STM32延时函数

STM32延时函数
STM32延时函数

#include

#include "delay.h"

//////////////////////////////////////////////////////////////////////////////////

//使用SysTick的普通计数模式对延迟进行管理

//包括delay_us,delay_ms

//***************************************************************************** ***

//V1.2修改说明

//修正了中断中调用出现死循环的错误

//防止延时不准确,采用do while结构!

//////////////////////////////////////////////////////////////////////////////////

static u8 fac_us=0;//us延时倍乘数

static u16 fac_ms=0;//ms延时倍乘数

//初始化延迟函数

//SYSTICK的时钟固定为HCLK时钟的1/8

//SYSCLK:系统时钟

void delay_init(u8 SYSCLK)

{

SysTick->CTRL&=0xfffffffb;//bit2清空,选择外部时钟HCLK/8

fac_us=SYSCLK/8;

fac_ms=(u16)fac_us*1000;

}

//延时nms

//注意nms的范围

//SysTick->LOAD为24位寄存器,所以,最大延时为:

//nms<=0xffffff*8*1000/SYSCLK

//SYSCLK单位为Hz,nms单位为ms

//对72M条件下,nms<=1864

void delay_ms(u16 nms)

{

u32 temp;

SysTick->LOAD=(u32)nms*fac_ms;//时间加载(SysTick->LOAD为24bit)

SysTick->VAL =0x00; //清空计数器

SysTick->CTRL=0x01 ; //开始倒数

do

{

temp=SysTick->CTRL;

}

while(temp&0x01&&!(temp&(1<<16)));//等待时间到达

SysTick->CTRL=0x00; //关闭计数器

SysTick->VAL =0X00; //清空计数器

}

//延时nus

//nus为要延时的us数.

void delay_us(u32 nus)

{

u32 temp;

SysTick->LOAD=nus*fac_us; //时间加载

SysTick->VAL=0x00; //清空计数器

SysTick->CTRL=0x01 ; //开始倒数

do

{

temp=SysTick->CTRL;

}

while(temp&0x01&&!(temp&(1<<16)));//等待时间到达

SysTick->CTRL=0x00; //关闭计数器

SysTick->VAL =0X00; //清空计数器

}

#ifndef __DELAY_H

#define __DELAY_H

#include

//////////////////////////////////////////////////////////////////////////////////

//使用SysTick的普通计数模式对延迟进行管理

//包括delay_us,delay_ms

//***************************************************************************** ***

//V1.2修改说明

//修正了中断中调用出现死循环的错误

//防止延时不准确,采用do while结构!

//////////////////////////////////////////////////////////////////////////////////

void delay_init(u8 SYSCLK);

void delay_ms(u16 nms);

void delay_us(u32 nus);

#endif

STM32高级定时器死区时间设置探究

STM32高级定时器死区时间设置探究 一、死区设置位置: 决定死区时间设置的位是‘刹车和死区寄存器TIM1->BDTR’中的DTG[7:0],设置范围是0x00~0xff。 二、死区时间设置公式如下: DT为死区持续时间,TDTS为系统时钟周期时长,Tdtg为系统时钟周期时长乘以倍数后的死区设置时间步进值。 在72M的定时器时钟下TDTS=1/72M=13.89ns. 所以以第一个公式,死区时间能以13.89ns的步进从0调整到127*13.89ns=1764ns 第二个公式则能(64+0)*2*13.89~(64+63)*2*13.89=1777.9ns~3528.88ns 换个角度看,就是(128~254)*13.89

同理,第三个公式就是3555.84ns~7000.56ns 换个角度看,就是(256~504)*13.89 第四个公式就是7111.68ns~14001.12ns 换个角度看,就是(512~1008)*13.89 综上: 死区时间就是不同的公式代表不同范围的死区时间设置,这个范围是互不重叠的。而但是在不同的死区时间范围内死区时间设置步进是不同的。 若某个系统时钟下的死区时间不够,可以通过改变定时器时钟来改变最大死区时间范围。 当根据硬件电路的特性定下死区时间后,可以根据目标死区时间范围来找到相应的公式,然后代入公式求解出相应的整数(有时候不一定是整数,那就选择最近的那个),拼接DTG[7:5]+DTG[4:0]即可。 例子:这样当我需要3us的死区持续时间时,则可这么计算: 3us在第二个公式决定的死区范围之内。所以选择第二个公式。 3000/(13.89*2)=108,所以DTG[5:0]=108-64=44,所以DTG=127+44=171=0Xab TIM1->BDTR|=0xab; 反过来验算//72Mhz,死区时间=13.89nsX108*2=3000us 经示波器验证,完全正确。 By zxx2013.07.18

stm32的定时器输入捕获与输出比较

stm32的定时器输入捕获与输出比较 (2015-09-28 09:26:24) 转载▼ 分类:stm32 标签: it 明确一点对比AD的构造,stm32有3个AD,每个AD有很多通道,使用哪个通道就配置成哪个通道,这里定时器也如此,有很多定时器TIMx,每个定时器有很多CHx(通道),可以配置为输入捕捉-------测量频率用,也可以配置为输出比较--------输出PWM使用 输入捕捉:可以用来捕获外部事件,并为其赋予时间标记以说明此事件的发生时刻。 外部事件发生的触发信号由单片机中对应的引脚输入(具体可以参考单片机的datasheet),也可以通过模拟比较器单元来实现。 时间标记可用来计算频率,占空比及信号的其他特征,以及为事件创建日志,主要是用来测量外部信号的频率。 输出比较:定时器中计数寄存器在初始化完后会自动的计数。从bottom计数到top。并且有不同的工作模式。 另外还有个比较寄存器。一旦计数寄存器在从bottom到top计数过程中与比较寄存器匹配则会产生比较中断(比较中断使能的情况下)。 然后根据不同的工作模式计数寄存器将清零或者计数到top值。

1、朋友,可以解释一下输入捕获的工作原理不? 计数寄存器的初值,是自己写进去的吗? 我如果捕获上升沿,两个值相减,代表的时两个上升沿中间那段电平的时间。对不? timer1有五个通道(对应五个IO引脚),在同一时刻,只能捕获一个引脚的值,对不? 那输出比较的原理你可以帮我介绍一下不?

比较单元的值是人为设进去的吧? 上面这个总看不懂,好像不不止你说的那几种情况:“匹配了是io电平取反、变低、还是变高,就会产生不同的波形了” 设置输出就是置1,清除输出就是置0,切换输出就是将原来的电平取反,对不? 011:计数器向上计数达到最大值时将引脚置1,达到0时,引脚电平置0,,对不?

基于51单片机的精确延时(微秒级)

声明: *此文章是基于51单片机的微秒级延时函数,采用12MHz晶振。 *此文章共包含4个方面,分别是延时1us,5us,10us和任意微秒。前三个方面是作者学习过程中从书本或网络上面总结的,并非本人所作。但是延时任意微秒函数乃作者原创且亲测无误。欢迎转载。 *此篇文章是作者为方便初学者使用而写的,水平有限,有误之处还望大家多多指正。 *作者:Qtel *2012.4.14 *QQ:97642651 ----------------------------------------------------------------------------------------------------------------------序: 对于某些对时间精度要求较高的程序,用c写延时显得有些力不从心,故需用到汇编程序。本人通过测试,总结了51的精确延时函数(在c语言中嵌入汇编)分享给大家。至于如何在c 中嵌入汇编大家可以去网上查查,这方面的资料很多,且很简单。以12MHz晶振为例,12MHz 晶振的机器周期为1us,所以,执行一条单周期指令所用时间就是1us,如NOP指令。下面具体阐述一下。 ----------------------------------------------------------------------------------------------------------------------1.若要延时1us,则可以调用_nop_();函数,此函数是一个c函数,其相当于一个NOP指令,使用时必须包含头文件“intrins.h”。例如: #include #include void main(void){ P1=0x0; _nop_();//延时1us P1=0xff; } ----------------------------------------------------------------------------------------------------------------------2.延时5us,则可以写一个delay_5us()函数: delay_5us(){ #pragma asm nop #pragma endasm } 这就是一个延时5us的函数,只需要在需要延时5us时调用此函数即可。或许有人会问,只有一个NOP指令,怎么是延时5us呢? 答案是:在调用此函数时,需要一个调用指令,此指令消耗2个周期(即2us);函数执行完毕时要返回主调函数,需要一个返回指令,此指令消耗2个周期(2us)。调用和返回消耗了2us+2us=4us。然后再加上一个NOP指令消耗1us,不就是5us吗。

详解STM32定时器

1.STM32的Timer简介 STM32中一共有11个定时器,其中2个高级控制定时器,4个普通定时器和2个基本定时器,以及2个看门狗定时器和1个系统嘀嗒定时器。其中系统嘀嗒定时器是前文中所描述的SysTick,看门狗定时器以后再详细研究。今天主要是研究剩下的8个定时器。 其中TIM1和TIM8是能够产生3对PWM互补输出的高级登时其,常用于三相电机的驱动,时钟由APB2的输出产生。TIM2-TIM5是普通定时器,TIM6和TIM7是基本定时器,其时钟由APB1输出产生。由于STM32的TIMER功能太复杂了,所以只能一点一点的学习。因此今天就从最简单的开始学习起,也就是TIM2-TIM5普通定时器的定时功能。 2.普通定时器TIM2-TIM5 2.1时钟来源 计数器时钟可以由下列时钟源提供: ·内部时钟(CK_INT) ·外部时钟模式1:外部输入脚(TIx) ·外部时钟模式2:外部触发输入(ETR) ·内部触发输入(ITRx):使用一个定时器作为另一个定时器的预分频器,如可以配置一个定时器Timer1而作为另一个定时器Timer2的预分频器。 由于今天的学习是最基本的定时功能,所以采用内部时钟。TIM2-TIM5的时钟不是直接来自于APB1,而是来自于输入为APB1的一个倍频器。这个倍频器的作用是:当APB1的预分频系数为1时,这个倍频器不起作用,定时器的时钟频率等于APB1的频率;当APB1的预分频系数为其他数值时(即预分频系数为2、4、8或16),这个倍频器起作用,定时器的时钟频率等于APB1的频率的2倍。APB1的分频在STM32_SYSTICK的学习笔记中有详细描述。通过倍频器给定时器时钟的好处是:APB1不但要给TIM2-TIM5提供时钟,还要为其他的外设提供时钟;设置这个倍频器可以保证在其他外设使用较低时钟频率时,TIM2-TIM5仍然可以得到较高的时钟频率。 2.2计数器模式

05_STM32F4通用定时器详细讲解

STM32F4系列共有14个定时器,功能很强大。14个定时器分别为: 2个高级定时器:Timer1和Timer8 10个通用定时器:Timer2~timer5 和 timer9~timer14 2个基本定时器: timer6和timer7 本篇欲以通用定时器timer3为例,详细介绍定时器的各个方面,并对其PWM 功能做彻底的探讨。 Timer3是一个16位的定时器,有四个独立通道,分别对应着PA6 PA7 PB0 PB1 主要功能是:1输入捕获——测量脉冲长度。 2 输出波形——PWM 输出和单脉冲输出。 Timer3有4个时钟源: 1:内部时钟(CK_INT ),来自RCC 的TIMxCLK 2:外部时钟模式1:外部输入TI1FP1与TI2FP2 3:外部时钟模式2:外部触发输入TIMx_ETR ,仅适用于TIM2、TIM3、TIM4,TIM3,对应 着PD2引脚 4:内部触发输入:一个定时器触发另一个定时器。 时钟源可以通过TIMx_SMCR 相关位进行设置。这里我们使用内部时钟。 定时器挂在高速外设时钟APB1或低速外设时钟APB2上,时钟不超过内部高速时钟HCLK ,故当APBx_Prescaler 不为1时,定时器时钟为其2倍,当为1时,为了不超过HCLK ,定时器时钟等于HCLK 。 例如:我们一般配置系统时钟SYSCLK 为168MHz ,内部高速时钟 AHB=168Mhz ,APB1欲分频为4,(因为APB1最高时钟为42Mhz ),那么挂在APB1总线上的timer3时钟为84Mhz 。 《STM32F4xx 中文参考手册》的424~443页列出与通用定时器相关的寄存器一共20个, 以下列出与Timer3相关的寄存器及重要寄存器的简单介绍。 1 TIM3 控制寄存器 1 (TIM3_CR1) 作用:1使能自动重载TIM3_ARR 2定时器的计数器递增或递减计数。 3 事件更新。 4 计数器使能 2 TIM 3 控制寄存器 2 (TIM3_CR2) 3 TIM3 从模式控制寄存器 (TIM3_SMCR) 4 TIM3 DMA/中断使能寄存器 (TIM3_DIER) SYSCLK(最高 AHB_Prescaler APBx_Prescaler

单片机89C51精确延时

单片机89C51精确延时 高手从菜鸟忽略作起之(六)一,晶振与周期: 89C51晶振频率约为12MHZ。在此基础上,计论几个与单片机相关的周期概念:时钟周期,状态周期,机器周期,指令周期。 晶振12MHZ,表示1US振动12次,此基础上计算各周期长度。 时钟周期(W sz):Wsz=1/12=0.083us 状态周期(W zt) Wzt=2*Wsz=0.167us 机器周期(W jq): Wjq=6*Wzt=1us 指令周期(W zl): W zl=n*Wjq(n=1,2,4) 二,指令周期 汇编指令有单周期指令,双周期指令,四周期指令。指令时长分别是1US,2US,4US.指令的周期可以查询绘编指令获得,用下面方法进行记忆。 1.四周期指令:MUL,DIV 2.双周期指令:与SP,PC相关(见汇编指令周期表) 3.单周期指令:其他(见汇编指令周期表) 三,单片机时间换算单位 1.1秒(S)=1000毫秒(ms) 2.1毫秒(ms)=1000微秒(us) 3.1微秒(us)=1000纳秒(ns) 单片机指令周期是以微秒(US)为基本单位。 四,单片机延时方式 1.计时器延时方式:用C/T0,C/T1进行延时。 2.指令消耗延时方式: 本篇单片机精确延时主要用第2种方式。 五,纳秒(ns)级延时: 由于单片机指令同期是以微秒(US)为基本单位,因此,纳秒级延时,全部不用写延时。六,微秒(US)级延时:

1.单级循环模式:delay_us_1 最小值:1+2+2+0+2+1+2+2=12(US),运行此模式最少需12US,因此12US以下,只能在代码中用指定数目的NOP来精确延时。 最大值:256*2+12-2=522(US),256最大循环次数,2是指令周期,12是模式耗时,-2是模式耗时中计1个时钟周期。 延时范围:值域F(X)[12,522],变量取值范围[0,255]. 函数关系:Y=F(x):y=2x+12,由输入参数得出延时时间。 反函数:Y=F(x):y=1/2x-6:由延时时间,计算输入参数。例延时500US,x=500,y=244,即输入244时,精确延时500US. 2.双级循环模式:delay_us_2

STM32通用定时器

STM32通用定时器 一、定时器的基础知识 三种STM32定时器区别 通用定时器功能特点描述: STM3 的通用 TIMx (TIM2、TIM3、TIM4 和 TIM5)定时器功能特点包括: 位于低速的APB1总线上(APB1) 16 位向上、向下、向上/向下(中心对齐)计数模式,自动装载计数器(TIMx_CNT)。 16 位可编程(可以实时修改)预分频器(TIMx_PSC),计数器时钟频率的分频系数 为 1~65535 之间的任意数值。 4 个独立通道(TIMx_CH1~4),这些通道可以用来作为: ①输入捕获 ②输出比较 ③ PWM 生成(边缘或中间对齐模式) ④单脉冲模式输出 可使用外部信号(TIMx_ETR)控制定时器和定时器互连(可以用 1 个定时器控制另外一个定时器)的同步电路。 如下事件发生时产生中断/DMA(6个独立的IRQ/DMA请求生成器): ①更新:计数器向上溢出/向下溢出,计数器初始化(通过软件或者内部/外部触发) ②触发事件(计数器启动、停止、初始化或者由内部/外部触发计数) ③输入捕获 ④输出比较 ⑤支持针对定位的增量(正交)编码器和霍尔传感器电路 ⑥触发输入作为外部时钟或者按周期的电流管理 STM32 的通用定时器可以被用于:测量输入信号的脉冲长度(输入捕获)或者产生输出波形(输出比较和 PWM)等。 使用定时器预分频器和 RCC 时钟控制器预分频器,脉冲长度和波形周期可以在几个微秒到几个毫秒间调整。 STM32 的每个通用定时器都是完全独立的,没有互相共享的任何资源。 定时器框图:

倍频得到),外部时钟引脚,可以通过查看数据手册。也可以是TIMx_CHn,此时主要是实现捕获功能; 框图中间的时基单元 框图下面左右两部分分别是捕获输入模式和比较输出模式的框图,两者用的是同一引脚,不能同时使用。

STM32定时时间的计算

STM32 定时器定时时间的计算 假设系统时钟是72Mhz,TIM1 是由PCLK2 (72MHz)得到,TIM2-7是由 PCLK1 得到关键是设定时钟预分频数,自动重装载寄存器周期的值/*每1秒发生一次更新事件(进入中断服务程序)。RCC_Configuration()的SystemInit()的 RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE1_DIV2表明TIM3CLK为72MHz。因此,每次进入中断服务程序间隔时间为: ((1+TIM_Prescaler )/72M)*(1+TIM_Period )=((1+7199)/72M)*(1+9999)=1秒。定时器的基本设置如下: 1、TIM_TimeBaseStructure.TIM_Prescaler = 7199;//时钟预分频数例如:时钟频率=72/(时钟预分频+1)。 2、TIM_TimeBaseStructure.TIM_Period = 9999; // 自动重装载寄存器周期的值(定时时间)累计 0xFFFF个频率后产生个更新或者中断(也是说定时时间到)。 3、TIM_TimeBaseStructure.TIM_CounterMode=TIM1_CounterMode_Up; //定时器模式向上计数。 4、 TIM_TimeBaseStructure.TIM_ClockDivision = 0x0; //时间分割值。 5、 TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);//初始化定时器2。 6、 TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE); //打开中断溢出中断。 7、 TIM_Cmd(TIM2, ENABLE);//打开定时器或者: TIM_TimeBaseStructure.TIM_Prescaler = 35999;//分频35999,72M/ (35999+1)/2=1Hz 1秒中断溢出一次。 8、 TIM_TimeBaseStructure.TIM_Period = 2000; //计数值2000 ((1+TIM_Prescaler )/72M)*(1+TIM_Period )=((1+35999)/72M)*(1+2000)=1秒。 9、注意使用不同定时器时,要注意对应的时钟频率。例如TIM2对应的是APB1,而TIM1对应的是APB2 通用定时器实现简单定时功能 以TIME3为例作为说明,简单定时器的配置如下: void TIM3_Config(void) { TIM_TimeBaseInitTypeDefTIM_TimeBaseStructure; TIM_DeInit(TIM3); //复位TIM2定时器 /* TIM2 clock enable [TIM2定时器允许]*/ RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE); /* TIM2 configuration */ TIM_TimeBaseStructure.TIM_Period = 49; // 0.05s定时 TIM_TimeBaseStructure.TIM_Prescaler = 35999; // 分频36000 TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; // 时钟分割TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //计数方向向上计数 TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure); /* Clear TIM2 update pending flag[清除TIM2溢出中断标志] */

单片机C延时时间怎样计算

C程序中可使用不同类型的变量来进行延时设计。经实验测试,使用unsigned char类型具有比unsigned int更优化的代码,在使用时 应该使用unsigned char作为延时变量。以某晶振为12MHz的单片 机为例,晶振为12M H z即一个机器周期为1u s。一. 500ms延时子程序 程序: void delay500ms(void) { unsigned char i,j,k; for(i=15;i>0;i--) for(j=202;j>0;j--) for(k=81;k>0;k--); } 计算分析: 程序共有三层循环 一层循环n:R5*2 = 81*2 = 162us DJNZ 2us 二层循环m:R6*(n+3) = 202*165 = 33330us DJNZ 2us + R5赋值 1us = 3us 三层循环: R7*(m+3) = 15*33333 = 499995us DJNZ 2us + R6赋值 1us = 3us

循环外: 5us 子程序调用 2us + 子程序返回2us + R7赋值 1us = 5us 延时总时间 = 三层循环 + 循环外 = 499995+5 = 500000us =500ms 计算公式:延时时间=[(2*R5+3)*R6+3]*R7+5 二. 200ms延时子程序 程序: void delay200ms(void) { unsigned char i,j,k; for(i=5;i>0;i--) for(j=132;j>0;j--) for(k=150;k>0;k--); } 三. 10ms延时子程序 程序: void delay10ms(void) { unsigned char i,j,k; for(i=5;i>0;i--) for(j=4;j>0;j--) for(k=248;k>0;k--);

STM32F103ve定时器时间算法

S TM32 定时器定时时间的计算 2010-11-18 14:12:18| 分类:资料引用| 标签:|字号大中小订阅 引用 mxpopstar 的STM32 定时器定时时间的计算 假设系统时钟是72Mhz,TIM1 是由PCLK2 (72MHz)得到,TIM2-7是由PCLK1 得到 关键是设定时钟预分频数,自动重装载寄存器周期的值 /*每1秒发生一次更新事件(进入中断服务程序)。 RCC_Configuration()的SystemInit()的 RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE1_DIV2表明 TIM3CLK为72MHz。因此,每次进入中断服务程序间隔时间为((1+TIM_Prescaler )/72M)*(1+TIM_Period )=((1+7199)/72M)*(1 +9999)=1秒*/ 定时器的基本设置 1、TIM_TimeBaseStructure.TIM_Prescaler = 7199;//时钟预分频数例如:时钟频率=72/(时钟预分频+1)

2、TIM_TimeBaseStructure.TIM_Period = 9999; // 自动重装载寄存器周期的值(定时时间) 累计0xFFFF个频率后产生个更新或者中断(也是说定时时间到) 3、TIM_TimeBaseStructure.TIM_CounterMode = TIM1_CounterMode_Up; //定时器 模式向上计数 4、TIM_TimeBaseStructure.TIM_ClockDivision = 0x0; //时间分割值 5、TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);//初始化定时器2 6、TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE); //打开中断溢出中断 7、TIM_Cmd(TIM2, ENABLE);//打开定时器 或者: TIM_TimeBaseStructure.TIM_Prescaler = 35999;//分频35999 72M/ (35999+1)/2=1Hz 1秒中断溢出一次

用单片机实现延时(自己经验及网上搜集).

标准的C语言中没有空语句。但在单片机的C语言编程中,经常需要用几个空指令产生短延时的效果。这在汇编语言中很容易实现,写几个nop就行了。 在keil C51中,直接调用库函数: #include // 声明了void _nop_(void; _nop_(; // 产生一条NOP指令 作用:对于延时很短的,要求在us级的,采用“_nop_”函数,这个函数相当汇编NOP指令,延时几微秒。NOP指令为单周期指令,可由晶振频率算出延时时间,对于12M晶振,延时1uS。对于延时比较长的,要求在大于10us,采用C51中的循环语句来实现。 在选择C51中循环语句时,要注意以下几个问题 第一、定义的C51中循环变量,尽量采用无符号字符型变量。 第二、在FOR循环语句中,尽量采用变量减减来做循环。 第三、在do…while,while语句中,循环体内变量也采用减减方法。 这因为在C51编译器中,对不同的循环方法,采用不同的指令来完成的。 下面举例说明: unsigned char i; for(i=0;i<255;i++; unsigned char i; for(i=255;i>0;i--;

其中,第二个循环语句C51编译后,就用DJNZ指令来完成,相当于如下指令: MOV 09H,#0FFH LOOP: DJNZ 09H,LOOP 指令相当简洁,也很好计算精确的延时时间。 同样对do…while,while循环语句中,也是如此 例: unsigned char n; n=255; do{n--} while(n; 或 n=255; while(n {n--}; 这两个循环语句经过C51编译之后,形成DJNZ来完成的方法, 故其精确时间的计算也很方便。 其三:对于要求精确延时时间更长,这时就要采用循环嵌套的方法来实现,因此,循环嵌套的方法常用于达到ms级的延时。对于循环语句同样可以采用for,do…while,while结构来完成,每个循环体内的变量仍然采用无符号字符变量。 unsigned char i,j for(i=255;i>0;i--

STM32通用定时器学习

STM32通用定时器 STM32的定时器功能很强大,学习起来也很费劲儿. 其实手册讲的还是挺全面的,只是无奈TIMER的功能太复杂,所以显得手册很难懂,我就是通过这样看手册:while(!SUCCESS){看手册…}才搞明白的!所以接下来我以手册的顺序为主线,增加一些自己的理解,并通过11个例程对TIMER做个剖析。实验环境是STM103V100的实验板,MDK3.2 +Library2.东西都不怎么新,凑合用…… TIMER主要是由三部分组成: 1、时基单元。 2、输入捕获。 3、输出比较。 还有两种模式控制功能:从模式控制和主模式控制。 一、框图 让我们看下手册,一开始是定时器的框图,这里面几乎包含了所有定时器的信息,您要是能看明白,那么接下来就不用再看别的了… 为了方便的看图,我对里面出现的名词和符号做个注解: TIMx_ETR:TIMER外部触发引脚 ETR:外部触发输入 ETRP:分频后的外部触发输入 ETRF:滤波后的外部触发输入 ITRx:内部触发x(由另外的定时器触发) TI1F_ED:TI1的边沿检测器。 TI1FP1/2:滤波后定时器1/2的输入 TRGI:触发输入 TRGO:触发输出 CK_PSC:应该叫分频器时钟输入 CK_CNT:定时器时钟。(定时周期的计算就靠它) TIMx_CHx:TIMER的输入脚 TIx:应该叫做定时器输入信号x ICx:输入比较x ICxPS:分频后的ICx OCx:输出捕获x OCxREF:输出参考信号 关于框图还有以下几点要注意: 1、影子寄存器。 有阴影的寄存器,表示在物理上这个寄存器对应2个寄存器,一个是程序员可以写入或读出的寄存器,称为preload register(预 装载寄存器),另一个是程序员看不见的、但在操作中真正起作用的 寄存器,称为shadow register(影子寄存器);(详细请参考版主博客 https://www.360docs.net/doc/2d9171105.html,/STM32/401461/message.aspx) 2、输入滤波机制 在ETR何TIx输入端有个输入滤波器,它的作用是以采样频率 Fdts来采样N次进行滤波的。(具体也请参考版主博客 https://www.360docs.net/doc/2d9171105.html,/STM32/263170/message.aspx) 3、输入引脚和输出引脚是相同的。 二、时基单元 时基单元有三个部分:CNT、PSC、ARR。CNT的计数方式分三种:向上、

stm32f407通用定时器输入捕获

通用定时器输入捕获 通用定时器作为输入捕获的使用。我们用TIM5的通道1(PA0)来做输入捕获,捕获PA0上高电平的脉宽(用KEY_UP按键输入高电平),通过串口来打印高电平脉宽时间。 输入捕获模式可以用来测量脉冲宽度或者测量频率。我们以测量脉宽为例,用一个简图来说明输入捕获的原理: 如图所示,就是输入捕获测量高电平脉宽的原理,假定定时器工作在向上计数模式,图中t1~t2时间,就是我们需要测量的高电平时间。测量方法如下:首先设置定时器通道x为上升沿捕获,这样,t1时刻,就会捕获到当前的CNT值,然后立即清零CNT,并设置通道x为下降沿捕获,这样到t2时刻,又会发生捕获事件,得到此时的CNT值,记为CCRx2。这样,根据定时器的计数频率,我们就可以算出t1~t2的时间,从而得到高电平脉宽。在t1~t2之间,可能产生N次定时器溢出,这就要求我们对定时器溢出,做处理,防止高电平太长,导致数据不准确。如图所示,t1~t2之间,CNT计数的次数等于:N*ARR+CCRx2,有了这个计数次数,再乘以CNT的计数周期,即可得到t2-t1的时间长度,即高电平持续时间。 STM32F4的定时器,除了TIM6和TIM7,其他定时器都有输入捕获功能。STM32F4的输入捕获,简单的说就是通过检测TIMx_CHx上的边沿信号,在边沿信号发生跳变(比如上升沿/下降沿)的时候,将当前定时器的值(TIMx_CNT)存放到对应的通道的捕获/比较寄存器(TIMx_CCRx)里面,完成一次捕获。同时还可以配置捕获时是否触发中断/DMA等。这里我们用TIM5_CH1来捕获高电平脉宽。 ============================================================== ===================== 捕获/比较通道(例如:通道1 输入阶段) ============================================================== ===================== 接下来介绍我们需要用到的一些寄存器配置,需要用到的寄存器:TIMx_ARR、TIMx_PSC、

51单片机精确延时源程序

51单片机精确延时源程序 一、晶振为 11.0592MHz,12T 1、延时 1ms: (1)汇编语言: 代码如下: DELAY1MS: ;误差 -0.651041666667us MOV R6,#04H DL0: MOV R5,#71H DJNZ R5,$ DJNZ R6,DL0 RET (2)C语言: void delay1ms(void) //误差 -0.651041666667us { unsigned char a,b; for(b=4;b>0;b--) for(a=113;a>0;a--); } 2、延时 10MS: (1)汇编语言: DELAY10MS: ;误差 -0.000000000002us MOV R6,#97H DL0: MOV R5,#1DH DJNZ R5,$ DJNZ R6,DL0

RET (2)C语言: void delay10ms(void) //误差 -0.000000000002us { unsigned char a,b; for(b=151;b>0;b--) for(a=29;a>0;a--); } 3、延时 100MS: (1)汇编语言: DELAY100MS: ;误差 -0.000000000021us MOV R7,#23H DL1: MOV R6,#0AH I

棋影淘宝店:https://www.360docs.net/doc/2d9171105.html,QQ:149034219 DL0: MOV R5,#82H DJNZ R5,$ DJNZ R6,DL0 DJNZ R7,DL1 RET (2)C语言: void delay100ms(void) //误差 -0.000000000021us { unsigned char a,b,c; for(c=35;c>0;c--) for(b=10;b>0;b--) for(a=130;a>0;a--); } 4、延时 1S: (1)汇编语言: DELAY1S: ;误差 -0.00000000024us MOV R7,#5FH DL1: MOV R6,#1AH DL0: MOV R5,#0B9H DJNZ R5,$ DJNZ R6,DL0 DJNZ R7,DL1 RET (2)C语言: void delay1s(void) //误差 -0.00000000024us { unsigned char a,b,c; for(c=95;c>0;c--) for(b=26;b>0;b--)

单片机精确毫秒延时函数

单片机精确毫秒延时函数 实现延时通常有两种方法:一种是硬件延时,要用到定时器/计数器,这种方法可以提高CPU的工作效率,也能做到精确延时;另一种是软件延时,这种方法主要采用循环体进行。今天主要介绍软件延时以及单片机精确毫秒延时函数。 单片机的周期介绍在电子技术中,脉冲信号是一个按一定电压幅度,一定时间间隔连续发出的脉冲信号。脉冲信号之间的时间间隔称为周期;而将在单位时间(如1秒)内所产生的脉冲个数称为频率。频率是描述周期性循环信号(包括脉冲信号)在单位时间内所出现的脉冲数量多少的计量名称;频率的标准计量单位是Hz(赫)。电脑中的系统时钟就是一个典型的频率相当精确和稳定的脉冲信号发生器。 指令周期:CPU执行一条指令所需要的时间称为指令周期,它是以机器周期为单位的,指令不同,所需的机器周期也不同。对于一些简单的的单字节指令,在取指令周期中,指令取出到指令寄存器后,立即译码执行,不再需要其它的机器周期。对于一些比较复杂的指令,例如转移指令、乘法指令,则需要两个或者两个以上的机器周期。通常含一个机器周期的指令称为单周期指令,包含两个机器周期的指令称为双周期指令。 时钟周期:也称为振荡周期,一个时钟周期= 晶振的倒数。对于单片机时钟周期,时钟周期是单片机的基本时间单位,两个振荡周期(时钟周期)组成一个状态周期。 机器周期:单片机的基本操作周期,在一个操作周期内,单片机完成一项基本操作,如取指令、存储器读/写等。 机器周期=6个状态周期=12个时钟周期。 51单片机的指令有单字节、双字节和三字节的,它们的指令周期不尽相同,一个单周期指令包含一个机器周期,即12个时钟周期,所以一条单周期指令被执行所占时间为12*(1/ 晶振频率)= x s。常用单片机的晶振为11.0592MHz,12MHz,24MHz。其中11.0592MHz 的晶振更容易产生各种标准的波特率,后两种的一个机器周期分别为1 s和2 s,便于精确延时。 单片机精确毫秒延时函数对于需要精确延时的应用场合,需要精确知道延时函数的具体延

STM32通用定时器学习

STM32入门篇之通用定时器彻底研究 STM32的定时器功能很强大,学习起来也很费劲儿,本人在这卡了5天才算看明白。写下下面的文字送给后来者,希望能带给你点启发。在此声明,本人也是刚入门,接触STM32不足10天,所以有失误的地方请以手册为准,欢迎大家拍砖。 其实手册讲的还是挺全面的,只是无奈TIMER的功能太复杂,所以显得手册很难懂,我就是通过这样看手册:while(!SUCCESS){看手册…}才搞明白的!所以接下来我以手册的顺序为主线,增加一些自己的理解,并通过11个例程对TIMER 做个剖析。实验环境是STM103V100的实验板,MDK3.2 +Library2.东西都不怎么新,凑合用…… TIMER主要是由三部分组成: 1、时基单元。 2、输入捕获。 3、输出比较。 还有两种模式控制功能:从模式控制和主模式控制。 一、框图 让我们看下手册,一开始是定时器的框图,这里面几乎包含了所有定时器的信息,您要是能看明白,那么接下来就不用再看别的了… 为了方便的看图,我对里面出现的名词和符号做个注解: TIMx_ETR:TIMER外部触发引脚 ETR:外部触发输入 ETRP:分频后的外部触发输入 ETRF:滤波后的外部触发输入 ITRx:内部触发x(由另外的定时器触发) TI1F_ED:TI1的边沿检测器。 TI1FP1/2:滤波后定时器1/2的输入 TRGI:触发输入 TRGO:触发输出 CK_PSC:应该叫分频器时钟输入 CK_CNT:定时器时钟。(定时周期的计算就靠它) TIMx_CHx:TIMER的输入脚 TIx:应该叫做定时器输入信号x ICx:输入比较x ICxPS:分频后的ICx OCx:输出捕获x OCxREF:输出参考信号 关于框图还有以下几点要注意: 1、影子寄存器。 有阴影的寄存器,表示在物理上这个寄存器对应2个寄存器,一个是程序员可以写入或读出的寄存器,称为preload register(预 装载寄存器),另一个是程序员看不见的、但在操作中真正起作用的寄 存器,称为shadow register(影子寄存器);输入滤波机制 在ETR何TIx输入端有个输入滤波器,它的作用是以采样频率 Fdts来采样N次进行滤波的。 2、输入引脚和输出引脚是相同的。 二、时基单元 时基单元有三个部分:CNT、PSC、ARR。CNT的计数方式分三种:向上、

STM32定时器的频率配置

STM32定时器的频率配置 STM32 定时器产生不同频率的PWM 平时记性实在太差,调试完的程序,过两天又忘了,往往需要一阵子才能想起来,有时以前的资料找不到了,更是恼火,不得不重复到网上搜索。刚刚调试成功了一个类型的程序,立刻记下来,呵呵,不要又忘记了。 STM32产生PWM是非常的方便的,要需要简单的设置定时器,即刻产生!当然,简单的设置对于新手来产,也是麻烦的,主要包括: (1)使能定时器时钟:RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE); (2)定义相应的GPIO: /* PA2,3,4,5,6输出->Key_Up,Key_Down,Key_Left,Key_Right,Key_Ctrl */ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2|GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; //下拉接地,检测输入的高电平 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //50M时钟速度 GPIO_Init(GPIOA, &GPIO_InitStructure); /* PA7用于发出PWM波,即无线数据传送*/ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //50M时钟速度 GPIO_Init(GPIOA, &GPIO_InitStructure); (3)如果是产生PWM(频率不变,占空比可变),记得打开PWM控制,在TIM_Configuration()中。 TIM_Cmd(TIM3,ENABLE); /* TIM1 Main Output Enable */ TIM_CtrlPWMOutputs(TIM1,ENABLE); 利用定时器产生不同频率的PWM 有时候,需要产生不同频率的PWM,这个时候,设置与产生相同PWM的程序,有关键的不一样。 (一)设置的原理 利用改变定时器输出比较通道的捕获值,当输出通道捕获值产生中断时,在中断中将捕获值改变,这时,输出的I/O会产生一个电平翻转,利用这种办法,实现不同频率的PWM输出。 (二)关键设置 在定时器设置中:TIM_OC2PreloadConfig(TIM3, TIM_OCPreload_Disable); 在中断函数中:if (TIM_GetITStatus(TIM3, TIM_IT_CC2) != RESET) { TIM_ClearITPendingBit(TIM3, TIM_IT_CC2); capture = TIM_GetCapture2(TIM3); TIM_SetCompare2(TIM3, capture + Key_Value); }

51单片机的几种精确延时

51单片机的几种精确延时.txt这是一个禁忌相继崩溃的时代,没人拦得着你,只有你自己拦着自己,你的禁忌越多成就就越少。自卑有多种档次,最高档次的自卑表现为吹嘘自己干什么都是天才。51单片机的几种精确延时实现延时通常有两种方法:一种是硬件延时,要用到定时器/计数器,这种方法可以提高CPU的工作效率,也能做到精确延时;另一种是软件延时,这种方法主要采用循环体进行。 1 使用定时器/计数器实现精确延时 单片机系统一般常选用11.059 2 MHz、12 MHz或6 MHz晶振。第一种更容易产生各种标准的波特率,后两种的一个机器周期分别为1 μs和2 μs,便于精确延时。本程序中假设使用频率为12 MHz的晶振。最长的延时时间可达216=65 536 μs。若定时器工作在方式2,则可实现极短时间的精确延时;如使用其他定时方式,则要考虑重装定时初值的时间(重装定时器初值占用2个机器周期)。 在实际应用中,定时常采用中断方式,如进行适当的循环可实现几秒甚至更长时间的延时。使用定时器/计数器延时从程序的执行效率和稳定性两方面考虑都是最佳的方案。但应该注意,C51编写的中断服务程序编译后会自动加上PUSH ACC、PUSH PSW、POP PSW和POP ACC 语句,执行时占用了4个机器周期;如程序中还有计数值加1语句,则又会占用1个机器周期。这些语句所消耗的时间在计算定时初值时要考虑进去,从初值中减去以达到最小误差的目的。 2 软件延时与时间计算 在很多情况下,定时器/计数器经常被用作其他用途,这时候就只能用软件方法延时。下面介绍几种软件延时的方法。 2.1 短暂延时 可以在C文件中通过使用带_NOP_( )语句的函数实现,定义一系列不同的延时函数,如Delay10us( )、Delay25us( )、Delay40us( )等存放在一个自定义的C文件中,需要时在主程序中直接调用。如延时10 μs的延时函数可编写如下: void Delay10us( ) { _NOP_( ); _NOP_( ); _NOP_( ); _NOP_( ); _NOP_( ); _NOP_( ); } Delay10us( )函数中共用了6个_NOP_( )语句,每个语句执行时间为1 μs。主函数调用Delay10us( )时,先执行一个LCALL指令(2 μs),然后执行6个_NOP_( )语句(6 μs),最后执行了一个RET指令(2 μs),所以执行上述函数时共需要10 μs。可以把这一函数

单片机编写延时函数的简单方法

编写延时函数的简单方法Post By:2010-6-21 0:26:01 在本站51hei-5板子上做315兆无线解码和红外解码试验的时候,延时函数的精度很重要,要做到相当精确才可以成功,所以大家一定要掌握. 这也是大家最常在QQ里问我的一个问题,如果从keil里看了c语言的反汇编代码然后根据晶振和指令计算延时的时间这样虽然非常的准确但是相当的麻烦而且容易搞错,我这里介绍一个最简单的方法.可以验证你的延时函数 这里用一个例程详细介绍一下。 过程参考如下: 在编译器下建立一个新项目,也可以利用已有项目。此过程中需要注意,单片机晶振的选择,因为for 循环里指令的执行时间和晶振有直接关系,本例中晶振使用11.0592M。 此主题相关图片如下:20090oc1.jpg 编写一段关于延时的函数,主要利用for循环,代码如下: void delay_ms(unsigned int ms) { unsigned int i; unsigned char j; for(i=0;i

for(j=0;j<102;j++); } } 其中ms是输入参数,如果输入1,就是要求程序延时1ms。 j变量是调整程序运行的时间参数。调整j的数值,使1次循环的时间在1ms。 将此程序编译通过,然后利用软件仿真,调整时间。 此主题相关图片如下:20090oc2.jpg 下面这个sec就是程序运行到现在的这一行所用的时间。 此主题相关图片如下:20090oc3.jpg

两次时间差就是延时函数使用的时间,如果与1ms相差比较多,用户可以调整j参数的值,使延时时间尽量接近1ms。如增大j的值for(j=0;j<105;j++); 此方法得出延时函数,在晶振不同的情况下,延时时间会不准。软件调试结果,这个程序的延时时间为:1.01779ms,一般的单片机系统中都可以应用。 下面来说说汇编的传统计算方法: 指令周期、机器周期与时钟周期 指令周期:CPU执行一条指令所需要的时间称为指令周期,它是以机器周期为单位的,指令不同,所需的机器周期也不同。 时钟周期:也称为振荡周期,一个时钟周期=晶振的倒数。 MCS-51单片机的一个机器周期=6个状态周期=12个时钟周期。 MCS-单片机的指令有单字节、双字节和三字节的,它们的指令周期不尽相同,一个单周期指令包含一个机器周期,即12个时钟周期,所以一条单周期指令被执行所占时间为12*(1/12000000)=1us。 了解了上面这些我们来看一个例子 ;============延时1秒子程序======================== DELAY_1S: MOV R4,#10 ;延时子程序,12M晶振延时1.002035秒 L3: MOV R2 ,#200 ;1指令周期 L1: MOV R3 ,#249 ;1指令周期 L2: DJNZ R3 ,L2 ;2指令周期 DJNZ R2 ,L1 ;2指令周期 DJNZ R4 ,L3 ;2指令周期 RET ;2指令周期 ;循环体延时时间: [(249*2+1+2)*200+1+2]*10*12/12000000=1.002030s

相关文档
最新文档