c a a - 1020 ,PF a ex PF a ex =+=-1020 ,PF a ey PF a ey =+=-asin α,)α)

圆锥曲线高考常见题型与分析

圆锥曲线高考常见题型与分析 湖南 黄爱民 有关圆锥曲线的高考命题一般紧扣课本,突出重点,全面考查.既有对基础知识的考查,又有与其他知识的综合考查,通过知识的重组与链接,使知识形成网络,下面例谈圆锥曲线高考题常见类型. 一、轨迹问题 例1 椭圆方程为2 2 14y x +=,过点(01)M ,的直线l 交椭圆于点A B O ,,是坐标原点,点P 满足1()2 OP OA OB =+u u u r u u u r u u u r ,当l 绕点M 旋转时,求动点P 的轨迹方程. 解:设()P x y ,,11()A x y ,,22()B x y ,, 由题意,得122x x x +=,122 y y y +=,21211y y y x x x --=-. 又∵A B ,在椭圆上, 代入椭圆方程并相减,得121212121()()()()04x x x x y y y y -++-+=. 当12x x ≠时,有121212121()04y y x x y y x x -++ +=-g . 即112204y x y x -+=g g , 整理,得2240x y y +-=;① 当12x x =时,点A B ,的坐标分别为(02),,(02)-,,这时点P 的坐标为(00),,也满足①. 故点P 的轨迹方程为:2 212111 1616 y x ??- ???+=. 评析:本题主要考查椭圆的方程和性质等基础知识及轨迹的求法与应用和综合解题能力.利用点差法是求解的关键. 二、对称问题 例2 已知椭圆C 的方程22 143 x y +=,试确定m 的取值范围,使得C 上有不同的两点关于直线4y x m =+对称. 解:设椭圆上两点为11()A x y ,,22()B x y ,, 代入椭圆方程并相减,得121212123()()4()()0x x x x y y y y +-++-=.①

(完整版)高三圆锥曲线知识点总结

第八章 《圆锥曲线》专题复习 一、椭圆方程. 1. 椭圆的第一定义: 为端点的线段 以无轨迹方程为椭圆21212121212121,2, 2,2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+πφ 2.椭圆的方程形式: ①椭圆的标准方程: i. 中心在原点,焦点在x 轴上: ) 0(12 22 2φφb a b y a x =+ . ii. 中心在原点,焦点在y 轴上: )0(12 22 2φφb a b x a y =+ . ②一般方程:)0,0(12 2 φφB A By Ax =+.③椭圆的参数方程: 2 22 2+ b y a x ?? ?==θ θsin cos b y a x (一象限θ应是属于20π θππ). 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. 3.椭圆的性质: ①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±.②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2.③焦点:)0,)(0,(c c -或),0)(,0(c c -.④焦距:2 2 21,2b a c c F F -==.⑤准线:c a x 2 ±=或 c a y 2±=.⑥离心率:)10(ππe a c e =.⑦焦半径: i. 设),(00y x P 为椭圆 )0(12 22 2φφb a b y a x =+ 上的一点,21,F F 为左、右焦点,则: 证明:由椭圆第二定义可知:)0()(),0()(0002 200201φπx a ex x c a e pF x ex a c a x e pF -=-=+=+=归结起 来为“左加右减”. ii.设),(00y x P 为椭圆 )0(12 22 2φφb a a y b x =+ 上的一点,21,F F 为上、下焦点,则: ⑧通径:垂直于x 轴且过焦点的弦叫做通径: 2 22b d a =;坐标:22(,),(,)b b c c a a - 4.共离心率的椭圆系的方程:椭圆)0(12 22 2φφb a b y a x =+的离心率是)(22b a c a c e -== ,方程 t t b y a x (2 22 2=+是大于0的参数,)0φφb a 的离心率也是a c e = 我们称此方程为共离心率的椭圆系方程. 5.若P 是椭圆: 12 22 2=+ b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ?的面积为 2 tan 2θ b (用余弦定理与a PF PF 221=+可得). 若是双曲线,则面积为2 cot 2θ ?b . 1020 ,PF a ex PF a ex =+=-1020 ,PF a ey PF a ey =+=-asin α,)α)

圆锥曲线常用结论整理

圆 锥 曲 线 常 用 结 论 整 理 椭圆问题小结论: 1.与椭圆22 221x y a b +=共焦点的椭圆的方程可设为()222221,0x y b a b λλλ+=+>++ 2.与椭圆22 221x y a b +=有相同的离心率的椭圆可设为()2222,0x y a b λλ+=> 或()22 22,0x y b a λλ+=> 3.(中点弦结论)直线l 与椭圆22 221x y a b +=相交与()()1122,y ,,A x B x y 两点,其中点 (),P x y 为线段AB的中点,则有:2 2AB OP b K K a ?=-;若000(,)P x y 在椭圆 22 221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+ 若椭圆方程为22221y x a b +=时,2 2AB OP a K K b ?=-; 4.(切线结论)若000(,)P x y 在椭圆22 221x y a b +=上,则过0P 的椭圆的切线方程是 00221x x y y a b +=.以000(,)P x y 为切点的切线斜率为20 20 b x k a y =-; 5.(切点弦结论)若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为 P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 6. 椭圆的方程为22 221x y a b +=(a >b >0),过原点的直线交椭圆于,A B 两点,P 点是椭圆 上异于,A B 两点的任一点,则有2 2PA PB b K K a =-

专题五 高考中的圆锥曲线问题

专题五 高考中的圆锥曲线问题 1. 已知F 1、F 2为椭圆x 225+y 2 9 =1的两个焦点,过F 1的直线交椭圆于A 、B 两点.若|F 2A |+|F 2B |=12,则|AB | =_______. 2. 设AB 为过抛物线y 2=2px (p >0)的焦点的弦,则|AB |的最小值为 ( ) A.p 2 B .p C .2p D .无法确定 3. 若双曲线x 2a 2-y 2 3 =1的一条渐近线被圆(x -2)2+y 2=4所截得的弦长为2,则该双曲线的实轴长为 ( ) A .1 B .2 C .3 D .6 4. 在抛物线y =2x 2上有一点P ,它到A (1,3)的距离与它到焦点的距离之和最小,则点P 的坐标是 ( ) A .(-2,1) B .(1,2) C .(2,1) D .(-1,2) 5. 设坐标原点为O ,抛物线y 2=2x 与过焦点的直线交于A 、B 两点,则OA →·OB → 等于( ) A.34 B .-34 C .3 D .-3 题型一 圆锥曲线中的范围、最值问题

例 1 (浙江改编)如图所示,在直角坐标系xOy 中,点P (1,1 2 ) 到抛物线C :y 2=2px (p >0)的准线的距离为5 4 .点M (t,1)是C 上的 定点,A ,B 是C 上的两动点,且线段AB 的中点Q (m ,n )在直线 OM 上. (1)求曲线C 的方程及t 的值; (2)记d =|AB | 1+4m 2 ,求d 的最大值. 思维升华 圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用均值不等式、函数的单调性或三角函数的有界性等求最值.

高三圆锥曲线经典总结

圆锥曲线概念、方法、题型、易误点及应试技巧总结 1.圆锥曲线的两个定义: (1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等 于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 如(1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 A .421=+PF PF B.621=+PF PF C .1021=+PF PF D.122 2 21=+PF PF (2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率e 。圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。 如已知点)0,22(Q 及抛物线4 2 x y =上一动点P(x ,y),则y+|PQ |的最小值是 _____ 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时122 22=+b y a x (0a b >>)?{ cos sin x a y b ??==(参数方程,其中?

相关文档
最新文档