信号与系统实验指导书剖析

信号与系统实验指导书剖析
信号与系统实验指导书剖析

信号与系统实验指导书

电子信息工程系

2010年9月

信号与系统综合实验指导书

目录

信号与系统实验箱简介 (2)

实验一信号源实验 (5)

实验二周期矩形脉冲信号的分解 (7)

实验三周期矩形脉冲信号的合成 (12)

实验四相位对波形合成的影响 (15)

实验五抽样定理与信号恢复 (17)

1

信号与系统综合实验指导书

2 信号与系统实验箱简介

一、信号与系统模块组成介绍

实验箱自带实验所需的电源、信号发生器、扫频信号源、数字交流毫伏表、数字频率计,其中数字交流毫伏表和数字频率计均采用自行设计电路,而不是像传统实验箱那样采用通用的表头,让仪表部分充分与本实验系统相配合。

实验箱采用了DSP 数字信号处理新技术,将模拟电路难以实现或实验结果不理想的“信号分解与合成”、“信号卷积”等实验得以准确地演示,并能生动地验证理论结果;可系统地了解并比较无源、有源、数字滤波器的性能及特性,学会数字滤波器的设计与实现。

该实验系统由以下模块组成:

1、 电源输入模块

2、信号源模块

3、毫伏表

4、频率计

5、主机接口与二次开发区

6、CPLD 可编程和数字信号处理器模块

7、 一阶电路暂态响应模块8、二阶电路传输特性模块9、二阶网络状态轨迹模块

信号与系统综合实验指导书

10、阶跃响应与冲激响应模块11、抽样定理模块12、模拟滤波器模块13、基本运算单元与连续系统的模拟模块14、信号分解与合成和信号卷积实验模块15、无失真传输模块16、二阶网络的系统模拟模块17、系统相平面分析模块(选配)18、极点对频响特性的影响模块(选配)19、频分复用模块(选配)

二、相关实验模块介绍

1、电源输入模块

此模块位于实验平台的右上角部分,分别提供 +12v、+5v、-12 v、-5 v的电源输出。4组电源对应4个发光二极管,电源输出正常时对应的发光二极管则亮。

2、信号源模块(见实验一)

3、毫伏表

毫伏表可测量交直流信号的峰峰值,测量幅度范围为0-20V。

S201:选择测量交流信号或直流信号。

S202:选择被测量的对象是信号源单元的正弦波、方波或外部输入信号。

P200:外部信号输入端口。

S201与S202组合起来有以下功能:

4、频率表

S101:拨“外部”测量P100输入信号的频率。

拨“信号源”显示信号源输出信号的频率。

3

信号与系统综合实验指导书

P100:外部信号输入端口。且在S101拨为“外部”时有效。

5、主机接口与二次开发区

此模块由PC机接口、AT89C52单片机(U605)等组成。DSP中运行的程序可以来自固化在EPROM(U607)中的例题程序,也可以通过PC机接口下载用户自己开发的程序。EPROM中的例题程序可由SW601来选择:

注:开关置ON为“1”,否则为“0”

S601:复位键开关,SW601改变后必需复位一次。

6、信号分解与合成模块

S401、 S402、 S403、 S404、 S405 、S406、 S407 、S408为各次谐波的叠加开关,当所有的开关都闭合时合成波形从TP408输出。TP408也是每次叠加波形的输出口。TP401~TP408为各谐波的分路输出。

4

信号与系统综合实验指导书

实验一信号源实验

一、简单介绍

信号源模块能提供的波形种类有:正弦波、三角波、方波。

信号的频率范围:1Hz—1MHz。

可通过旋钮分别调节信号的频率、幅度、占空比。

有两个测量点:TP301:正弦波、三角波信号输出波形

TP303:方波信号输出波形。

信号插孔: P301:正弦波、三角波信号输出插孔。

P303:方波信号输出插孔。

可调旋钮及按键:

W301:正弦波、三角波及方波信号幅度调节旋钮

W302:方波信号占空比调节旋钮

S301:正弦波、三角波波形选择按钮

S302:扫频范围调节按钮; S303:扫频时间调节按钮

频率:轻按可选择信号源频率步进。顺时针旋转增大频率,逆时针旋转减小频率。频率旋钮下有三个指示灯指示频率步进:

扫频开关:扫频功能选择开关,当开关置于ON时,启动扫频功能;当开关置于OFF 时,扫频功能关闭。

5

信号与系统综合实验指导书

二、实验内容:

1、实验箱加电(箱子右侧外壳上),按下波形选择按钮S301,输出正弦波时,对应指

示灯“SIN”亮;输出三角波时,对应指示灯“TRI”亮;

2、在TP301上接示波器观察产生的正弦波及三角波信号:

调节W301信号幅度调节旋钮,可在示波器上观察到信号幅度的变化,分别记录正弦波及三角波信号幅度的可调范围;

调节频率调节旋钮,可在示波器上观察到信号频率的变化,按下频率调节旋钮,可以进行频率步进选择(见上页表),改变频率的调节范围(10-999990 HZ),分别观察正弦波及三角波信号的波形;

3、在TP303上接示波器观察产生的方波信号:

调节W302方波信号占空比调节旋钮,可在示波器上观察到信号占空比的变化;

调节W303方波信号幅度调节旋钮,可在示波器上观察到信号幅度的变化,记录方波信号幅度的可调范围;

调节频率调节旋钮,可在示波器上观察到方波信号频率的变化,按下频率调节旋钮,可以进行频率步进选择,可改变频率的调节范围(10-10000HZ),观察方波信号的波形;

4、在TP301上接示波器观察扫频信号(以正弦信号为例) :

扫频开关S300置于ON,扫频范围按钮S302对应左侧指示灯亮,表示设置扫频下限(可设500HZ);按下S302,对应右侧指示灯亮,即可设置扫频上限(可设2000HZ)。

再次按下S302,两灯同亮,开始扫频。通过S303控制扫频时间。

注意:频率表左下方s101拨到“信号源”位置。

6

信号与系统综合实验指导书

7 实验二 周期矩形脉冲信号的分解

一、实验目的

1、分析典型的周期矩形脉冲信号,了解周期矩形脉冲信号谐波分量的构成。

2、观察周期矩形脉冲信号通过多个数字滤波器后,分解出各谐波分量的情况。

二、实验仪器

信号与系统实验箱 1台 双踪示波器

1台

三、实验原理

(一)信号的频谱与测量

信号的时域特性和频域特性是对信号的两种不同的描述方式。对于一个周期为T 的时域周期信号)t (f ,可以用三角形式的傅里叶级数求出它的各次分量,在区间)T t ,t (11+内表示为 )sin cos ()(t n b t n a

a t f n n n

Ω+Ω+

=∑∞

=1

即将信号分解成直流分量及许多余弦分量和正弦分量,研究其频谱分布情况。

A

A

(c)

图2-1 信号的时域特性和频域特性

信号的时域特性与频域特性之间有着密切的内在联系,这种联系可以用图2-1来形象地表示。其中图(a)是信号在幅度-时间-频率三维座标系统中的图形;图(b)是信号在幅度-时间坐标系统中的图形即波形图;把周期信号分解得到的各次谐波分量按频率的高低排列,就可以得到频谱图。反映各频率分量幅度的频谱称为振幅频谱。图(c)是信号在幅度

信号与系统综合实验指导书

8 -频率座标系统中的图形即振幅频谱图。反映各分量相位的频谱称为相位频谱。在本实验中只研究信号振幅频谱。周期信号的振幅频谱有三个性质:离散性、谐波性、收敛性。测量时利用了这些性质。从振幅频谱图上,可以直观地看出各频率分量所占的比重。测量方法有同时分析法和顺序分析法。

同时分析法的基本工作原理是利用多个滤波器,把它们的中心频率分别调到被测信号的各个频率分量上。当被测信号同时加到所有滤波器上,中心频率与信号所包含的某次谐波分量频率一致的滤波器便有输出。在被测信号发生的实际时间内可以同时测得信号所包含的各频率分量。在本实验中采用同时分析法进行频谱分析,如图2-2所示。

图2-2 用同时分析法进行频谱分析

(二) 矩形脉冲信号的频谱

一个幅度为E ,脉冲宽度为τ,重复周期为T 的矩形脉冲信号,如图2-3所示。

信号合成

信号与系统综合实验指导书

9 图2-3 周期性矩形脉冲信号

其傅里叶级数为:

该信号第n 次谐波的振幅为:

由上式可见第n 次谐波的振幅与E 、T 、τ有关。

(三) 信号的分解提取

进行信号分解和提取是滤波系统的一项基本任务。当我们仅对信号的某些分量感兴趣时,可以利用选频滤波器,提取其中有用的部分,而将其它部分滤去。

目前DSP 数字信号处理系统构成的数字滤波器已基本取代了传统的模拟滤波器,数字滤波器与模拟滤波器相比具有许多优点。用DSP 构成的数字滤波器具有灵活性高、精度高和稳定性高,体积小、性能高,便于实现等优点。因此在这里我们选用了数字滤波器来实现信号的分解。

在数字滤波器模块上,选用了有8路输出的D/A 转换器TLV5608(U402),因此设计了8个滤波器(一个低通、六个带通、一个高通)将复杂信号分解提取某几次谐波。

分解输出的8路信号可以用示波器观察,测量点分别是TP401、TP402、TP403、TP404、 TP405、TP406、TP407 、TP408。

S401、 S402、 S403、 S404、 S405 、S406、 S407 、S408为各次谐波的叠加开关,当所有的开关都闭合时合成波形从TP408输出。TP408也是每次叠加波形的输出口。

注意:开关S408—S401依次为一次到八次以上谐波控制开关,

四、实验内容

此实验中,首先应把“主机接口与二次开发区”模块中的拨动开关SW601调整为“0100

T

t n n Sa T E T E t f n

i cos )2

(

2)(1

ωτ

Ωττ∑=+

=)2

(2τ

Ωτn Sa T E A n =

信号与系统综合实验指导书

10 状态,并按下复位键开关S601。

1、连接信号源‘P303’端与“主机接口与二次开发区”模块上的P401。

2、调节信号源上相应的旋钮,使TP409处的信号是频率约为500Hz 的方波(占空比调为50%),幅度调至 V V P P 2=-,即E=2 V 。

3、关闭开关S401—S408,即拨至“OFF ”。

4、用示波器分别观察并记录测试点“TP401~TP407”输出的一次谐波至七次谐波的波并观察TP408处输出的八次以上谐波的波形。

根据表2-1、表2-2、表2-3改变输入信号参数进行实验,并记录实验结果。 (一)占空比

21=T

τ

:τ的数值按要求调整,测得的信号频谱中各分量的大小,其

数据按表的要求记录。

表2-1

21=

τ

的矩形脉冲信号的频谱 (二) 占空比

31=T

:矩形脉冲信号的频率f 不变,脉冲幅度E =2v ,τ的数值按要求调

整,测得的信号频谱中各分量的大小,其数据按表的要求记录。

表2-2

31

的矩形脉冲信号的频谱

信号与系统综合实验指导书

11 (三)占空比

41=T

τ

:矩形脉冲信号的脉冲幅度E =2v ,频率f 不变,τ的数值按要求

调整,测得的信号频谱中各分量的大小,其数据按表的要求记录。

表2-3

的矩形脉冲信号的频谱 五、实验报告要求

1、 按要求记录各实验数据,填写表2-1、表2-2和表2-3。 2、 画出三种被测信号的单边幅度谱。 3、 与理论分析进行比较,并分析误差;

41=τ

信号与系统综合实验指导书

实验三周期矩形脉冲信号的合成

一、实验目的

1、进一步了解波形分解与合成原理

2、进一步掌握用傅里叶级数进行谐波分析的方法

3、观察矩形脉冲信号分解出的各谐波分量可以通过叠加合成出原矩形脉冲信号。

二、实验仪器

信号与系统实验箱1台

双踪示波器1台

三、实验原理

实验原理部分参考实验二中,矩形脉冲信号的分解。

矩形脉冲信号通过8路滤波器输出的各次谐波分量,DSP把每次谐波的值相加从TP408输出,哪一次或几次谐波叠加是通过开关S401-S408的状态决定(闭合为加)。则分解前的原始信号(观测TP409)和合成后的信号应该相同。

电路中用8个开关分别控制各路滤波器输出的谐波是否参加信号合成,把开关S408闭合,则基波参于信号的合成。把开关S407闭合,则二次谐波参于信号的合成,依此类推,若8个开关都闭合,则各次谐波全部参于信号合成。另外可以选择多种组合进行波形合成,例如可选择基波和三次谐波的合成、可选择基波、三次谐波和五次谐波的合成,等等。四、实验内容

此实验中,首先应把“主机接口与二次开发区”模块上的拨动开关SW601调整为“0101”状态,按下复位键开关S601。

1、连接信号源‘P303’端与“主机接口与二次开发区”模块上的P401。

2、调节信号源上相应的旋钮,使TP409处的信号是频率约为500Hz的方波(占空比调为50%),幅度调至2v。

3、用示波器观察测试点“TP401~TP408”处各次谐波以及高次谐波的波形(应与实验二中信号分解的各次波形相同)。

4、示波器接TP408,把开关S401~S407拨至“OFF”, S408拨至“ON”,观察并记录基

12

信号与线性系统实验二

实验二、信号与系统时域分析的MATLAB 实现 一、实验目的 掌握利用Matlab 求解LTI 系统的冲激响应、阶跃响应和零状态响应,理解卷积概念。 二、实验内容 1、 卷积运算的MA TLAB 实现: (1) 计算连续信号卷积用MATLAB 中的函数conv ,可编写连续时间信号卷积通用函 数sconv , function [f,n]=sconv(f1,f2,n1,n2,p) f=conv(f1,f2);f=f*p; n3=n1(1)+n2(1); n4=n1(end)+n2(end); n=n3:p:n4; 例2.1 )()()(21t f t f t f *= p=0.01; n1=-1:p:1; f1=ones(1,length(n1)); n2=0:p:1; f2=2*n2; [f,n]=sconv(f1,f2,n1,n2,p); subplot(3,1,1),plot(n1,f1), axis([-1.5,1.5,0,2]),grid on subplot(3,1,2),plot(n2,f2), axis([-0.1,1.2,0,3]),grid on subplot(3,1,3),plot(n,f),axis([-1.5,5,0,2]),grid on 利用此例验证两个相同的门函数相卷积其结果为一个等腰三角形,两个不同的门函数相卷积

其结果为一个等腰梯形: <1>相同: p=0.01; n1=-1:p:1; f1=ones(1,length(n1)); n2=-1:p:1; f2=ones(1,length(n2)); [f,n]=sconv(f1,f2,n1,n2,p); subplot(3,1,1),plot(n1,f1), axis([-1.5,1.5,0,2]),grid on subplot(3,1,2),plot(n2,f2), axis([-0.1,1.2,0,3]),grid on subplot(3,1,3),plot(n,f),axis([-5,5,0,2]),grid on <2>、不同: p=0.01; n1=-1:p:1; f1=ones(1,length(n1)); n2=-3:p:1; f2=ones(1,length(n2)); [f,n]=sconv(f1,f2,n1,n2,p); subplot(3,1,1),plot(n1,f1), axis([-1.5,1.5,0,2]),grid on subplot(3,1,2),plot(n2,f2), axis([-4,1.2,0,3]),grid on subplot(3,1,3),plot(n,f),axis([-5,5,0,5]),grid on

信号与系统基础知识

第1章 信号与系统的基本概念 1.1 引言 系统是一个广泛使用的概念,指由多个元件组成的相互作用、相互依存的整体。我们学习过“电路分析原理”的课程,电路是典型的系统,由电阻、电容、电感和电源等元件组成。我们还熟悉汽车在路面运动的过程,汽车、路面、空气组成一个力学系统。更为复杂一些的系统如电力系统,它包括若干发电厂、变电站、输电网和电力用户等,大的电网可以跨越数千公里。 我们在观察、分析和描述一个系统时,总要借助于对系统中一些元件状态的观测和分析。例如,在分析一个电路时,会计算或测量电路中一些位置的电压和电流随时间的变化;在分析一个汽车的运动时,会计算或观测驱动力、阻力、位置、速度和加速度等状态变量随时间的变化。系统状态变量随时间变化的关系称为信号,包含了系统变化的信息。 很多实际系统的状态变量是非电的,我们经常使用各种各样的传感器,把非电的状态变量转换为电的变量,得到便于测量的电信号。 隐去不同信号所代表的具体物理意义,信号就可以抽象为函数,即变量随时间变化的关系。信号用函数表示,可以是数学表达式,或是波形,或是数据列表。在本课程中,信号和函数的表述经常不加区分。 信号和系统分析的最基本的任务是获得信号的特点和系统的特性。系统的分析和描述借助于建立系统输入信号和输出信号之间关系,因此信号分析和系统分析是密切相关的。 系统的特性千变万化,其中最重要的区别是线性和非线性、时不变和时变。这些区别导致分析方法的重要差别。本课程的内容限于线性时不变系统。 我们最熟悉的信号和系统分析方法是时域分析,即分析信号随时间变化的波形。例如,对于一个电压测量系统,要判断测量的准确度,可以直接分析比较被测的电压波形)(in t v (测量系统输入信号)和测量得到的波形)(out t v (测量系统输出信号),观察它们之间的相似程度。为了充分地和规范地描述测量系统的特性,经常给系统输入一个阶跃电压信号,得到系统的阶跃响应,图1-1是典型的波形,通过阶跃响应的电压上升时间(电压从10%上升至90%的时间)和过冲(百分比)等特征量,表述测量系统的特性,上升时间和过冲越小,系统特性越好。其中电压上升时间反映了系统的响应速度,小的上升时间对应快的响应速度。如果被测电压快速变化,而测量系统的响应特性相对较慢,则必然产生较大的测量误差。 信号与系统分析的另一种方法是频域分析。信号频域分析的基本原理是把信号分解为不同频率三角信号的叠加,观察信号所包含的各频率分量的幅值和相位,得到信号的频谱特性。图1-2是从时域和频域观察一个周期矩形波信号的示意图,由此可以看到信号频域和时域的关系。系统的频域分析是观察系统对不同频率激励信号的响应,得到系统的频率响应特性。频域分析的重要优点包括:(1)对信号变化的快慢和系统的响应速度给出定量的描述。例如,当我们要用一个示波器观察一个信号时,需要了解信号的频谱特性和示波器的模拟带宽,当示波器的模拟带宽能够覆盖被测信号的频率范围时,可以保证测量的准确。(2)

信号与系统实验

《信号与系统及MATLAB实现》实验指导书

前言 长期以来,《信号与系统》课程一直采用单一理论教学方式,同学们依靠做习题来巩固和理解教学内容,虽然手工演算训练了计算能力和思维方法,但是由于本课程数学公式推导较多,概念抽象,常需画各种波形,作题时难免花费很多时间,现在,我们给同学们介绍一种国际上公认的优秀科技应用软件MA TLAB,借助它我们可以在电脑上轻松地完成许多习题的演算和波形的绘制。 MA TLAB的功能非常强大,我们此处仅用到它的一部分,在后续课程中我们还会用到它,在未来地科学研究和工程设计中有可能继续用它,所以有兴趣的同学,可以对MA TLAB 再多了解一些。 MA TLAB究竟有那些特点呢? 1.高效的数值计算和符号计算功能,使我们从繁杂的数学运算分析中解脱出来; 2.完备的图形处理功能,实现计算结果和编程的可视化; 3.友好的用户界面及接近数学表达式的自然化语言,易于学习和掌握; 4.功能丰富的应用工具箱,为我们提供了大量方便实用的处理工具; MA TLAB的这些特点,深受大家欢迎,由于个人电脑地普及,目前许多学校已将它做为本科生必须掌握的一种软件。正是基于这些背景,我们编写了这本《信号与系统及MA TLAB实现》指导书,内容包括信号的MA TLAB表示、基本运算、系统的时域分析、频域分析、S域分析、状态变量分析等。通过这些练习,同学们在学习《信号与系统》的同时,掌握MA TLAB的基本应用,学会应用MA TLAB的数值计算和符号计算功能,摆脱烦琐的数学运算,从而更注重于信号与系统的基本分析方法和应用的理解与思考,将课程的重点、难点及部分习题用MA TLAB进行形象、直观的可视化计算机模拟与仿真实现,加深对信号与系统的基本原理、方法及应用的理解,为学习后续课程打好基础。另外同学们在进行实验时,最好事先预习一些MA TLAB的有关知识,以便更好地完成实验,同时实验中也可利用MA TLAB的help命令了解具体语句以及指令的使用方法。

实验 涡流探伤实验指导书

实验涡流探伤实验(烟台大学王海波) 一、实验目的 1.了解涡流探伤的基本原理; 2.掌握涡流探伤的一般方法和检测步骤; 3.熟悉涡流探伤的特点。 二、实验原理 1. EEC-35/RFT涡流检测仪简介 EEC-35/RFT智能全数字式多频远场涡流检测仪是新一代涡流无损检测设备,它采用了最先进的数字电子技术、远场涡流技术及微处理机技术,能实时有效地检测铁磁性和非铁磁性金属管道的内、外壁缺陷。EEC-35/ RFT 既是一套完整的远场涡流检测系统,也可与常规的多频、多通道的普通涡流检测系统融为一体成为高性能、多用途、智能化的涡流检测新型设备。 EEC-35/RFT由于具备了四个相对独立的测试通道,可同时获得二个绝对、二个差动的涡流信号。仪器可通过软开关切换成两台二频二通道的涡流检测仪,同时连接两只探头进检测。具有5Hz 至5MHz 的可变频率范围,因此 EEC-35/RFT 特别适用于核能、电力、石化、航天、航空等部门在役铜、钛、铝、锆等各种管道、金属零部件的探伤和壁厚测量以及各种铁磁性管道的探伤、分析和评价。例如:锅炉管、热交换器管束、地下管线和铸铁管道等的役前和在役检测。EEC-35/RFT 具有可选的多个检测程序,同屏多窗口显示模式,同屏显示多个涡流信号的相位、幅度变化及其波形的情况。多个相对独立的检测通道,有多达三个混频单元,能抑制在役检测中由支撑板、凹痕、沉积物及管子冷加工产生的干扰信号,去伪存真,提高对涡流检测信号的评价精度。且由于采用了全数字化设计,能够在仪器内建立标准检测程序,方便用户现场检测时调用。 此外,仪器还具有组态分析功能,能够用于金属表面硬度、硬化深度层深等的检测及材料分选。 2.涡流检测原理 涡流检测是以电磁感应为基础的,它的基本原理可以描述为:当载有交变电

信号与线性系统分析实验报告~~

信号与线性系统分析 实验报告 学院:xxxxxxxxxxxxxxx 班级: xxxxxxxxxxxxxx 学号: xxxxxxxxxxxx 姓名: xxxxxxxx 2011-12-13

实验一1. 产生-100); 调用阶跃函数代码:

f=heaviside(t); plot(t,f) axis([-1,3,-0.2,1.2]) 阶跃波形图: 3.画出f=exp(-2*t) .*heaviside(t). 代码: f=exp(-2*t) .*heaviside(t); plot(t,f) axis([-1,5,-0.1,0.4]) 波形图:

3. 正弦函数程序函数单数代码:t=-pi:pi/40:pi; f=sin(2*pi*50*t); plot(t,f) axis([-3,3,-1.5,1.5]) 波形图:

实验二 连续信号的时域描述与运算 一.信号的平移和反转 1.将函数u(t)=heaviside(t); 代码: function f=u(t); f=heaviside(t); 2.画出f(t)=t*[u(t)-u(t-1)] 代码: f=t.*[u(t)-u(t-1)]; plot(t,f) axis([-3,3,-0.1,1.2])

波形图: 定义initialsignal(t)= t*[u(t)-u(t-1)]; 代码: function f=initialsignal(t); f=t.*[u(t)-u(t-1)]; 波形的平移和反转过程: 代码: t=-2:0.01:2; f=initialsignal(t); subplot(231) plot(t,f) f1=initialsignal(t+1);

《信号与系统分析基础》第3章习题解答

第三章习题解答 3.2 求下列方波形的傅里叶变换。 (a) 解: 110 2 ()()11()2 t j t t j t t j t t j t j a F j f t e dt e e dt j e t tS e j ωωωωωωω ωω-----=-=?= -==?? (b) 解: 20 00 2 2 ()1 1 1()[]1 (1) 1 (1) t j t t j t t t j t j t t t j t j t j t j t j t j t t F e dt e e dt tde j j j te e dt j e e e j e ωωωωωωωωωωωτ ω τωτω ω τω ωττω----------=-=?= =??-=-=+-= +-???? (c) 解: 1 31 1 2 2 11()()2 211 1 ()()22 1 1 ()cos 2 1 ()2 1()211 12() 2() 2 2 j t j t j t j t j t j t j t j t F t e dt e e e dt e e dt e e j j ωπ π ωππ ωωπ π ωωπ ωππ ωω-------+---+--=?=+?=+=- -+?? ? ()()()()22221 111 [][]2222 j j j j e e e e j j ππππ ωωωωππωω----++=?--?--+

2222sin()sin()cos ()cos () cos 2222()()2222 ππππ ωωωωωωπωππππωωωω-+?++?-?=+== -+-- (d)解: 242 22()()22 22()()2 2 ()()()()2 2 2 2 ()sin 1()21()2112()2() sin[(22() 2() T j t T T j t j t j t T T j t j t T T T j t j t T T T T T T j j j j F t e dt e e e dt j e e dt j e e T e e e e j j j j ωωωωωωωωωωωωωωω--Ω-Ω--Ω--Ω+-Ω--Ω+--Ω--Ω-Ω+-Ω+=Ω?=-= --=-Ω-Ω+Ω---= + =?Ω-?Ω+???)]sin[()] 2()() T j j ωωωωΩ++Ω-Ω+ 3.3依据上题中a,b 的结果,利用傅里叶变换的性质,求题图3.3所示各信号的傅里叶变换. (a) 解:11111()()()f t f t f t =-- 11()f t 就是3.2中(a)的1()f t 如果1()()f t F ω?,则1()()f t F ω-?- 11111111122 2 ()()()()()sin()42 ( )[]sin( )sin ()2 2 2 2 j j a f t f t f t F F t S e e j j τ τ ω ω ωωωτ ωτ τωτ ωττωτ ω-∴=--?--=??-= ? = (b) 解:2()()()f t g t g t στ=+,而()( )2 a g t S τωτ τ? 2()(3)2()a a F S S ωσωω∴=+ 如利用3.2中(a)的结论来解,有: 211'()(3)(1)f t f t f t ττ=+++,其中,'2τστ==. 3211'()()()(3)2()j j a a F e F e F S S ωωττωωωσωω∴=?+?=+ (如()()f t F ω?,则0 0()()j t f t t e F ωω±?) 2()f t

信号与系统分析实验报告连续系统的时域分析

北京联合大学 实验报告 课程(项目)名称: 信号与系统分析 学 院: 自动化学院 专 业: 信息处理与智能技术 班 级: 0910030204 学 号:2009100302440 姓 名: 韩禹辉 成 绩: 2011年 5 月 21 日 实验二 连续系统的时域分析 冲激响应与阶跃响应实验 一、实验目的 1.观察典型二阶电路的阶跃响应与冲激响应的波形和相关参数,并研究参数变化对响应状态的影响. 2.掌握系统阶跃响应与冲激响应的观测方法. 3.理解系统阶跃响应与冲激响应的关系. 二、实验设备 PC 机一台,TD-SAS 系列教学实验系统一套. 三、实验原理 本实验是观察典型的二阶系统的阶跃响应和冲激响应的三种不同状态.二阶系统的微分方程通式为: 2()2()()()n n y t ay t y t f t ωω'''++= 其特征根为: 1,2a λ=-对于不同的a 和n ω值,特征根四种不同的情况,如表2-1-1所示,分别对应两个不等实根、两个相等实根、共轭复根和共轭虚根.相应的冲激响应和阶跃响应波形如图2-1-1所示. 表2-1-1 二阶系统的冲激响应和阶跃响应

图2-1-1二阶系统的冲激响应和阶跃响应 本实验电路采用由运放组成的典型二阶电路,如图2-1-2所示,它与RLC 串联电路构成二阶系统完成如图2-1-3所示的功能.实验中通过调节器Rp 便可以使系统处于不同的状态. 图2-1-2 由运放构成的二阶电路 图2-1-3 RLC 二阶电路 通过电路图可以得到该系统的微分方程为: 从公式可以得到:

由上式得到系统响应的三种状态: (1)当n a ω>时,即Rp>4K Ω时,系统有两个不等实根,处于过阻尼状态; (2)当n a ω=时,即Rp=4K Ω时,系统有两个相等实根处于临界阻尼状态; (3)当n a ω<时,即Rp<4K Ω时,系统有一对共轭复根,处于欠阻尼状态. 四、实验步骤 本实验在阶跃与冲激响应单元完成. 1.阶跃响应观察 (1)使信号发生器输出幅值2V 、频率为1Hz 、占空比为50%的脉冲信号,其中每个高电平作为一次阶跃输入.将脉冲信号接入IN 端. (2)用示波器同时测量IN 和OUT 两端,记录当电位器Rp 值分别为1.5K 、4K 和8K 时OUT 端的波形. 使用万用表测量电位器阻值时,先关闭实验箱电源开关,将短路块N 断开,这样电位器就从电路中断开,并且测量时应当注意表笔的正负端应和测量点的正负端一致.然后再打开实验箱电源开关,测量完后将短路块闭合,使电位器重新接入电路. (3)分别保存Rp 值在上述取值时的阶跃响应波形,并加以比较看是否满足图2-1-1(b )所述.

电子技术实验指导书

实验一常用电子仪器的使用方法 一、实验目的 了解示波器、音频信号发生器、交流数字毫伏表、直流稳压电源、数字万用电表的使用方法。二实验学时 2 学时 三、实验仪器及实验设备 1、GOS-620 系列示波器 2、YDS996A函数信号发生器 3、数字交流毫伏表 4、直流稳压电源 5、数字万用电表 四、实验仪器简介 1、示波器 阴极射线示波器(简称示波器)是利用阴极射线示波管将电信号转换成肉眼能直接观察的随时间变化的图像的电子仪器。示波器通常由垂直系统、水平系统和示波管电路等部分组成。垂直系统将被测信号放大后送到示波管的垂直偏转板,使光点在垂直方向上随被测信号的幅度变化而移动;水平系统用作产生时基信号的锯齿波,经水平放大器放大后送至示波管水平偏转板,使光点沿水平方向匀速移动。这样就能在示波管上显示被测信号的波形。 2、YDS996A函数信号发生器通常也叫信号发生器。它通常是指频率从0.6Hz至1MHz的正弦波、方波、三角波、脉冲波、锯齿波,具有直流电平调节、占空比调节,其频率可以数字直接显示。适用于音频、机械、化工、电工、电子、医学、土木建筑等各个领域的科研单位、工厂、学校、实验室等。 3、交流数字毫伏表 该表适用于测量正弦波电压的有效值。它的电路结构一般包括放大器、衰减器(分压器)、检波器、指示器(表头)及电源等几个部分。该表的优点是输入阻抗高、量程广、频率范围宽、过载能力强等。该表可用来对无线电接收机、放大器和其它电子设备的电路进行测量。 4、直流稳压电源: 它是一种通用电源设备。它为各种电子设备提供所需要的稳定的直流电压或电流当电网电压、负载、环境等在一定范围内变化时,稳压电源输出的电压或电流维持相对稳定。这样可以使电子设备或电路的性能稳定不变。直流电源通常由变压、整流、滤波、调整控制四部分组成。有些电源还具有过压、过流等保护电路,以防止工作失常时损坏器件。 6、计频器 GFC-8010H是一台高输入灵敏度20mVrms,测量范围0.1Hz至120MHz的综合计频器,具备简洁、高性能、高分辨率和高稳定性的特点。 5、仪器与实验电路的相互关系及主要用途:

信号与系统实验报告1

学生实验报告 (理工类) 课程名称:信号与线性系统专业班级:M11通信工程 学生学号:1121413017 学生姓名:王金龙 所属院部:龙蟠学院指导教师:杨娟

20 11 ——20 12 学年第 1 学期 金陵科技学院教务处制 实验报告书写要求 实验报告原则上要求学生手写,要求书写工整。若因课程特点需打印的,要遵照以下字体、字号、间距等的具体要求。纸张一律采用A4的纸张。 实验报告书写说明 实验报告中一至四项内容为必填项,包括实验目的和要求;实验仪器和设备;实验内容与过程;实验结果与分析。各院部可根据学科特点和实验具体要求增加项目。 填写注意事项 (1)细致观察,及时、准确、如实记录。 (2)准确说明,层次清晰。 (3)尽量采用专用术语来说明事物。 (4)外文、符号、公式要准确,应使用统一规定的名词和符号。 (5)应独立完成实验报告的书写,严禁抄袭、复印,一经发现,以零分论处。 实验报告批改说明 实验报告的批改要及时、认真、仔细,一律用红色笔批改。实验报告的批改成绩采用百分制,具体评分标准由各院部自行制定。 实验报告装订要求

实验批改完毕后,任课老师将每门课程的每个实验项目的实验报告以自然班为单位、按学号升序排列,装订成册,并附上一份该门课程的实验大纲。

实验项目名称:常用连续信号的表示 实验学时: 2学时 同组学生姓名: 无 实验地点: A207 实验日期: 11.12.6 实验成绩: 批改教师: 杨娟 批改时间: 一、实验目的和要求 熟悉MATLAB 软件;利用MATLAB 软件,绘制出常用的连续时间信号。 二、实验仪器和设备 586以上计算机,装有MATLAB7.0软件 三、实验过程 1. 绘制正弦信号)t Asin t (f 0?ω+=(),其中A=1,πω2=,6/π?=; 2. 绘制指数信号at Ae t (f =),其中A=1,0.4a -=; 3. 绘制矩形脉冲信号,脉冲宽度为2; 4. 绘制三角波脉冲信号,脉冲宽度为4;斜度为0.5; 5. 对上题三角波脉冲信号进行尺度变换,分别得出)2t (f ,)2t 2(f -; 6. 绘制抽样函数Sa (t ),t 取值在-3π到+3π之间; 7. 绘制周期矩形脉冲信号,参数自定; 8. 绘制周期三角脉冲信号,参数自定。 四、实验结果与分析 1.制正弦信号)t Asin t (f 0?ω+=(),其中A=1,πω2=,6/π?= 实验代码: A=1;

信号与系统基础知识

第1章 信号与系统的基本概念 1.1 引言 系统是一个广泛使用的概念,指由多个元件组成的相互作用、相互依存的整体。我们学习过“电路分析原理”的课程,电路是典型的系统,由电阻、电容、电感和电源等元件组成。我们还熟悉汽车在路面运动的过程,汽车、路面、空气组成一个力学系统。更为复杂一些的系统如电力系统,它包括若干发电厂、变电站、输电网和电力用户等,大的电网可以跨越数千公里。 我们在观察、分析和描述一个系统时,总要借助于对系统中一些元件状态的观测和分析。例如,在分析一个电路时,会计算或测量电路中一些位置的电压和电流随时间的变化;在分析一个汽车的运动时,会计算或观测驱动力、阻力、位置、速度和加速度等状态变量随时间的变化。系统状态变量随时间变化的关系称为信号,包含了系统变化的信息。 很多实际系统的状态变量是非电的,我们经常使用各种各样的传感器,把非电的状态变量转换为电的变量,得到便于测量的电信号。 隐去不同信号所代表的具体物理意义,信号就可以抽象为函数,即变量随时间变化的关系。信号用函数表示,可以是数学表达式,或是波形,或是数据列表。在本课程中,信号和函数的表述经常不加区分。 信号和系统分析的最基本的任务是获得信号的特点和系统的特性。系统的分析和描述借助于建立系统输入信号和输出信号之间关系,因此信号分析和系统分析是密切相关的。 系统的特性千变万化,其中最重要的区别是线性和非线性、时不变和时变。这些区别导致分析方法的重要差别。本课程的内容限于线性时不变系统。 我们最熟悉的信号和系统分析方法是时域分析,即分析信号随时间变化的波形。例如,对于一个电压测量系统,要判断测量的准确度,可以直接分析比较被测的电压波形)(in t v (测量系统输入信号)和测量得到的波形)(out t v (测量系统输出信号),观察它们之间的相似程度。为了充分地和规范地描述测量系统的特性,经常给系统输入一个阶跃电压信号,得到系统的阶跃响应,图1-1是典型的波形,通过阶跃响应的电压上升时间(电压从10%上升至90%的时间)和过冲(百分比)等特征量,表述测量系统的特性,上升时间和过冲越小,系统特性越好。其中电压上升时间反映了系统的响应速度,小的上升时间对应快的响应速度。如果被测电压快速变化,而测量系统的响应特性相对较慢,则必然产生较大的测量误差。 信号与系统分析的另一种方法是频域分析。信号频域分析的基本原理是把信号分解为不

信号与系统分析实验信号的频谱分析

实验三信号的频谱分析 1方波信号的分解与合成实验 1实验目的 1. 了解方波的傅立叶级数展开和频谱特性。 2. 掌握方波信号在时域上进行分解与合成的方法。 3. 掌握方波谐波分量的幅值和相位对信号合成的影响。 2 实验设备 PC机一台,TD-SAS系列教学实验系统一套。 3 实验原理及内容 1. 信号的傅立叶级数展开与频谱分析 信号的时域特性和频域特性是对信号的两种不同的描述方式。对于一个时域的周期信号f(t),只要满足狄利克莱条件,就可以将其展开成傅立叶级数: 如果将式中同频率项合并,可以写成如下形式: 从式中可以看出,信号f(t)是由直流分量和许多余弦(或正弦)分量组成。其中第一项A0/2是常数项,它是周期信号中所包含的直流分量;式中第二项A1cos(Ωt+φ1)称为基波,它的角频率与原周期信号相同,A1是基波振幅,φ1是基波初相角;式中第三项A2cos(Ωt+φ2)称为二次谐波,它的频率是基波的二倍,A2是基波振幅,φ2是基波初相角。依此类推,还有三次、四次等高次谐波分量。 2. 方波信号的频谱 将方波信号展开成傅立叶级数为: n=1,3,5…

此公式说明,方波信号中只含有一、三、五等奇次谐波分量,并且其各奇次谐波分量的幅值逐渐减小,初相角为零。图3-1-1为一个周期方波信号的组成情况,由图可见,当它包含的分量越多时,波形越接近于原来的方波信号,还可以看出频率较低的谐波分量振幅较大,它们组成方波的主体,而频率较高的谐波分量振幅较小,它们主要影响波形的细节。 (a)基波(b)基波+三次谐波 (c)基波+三次谐波+五次谐波 (d)基波+三次谐波+五次谐波+七次谐波 (e)基波+三次谐波+五次谐波+七次谐波+九次谐波 图3-1-1方波的合成 3. 方波信号的分解 方波信号的分解的基本工作原理是采用多个带通滤波器,把它们的中心频率分别调到被测信号的各个频率分量上,当被测信号同时加到多路滤波器上,中心频率与信号所包含的某次谐波分量频率一致的滤波器便有输出。在被测信号发生的实际时间内可以同时测得信号所包含的各频率分量。本实验便是采用此方法,实验中共有5路滤波器,分别对应方波的一、 三、五、七、九次分量。 4. 信号的合成 本实验将分解出的1路基波分量和4路谐波分量通过一个加法器,合成为原输入的方波信号,信号合成电路图如图3-1-2所示。 图3-1-2

测试技术试验指导书

《机械工程测试技术》实验指导书 编者:郑华文刘畅 昆明理工大学机电学院实验中心 2014年5月

说明和评分 1学生按照实验预约表进行实验;在实验前,需对理论教学中相关内容做做复习并对实验指导书进行预习,熟悉实验内容和要求后才能进入实验室进行实验。在实验中,不允许大声喧哗和进行与实验不相关的事情。 2进入实验室后,应遵守实验室守则,学生自己应发挥主动性和独立性,按小组进行实验,在操作时应对实验仪器和设备的使用方法有所了解,避免盲目操作引起设备损坏,在动手操作时,应注意观察和记录。 3根据内容和要求进行试验,应掌握开关及的顺序和步骤:1)不允许带负荷开机。输出设备不允许有短路,输入设备量程处于最大,输出设备衰减应处于较小。2)在实验系统上电以后,实验模块和实验箱,接入或拔出元件,不允许带电操作,在插拔前要确认不带电,插接完成后,才对实验模块和试验箱上电。3)试验箱上元件的插拔所用连线,在插拔式用手拿住插头插拔,不允许直接拉线插拔。4)实验中,按组进行试验,实验元件也需按组取用,不允许几组混用元件和设备。 4在实验过程中,在计算机上,按组建立相关实验文件,实验中的过程、数据、图表和实验结果,按组记录后,各位同学拷贝实验相关数据文件等,在实验报告中应有反应。对实验中的现象和数据进行观察和记录。 实验评分标准: 1)实验成绩评分按实验实作和实验报告综合评分:实验实作以学生在实验室中完成实验表现和实验结果记录文件评定,评定为合格和不合格;实验报告成绩:按照学生完成实验报告的要求,对实验现象的观察、思考和实验结果的分析等情况评定成绩。初评百分制评定。 2)综合实验成绩评定按百分制。

信号与线性系统课程设计报告分析

信号与线性系统课程设计 报告 课题五基于FIR滤波的语音信号处理系统设计 班级: 姓名: 学号: 组号及同组人: 成绩: 指导教师: 日期:

课题五基于FIR滤波的语音信号处理系统设计 摘要:MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。MATLAB 可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。 MATLAB特点:1) 高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来;2) 具有完备的图形处理功能,实现计算结果和编程的可视化;3)友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握;4)功能丰富的应用工具箱,为用户提供了大量方便实用的处理工具。 关键词:GUI界面,信号采集,内插恢复,重采样,滤波器 一、课程设计目的及意义 本设计课题主要研究数字语音信号的初步分析方法、FIR数字滤波器的设计及应用。通过完成本课题的设计,拟主要达到以下几个目的: (1)熟悉Matlab软件的特点和使用方法。 (2)熟悉LabVIEW虚拟仪器的特点以及采用LabVIEW进行仿真的方法。 (3)掌握信号和系统时域、频域特性分析方法。 (4)掌握FIR数字滤波器的设计方法(窗函数设计法、频率采样设计法)及应用。 (5)了解语音信号的特性及分析方法。 (6)通过本课题的设计,培养学生运用所学知识分析和解决实际问题的能力。 二、课题任务 (一)简单数字语音信号处理系统的Matlab设计。 使用GUI进行系统的图形用户界面设计,在该界面中包括对语音信号的读取,对信号的时域,频域分析,添加噪声,设计FIR数字滤波器(利用窗函数设计法、频率采样设计法任选)实现噪声滤除。具体任务如下: (1)对语音信号进行采集(读取),对数字语音信号加入干扰噪声,画出原始信号及带噪信号的时域波形,利用FFT进行频域分析,画出相应波形,并对语音进行播放。 (3)根据对语音信号及噪声的实际情况分析,选择适当的FIR数字滤波器进行设计,并对噪声进行滤除。

数字示波器使用实验操作指导

DS1000E-EDU 数字示波器实验操作指导 一、显示和测量正弦信号 观测电路中的一个未知信号,迅速显示和测量信号的频率和峰峰值。 1、欲迅速显示该信号,请按如下步骤操作: (1) 信号发生器输出一正弦信号,将通道1连接到信号发生器。 (2) 按下 示波器将自动设置使波形显示达到最佳状态。在此基础上,您可以进一步调节垂直、水平档位,直至波形的显示符合您的要求。 2. 进行自动测量 示波器可对大多数显示信号进行自动测量。欲测量信号频率和峰峰值,请按如下步骤操作 (1) 测量峰峰值 按下 Measure 按键以显示自动测量菜单。 按下1号菜单操作键以选择信源 CH1 。 按下2号菜单操作键选择测量类型: 电压测量 。 在电压测量弹出菜单中选择测量参数: 峰峰值 。 此时,您可以在屏幕左下角发现峰峰值的显示。 (2) 测量频率 按下3号菜单操作键选择测量类型: 时间测量 。 在时间测量弹出菜单中选择测量参数: 频率 。 此时,您可以在屏幕下方发现频率的显示。 3、用Cursor 光标测量功能进行手动测量 (1) 信号发生器输出一任意频率的正弦信号,将信号发生器输出端连接示波器通道1。 (2) 按下Cursor 光标测量键,选择手动测量,测量出信号的周期、频率,电压峰峰值,画出信号波形,标出周期、频率,电压峰峰值。 二、X -Y 功能的应用,观察李沙如图形 1. 将信号A 连接通道1,将信号B 连接通道2。 2. 若通道未被显示,则按下 CH1 和 CH2 菜单按钮。 3. 按下 AUTO (自动设置)按钮。 4. 调整垂直旋钮使两路信号显示的幅值大约相等。 5. 按下水平控制区域的 MENU 菜单按钮以调出水平控制菜单。 6. 按下时基菜单框按钮以选择 X -Y 。示波器将以李沙如(Lissajous )图形模式显示。 7. 调整垂直、垂直和水平旋钮使波形达到最佳效果。 8.调节信号发生器A 路信号频率为f X =50Hz ,根据频率比值关系和f X =50Hz ,算出相应的f Y 值。缓慢调节信号发生器B 路信号频率频率f Y ,分别调出 ==Y X X Y N N f f ::3:1;2:1;3:2;1:1的稳定李萨如图形,将所见稳定图形描绘在记录表格(参考下表)中并同时记录信号发生器相应的频率读数f Y 。并计算f Y 信和f Y 的相对偏差

信号与线性系统实验指导书syzds

信号与线性系统实验指导书 《信号与线性系统》课程组 2006年9月修订

《信号与系统》实验箱简介 信号与系统实验箱有TKSS-A型、TKSS-B型和TKSS-C型三种。其中B型和C型实验箱除实验项目外,还带有与实验配套的仪器仪表。 TKSS-A型实验箱提供的实验模块有:用同时分析方法观测方波信号的频谱、方波的分解、各类无源和有源滤波器(包括LPF、HPF、BPF、BEF)、二阶网络状态轨迹的显示、抽样定理和二阶网络函数的模拟等。 TKSS-B型实验箱提供的实验模块与“TKSS-A型”基本一样,增加了函数信号发生器(可选择正弦波、方波、三角波输出,输出频率范围为20Hz~100KHz)、频率计(测频范围0~500KHz)、数字式交流电压表(测量范围10mV~20mV,10Hz~200KHz)等仪器。 TKSS-C型实验箱的实验功能和配备与“TKSS-B型”基本一样,增加了扫频电源(采用可编程逻辑器件ispLSI1032E和单片机AT89C51设计而成),它可在15Hz~50KHz的全程范围内进行扫频输出,亦可选定在某一频段(分9段)范围内的扫频输出,提供11档扫速,亦可选用手动点频输出,此外还有频标指示,亦可作频率计使用。 实验一无源和有源滤波器 一、实验目的 1、了解RC无源和有源滤波器的种类、基本结构及其特性。 2、对比研究无源和有源滤波器的滤波特性。 3、学会列写无源和有源滤波器网络函数的方法。 二、原理说明 1、滤波器是对输入信号的频率具有选择性的一个二端口网络,它允许某 些频率(通常是某个频带范围)的信号通过,而其他频率的信号受到 衰减或抑制,这些网络可以是由RLC元件或RC元件构成的无源滤 波器,也可以是由RC元件和有源器件构成的有源滤波器。 2、根据幅频特性所表示的通过或阻止信号频率范围的不同,滤波器可分 为低通滤波器(LPF)、高通滤波器(HPF)、带通滤波器(BPF)和 带阻滤波器(BEF)四种。我们把能够通过的信号频率范围定义为通 带,把阻止通过或衰减的信号频率范围定义为阻带。而通带与阻带的 分界点的频率f c称为截止频率或称转折频率。图1-1中的A up为通 带的电压放大倍数,f0为中心频率,f cL和f cH分别为低端和高端截止 频率。

《通信电子线路》实验指导书XXXX版(简)

北方民族大学《通信电子线路》实验指导书 主编 校对 审核 北方民族大学电气信息工程学院 二○一三年九月

目录 实验一小信号谐振放大器的性能分析 (2) 实验二LC正弦波振荡器的综合分析 (8) 实验三振幅调制与解调电路研究与综合测试 (12) 实验四频率调制与解调电路研究与综合测试 (22) 实验五锁相环的工作过程及综合分析 (29)

实验一 小信号谐振放大器的性能分析 (综合性实验) 一、实验目的 1.掌握小信号谐振放大电路的组成和性能特点。 2.熟悉小信号谐振放大器的主要性能指标。 3.学会频响特性的测试。 二、实验仪器与器材 1. 高频电子技术实验箱中小信号谐振放大器实验模块电路(RK-050) 2. 示波器 3. 信号源 4. 扫频仪 三、小信号调谐放大器实验电路 图1-1为小信号调谐放大器实验电路(RK-050)。图中,201P 为信号输入铆孔,当做实验时,高频信号由此铆孔输入。201TP 为输入信号测试点。接收天线用于构成收发系统时接收发方发出的信号。变压器21T 和电容12C 、22C 组成输入选频回路,用来选出所需要的信号。晶体三极管21BG 用于放大信号,12R 、22R 和52R 为三极管21BG 的直流偏置电阻,用以保证晶体管工作于放大区域,且放大器工作于甲类状态。三极管21BG 集电极接有LC 调谐回路,用来谐振于某一工作频率上。本实验电路设计有单调谐与双调谐回路,由开关22K 控制。当22K 断开时,为电容耦合双调谐回路,12L 、22L 、42C 和52C 组成了初级回路,32L 、42L 和92C 组成了次级回路,两回路之间由电容62C 进行耦合,调整62C 可调整其耦合度。当开关22K 接通时,即电容62C 被短路,此时两个回路合并成单个回路,故该电路为单调谐回路。图中12D 、22D 为变容二极管,通过改变ADVIN 的直流电压,即可改变变容二极管的电容,达到对回路的调谐。三个二极管的并联,其目的是增大变容二极管的容量。图中开关21K 控制32R 是否接入集电极回路,21K 接通时(开关往下拨为接通),将电阻32R (2K )并入回路,使集电极负载电阻减小,回路Q 值降低,放大器增益减小。图中62R 、72R 、82R 和三极管22BG 组成放大器,用来对所选信号进一步放大。 202TP 为输出信号测试点,202P 为信号输出铆孔。

信号与系统MATLAB实验

2016-2017学年第一学期 信号与系统实验报告 班级: 姓名: 学号: 成绩: 指导教师:

实验一常见信号的MATLAB 表示及运算 一.实验目的 1.熟悉常见信号的意义、特性及波形 2.学会使用MATLAB 表示信号的方法并绘制信号波形 3. 掌握使用MATLAB 进行信号基本运算的指令 4. 熟悉用MATLAB 实现卷积积分的方法 二.实验原理 信号一般是随时间而变化的某些物理量。按照自变量的取值是否连续,信号分为连续时间信号和离散时间信号,一般用()f t 和()f k 来表示。若对信号进行时域分析,就需要绘制其波形,如果信号比较复杂,则手工绘制波形就变得很困难,且难以精确。MATLAB 强大的图形处理功能及符号运算功能,为实现信号的可视化及其时域分析提供了强有力的工具。 根据MATLAB 的数值计算功能和符号运算功能,在MATLAB 中,信号有两种表示方法,一种是用向量来表示,另一种则是用符号运算的方法。在采用适当的MATLAB 语句表示出信号后,就可以利用MATLAB 中的绘图命令绘制出直观的信号波形了。下面分别介绍连续时间信号和离散时间信号的MATLAB 表示及其波形绘制方法。 1.连续时间信号 所谓连续时间信号,是指其自变量的取值是连续的,并且除了若干不连续的点外,对于一切自变量的取值,信号都有确定的值与之对应。从严格意义上讲,MATLAB 并不能处理连续信号。在MATLAB 中,是用连续信号在等时间间隔点上的样值来近似表示的,当取样时间间隔足够小时,这些离散的样值就能较好地近似出连续信号。在MATLAB 中连续信号可用向量或符号运算功能来表示。 ⑴ 向量表示法 对于连续时间信号()f t ,可以用两个行向量f 和t 来表示,其中向量t 是用形如12::t t p t 的命令定义的时间范围向量,其中,1t 为信号起始时间,2t 为终止时间,p 为时间间隔。向量f 为连续信号()f t 在向量t 所定义的时间点上的样值。 说明:plot 是常用的绘制连续信号波形的函数。 严格说来,MATLAB 不能表示连续信号,所以,在用plot()命令绘制波形时,要对自变量t 进行取值,MATLAB 会分别计算对应点上的函数值,然后将各个数据点通过折线连接起来绘制图形,从而形成连续的曲线。因此,绘制的只是近似波形,而且,其精度取决于t 的取样间隔。t 的取样间隔越小,即点与点之间的距离越小,则近似程度越好,曲线越光滑。例如:图1-1是在取样间隔为p=0.5时绘制的波形,而图1-2是在取样间隔p=0.1时绘制的波形,两相对照,可以看出图1-2要比图1-1光滑得多。

测试技术实验指导书(2017年04)

《机械工程测试技术基础》 实验指导书 戴新编 广州大学 2017.4

前言 测试技术顾名思义是测量和试验的技术。测试技术学习的最终目的是要解决实际问题,所以和理论课程相比,测试技术的实践环节显得更为关键。《机械工程测试技术实验》旨在提高学生综合应用从各门课程中学到的单元技术知识,独立构建、调试测试系统的能力,强化学生对测试系统工程实际的感性认识。它综合体现了各种单元技术在测试工程实际中的应用,是测试专业的学生接触工程实际的开始。 测试技术覆盖了很多知识领域,从测试信号的基本概念到现代测试信号分析方法,从传感器的基本原理到一个复杂大型的测试系统的建立,但在实际中,无法在一门课程里囊括所有这些知识和经验。本指导书根据目前实验室现有的实验条件及教学计划中的学时数,紧密结合理论教学,选择了一些重要的基本内容,实验主要为验证性实验,采用传统的实验模式,由实验教师指导学生完成实验。 通过实验,希望能够使学生牢固、熟练地掌握各种测试仪器的使用,学会调试测试系统的基本方法,包括传感器的使用,信号调理电路、数字化电路及显示单元的调试,在此基础上初步学会自行组建测试系统,并能够独立调试。 具体内容应包括:a.常用测试仪器的使用:在传感器使用及系统组建、调试的过程掌握示波器、数字万用表、信号发生器、稳压电源等的使用。b.传感器的使用:熟悉热电偶传感器、加速度传感器、液位传感器、转速传感器等原理及使用。c.常见物理量测试实验:温度测试实验、转速测试实验、液位测试实验、振动测试实验。由于条件限制,以上的实验内容还只能部分涉及。 实验完成后按要求应提交实验报告。实验报告是一种工程技术文件,是实验研究的产物。学生完成教学实验写出的报告,会为将来进行工程实验、科学研究书写实验报告打下基础,乃至于养成一种习惯,因此应按工程实际要求学生:内容如实,数据可靠;语言明确、简洁;书写工整、规范。实验报告的基本内容应包括实验题目、实验目的、实验仪器和设备(必要时画出连接图)、实验方法、实验结果(包括图表、数字、文字、表达式等)、对实验方法或结

相关文档
最新文档