(word完整版)高考导数解答题中常见的放缩大法

(word完整版)高考导数解答题中常见的放缩大法
(word完整版)高考导数解答题中常见的放缩大法

(高手必备)高考导数大题中最常用的放缩大法

相信不少读者在做高考导数解答题时都有这样的感悟,将复杂的函数求导,再对导函数求导,再求导,然后就没有然后了......如果懂得了最常见的放缩,如:人教版课本中常用的结论

⑴sin ,(0,)x x x π<∈,变形即为

sin 1x x

<,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1.

⑵1x e x >+⑶ln(1)x x >+⑷ln ,0x x x e x <<>.

将这些不等式简单变形如下: ex

x ex e x e x x x x x 1ln ,,1,1ln 11-≥≥+≥-≤≤-那么很多问题将迎刃而解。 例析:(2018年广州一模)x e x x f x x ax x f 2)(,0,1ln )(?≤>++=若对任意的设恒成立,求a 的取值范围。

放缩法:由可得:1+≥x e x 2)1(ln 1ln 2)1(ln )1(ln 1ln ln 22=+-++≥+-=+-=+-+x x x x x x e x x xe x x e x x x x

高考中最常见的放缩法可总结如下,供大家参考。

第一组:对数放缩

(放缩成一次函数)ln 1x x ≤-,ln x x <,()ln 1x x +≤ (放缩成双撇函数)()11ln 12x x x x ??<-> ???,()11ln 012x x x x ??>-<< ???

, )

ln 1x x

<>,)ln 01x x ><<, (放缩成二次函数)2ln x x x ≤-,()()21ln 1102

x x x x +≤--<<,()()21ln 102

x x x x +≥-> (放缩成类反比例函数)1ln 1x x

≥-,()()21ln 11x x x x ->>+,()()21ln 011x x x x -<<<+, ()ln 11x x x +≥+,()()2ln 101x x x x +>>+,()()2ln 101x x x x +<<+

第二组:指数放缩

(放缩成一次函数)1x e x ≥+,x e x >,x e ex ≥, (放缩成类反比例函数)()101x e x x ≤

≤-,()10x e x x

<-<, (放缩成二次函数)()21102x e x x x ≥++>,2311126x e x x x ≥+++, 第三组:指对放缩

()()ln 112x e x x x -≥+--=

第四组:三角函数放缩

()sin tan 0x x x x <<>,21sin 2x x x ≥-,22111cos 1sin 22

x x x -≤≤-. 第五组:以直线1y x =-为切线的函数

ln y x =,11x y e -=-,2y x x =-,11y x

=-,ln y x x =. 拓展阅读:为何高考中总是考这些超越函数呢?和x e x ln 因为高考命题专家是大学老师,他们站在高观点下看高中数学,一览无遗。作为学生没有多大必要去去了解大学的知识,但是作为老师却是有很大的必要去理解感悟高考题命题的背景。超越函数本质上就是高等数学中的泰勒公式。即从某个点0x 处,我们可以构建一个多项式来近似函数在这一点的邻域中的值,如果这个点是0,就是形式比较简单的麦克劳林级数。简而言之,它的功能就是把超越式近似表示为幂函数。常见的幂级数展示式有:

导数的几何意义

20200201手动选题组卷2 一、选择题(本大题共4小题,共20.0分) 1.函数f(x)=x3+x在点x=1处的切线方程为() A. 4x?y+2=0 B. 4x?y?2=0 C. 4x+y+2=0 D. 4x+y?2=0 2.设点P是曲线y=x3-√3x+3 5 上的任意一点,点P处切线的倾斜角为α,则角α的取值范围是() A. [0,2π 3]B. [0,π 2 )∪[2π 3, π) C. (π 2, 2π 3] D. [π 3, 2π 3] 3.已知曲线y=f(x)在x=5处的切线方程是,则f(5)与分别为() A. 3,3 B. 3,?1 C. ?1,3 D. 0,?1 4.函数f(x)在x=x0处导数f′(x0)的几何意义是(). A. 在点x=x0处的斜率 B. 在点(x0,f(x0))处的切线与x轴所夹的锐角正切值 C. 点(x0,f(x0))与点(0,0)连线的斜率 D. 曲线y=f(x)在点(x0,f(x0))处的切线的斜率 二、不定项选择题(本大题共1小题,共4.0分) 5.已知曲线y=x3-x+1在点P处的切线平行于直线y=2x,那么点P的坐标为() A. (1,0)或(-1,1) B. (1,1) C. (-1,1) D. (1,1) 三、填空题(本大题共4小题,共20.0分) 6.函数f(x)的图象在x=2处的切线方程为2x+y?3=0,则 7.函数y=f(x)的图象在点M(1,f(1))处的切线方程是y=3x?2,则f(1)+ f′(1)=______. 8.抛物线y=x2的一条切线方程为6x?y?9=0,则切点坐标为______ . 9.曲线y=√x在x=1处的切线斜率为______.

全国卷历年高考函数与导数真题归类分析(含答案)

全国卷历年高考函数与导数真题归类分析(含答案) (2015年-2018年共11套) 函数与导数小题(共23小题) 一、函数奇偶性与周期性 1.(2015年1卷13)若函数f (x ) =ln(x x +为偶函数,则a= 【解析】由题知ln(y x = 是奇函数,所以ln(ln(x x ++- =22ln()ln 0a x x a +-==,解得a =1.考点:函数的奇偶性 2.(2018年2卷11)已知是定义域为的奇函数,满足 .若 , 则 A. B. 0 C. 2 D. 50 解:因为是定义域为 的奇函数,且 , 所以, 因此, 因为 ,所以, ,从而 ,选C. 3.(2016年2卷12)已知函数()()R f x x ∈满足()()2f x f x -=-,若函数1 x y x += 与()y f x =图像的交点为()11x y ,,()22x y ,,?,()m m x y ,,则()1 m i i i x y =+=∑( ) (A )0 (B )m (C )2m (D )4m 【解析】由()()2f x f x =-得()f x 关于()01, 对称,而11 1x y x x +==+也关于()01,对称, ∴对于每一组对称点'0i i x x += '=2i i y y +,∴()1 1 1 022 m m m i i i i i i i m x y x y m ===+=+=+? =∑∑∑,故选B . 二、函数、方程与不等式 4.(2015年2卷5)设函数211log (2),1, ()2,1,x x x f x x -+-

导数有关知识点总结、经典例题及解析、近年高考题带答案

导数及其应用 【考纲说明】 1、了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念。 2、熟记八个基本导数公式;掌握两个函数和、差、积、商的求导法则,了解复合函数的求导法则,会求某些简单函数的导数。 3、理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。 【知识梳理】 一、导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。如果当0→?x 时,x y ??有极限,我们 就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。 即f (x 0)=0lim →?x x y ??=0lim →?x x x f x x f ?-?+)()(00。 说明:

(1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x y ??不存在极限,就说函数在点x 0处不可导, 或说无导数。 (2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤: (1)求函数的增量y ?=f (x 0+x ?)-f (x 0); (2)求平均变化率x y ??=x x f x x f ?-?+) ()(00; (3)取极限,得导数f’(x 0)=x y x ??→?0lim 。 二、导数的几何意义 函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。相应地,切线方程为y -y 0=f/(x 0)(x -x 0)。 三、几种常见函数的导数 ①0;C '= ②() 1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();x x e e '=⑥()ln x x a a a ' =; ⑦ ()1ln x x '= ; ⑧()1 l g log a a o x e x '=. 四、两个函数的和、差、积的求导法则 法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: ( .)' ''v u v u ±=± 法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数, 即: .)('''uv v u uv += 若C 为常数,则' ''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数: .)(''Cu Cu = 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方: ? ?? ??v u ‘=2' 'v uv v u -(v ≠0)。 形如y=f [x (?])的函数称为复合函数。复合函数求导步骤:分解——求导——回代。法则:y '|x = y '|u ·u '|x 五、导数应用 1、单调区间: 一般地,设函数)(x f y =在某个区间可导,

高考数学真题导数专题及答案

2017年高考真题导数专题 一.解答题(共12小题) 1.已知函数f(x)2(a﹣2)﹣x. (1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 2.已知函数f(x)2﹣﹣,且f(x)≥0. (1)求a; (2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2. 3.已知函数f(x)﹣1﹣. (1)若f(x)≥0,求a的值; (2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值. 4.已知函数f(x)321(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b关于a的函数关系式,并写出定义域; (2)证明:b2>3a; (3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.5.设函数f(x)=(1﹣x2). (1)讨论f(x)的单调性; (2)当x≥0时,f(x)≤1,求a的取值范围. 6.已知函数f(x)=(x﹣)e﹣x(x≥). (1)求f(x)的导函数; (2)求f(x)在区间[,+∞)上的取值范围. 7.已知函数f(x)2+2,g(x)(﹣2x﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线(x)在点(π,f(π))处的切线方程; (Ⅱ)令h(x)(x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.

) 10.已知函数f(x)3﹣2,a∈R, (1)当2时,求曲线(x)在点(3,f(3))处的切线方程; (2)设函数g(x)(x)+(x﹣a)﹣,讨论g(x)的单调性并判断有无极值,有极值时求出极值. 11.设a,b∈R,≤1.已知函数f(x)3﹣6x2﹣3a(a﹣4),g(x)(x). (Ⅰ)求f(x)的单调区间; (Ⅱ)已知函数(x)和的图象在公共点(x0,y0)处有相同的切线, (i)求证:f(x)在0处的导数等于0; ()若关于x的不等式g(x)≤在区间[x0﹣1,x0+1]上恒成立,求b的取值范围. 12.已知函数f(x)(﹣a)﹣a2x. (1)讨论f(x)的单调性; (2)若f(x)≥0,求a的取值范围.

3.1.3 导数的几何意义(优秀经典公开课比赛教案及联系解答)

3.1.3导数的几何意义 教学目标:通过导数的图形变换理解导数的几何意义就是曲线在该点的切线的斜率,知道导数的概念并会运用概念求导数. 教学重难点:函数切线的概念,切线的斜率,导数的几何意义 教学过程: 情景导入:如图,曲线C 是函数y=f(x)的图象,P(x0,y0)是曲线C 上的任意一点,Q(x0+Δx,y0+Δy)为P 邻近一点,PQ 为C 的割线,PM//x 轴,QM//y 轴,β为PQ 的倾斜角. .tan , ,:β=???=?=x y y MQ x MP 则 展示目标:见学案 检查预习:见学案 合作探究:探究任务:导数的几何意义 问题1:当点(,())(1,2,3,4)n n n P x f x n =,沿着曲线()f x 趋近于点00(,())P x f x 时,割线的变化 趋是什么? y x ??请问:是割线PQ 的什么?

新知:当割线P n P 无限地趋近于某一极限位置PT 我们就把极限位置上的直线PT ,叫做曲线C 在点P 处的切线 割线的斜率是:n k = 当点n P 无限趋近于点P 时,n k 无限趋近于切线PT 的斜率. 因此,函数()f x 在0x x =处的导数 就是切线PT 的斜率k ,即0000()()lim ()x f x x f x k f x x ?→+?-'==? 新知: 函数()y f x =在0x 处的导数的几何意义是曲线()y f x =在00(,())P x f x 处切线的斜率. 即k =000()()()lim x f x x f x f x x ?→+?-'=? 精讲精练: 例1 如图,它表示跳水运动中高度随时间变化的函数2() 4.9 6.510h t t t =-++的图象.根据图象,请描述、比较曲线()h t 在012,,t t t 附近的变化情况. 解:可用曲线 h(t) 在 t0 , t1 , t2 处的切线刻画曲线 h(t) 在上述三个时刻附近的变化情况. (1) 当 t = t0 时, 曲线 h(t) 在 t0 处的切线 l0 平行于 x 轴.故在 t = t0 附近曲线比较平坦, 几乎没有升降.(2)当 t = t1 时, 曲线 h(t) 在 t1 处的切线 l1 的斜率 h’(t1) <0 .故在t = t1 附近曲线下降,即函数 h(t) 在 t = t1 附近单调递减.(3)当 t = t2 时, 曲线 h(t) 在 t2处的切线 l2 的斜率 h’(t2) <0 .故在 t = t2 附近曲线下降,即函数 h(t) 在t = t2 附近也单调递减.从图可以看出,直线 l1 的倾斜程度小于直线 l2 的倾斜程度,这说明 h(t) 曲线在 l1 附近比在 l2 附近下降得缓慢。 例2 如图,它表示人体血管中药物浓度()c f t =(单位:/mg mL )随时间t (单位:min)变化的函数图象.根据图象,估计t =0.2,0.4,0.6,0.8时,血管中药物浓度的瞬时变化率(精确到0.1)

近五年高考试题分类汇编-导数部分(附答案解析)

2018年全国高考试题分类汇编-导数部分(含解析) 1.(2018·全国卷I 高考理科·T5)同(2018·全国卷I 高考文科·T6)设函数f (x )=x3+(a -1)x2+ax.若f (x )为奇函数,则曲线y=f (x )在点(0,0)处的切线方程为( ) A.y=-2x B.y=-x C.y=2x D.y=x 2.(2018·全国卷II 高考理科·T13)曲线y=2ln(x+1)在点(0,0)处的切线方程为 3.(2018·全国卷II 高考文科·T13)曲线y=2lnx 在点(1,0)处的切线方程为 4.(2018·全国Ⅲ高考理科·T14)曲线y=(ax +1)ex 在点(0,1)处的切线的斜率为-2,则a= . 5.(2018·天津高考文科·T10)已知函数f(x)=exlnx,f ′(x)为f(x)的导函数,则f ′(1)的值为 . 6.(2018·全国卷I 高考理科·T16)已知函数f (x )=2sinx+sin2x,则f (x )的最小值是 . 7.(2017·全国乙卷文科·T14)曲线y=x 2 + 1 x 在点(1,2)处的切线方程为 . 8.(2017·全国甲卷理科·T11)若x=-2是函数f (x )=(2x +ax-1)1x e -的极值点,则f (x )的极小值为 ( ) A.-1 B.-23e - C.53e - D.1 9.(2017 10.(2017递增,则称f (x )A.f (x )=2-x 11.(2017数a 12.(2017则称f (x )具有M ①f (x )=2-x ;②f (x

13.(2017·全国乙卷理科·T16)如图,圆形纸片的圆心为O ,半径为5cm ,该纸片上的等边三角形ABC 的中心为O.D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3 )的最大值为 . 14.(2017·天津高考文科·T10)已知a ∈R ,设函数f (x )=ax-lnx 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为 . 15.(2016·全国卷Ⅰ高考文科·T12)若函数f (x )=x-1 3 sin2x+asinx 在(-∞,+∞)上单调递增,则a 的取值范围是( ) A.[-1,1] B.11,3 ? ? -?? ?? C.11,33??- ???? D.11,3? ? --???? 16.(2016·四川高考理科·T9)设直线l 1,l 2分别是函数f (x )=lnx,0x 1,lnx,x 1, ?-<?图象上点P 1,P 2处的 切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是( ) A.(0,1) B.(0,2) C.(0,+∞) D.(1,+∞) 17.(2016·四川高考文科·T6)已知a 为函数f (x )=x 3 -12x 的极小值点,则a=( ) A.-4 B.-2 C.4 D.2 18.(2016·四川高考文科·T10)设直线l 1,l 2分别是函数f (x )=lnx,0x 1,lnx,x 1, ?-<?图象上点P 1,P 2处的切线,l 1 与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是 ( ) A.(0,1) B.(0,2) C.(0,+∞) D.(1,+∞) 19.(2016·山东高考文科·T10)同(2016·山东高考理科·T10) 若函数y=f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f (x )具有T 性质.下列函数中具有T 性质的是 ( ) A.y=sinx B.y=lnx C.y=e x D.y=x 3 20.(2016·全国卷Ⅱ理科·T16)若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b= .

导数及其应用高考题精选含答案

导数及其应用高考题精选 1.(2010·海南高考·理科T3)曲线2 x y x = +在点()1,1--处的切线方程为() (A )21y x =+(B )21y x =-(C )23y x =--(D )22y x =-- 【命题立意】本题主要考查导数的几何意义,以及熟练运用导数的运算法则进行求解. 【思路点拨】先求出导函数,解出斜率,然后根据点斜式求出切线方程. 【规范解答】选 A.因为22 (2) y x '= +,所以,在点()1,1--处的切线斜率12 2 2(12)x k y =-' == =-+,所以,切线方程为12(1)y x +=+,即21y x =+,故选A. 2.(2010·山东高考文科·T8)已知某生产厂家的年利润y (单位:万元) 与年产量x (单位:万件)的函数关系式为3 1812343 y x x =-+-,则使该生产厂 家获得最大年利润的年产量为() (A)13万件(B)11万件 (C)9万件(D)7万件 【命题立意】本题考查利用导数解决生活中的优化问题,考查了考生的分析问题解决问题能力和运算求解能力. 【思路点拨】利用导数求函数的最值. 【规范解答】选C ,2'81y x =-+,令0y '=得9x =或9x =-(舍去),当9x <时'0y >;当9x >时'0y <,故当9x =时函数有极大值,也是最大值,故选C. 3.(2010·山东高考理科·T7)由曲线y=2 x ,y=3 x 围成的封闭图形面积为() (A ) 1 12 (B)14 (C)13 (D) 712 【命题立意】本题考查定积分的基础知识,由定积分求曲线围成封闭图形的

2016年高考导数试题及答案(精选)

1.(新课标1)已知函数 有两个零点. (I)求a 的取值范围;(II)设x 1,x 2是的两个零点,证明: +x 2<2. 解:(Ⅰ) '()(1)2(1)(1)(2)x x f x x e a x x e a =-+-=-+. (i )设0a =,则()(2)x f x x e =-,()f x 只有一个零点.(ii )设0a >,则当(,1)x ∈-∞时,'()0f x <;当(1 ,)x ∈+∞时,'()0f x >.所 以 ()f x 在(,1)-∞上单调递减,在(1,)+∞上单调递增.又(1)f e =-,(2)f a =,取b 满足0 b <且ln 2a b <,则22 3()(2)(1)()022 a f b b a b a b b >-+-=->,故()f x 存在两个零点. (iii )设0a <,由'()0f x =得1x =或ln(2)x a =-.若2 e a ≥-,则ln(2)1a -≤,故当 (1,)x ∈+∞时,'()0f x >,因此()f x 在(1,)+∞上单调递增.又当1x ≤时,()0f x <,所以() f x 不存在两个零点. 若2 e a <- ,则ln(2)1a ->,故当(1,ln(2))x a ∈-时,'()0f x <;当(ln(2),)x a ∈-+∞时,'()0f x >.因此()f x 在(1,ln(2))a -单调递减,在(ln(2),)a -+∞单调递增.又当1x ≤时,()0f x <,所以()f x 不存在两个零点.综上,a 的取值范围为(0,)+∞. (Ⅱ)不妨设1 2x x <,由(Ⅰ)知12(,1),(1,)x x ∈-∞∈+∞,22(,1)x -∈-∞,()f x 在(,1) -∞上单调递减,所以122x x +<等价于12()(2)f x f x >-,即2(2)0f x -<. 由于 222222(2)(1)x f x x e a x --=-+-,而22222()(2)(1)0x f x x e a x =-+-=,所以 222222(2)(2)x x f x x e x e --=---. 设 2()( 2 ) x x g x xe x e -=---, 则 2'()(1)()x x g x x e e -=--.所以当1x >时,'()0g x <,而(1)0g =,故当1x >时,()0g x <.从 而22()(2)0g x f x = -<,故122x x +<. 2(新课标2)(I)讨论函数x x 2f (x) x 2 -= +e 的单调性,并证明当x >0时,(2)20;x x e x -++> (II)证明:当[0,1)a ∈ 时,函数2 x =(0)x e ax a g x x -->() 有最小值.设g (x )的最小值为()h a , 求函数()h a 的值域.

高中数学《导数的概念及几何意义》公开课优秀教学设计

《导数的概念及几何意义》教学设计 教材内容分析 本节课的教学内容选自人教社普通高中课程标准实验教科书( A 版)数学选修2-2第一章第一节的《变化率与导数》,《导数的概念及几何意义》是在学习了函数平均变化率以后,过渡到瞬时变化率,从而得出导数的概念,再从平均变化率的几何意义,迁移至瞬时变化率即导数的几何意义。 导数是微积分的核心概念之一,是从生产技术和自然科学的需要中产生的,它深刻揭示了函数变化的本质,其思想方法和基本理论在在天文、物理、工程技术中有着广泛的应用,而且在日常生活及经济领域也日渐显示出其重要的功能。 在中学数学中,导数具有相当重要的地位和作用。 从横向看,导数在现行高中教材体系中处于一种特殊的地位。它是众多知识的交汇点,是解决函数、不等式、数列、几何等多章节相关问题的重要工具, 它以更高的观点和更简捷的方法对中学数学的许多问题起到以简驭繁的处理。 从纵向看,导数是函数一章学习的延续和深化,也是对极限知识的发展, 同时为后继研究导数的几何意义及应用打下必备的基础, 具有承前启后的重要作用。 学生学情分析 学生在高一年级的物理课程中已经学习了瞬时速度,因此,先通过求物体在某一时刻的平均速度的极限去得出瞬时速度, 再由此抽象出函数在某点的平均变化率的极限就是瞬时变化率的的模型, 并将瞬时变化率定义为导数,这是符合学生认知规律的. 而在第一课时平均变化率的学习中,课本给出了一个思考,观察函数 )(x f y 的图像,平均变化x y 表示什么?这个思考为研究导数的几何意义埋下 了伏笔。因此,在将瞬时变化率定义为导数之后, 立即让学生继续探索导数的几何意义,学生会对导数的几何意义有更为深刻的认识。 教学目标 1、知识与技能目标会从数值逼近、几何直观感知,解析式抽象三个角度认识导数的含义,应用导数的定义求简单函数在某点处的导数, 掌握求导数的基本步骤,初步学会求解 简单函数在一点处的切线方程。 2、过程与方法目标 通过动手计算培养学生观察、分析、比较和归纳能力,通过问题的探究体会逼近、类比、以及用已知探求未知、从特殊到一般的数学思想方法。 3、情感态度与价值观

最新2019高考数学《导数及其应用》专题完整题(含答案)

2019年高中数学单元测试卷 导数及其应用 学校:__________ 姓名:__________ 班级:__________ 考号:__________ 一、选择题 1.22 (1cos )x dx π π-+?等于( ) A .π B . 2 C . π-2 D . π+2(2009福建理) 2.若()224ln f x x x x =--,则()'f x >0的解集为( ) A .()0,+∞ B. ()()1,02,-?+∞ C. ()2,+∞ D. ()1,0-(2011江西理4) 3.若[0,)x ∈+∞,则下列不等式恒成立的是 (A)2 1x e x x ++ (211) 1 24x x <-+ (C)21cos 12x x -… (D)21 ln(1)8 x x x +-… 4.如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t 时刻五角星露出水面部分的图形面积为()()() 00S t S =,则导函数()' y S t =的图像大致为 二、填空题 5.已知3 2 ()26(f x x x m m =-+为常数)在[2,2]-上有最大值3,那么此函数在[2,2]-上的最小值为____________ 6.已知f (x )=x 3,g (x )=-x 2+x -29a ,若存在x 0∈[-1,a 3](a >0),使得f (x 0)<g (x 0),则实

数a 的取值范围是 ▲ .(0,-3+21 2) 7. 若函数32()4f x x x ax =+--在区间()1,1-恰有一个极值点,则实数a 的取值范围为 .[1,5) 8.曲线2 y 21x x =-+在点(1,0)处的切线方程为________ 9.已知函数()322f x x ax bx a =+++在1x =处有极值10,则a b += . 10.已知32()33f x x bx cx =++有两个极值点12,x x ,且[][]121,0,1,2x x ∈-∈,则(1)f 的取值范围 . 11.已知函数ln ()x f x x = ,则()f x 的最大值为 12.函数y=x 3+lnx 在x=1处的导数为 . 13.若函数()()02 3 >-=a ax x x f 在区间?? ? ??+∞,320上是单调递增函数,则使方程()1000=x f 有整数解的实数a 的个数是 。 三、解答题 14. 已知函数()2 a f x x x =+,()ln g x x x =+,其中0a >. (1)若1x =是函数()()()h x f x g x =+的极值点,求实数a 的值; (2)若对任意的[]12,1x x e ∈,(e 为自然对数的底数)都有()1f x ≥()2g x 成立,求实数a 的取值范围. .

高考导数大题汇编理科答案

高考导数大题汇编理科 答案 YUKI was compiled on the morning of December 16, 2020

一、解答题 1. 解:(Ⅰ) 函数()f x 的定义域为(0,)+∞,' 112()e ln e e e .x x x x a b b f x a x x x x --=+-+ 由题意可得' (1)2,(1) e.f f ==故1,2a b ==. (Ⅱ)由(Ⅰ)知12e ()e ln ,x x f x x x -=+从而()1f x >等价于2 ln e .e x x x x ->- 设函数()ln g x x x =,则()1ln g x x '=+,所以当1 (0,)e x ∈时,' ()0g x <; 当1(,)e x ∈+∞时,' ()0g x >,故()g x 在1(0,)e 单调递减,在1(,)e +∞单调递增, 从而()g x 在(0,)+∞的最小值为11().e e g =-. 设函数2 ()e e x h x x -=-,则'()e (1)x h x x -=-,所以当(0,1)x ∈时,'()0h x >; 当(1,)x ∈+∞时,' ()0h x <,故()h x 在(0,1)上单调递增,在(1,)+∞上单调递减,从而()h x 在(0,)+∞的最大值为1(1)e h =- . 综上,当0x >时,()()g x h x >,即()1f x >. 2. 解题指南(1)根据导数公式求出函数的导数,利用分类讨论思想求解;(2)根据函数的单调性以及函数极值与导数的关系式确定函数的极值点,代入函数中求解. 解析(1)2/ 2 2 2(2)24(1) ()1(2)(1)(2)a x x ax a f x ax x ax x +-+-=-=++++ (*) 当1a ≥时,/ ()0f x >,此时,()f x 在区间(0,)+∞上单调递增. 当01a <<时,由/ ()0f x = 得1 x = ,(2x =-舍去). 当1(0,)x x ∈时,/()0f x <;当1(,)x x ∈+∞时,/ ()0f x >. 故()f x 在区间1(0,)x 上单调递减,在区间1(,)x +∞上单调递增. 综上所述,当1a ≥时,()f x 在区间(0,)+∞上单调递增. 当01a <<时,()f x 在区间(0, 上单调递减,在区间)+∞上单调递增. 由(*)式知,当1a ≥时,/ ()0f x >,此时()f x 不存在极值点,因而要使得()f x 有两个极值点, 必有01a <<.又()f x 的极值点只可能是1 x = 2x =-,且由定义可知,1 x a >- 且2x ≠- ,所以1a ->- 且2-≠-,解得1 2 a ≠- 此时,由(*)式易知,12,x x 分别是()f x 的极小值和极大值点,而 令2a - 01x <<. 记(g x (Ⅰ)当1 - 因此,g 1()( f x f +(Ⅱ)当0 因此,(g x 1()( f x f + 综上所 3. (1)证明函数. (2)解:由条 令t = 因为 当且 因此 (3)解:令函 当x ≥1时, 因此g (x )在 由于存在x 0故1 e+e 2 --令函数() h x

1.1.3 导数的几何意义优秀教案

1.1.3 导数的几何意义 学习目标 1.理解曲线的切线的含义.2.理解导数的几何意义(重、难点).3.会求曲线在某点处的切线方程(重、难点).4.理解导函数的定义,会用定义法求简单函数的导函数. 知识点1 曲线的切线 如图所示,当点P n 沿着曲线y =f (x )无限趋近于点P 时,割线PP n 趋近于确定的位置,这个确定位置的直线PT 称为点P 处的切线. (1)曲线y =f (x )在某点处的切线与该点的位置有关; (2)曲线的切线,并不一定与曲线只有一个交点,可以有多个,甚至可以有无穷多个. 【预习评价】 有同学认为曲线y =f (x )在点P (x 0,y 0)处的切线l 与曲线y =f (x )只有一个交点,你认为正确吗? 提示 不正确.曲线y =f (x )在点P (x 0,y 0)处的切线l 与曲线y =f (x )的交点个数不一定只有一个,如图所示. 知识点2 导数的几何意义 函数y =f (x )在点x =x 0处的导数f ′(x 0)就是曲线y =f (x )在点(x 0,f (x 0))处切线的斜率k ,即k =0 lim x ?→ f (x 0+Δx )-f (x 0) Δx =f ′(x 0). 【预习评价】 (正确的打√,错误的打×) 1.若曲线y =f (x )在点P (x 0,f (x 0))处的导数不存在,则切线不存在.(×) 提示 切线存在,且切线与x 轴垂直. 2.若f ′(x 0)>0,则切线的倾斜角为锐角;若f ′(x 0)<0,则切线的倾斜角为钝角;若f ′(x 0)=0,则切线与x 轴平行.(√) 知识点3 导函数的概念

导数历届高考试题精选含答案

导数高考试题精选 一.选择题(共16小题) 1.(2013?河东区二模)已知曲线的一条切线的斜率为,则切点的横坐标为() A. 3 B.2 C. 1D. 2.(2012?汕头一模)设曲线y=ax2在点(1,a)处的切线与直线2x﹣y﹣6=0平行,则a=() A.1B.C. D.﹣1 3.(2011?烟台一模)设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=() A. 2B.C.D.﹣2 4.(2010?泸州二模)曲线在点处的切线与坐标轴围成的三角形面积为() A. B. C.D. 5.(2010?辽宁)已知点P在曲线y=上,α为曲线在点P处的切线的倾斜角,则α的取值范围是() A. [0,) B.C. D. 6.(2010?江西模拟)曲线y=x3﹣2x+4在点(1,3)处的切线的倾斜角为() A. 30° B. 45°C.60°D.120°7.(2009?辽宁)曲线y=在点(1,﹣1)处的切线方程为() A. y=x﹣2 B. y=﹣3x+2C. y=2x﹣3 D. y=﹣2x+1 8.(2009?江西)若存在过点(1,0)的直线与曲线y=x3和都相切,则a等于() A. ﹣1或B. ﹣1或 C. 或 D. 或7 9.(2006?四川)曲线y=4x﹣x3在点(﹣1,﹣3)处的切线方程是() A.y=7x+4 B. y=7x+2 C.y=x﹣4 D.y=x﹣2 10.(2012?海口模拟)已知f(x)=alnx+x2(a>0),若对任意两个不等的正实数x1,x2,都有 >2恒成立,则a的取值范围是() A. (0,1]B.(1,+∞) C. (0,1) D.[1,+∞)

导数高考题(含答案)#(精选.)

导数高考题 1.已知函数f(x)=x3+ax+,g(x)=﹣lnx (i)当 a为何值时,x轴为曲线y=f(x)的切线; (ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数. 解:(i)f′(x)=3x2+a,设曲线y=f(x)与x轴相切于点P(x0,0),则f(x0)=0,f′(x0)=0, ∴,解得,a=.因此当a=﹣时,x轴为曲线y=f(x)的切线; (ii)当x∈(1,+∞)时,g(x)=﹣lnx<0,∴函数h(x)=min { f(x),g(x)}≤g(x)<0, 故h(x)在x∈(1,+∞)时无零点.当x=1时,若a≥﹣,则f(1)=a+≥0, ∴h(x)=min { f(1),g(1)}=g(1)=0,故x=1是函数h(x)的一个零点; 若a<﹣,则f(1)=a+<0,∴h(x)=min { f(1),g(1)}=f(1)<0,故x=1不是函数h(x)的零点;当x∈(0,1)时,g(x)=﹣lnx>0,因此只考虑f(x)在(0,1)内的零点个数即可. ①当a≤﹣3或a≥0时,f′(x)=3x2+a在(0,1)内无零点,因此f(x)在区间(0,1)内单调, 而f(0)=,f(1)=a+,∴当a≤﹣3时,函数f(x)在区间(0,1)内有一个零点, 当a≥0时,函数f(x)在区间(0,1)内没有零点. ②当﹣3<a<0时,函数f(x)在内单调递减,在内单调递增,故当x=时,f (x)取得最小值=. 若>0,即,则f(x)在(0,1)内无零点. 若=0,即a=﹣,则f(x)在(0,1)内有唯一零点. 若<0,即,由f(0)=,f(1)=a+, ∴当时,f(x)在(0,1)内有两个零点.当﹣3<a时,f(x)在(0,1)内有一个零点.综上可得:当或a<时,h(x)有一个零点; 当a=或时,h(x)有两个零点; 当时,函数h(x)有三个零点. 2.设函数f(x)=e mx+x2﹣mx. (1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;

导数高考真题1及答案

绝密★启用前 2018年09月03日一中的高中数学组卷 试卷副标题 考试围:xxx;考试时间:100分钟;命题人:xxx 题号一二三总分 得分 注意事项: 1.答题前填写好自己的、班级、考号等信息2.请将答案正确填写在答题卡上 第Ⅰ卷(选择题) 请点击修改第I卷的文字说明 评卷人得分 一.选择题(共9小题) 1.函数f(x)=的图象大致为() A.B. C.D. 2.若函数f(x)=ax2+1图象上点(1,f(1))处的切线平行于直线y=2x+1,则a=() A.﹣1 B.0 C.D.1 .页脚

3.设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为() A.y=﹣2x B.y=﹣x C.y=2x D.y=x 4.若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为() A.﹣1 B.﹣2e﹣3C.5e﹣3D.1 5.在数列{a n }中,a n =(﹣)n,n∈N*,则a n () A.等于B.等于0 C.等于D.不存在 6.已知a为函数f(x)=x3﹣12x的极小值点,则a=() A.﹣4 B.﹣2 C.4 D.2 7.若函数f(x)=x﹣sin2x+asinx在(﹣∞,+∞)单调递增,则a的取值围是() A.[﹣1,1] B.[﹣1,] C.[﹣,] D.[﹣1,﹣] 8.若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是()A.y=sinx B.y=lnx C.y=e x D.y=x3 9.设直线l 1,l 2 分别是函数f(x)=图象上点P 1 ,P 2 处的切 线,l 1与l 2 垂直相交于点P,且l 1 ,l 2 分别与y轴相交于点A,B,则△PAB 的面积的取值围是() A.(0,1)B.(0,2)C.(0,+∞)D.(1,+∞) .页脚

高考数学理科导数大题目专项训练及答案

高一兴趣导数大题目专项训练 班级 姓名 1.已知函数()f x 是定义在[,0)(0,]e e - 上的奇函数,当(0,]x e ∈时,有()ln f x ax x =+(其中e 为自然对数的底,a ∈R ). (Ⅰ)求函数()f x 的解析式; (Ⅱ)试问:是否存在实数0a <,使得当[,0)x e ∈-,()f x 的最小值是3?如果存在,求出实数a 的值;如果不存在,请说明理由; (Ⅲ)设ln ||()||x g x x =([,0)(0,]x e e ∈- ),求证:当1a =-时,1 |()|()2 f x g x >+; 2. 若存在实常数k 和b ,使得函数()f x 和()g x 对其定义域上的任意实数x 分别满足: ()f x kx b ≥+和()g x kx b ≤+,则称直线:l y kx b =+为()f x 和()g x 的“隔离直线”.已知 2()h x x =,()2ln x e x ?=(其中e 为自然对数的底数). (1)求()()()F x h x x ?=-的极值; (2) 函数()h x 和()x ?是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.

3. 设关于x 的方程012 =--mx x 有两个实根α、β,且βα<。定义函数.1 2)(2+-= x m x x f (I )求)(ααf 的值;(II )判断),()(βα在区间x f 上单调性,并加以证明; (III )若μλ,为正实数,①试比较)(),( ),(βμ λμβ λααf f f ++的大小; ②证明.|||)()(|βαμ λλβ μαμλμβλα-<++-++f f 4. 若函数22()()()x f x x ax b e x R -=++∈在1x =处取得极值. (I )求a 与b 的关系式(用a 表示b ),并求()f x 的单调区间; (II )是否存在实数m ,使得对任意(0,1)a ∈及12,[0,2]x x ∈总有12|()()|f x f x -< 21[(2)]1m a m e -+++恒成立,若存在,求出m 的范围;若不存在,请说明理由. 5.若函数()()2 ln ,f x x g x x x ==- (1)求函数()()()()x g x kf x k R ?=+∈的单调区间; (2)若对所有的[),x e ∈+∞都有()xf x ax a ≥-成立,求实数a 的取值范围.

导数历年高考真题精选及答案

导数历年高考真题精选及答案 一.选择题 1. (2011年高考山东卷文科4)曲线2 11y x =+在点P(1,12)处的切线与y 轴交点的纵坐标是 (A)-9 (B)-3 (C)9 (D)15 2.(2011年高考山东卷文科10)函数2sin 2 x y x = -的图象大致是 3.(2011年高考江西卷文科4)曲线x y e =在点A (0,1)处的切线斜率为( ) A.1 B.2 C.e D. 1e 4.2011年高考浙江卷文科10)设函数()()2 ,,f x ax bx c a b c R =++∈,若1x =-为函数 ()x f x e 的一个极值点,则下列图象不可能为()y f x =的图象是 5.(2011年高考湖南卷文科7)曲线sin 1 sin cos 2 x y x x =-+在点(,0)4M π处的切线的斜率为 ( ) A .1 2 - B .12 C .22- D . 22 6.【2012高考重庆文8】设函数()f x 在R 上可导,其导函数()f x ',且函数()f x 在2 x =-

处取得极小值,则函数()y xf x '=的图象可能是 7.【2012高考浙江文10】设a >0,b >0,e 是自然对数的底数 A. 若e a +2a=e b +3b ,则a >b B. 若e a +2a=e b +3b ,则a <b C. 若e a - 2a=e b -3b ,则a >b D. 若e a -2a=e b -3b ,则a <b 8.【2012高考陕西文9】设函数f (x )= 2 x +lnx 则 ( ) A .x=12为f(x)的极大值点 B .x=1 2 为f(x)的极小值点 C .x=2为 f(x)的极大值点 D .x=2为 f(x)的极小值点 9.【2012高考辽宁文8】函数y= 12 x 2 -㏑x 的单调递减区间为 (A )(-1,1] (B )(0,1] (C.)[1,+∞) (D )(0,+∞) 10.【2102高考福建文12】已知f (x )=x 3-6x 2+9x-abc ,a <b <c ,且f (a )=f (b )=f (c )=0.现给出如下结论: ①f (0)f (1)>0;②f (0)f (1)<0;③f (0)f (3)>0;④f (0)f (3)<0. 其中正确结论的序号是 A.①③ B.①④ C.②③ D.②④ 11.2012高考辽宁文12】已知P,Q 为抛物线x 2 =2y 上两点,点P,Q 的横坐标分别为4,-2, 过P,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为 (A) 1 (B) 3 (C) -4 (D) -8 12..(2009年广东卷文)函数x e x x f )3()(-=的单调递增区间是 ( ) A. )2,(-∞ B.(0,3) C.(1,4) D. ),2(+∞ 13.(2009江西卷文)若存在过点(1,0)的直线与曲线3 y x =和215 94 y ax x =+-都相切,则a 等于

导数的几何意义

导数的几何意义 [提出问题如图,P n 的坐标为(x n ,f (x n ))(n =1,2,3,4,…),P 的坐标为(x 0, y 0),直线PT 为在点P 处的切线. 问题1:割线PP n 的斜率k n 是什么? 提示:割线PP n 的斜率k n =Δy n Δx n =f x n -f x 0 x n -x 0 . 问题2:当点P n 趋近于点P 时,割线PP n 与在点P 处的切线PT 有什么关系? 提示:当点P n 趋近于点P 时,割线PP n 趋近于在点P 处的切线PT . 问题3:当P n 无限趋近于点P 时,k n 与切线PT 的斜率k 有什么关系? 提示:k n 无限趋近于切线PT 的斜率k . 问题4:如何求得过点P 的切线PT 的斜率? 提示:函数f (x )在x =x 0处的导数就是切线PT 的斜率k ,即k = lim Δx →0 f x 0+Δx -f x 0 Δx =f ′(x 0).

[导入新知] 导数的几何意义 函数f(x)在x=x0处的导数就是切线PT的斜率k,即k=f′(x0) =lim Δx→0f x0+Δx -f x0 Δx . [化解疑难] 曲线y=f(x)在点P处的切线的斜率,即函数y=f(x)在点P处的导数,反映了曲线在点P处的变化率. [提出问题] 已知函数f(x)=-x2+2. 问题1:如何求f′(x0)? 提示:f′(x0)=lim Δx→0- x0+Δx 2+2- -x20+2 Δx =lim Δx→0 (-2x0-Δx)=-2x0. 问题2:若x0是一变量x,f′(x)是常量吗? 提示:f′(x)=-2x,说明f′(x)不是常量,而是关于x的函数. [导入新知] 导函数的定义 对于函数y=f(x),当x=x0时,f′(x0) 是一个确定的数,当x 变化时,f′(x) 便是一个关于x的函数,我们称它为函数y=f(x)的导函数(简称为导数),即f′(x)=y′=

相关文档
最新文档