2014数学建模B题解读

2014数学建模B题解读
2014数学建模B题解读

承诺书

我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): B

我们的报名参赛队号为(8位数字组成的编号):

所属学校(请填写完整的全名):

参赛队员(打印并签名) :1.

2.

3.

指导教师或指导教师组负责人(打印并签名):

(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。)

日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页

赛区评阅编号(由赛区组委会评阅前进行编号):

全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

创意平板折叠桌的设计

摘要

随着人类思维的不断进步,极具创意的作品也层出不穷。本文对创意平板折叠桌进行分析,运用三维坐标对不同平板折叠桌的结构进行描述。桌子外形由直纹曲面构成,桌面近似圆形,桌腿分成两组,每组各用一根钢筋将木条连接,钢筋两端分别固定在桌腿各组最外侧的两根木条上。随着铰链的活动,折叠桌可以平摊成一张平板,折叠时,沿木条有空槽以保证滑动的自由度。此折叠桌不仅设计精妙,造型美观。而且具有一定的实用价值,节省存储空间。

针对问题一,给定了一块平板的长宽高、木条宽度、以及折叠桌的高度。以折叠桌的某一桌脚为原点,利用对称性,建立空间直角坐标系。通过构建几何模型来找出桌面与最外侧桌脚木条的夹角(锐角)关系。然后运用三角函数计算出每根桌脚木条的长度以及开槽的大小。设每根桌脚木条与桌面的夹角为变量,通过几何关系,列出每条桌脚顶点处的坐标,,

x y z分别满足的函数表达式,根据表达式编写MATLAB程序,画出桌脚边缘线变化过程。最后根据每个桌脚点在折叠过程中的改变,加入动态函数,用MATLAB画出折叠桌的动态过程。

针对问题二,根据稳固性好、加工方便、用材最少这三个限制条件求出非线性规划的目标函数和约束条件。由于问题一中要求稳固性好,所以对折叠桌的受力点做受力分析,为了使桌子承受最大的力量,对作用于折叠桌的压力、支持力、摩擦力等作分析。一个好的设计没有实用性就不能使用,所以我们把受力分析放在首要地位。为了使加工方便和用材最少,在保证稳固性的前提下减少使用的钢筋数量和选择最优加工参数。同时加工方便与材料的质地也有关,但是我们这里不考虑,统一用木质平板。根据以上三个约束条件,运用最优化的方法建立非线性规划模型,再用MATLAB求出最优解,得到最优的加工设计参数。

针对问题三,在问题一与问题二的模型基础上,设计出两种创意平板折叠桌。创意平板折叠桌一为桌面类似为菱形的折叠桌,建立坐标系得出菱形桌面和桌腿木条的方程,用MATLAB 进行编程,画出其动态图形。创意平板折叠桌二采用题目已给的图,采用一定的拼接技术,可根据顾客需求拼接出满足条件的的折叠桌。

关键词:边缘线MATLAB LINGO 受力分析最优化

一、问题重述

1.1背景知识

问题中的折叠桌是由直纹曲面构建而成,其形状特殊,外形美观,功能实用。直纹曲面在工程和工农业生产中有着广泛的应用。柱面,锥面的广泛应用不胜枚举。从日常生活到航天航空,从微观世界到浩瀚太空。到处可见柱面和锥面的身影。而且由直纹曲面构成的这种可展结构容易存贮和运输,当需要的时候,它们可以展开成工作状态。根据其用途不同可分为空间可展结构和地面可展结构。

1.2要解决的问题

折叠桌桌面呈圆形,桌腿随着铰链的活动可以平摊成一张平板。桌腿由若干根木条组成,分成两组,每组各用一根钢筋将木条连接,钢筋两端分别固定在桌腿各组最外侧的两根木条上,并且沿木条有空槽以保证滑动的自由度。

问题一、给定长方形平板尺寸为120 cm × 50 cm × 3 cm,每根木条宽2.5 cm,连接桌腿木条的钢筋固定在桌腿最外侧木条的中心位置,折叠后桌子的高度为53 cm。试建立模型描述此折叠桌的动态变化过程,在此基础上给出此折叠桌的设计加工参数和桌脚边缘线的数学描述(模型)。

问题二、折叠桌的设计应做到产品稳固性好、加工方便、用材最少。对于任意给定的折叠桌高度和圆形桌面直径的设计要求,讨论长方形平板材料和折叠桌的最优设计加工参数,例如,平板尺寸、钢筋位置、开槽长度等。对实例桌高70 cm,桌面直径80 cm的情形,确定最优设计加工参数。

问题三、公司计划开发一种折叠桌设计软件,根据客户任意设定的折叠桌高度、桌面边缘线的形状大小和桌脚边缘线的大致形状,给出所需平板材料的形状尺寸和切实可行的最优设计加工参数,使得生产的折叠桌尽可能接近客户所期望的形状。你们团队的任务是帮助给出这一软件设计的数学模型,并根据所建立的模型给出几个你们自己设计的创意平板折叠桌。要求给出相应的设计加工参数,画出至少8张动态变化过程的示意图。

图1

图2

图3

图4

二、问题分析

本题描述的折叠桌桌面呈圆形,桌腿随着铰链的活动可以平摊成一张平板。桌腿由若干根木条组成,分成两组,每组各用一根钢筋将木条连接,钢筋两端分别固定在桌腿各组最外侧的两根木条上,并且沿木条有空槽以保证滑动的自由度。利用三维软件(UG、proe、3D等)画图用来协助分析。平板折叠桌问题关键在于用函数表达式描述出折叠的过程。不仅要理解在折叠过程中每一根桌脚木条和桌面的角度变化,更要理解在折叠过程中每一根木条在开槽中

的滑动过程。由于最外侧的桌脚木条用来固定钢筋,所以不需要设计开槽。从最外侧两端向内,开槽越来越大,最中间的一个或两个桌腿木条开槽长度达到最大。同时在折叠过程中,随着桌脚木条和桌面的内侧夹角逐渐减小,钢筋在开槽的内自上向下移动(除最外侧桌腿木条外),由于钢筋两端固定,当每一条桌腿木条的钢筋达到开槽最低点处,平板桌固定,不再移动。

针对问题一:此问题中给出了平板的相关尺寸以及每根木条的宽。同时限制了折叠桌折叠后的高度和钢筋的位置。利用这些数据通过建立三维坐标系,不难得到有关折叠桌的设计加工参数,同时,假设桌腿木条和桌面的夹角为

?,以桌面圆心为坐标系原点建立空间直角坐

标系,根据题目已给的参数和几何关系分别表示出桌面,,

x y z坐标函数。同理可得桌腿、腿尖、钢筋轴的坐标函数。给定一个

?根据这些函数,应用MATLAB程序画出折叠桌的动态图。中

通过改变角度的大小,列出桌腿在,,

x y z方向上的函数便可以数学描述出边缘线。然后利用MATLAB做出动态图。

针对问题二:根据稳固性好,加工方便,和用材最少三个约束条件便可以列出相关的非线性规划方程。用MATLAB或LINGO就可以求解出最优的设计加工参数。通过第一问的各因素相互关系及“半成品”模型进一步来解答第二问,第二问题目中要求的稳固性好即就是需要我们进行受力分析。受力分析可从这几点考虑,1、重心位置越低,结构越稳定 2、支撑面积越大,结构越稳定3、结构的稳定性与结构的形状有关4、桌子的稳固性与桌腿和地面夹角有关根据题意,根据这些方面,进一步做力学分析。

怎样才能让桌子承受的力最大,需要对不同状态做静力和摩擦力分析,这与脚角

?钢筋

链接曹等因素相关。加工方便要求我们所给尺寸合理,加工巧妙,不至于有多余或者补料的情形,和用料最少有点相似,用料最少,如若能达到不浪费一点点木材就算是最优解了,这就需要分析木板、木条、桌面直径等相关因素的关系,最后确定木板长、宽、高、木条数等之间因素的最优参数。然后将几个相对“理想”因素数值带入第一问求出来的模型,输入实际值:桌高70 cm,桌面直径80 cm。在逐步求解。

针对问题三:基于问题一与问题二的模型基础上,设计出两种创意平板折叠桌模型。模型一为桌面类似为菱形的折叠桌,其原理为对菱形桌面边缘线的数据分析,建立空间坐标系得出菱形桌面和桌腿木条的方程,利用MATLAB软件进行编程,画出其动态图形。模型二采用模型一的图,采用一定的拼接技术,可根据顾客需求拼接出满足需要的的折叠桌。

三、模型假设

1、材料性能和实际加工误差对设计无影响。

2、木条间缝隙尺寸为零。

3、木条与圆桌面之间的交接处无间隙。

4、钢筋尺寸不计。

5、忽略开槽宽度

6、数据保留一个小数点对结果无影响

四、符号说明

符号

说 明

最长的桌腿木条与桌面的夹角 0n 桌腿木条总数 0h 折叠桌与地面的高度 0m 桌腿木条的宽度 0s 桌腿木条的长度 i

第i 跟木条 i b 为图中i O A 的距离 0

r

为图中圆桌面的半径 i k 卡槽的长度 i a 为图中i i A C 的长度 i

c

为图中i i C D 的长度

t

最外侧桌腿钢筋位置到桌脚的距离

五、名词解释

5.1直纹曲面:有一个连续族(或几族)直线所构成的曲面叫做直纹曲面。也可以定义为一直线依某种规律移动产生的曲面。构成曲面的那族直线叫做这曲面的一族直母线

5.2力矩:在物理学里,作用力使物体绕着转动轴或支点转动的趋向,称为力矩(torque)。力矩的单位是牛顿-米。力矩希腊字母是 tau 。力矩的概念,起源于阿基米德对杠杆的研究。转动力矩又称为转矩或扭矩。力矩能够使物体改变其旋转运动。推挤或拖拉涉及到作用力 ,而扭转则涉及到力矩。力矩等于径向矢量与作用力的叉积[1]。 (不是点乘,叉积和乘积不一样)

六、模型建立及求解

6.1问题一的模型建立及求解:

(1)在考虑问题一时,首先我们要分析题目中给了哪些相关的量,题目中最先提出了桌面为圆形,我们可以从直径入手。有平板的长宽高和木条的宽度我们可以得到木条的数量。其中还有钢筋和卡槽的位置都可以作为求解时的数据。

(2)我们画出折叠桌的平面俯视图以及侧视图如图6.1.1和图6.1.2所示。

图6.1.1

图6.1.2

其中平板长为120cm ,宽度为50cm ,每根木条宽度为2.5cm ,由圆的对称性我们只需对四分之一(右下)圆进行分析,如图:我们由外向内进行计算,每根木条桌椅最内侧 i D 到 i E 距

离:i

a = ,则每根木条长度为i

01C 2

i

s a =

-,再根据木桌完全展开后桌腿侧面图进行

分析如图,01i i (

a )k 2

2

s c --

=,其中有平板长度

和木条宽度可以得到四分之一圆(右下)共有十根木条。

(3)以任意一个桌脚为原点建立空间直角坐标系。设定最外层桌腿与x 轴的夹角为0?,标注出钢筋的所在位置。如下图所示:

图6.1.3

(4)用MATLAB 编程,(见附录程序一)可得到每条桌腿木条的长度和开槽的大小,由于桌腿木条分为两组,每组有20根木条,且每组桌腿也对称。所以表格中只列出1/4的桌腿木条长度和卡槽大小。得到的数据如下:

表6.4.4 折叠桌腿和开槽长度

(5)因为折叠桌的沿中心轴对称,所以我们只以1/4的桌子来考虑,其他的对称就行,由于平板为长方体,所以每根木条的桌脚在钢筋轴的下方加上各自的开槽长度相等,即最外侧桌脚长度的一半,在前面我们已经求出了每根木条的卡槽长度,在桌椅完全展开的情况下求得木条与桌面的最大夹角?,对于任意角度 都满足一个函数等式 1160c c *c o s *c o s (

)

2

i x

c --?

=?-,就由此可求出多组木条桌脚顶点的轨迹,即桌脚边缘线的

数学描述。如图6.1.4为用MATLAB 程序(见附录程序三)画出的平板折叠后静态的边缘线。

图6.1.5描述了边缘线一系列的运动过程。

图6.1.4

图6.1.5

(7)做动态图时,首先要建立直角坐标系,假设桌腿木条和桌面的夹角为

1

160c c *c o s

*c o s (

)

2

i

x c -

-?=?-

,以桌面圆心为坐标系原点建立空间直角坐标系,根据题目已

给的参数和几何关系分别表示出桌面,,x y z 坐标函数。根据这些函数,应用MATLAB 程序(见附录程序二)画出折叠桌的动态图。以下为动态图的四个动态过程。

图6.1.6

6.2问题二模型建立与求解

(1)根据问题二题目要求折叠桌的设计应做到产品稳固性好、加工方便、用材最少,对与顾客任意给定桌面的高度和木条宽度0h ,0m 进行折叠桌椅设计,通过建立多目标优化模型来求解。

(2)产品的稳定性:对桌椅四分之一桌腿进行力矩分析如图6.2.1所示,若要桌椅的稳定新较好择期受力要稳定,通过问题一已得结果对我们的可以轻易的知道在桌椅完全展开后,随着最外侧支撑木条桌椅逐个内侧增加时,桌椅木条与桌面的夹角是逐渐增大的。对完全展开后的桌椅进行受力分析如下图:

图6.2.1

(3)我们整体的对受力最复杂的钢筋进行受力分析,简化模型,此时只存在两种木条,一种是木条与桌面夹角小于90°,另一种则是木条与桌面夹角大于90°只有这样钢筋的受力分析才能达到如图效果,如果木条与桌面全部小于或大于90°则受力不可能达到稳定,有考虑到每根木条的受力大小均衡,在木条夹角渐变过程是与桌面夹角大于或小于9°的木条数应该尽可

能相等,所以我们对四分之一桌角的中间桌腿与桌面夹角经行分析的到方程及其约束条件2r m

?

<90°。加工方便:我们建立模型时要求在满足顾客要求的同时尽可能的是木条宽度最大,因为在实际生产中,模板是整体进行切割,如果木条宽度越大则木条数九越少这样在实际模板切割的时候难度就会减低,从而达到加工方面的优化。

用材最少:由问题已可知在给定模板宽度以及高度时,要是所用木材最少即为模板的长度最小,在模型中我们以最中间的木条建立约束条件,在满足参数要求的同时使得内侧木条最短则整个模板就是最短的,从而达到用材最少的优化目标,由问题一中的图可知在桌子完全展开后最内侧的桌腿想上移动距离是最大,再钢筋刚好达到该木条最下端是此时是一个临界值,

可得约束条件0

i d <。通过以上分析建立多目标优化方程

如下:

1m in z =s 、

10122c s =-、

0132

i c s =

-、000

4s in h s ?=

50

i d <

01

6h c <、

(4)求得的结果如下:MATLAB程序见附录程序四

表6.2.2 问题二的最优设计加工参数

6.3问题三模型建立与求解

(1)是在第二问的基础上继续完善数学模型,将模型转换为带坐标的方程格式,将其余的设计参数设置成桌高、木条数、边缘线坐标等的方程,形成一系列数量关系式,达到只要我们将客户需求的数据输入关系式,就会得出一组设计参数,此功能可以在MATLAB或者EXCEL中实现,设置好自己的未知数和方程(请记得将公式文件或者编程代码放在附件中),然后随便赋值,直接得出设计参数。最后就是随便给一组数据(客户需求)设计一款成品。通过赋值,得出设计参数,利用三维软件制作出来。

注:尺寸分析尽量用机械软件分析,数据精确度高,动态分析利用仿真能达到,机械软件初学者还是建议用3D仿真,因为机械软件运动仿真过程繁杂,3D仿真效果随意,而且灯光效果不错,但机械软件对许多尺寸设计合理与否能检测出来,截屏保存,仿真后感兴趣的同学可以输出GIF格式的图片或者视频,如果所有软件都是初学者,仿真不能达到就只能随机找到8个动态位置装配完成截屏保存就行,这种办法不能检测设计参数合理与否,不到万不得已不建议用这种办法。软件选择有利有弊,一定要根据自己的实际情况选择。

(2)创意折叠桌一:其桌面为菱形,通过问题一程序的改变便可以做出动态图。根据程序运行的结果,可比较出菱形桌较圆形桌虽然桌面面积有所下降,但折叠桌高度增加,此折叠桌设计更适用于较高人群使用。同时,由于菱行曲线较圆形曲线设计更为简单,误差更小。所以加工方便。(MATLAB见附录程序五)

(3)动态图:

五、模型分析

通过观察此模型求出的参数对比实际木桌的尺寸进行比较,基本满足实际木桌的数值,说明此模型求出的结果是符合要求,具有较高的可行性、可信度。可以认为在参数的求解过程中,空间模型建立过程到问题的求解,误差在一定范围内;可以认为此模型,算法程序设计使用符合题目的要求。通过与实际承诺书对比比较,具有较大的参考价值。

六、模型的评价

模型的优点:

(1)将实物桌子的桌腿和桌面转化为点、线、面的问题,简化了问题的复杂性,降低了计算难度。

(2)模型利用了计算机的能力和人的空间分析能力,使得模型的可实际参考价值增大。

(3)模型采用了多种数学方法,减小了数字处理的误差,提高了结果的可行度。

模型的缺点:

(1)没有考虑桌腿和桌面的厚度。

(2)没有考虑人工的感干预时的误差影响。

(3)没有考虑到实际桌子的生产情况,使得数据可用度降低。

七、模型的改进与推广

基于所建立的模型,我们求出的一系列参数,在实际参考价值来看还是有较大的误差,此模型通过对问题剖析,结合生活实际,综合木桌子的实际数字,建立空间坐标系,将复杂的问题变成空间几何问题,再将桌面和桌椅的厚度忽略不计,使得我们所建立的模型难度降低,可以快速的求出参数。

整个求解过程中,模型的假设信息作为求解问题的前提被使用,在问题求解后,对结果得出的整个过程进行分析,结合实际木桌的尺寸,可以考虑在木桌的预处理时对所求模板进行有效的空间切割,从而使的更方便与参数的求解和减少模型求解过程的误差。模型的改进,在上述过程中,对桌椅的厚度甲乙考虑使得模型求出参数更加真实。

通过本文提出的方法模型,可以有效的处理该类产品的实际生产过程中的尺寸计算问题,这样就可以减少实际新产品生产前期的产品设计费用,以及产品的废品率,对生产此类工艺的厂家,及艺术家都有一定的参考价值。

八、参考文献

[1]姜启源等,数学模型[M],高等教育出版社,2009

[2]卓金武等,MATLAB在数学建模中的应用[M],北京航空航天大学出版社,2011

[3]吴赣昌,概率论与数理统计[M],中国人民大学出版社,2006

[4]陈烨. 用于连续函数优化的蚁群算法[J] . 四川大学学报(工程科学版),2004,36(6)

[5]谢中华,MATLAB统计分析与应用:40个案列分析,北京航空航天大学出版社,2010

附录

程序一:问题一求桌腿长度、卡槽长度以及折叠桌整个折叠过程中的动态图程序:

clear

L=120;D=50;d=2.5;hL=L/2;R=D/2; %木板长;宽;腿木条宽;半长;圆桌面半径

ye=-R+d/2:d:R-d/2; %折叠点的y坐标,20个

xe=sqrt(R^2-ye.^2); %折叠点的x坐标,20个

legL=hL-xe%桌腿长度,20个

hH=legL(1)/2; %最长腿半长

ddeg=2; %角度增量

Tx=[xe -xe;xe -xe];Tx=Tx(:);Tz=zeros(size(Tx)); %桌面数据

Ty=[ye-d/2 fliplr(ye)+d/2;ye+d/2 fliplr(ye)-d/2];%桌面在y轴上的数据,fliplr函数实现矩阵的左右翻转

Ty=Ty(:);

legx=[hL*ones(size(xe));hL*ones(size(xe));xe;xe]; %桌腿数据

legy=[ye-d/2;ye+d/2;ye+d/2;ye-d/2];

legz=zeros(size(legx));

zhoux=[hL-legL(1)/2;hL-legL(1)/2];

zhouy=[-R R];

zhouz=[0;0]; %钢筋轴数据

yb=linspace(ye(1),ye(end),50);

xb=sqrt(R^2-yb.^2);

Bx=hL*ones(size(xb));

By=yb;

Bz=zeros(size(xb)); %腿尖曲线数据

figure(1),clf;%画底图,清除以前的图片

hold on

h1=patch(Tx,Ty,Tz,'facecolor',[1 1 1],'edgecolor',[0 0 0]);%画桌面

h2=patch(legx,legy,legz,'facecolor',[1 1 1],'edgecolor',[0 0 0]);%画桌腿

h3=patch(-legx,legy,legz,'facecolor',[1 1 1],'edgecolor',[0 0 0]);%画桌腿

h4=plot3(zhoux,zhouy,zhouz,'c');

h5=plot3(-zhoux,zhouy,zhouz,'c');%画钢筋轴

h6=plot3(Bx,By,Bz,'k');

h7=plot3(-Bx,By,Bz,'k');%腿尖曲线

hold off;view(3);axis equal;axis([-hL hL -R R 0 2*hH]);axis off;

for deg=0:ddeg:75 %最长桌腿相对桌面折叠角度

zz=-hH*sind(deg);xz=xe(1)+hH*cosd(deg); %钢筋轴,z坐标和x坐标

alldeg=atan2(-zz*ones(size(xe)),xz-xe); %每个条腿折叠角度,20个

allx=legL.*cos(alldeg)+xe; %每条腿末端x坐标,20个

allz=-legL.*sin(alldeg); %每条腿末端z坐标,20个

alldeg2=atan2(-zz*ones(size(xb)),xz-xb);

Bx=(hL-xb).*cos(alldeg2)+xb;Bz=-(hL-xb).*sin(alldeg2);%腿尖曲线x数据

minz=min(Bz); %最低腿z坐标,桌子当前高度

legx=[allx;allx;xe;xe]; %桌腿数据

legz=[allz;allz;zeros(size(allz));zeros(size(allz))]-minz;

set(h1,'ZData',-minz*ones(size(Tz)));

set(h2,'XData',legx,'ZData',legz);set(h3,'XData',-legx,'ZData',legz);

set(h4,'XData',[xz;xz],'ZData',[zz;zz]-minz);

set(h5,'XData',-[xz;xz],'ZData',[zz;zz]-minz);

set(h6,'XData',Bx,'ZData',Bz-minz);set(h7,'XData',-Bx,'ZData',Bz-minz);

pause(0.1);drawnow;

end

caochang=sqrt((xe-xe(1)).^2+hH.^2-2*hH.*(xe-xe(1)).*cos(alldeg))-(legL-hH)

程序二:选取不同的角度,折叠图的过程状态

clear

L=120;D=50;d=2.5;hL=L/2;R=D/2; %木板长;宽;腿木条宽;半长;圆桌面半径

deg=75

ye=-R+d/2:d:R-d/2; %折叠点的y坐标,20个

xe=sqrt(R^2-ye.^2); %折叠点的x坐标,20个

legL=hL-xe%桌腿长度,20个

hH=legL(1)/2; %最长腿半长

ddeg=2; %角度增量

Tx=[xe -xe;xe -xe];Tx=Tx(:);Tz=zeros(size(Tx)); %桌面数据

Ty=[ye-d/2 fliplr(ye)+d/2;ye+d/2 fliplr(ye)-d/2];%桌面在y轴上的数据,fliplr函数实现矩阵的左右翻转

Ty=Ty(:);

legx=[hL*ones(size(xe));hL*ones(size(xe));xe;xe]; %桌腿数据

legy=[ye-d/2;ye+d/2;ye+d/2;ye-d/2];

legz=zeros(size(legx));

zhoux=[hL-legL(1)/2;hL-legL(1)/2];

zhouy=[-R R];

zhouz=[0;0]; %钢筋轴数据

yb=linspace(ye(1),ye(end),50);

xb=sqrt(R^2-yb.^2);

Bx=hL*ones(size(xb));

By=yb;

Bz=zeros(size(xb)); %腿尖曲线数据

figure(1),clf;%画底图,清除以前的图片

hold on

h1=patch(Tx,Ty,Tz,'facecolor',[1 1 1],'edgecolor',[0 0 0]);%画桌面

h2=patch(legx,legy,legz,'facecolor',[1 1 1],'edgecolor',[0 0 0]);%画桌腿

h3=patch(-legx,legy,legz,'facecolor',[1 1 1],'edgecolor',[0 0 0]);%画桌腿

h4=plot3(zhoux,zhouy,zhouz,'c');

h5=plot3(-zhoux,zhouy,zhouz,'c');%画钢筋轴

h6=plot3(Bx,By,Bz,'k');

h7=plot3(-Bx,By,Bz,'k');%腿尖曲线

hold off;view(3);axis equal;axis([-hL hL -R R 0 2*hH]);axis off;

zz=-hH*sind(deg);xz=xe(1)+hH*cosd(deg); %钢筋轴,z坐标和x坐标

alldeg=atan2(-zz*ones(size(xe)),xz-xe); %每个条腿折叠角度,20个

allx=legL.*cos(alldeg)+xe; %每条腿末端x坐标,20个

allz=-legL.*sin(alldeg); %每条腿末端z坐标,20个

alldeg2=atan2(-zz*ones(size(xb)),xz-xb);

Bx=(hL-xb).*cos(alldeg2)+xb;Bz=-(hL-xb).*sin(alldeg2);%腿尖曲线x数据

minz=min(Bz); %最低腿z坐标,桌子当前高度

legx=[allx;allx;xe;xe]; %桌腿数据

legz=[allz;allz;zeros(size(allz));zeros(size(allz))]-minz;

set(h1,'ZData',-minz*ones(size(Tz)));

set(h2,'XData',legx,'ZData',legz);set(h3,'XData',-legx,'ZData',legz);

set(h4,'XData',[xz;xz],'ZData',[zz;zz]-minz);

set(h5,'XData',-[xz;xz],'ZData',[zz;zz]-minz);

set(h6,'XData',Bx,'ZData',Bz-minz);set(h7,'XData',-Bx,'ZData',Bz-minz);

pause(0.1);drawnow;

caochang=sqrt((xe-xe(1)).^2+hH.^2-2*hH.*(xe-xe(1)).*cos(alldeg))-(legL-hH)

程序三:问题一求桌脚边缘线的程序

i=0:9;

y=1.25:2.5:23.75

h=50;

b=25-2.5*i;

r=25;

a=sqrt(r*r-b.*b);

c=60-a

k=sqrt((c(1,1)-sqrt((c(1,1)./2).*(c(1,1)./2)-(h./2).*(h./2))-c).*(c(1,1)-sqrt((c(1,1)./2).*(c(1,1)./2)-(h./2 ).*(h./2))-c)+(h./2).*(h./2))-(c-c(1,1)./2);

e1=66;

x=c(1,1).*cos(e1)-(60-c-c.*(60-c-c(1,1)./2.*cos(e1))./(c+k))

z=c(1,1)*sin(e1)-c.*(c(1,1).*sin(e1)./(c(1,1)+2*k))

plot3(x,y,z)

程序四、问题二求桌高70 cm,桌面直径80 cm的情形,最优设计加工参数的matlab程序function f=fun1(x);

f=x(1)

function [g,ceq]=mycon(x)

g=[x(1).^2/4+x(5).^2+x(2).^2-x(1).*x(5)-1600;x(4).*x(6)-80;x(5).^2+x(7).^2-x(3).^2-2*x(4)*x(5)-2 *x(4).*x(7)+2*x(5).*x(7)+x(4).^2.*x(6).^2+x(3).^2.*x(6).^2+2*x(3).*x(7)-2*x(3).*x(7)-2*x(3).*x(

4).*x(6).^2-x(8).^2;x(1)/4.*x(1).^2+x(2).^2+x(4).^2-x(1).*x(4)-80*x(2).^2;x(4).^2-x(4).^2.*x(6).^2 +x(3).^2-x(3).^2.*x(6).^2-x(3).*x(4)+2*x(3).*x(4).*x(6).^2-x(8).^2;70*x(4)-70*x(3)-x(4).*x(9);-x( 5).^2+x(7).^2+x(9).^2];

x0=[1,1,1,1,1,1,1,1,1,1];

A=[];b=[];

Aeq=[];beq=[];

vlb=[];vub=[];

[x,fval]=fmincon('fun1',x(0),A,b,Aeq,beq,vlb,vub,'mycon')

程序五、问题三动态图程序

clear

L=120;D=50;d=2.5;hL=L/2;R=D/2; %木板长,宽;腿木条宽;半长;圆桌面半径

deg=75

ye=-R+d/2:d:R-d/2;

x1=0+d/2:d:R-d/2

x2=23.75-(d/2:d:R)+d/2

x3=[x1;x2]

x4=x3'

xe1=x4(:)

xe=xe1'%折叠点的y坐标,x坐标,各20个;

legL=hL-xe%腿长度,20个;

hH=legL(1)/2;ddeg=2; %最长腿半长;角度增量

Tx=[xe -xe;xe -xe];Tx=Tx(:);Tz=zeros(size(Tx)); %桌面数据

Ty=[ye-d/2 fliplr(ye)+d/2;ye+d/2 fliplr(ye)-d/2];%桌面在y轴上的数据,fliplr函数实现矩阵的左右翻转

Ty=Ty(:);

legx=[hL*ones(size(xe));hL*ones(size(xe));xe;xe]; %桌腿数据

legy=[ye-d/2;ye+d/2;ye+d/2;ye-d/2];legz=zeros(size(legx));

zhoux=[hL-legL(1)/2;hL-legL(1)/2];zhouy=[-R R];zhouz=[0;0]; %钢筋轴的数据

yb=linspace(ye(1),ye(end),50);xb=sqrt(R^2-yb.^2);

Bx=hL*ones(size(xb)); By=yb; Bz=zeros(size(xb)); %腿尖曲线数据

figure(1),clf;%画底图,清除以前的图片

hold on

h1=patch(Tx,Ty,Tz,'facecolor',[1 1 1],'edgecolor',[0 0 0]);%画桌面

h2=patch(legx,legy,legz,'facecolor',[1 1 1],'edgecolor',[0 0 0]);画桌腿

h3=patch(-legx,legy,legz,'facecolor',[1 1 1],'edgecolor',[0 0 0]);画桌腿

h4=plot3(zhoux,zhouy,zhouz,'c');h5=plot3(-zhoux,zhouy,zhouz,'c');%画钢筋轴

h6=plot3(Bx,By,Bz,'k');h7=plot3(-Bx,By,Bz,'k');%腿尖曲线

hold off;view(3);axis equal;axis([-hL hL -R R 0 2*hH]);axis off;

for deg=0:ddeg:75 %最长桌腿相对桌面折叠角度

zz=-hH*sind(deg);xz=xe(1)+hH*cosd(deg); %钢筋轴,z坐标和x坐标

alldeg=atan2(-zz*ones(size(xe)),xz-xe); %每个条腿折叠角度,20个

allx=legL.*cos(alldeg)+xe; %每条腿末端x坐标,20个

HIMCM 2014美国中学生数学建模竞赛试题

HIMCM 2014美国中学生数学建模竞赛试题 Problem A: Unloading Commuter Trains Trains arrive often at a central Station, the nexus for many commuter trains from suburbs of larger cities on a “commuter” line. Most trains are long (perhaps 10 or more cars long). The distance a passenger has to walk to exit the train area is quite long. Each train car has only two exits, one near each end so that the cars can carry as many people as possible. Each train car has a center aisle and there are two seats on one side and three seats on the other for each row of seats.To exit a typical station of interest, passengers must exit the car, and then make their way to a stairway to get to the next level to exit the station. Usually these trains are crowded so there is a “fan” of passengers from the train trying to get up the stairway. The stairway could accommodate two columns of people exiting to the top of the stairs.Most commuter train platforms have two tracks adjacent to the platform. In the worst case, if two fully occupied trains arrived at the same time, it might take a long time for all the passengers to get up to the main level of the station.Build a mathematical model to estimate the amount of time for a passenger to reach the street level of the station to exit the complex. Assume there are n cars to a train, each car has length d. The length of the platform is p, and the number of stairs in each staircase is q. Use your model to specifically optimize (minimize) the time traveled to reach street level to exit a station for the following: 问题一:通勤列车的负载问题 在中央车站,经常有许多的联系从大城市到郊区的通勤列车“通勤”线到达。大多数火车很长(也许10个或更多的汽车长)。乘客走到出口的距离也很长,有整个火车区域。每个火车车厢只有两个出口,一个靠近终端, 因此可以携带尽可能多的人。每个火车车厢有一个中心过道和过道两边的座椅,一边每排有两个座椅,另一边每排有三个座椅。走出这样一个典型车站,乘客必须先出火车车厢,然后走入楼梯再到下一个级别的出站口。通常情况下这些列车都非常拥挤,有大量的火车上的乘客试图挤向楼梯,而楼梯可以容纳两列人退出。大多数通勤列车站台有两个相邻的轨道平台。在最坏的情况下,如果两个满载的列车同时到达,所有的乘客可能需要很长时间才能到达主站台。建立一个数学模型来估计旅客退出这种复杂的状况到达出站口路上的时间。假设一列火车有n个汽车那么长,每个汽车的长度为d。站台的长度是p,每个楼梯间的楼梯数量是q。使用您的模型具体来优化(减少)前往主站台的时间,有如下要求: Requirement 1. One fully occupied train's passengers to exit the train, and ascend the stairs to reach the street access level of the station. 要求1.一个满载乘客的火车,所有乘客都要出火车。所有乘客都要出楼梯抵达出主站台的路上。 Requirement 2. Two fully occupied trains' passengers (all passengers exit onto a common platform) to exit the trains, and ascend the stairs to reach the street access level

2014全国大学生数学建模竞赛A题论文解析

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题.我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出. 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性.如有违反竞赛规则的行为,将受到严肃处理. 我们参赛选择的题号是(从A/B/C/D中选择一项填写) 赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 赛区评阅记录(可供赛区评阅时使用): 评 阅 人 评 分 备 注 全国统一编号(由赛区组委会送交全国前编号): 全国评阅编号(由全国组委会评阅前进行编号):

嫦娥三号软着陆轨道设计与控制策略 摘要 本文针对嫦娥三号软着陆轨道设计与控制策略的实际问题,以理论力学(万有引力、开普勒定律、万能守恒定律等)和卫星力学知识为理论基础,结合微分方程和微元法,借助MATLAB软件解决了题目所要求解的问题。 针对问题(1),在合理的假设基础上,利用物理理论知识、解析几何知识和微元法,分析并求解出近月点和远月点的位置,即139.1097 。再运用能量守恒定律和相关数据,计算出速度 v(近月点的速度) 1 =1750.78/ v(远月点的速度)=1669.77/m s,,最后利用曲线的切线m s, 2 方程,代入点(近月点与远月点)的坐标求值,计算出方向余弦即为相应的速度方向。 针对问题(2) 关键词:模糊评判,聚类分析,流体交通量,排队论,多元非线性回归 一、问题重述 嫦娥三号于2013年12月2日1时30分成功发射,12月6日抵达月球轨道。嫦娥三号在着陆准备轨道上的运行质量为2.4t,其安装在下部的主减速发动机能够产生1500N到7500N的可调节推力,其比冲(即单位质量的推进剂产生的推力)为2940m/s,可以满足调整速度的控制要求。在四周安装有姿态调整发动机,在给定主减速发动机的推力方向后,能够自动通过多个发动机的脉冲组合实现各种姿态的调整控制。嫦娥三号的预定着陆点为19.51W,44.12N,海拔为-2641m(见附件1)。 嫦娥三号在高速飞行的情况下,要保证准确地在月球预定区域内实现软着陆,关键问题是着陆轨道与控制策略的设计。其着陆轨道设计的基本要求:着陆准备轨道为近月点15km,远月点100km的椭圆形轨道;着陆轨道为从近月点至着陆点,其软着陆过程共分为6个阶段(见附件2),要求满足每个阶段在关键点所处的状态;尽量减少软着陆过程的燃料消耗。 根据上述的基本要求,请你们建立数学模型解决下面的问题: (1)确定着陆准备轨道近月点和远月点的位置,以及嫦娥三号相应速度的大小与方向。 (2)确定嫦娥三号的着陆轨道和在6个阶段的最优控制策略。

数学建模练习试题

2011年数学建模集训小题目 1.求下列积分的数值解 ? +∞ +-?23 2 2 3x x x dx 2.已知)s i n ()()c o s (),(2h t h t h t e h t f h t ++++=+,dt h t f h g ?=10 ),()(,画出 ]10,10[-∈h 时,)(h g 的图形。 3.画出16)5(2 2=-+y x 绕x 轴一周所围成的图形,并求所产生的旋转体的体积。 4.画出下列曲面的图形 (1)旋转单叶双曲面 14 92 22=-+z y x ; (2)马鞍面xy z =; 5.画出隐函数1cos sin =+y x 的图形。 6.(1)求函数x x y -+=12 ln 的三阶导数; 法一:syms x y dy; >> y=log((x+2)/(1-x)); >> dy=diff(y,3) dy = (6/(1-x)^3+6*(x+2)/(1-x)^4)/(x+2)*(1-x)-2*(2/(1-x)^2+2*(x+2)/(1-x)^3)/(x+2)^2*(1-x)-2*(2/(1-x)^2+2*(x+2)/(1-x)^3)/(x+2)+2*(1/(1-x)+(x+2)/(1-x)^2)/(x+2)^3*(1-x)+2*(1/(1-x)+(x+2)/(1-x)^2)/(x+2)^2 (2)求向量]425.00[=a 的一阶向前差分。 7.求解非线性方程组 (1)?????=-+=-+060622x y y x (2)???=+=++5 ln 10tan 10cos sin y x y e y x 8.求函数186)(2 3-++=x x x x f 的极值点,并画出函数的图形。 9.某单位需要加工制作100套钢架,每套用长为2.9m ,2.1m 和1m 的圆钢各一根。已知原料长6.9m ,问应如何下料,使用的原材料最省。 10. 某部门在今后五年内考虑给下列项目投资,已知: 项目A ,从第一年到第四年每年年初需要投资,并于次年末回收本利115%; 项目B ,从第三年初需要投资,到第五年末能回收本利125%,但规定最大投资额不超过4万元;

西南大学2016年春《数学建模》作业及答案(已整理)(共5次)

西南大学2014年春《数学建模》作业及答案(已整理) 第一次作业 1:[填空题] 名词解释: 1.原型 2.模型 3.数学模型 4.机理分析 5.测试分析 6.理想方法 7.计算机模拟 8.蛛网模型 9.群体决策 10.直觉 11.灵感 12.想象力 13.洞察力 14.类比法 15.思维模型 16.符号模型 17.直观模型 18.物理模型19.2倍周期收敛20.灵敏度分析21.TSP问题22.随机存储策略23.随机模型24.概率模型25.混合整数规划26.灰色预测 参考答案: 1.原型:原型指人们在现实世界里关心、研究或者从事生产、管理的实际对象。2.模型:指为某个特定目的将原形的某一部分信息简缩、提炼而构造的原型替代物。3.数学模型:是由数字、字母或其它数字符号组成的,描述现实对象数量规律的数学公式、图形或算法。4.机理分析:根据对客观事物特性的认识,找出反映内部机理的数量规律,建立的模型常有明显的物理意义或现实意义。5.测试分析:将研究对象看作一个"黑箱”系统,通过对系统输入、输出数据的测量和统计分析,按照一定的准则找出与数据拟合得最好的模型。6.理想方法:是从观察和经验中通过想象和逻辑思维,把对象简化、纯化,使其升华到理状态,以其更本质地揭示对象的固有规律。7.计算机模拟:根据实际系统或过程的特性,按照一定的数学规律用计算机程序语言模拟实际运行情况,并依据大量模拟结构对系统或过程进行定量分析。8.蛛网模型:用需求曲线和供应曲线分析市场经济稳定性的图示法在经济学中称为蛛网模型。9.群体决策:根据若干人对某些对象的决策结果,综合出这个群体的决策结果的过程称为群体决策。10.直觉:直觉是人们对新事物本质的极敏锐的领悟、理解或推断。11.灵感:灵感是指在人有意识或下意识思考过程中迸发出来的猜测、思路或判断。12.想象力:指人们在原有知识基础上,将新感知的形象与记忆中的形象相互比较、重新组合、加工、处理,创造出新形象,是一种形象思维活动。13.洞察力:指人们在充分占有资料的基础上,经过初步分析能迅速抓住主要矛盾,舍弃次要因素,简化问题的层次,对可以用那些方法解决面临的问题,以及不同方法的优劣作出判断。14.类比法:类比法注意到研究对象与以熟悉的另一对象具有某些共性,比较二者相似之处以获得对研究对象的新认识。15.思维模型:指人们对原形的反复认识,将获取的知识以经验的形式直接储存于人脑中,从而可以根据思维或直觉作出相应的决策。16.符号模型:是在一定约束条件或假设下借助于专门的符号、线条等,按一定形式组合起来描述原型。17.直观模型:指那些供展览用的实物模型以及玩具、照片等,通常是把原型的尺寸按比例缩小或放大,主要追求外观上的逼真。18.物理模型:主要指科技工作者为一定的目的根据相似原理构造的模型,它不仅可以显示原型的外形或某些特征,而且可以用来进行模拟实验,间接地研究原型的某些规律。19.2倍周期收敛:在离散模型中,如果一个数列存在两个收敛子列就称为2倍周期收敛。20.灵敏度分析:系数的每个变化都会改变线性规划问题,随之也会影响原来求得的最优解。为制定一个应付各种偶然情况的全能方法,必须研究以求得的最优解是怎样随输入系数的变化而变化的。这叫灵敏性分析。21.TSP问题:在加权图中寻求最佳推销员回路的问题可以转化为在一个完备加权图中寻求最佳哈密顿圈的问题,称为TSP问题。22.随机存储策略:商店在订购货物时采用的一种简单的策略,是制定一个下界s和一个上界S,当周末存货不小于s时就不定货;当存货少于s 时就订货,且定货量使得下周初的存量达到S,这种策略称为随机存储策略。23.随机模型:如果随机因素对研究对象的影响必须考虑,就应该建立随机性的数学模型,简称为随机模型。24.概

2014年第十一届五一数学建模联赛A优秀论文

承诺书 我们仔细阅读了五一数学建模联赛的竞赛规则。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与本队以外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其它公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们愿意承担由此引起的一切后果。 我们授权五一数学建模联赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号为(从A/B/C中选择一项填写): A 我们的参赛报名号为: 参赛组别(研究生或本科或专科): 所属学校(请填写完整的全名) 参赛队员(打印并签名) :1. 2. 3. 日期:年月日 获奖证书邮寄地址:邮政编码

编号专用页 竞赛评阅编号(由竞赛评委会评阅前进行编号): 裁剪线裁剪线裁剪线竞赛评阅编号(由竞赛评委会评阅前进行编号): 参赛队伍的参赛号码:(请各参赛队提前填写好):

题 目 对黑匣子落水点的分析和预测 摘 要 本文通过对飞机以及黑匣子受力情况进行分析,构建正交分解模型,得出飞机的坠落轨迹和黑匣子的落水点,及黑匣子在水中的移动情况。 问题一要求在考虑空气气流影响的前提下,建立数学模型,描述飞机坠落轨迹并推测黑匣子的落水点。本文对飞机失去动力后的全过程建立动力学方程: 22d r m mg f dt =-+ 然后对动力学方程进行正交分解,在水平和竖直方向上分别进行分析,根据伯努利方程求得升力的计算公式,得出飞机在刚刚失去动力时,升力大于重力,所以飞机会先上升一段距离,随着水平速度的减小,升力也逐渐减小,然后飞机再下降,通过模拟计算可以得出当飞机坠落至失事点下10000m 时,飞机坠入海面,其飞行速度为515.994m s ,飞机向东北方向飞行了28697m 。 问题二要求建立数学模型,描述黑匣子在水中沉降过程轨迹,并指出它沉在海底的位置所在的区域范围。由于不用考虑洋流,黑匣子所受到的力中仅有水的阻力是变化的,其重力和浮力始终保持恒定,根据黑匣子的移动速度,得出相应的阻力和加速度。在不同的速度范围内,使用不同的阻力公式,计算出相应的移动距离并作出轨迹图。发现在水平方向仅漂出161.095m ,速度几乎为零,因此黑匣子在I 区域内。 问题三要求描述黑匣子沉降轨迹方程,并求解出黑匣子沉入水下1000m ,2000m 和3000m 时离落水点的方位。根据问题一中得出的结果,可以大致判断出黑匣子的经纬度,查得当地的洋流为南赤道暖流,为风海流,仅在海面表层运动,因此也仅需要在海面下300m 考虑洋流的影响。经过计算发现洋流对黑匣子漂流方向的影响极小,速度上的影响也很小,在1000m 之下的过程中也仅做垂直运动。 关键词 正交分解 模拟计算 微分方程 伯努利方程

数学建模作业

习 题 1 1. 请编写绘制以下图形的MA TLAB 命令,并展示绘得的图形. (1) 221x y +=、224x y +=分别是椭圆2241x y +=的内切圆和外切圆. (2) 指数函数x y e =和对数函数ln y x =的图像关于直线y=x 对称. (3) 黎曼函数 1, (0)(0,1) 0 , (0,1), 0,1 q x p q q x y x x x =>∈?=? ∈=?当为既约分数且当为无理数且或者 的图像(要求分母q 的最大值由键盘输入). 3. 两个人玩双骰子游戏,一个人掷骰子,另一个人打赌掷骰子者不能掷出所需点数,输赢的规则如下:如果第一次掷出3或11点,打赌者赢;如果第一次掷出2、7或12点,打赌者输;如果第一次掷出4、5、6、8、9或10点,记住这个点数,继续掷骰子,如果不能在掷出7点之前再次掷出该点数,则打赌者赢. 请模拟双骰子游戏,要求写出算法和程序,估计打赌者赢的概率. 你能从理论上计算出打赌者赢的精确概率吗?请问随着试验次数的增加,这些概率收敛吗?

4. 根据表1.14的数据,完成下列数据拟合问题: (1) 如果用指数增长模型0()0()e r t t x t x -=模拟美国人口从1790年至2000年的变化过程,请用MATLAB 统计工具箱的函数nlinfit 计算指数增长模型的以下三个数据拟合问题: (i) 取定0x =3.9,0t =1790,拟合待定参数r ; (ii) 取定0t =1790,拟合待定参数0x 和r ; (iii) 拟合待定参数0t 、0x 和r . 要求写出程序,给出拟合参数和误差平方和的计算结果,并展示误差平方和最小的拟合效果图. (2) 通过变量替换,可以将属于非线性模型的指数增长模型转化成线性模型,并用MA TLAB 函数polyfit 进行计算,请说明转化成线性模型的详细过程,然后写出程序,给出拟合参数和误差平方和的计算结果,并展示拟合效果图. (3) 请分析指数增长模型非线性拟合和线性化拟合的结果有何区别?原因是什么? (4) 如果用阻滞增长模型00 () 00()()e r t t Nx x t x N x --= +-模拟美国人口从1790年至2000年的变化过程,请用MA TLAB 统计工具箱的函数nlinfit 计算阻滞增长模型的以下三个数据拟合问题: (i) 取定0x =3.9,0t =1790,拟合待定参数r 和N ; (ii) 取定0t =1790,拟合待定参数0x 、r 和N ; (iii) 拟合待定参数0t 、0x 、r 和N . 要求写出程序,给出拟合参数和误差平方和的计算结果,并展示误差平方和最小的拟合效果图. 年份 1790 1800 1810 1820 1830 1840 1850 1860 1870 1880 1890

2014年美国数学建模大赛(MCM)试题译文

2014年美国数学建模大赛(MCM)试题译文 王景璟大连理工大学 问题A:超车之外靠右行原则 在一些开车必须靠右行驶的国家(比如:美国,中国,以及其他除了英国,澳大利亚,和一些前英国殖民地的国家),行驶在多车道高速路必须遵循一个规则,那就是要求驾驶员在超车之外的情况下,必须在最靠右的车道行驶,超车时,他们向左变道,超车,然后再回到之前行驶的车道。 构建一个数学模型来分析该规则在车流量很少和很大的时候的执行情况。你最好能考察车流量与安全的之间的相互关系,过低或是过量的速度限制的作用(速度设置过低或是过高),以及/或者其他在该问题陈述中没有明确提到的因素。该原则是否能有效促进更好的车流量?如果无效,请建议和分析其他更有助于提高车流量、安全、以及其他你认为重要的因素的其他方案(可以完全不包括该原则)。 在开车靠左行的国家,讨论一下你的方案在经过对方向的简单修改之后或是添加额外的要求之后是否也适用。 最后,以上原则取决于人们遵循交通规则的判断力。如果道路上的车流完全在智能系统(要么是道路体系的一部分,要么是包含在使用道路的所有车辆的设计之中)的控制之下,该改变在多大程度上会影响你先前分析的结果? 问题B: 大学教练联盟 《体育画报》,一本体育爱好者的杂志,正在寻找上世纪“最好的大学教练”,包括男性和女性。建立一个数学模型以从诸如大学曲棍球,曲棍球,橄榄球,棒球,垒球,篮球,或足球等运动的男性或女性教练中选出最好的一个教练或几个教练(过去的或现在的)。分析中使用的时间分界线是否有影响?即在1913执教和在2013年执教有不同吗?清晰地表达你们模型中的评判标准。讨论你们的模型如何能广泛地应用于两种性别及所有可能的体育运动。分别选出你模型中3种不同运动的前5位教练。 除了MCM格式及要求,准备一篇1-2页的文章给《体育画报》以解释你们的结论并包括一份能让体育迷们看懂的对你们数学模型的非技术性解释。 问题C:使用网络模型测量影响力

2014年数学建模国家一等奖优秀论文设计

2014高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参 赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括、电子、网上咨询等) 与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或 其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文 引用处和参考文献中明确列出。 我们重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违 反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展 示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的报名参赛队号为(8位数字组成的编号): 所属学校(请填写完整的全名): 参赛队员 (打印并签名) :1. 2. 3.

指导教师或指导教师组负责人 (打印并签名): (论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。) 日期: 2014 年 9 月 15日赛区评阅编号(由赛区组委会评阅前进行编号):

2014高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):

2014年美赛数学建模A题翻译版论文

数学建模竞赛(MCM / ICM)汇总表 基于细胞的高速公路交通模型 自动机和蒙特卡罗方法 总结 基于元胞自动机和蒙特卡罗方法,我们建立一个模型来讨论“靠右行”规则的影响。首先,我们打破汽车的运动过程和建立相应的子模型car-generation的流入模型,对于匀速行驶车辆,我们建立一个跟随模型,和超车模型。 然后我们设计规则来模拟车辆的运动模型。我们进一步讨论我们的模型规则适应靠右的情况和,不受限制的情况, 和交通情况由智能控制系统的情况。我们也设计一个道路的危险指数评价公式。 我们模拟双车道高速公路上交通(每个方向两个车道,一共四条车道),高速公路双向三车道(总共6车道)。通过计算机和分析数据。我们记录的平均速度,超车取代率、道路密度和危险指数和通过与不受规则限制的比较评估靠右行的性能。我们利用不同的速度限制分析模型的敏感性和看到不同的限速的影响。左手交通也进行了讨论。 根据我们的分析,我们提出一个新规则结合两个现有的规则(靠右的规则和无限制的规则)的智能系统来实现更好的的性能。1介绍 1.1术语 1.2假设 2模型 2.1设计的元胞自动机 2.2流入模型 2.3跟随模型 2.4超车模型 2.4.1超车概率 2.4.2超车条件 2.4.3危险指数 2.5两套规则CA模型 2.5.1靠右行 2.5.2无限制行驶规则 3补充分析模型 3.1加速和减速概率分布的设计 3.2设计来避免碰撞 4模型实现与计算机 5数据分析和模型验证 5.1平均速度 5.2快车的平均速度 5.3密度 5.4超车几率 5.5危险指数 6在不同速度限制下敏感性评价模型 7驾驶在左边 8交通智能系统 8.1智能系统的新规则

2014年下学期数学实验与数学建模作业习题8

2014年下学期数学实验与数学建模作业习题8 1.轮船的甲板成近似半椭圆面形为了得到甲板的面积。首先测量得到横向最大相间8.534米;然后等间距地测得纵向高度,自左向右分别为:0.914, 5.060, 7.772, 8.717, 9.083, 9.144, 9.083, 8.992, 8.687, 7.376, 2.073,计算甲板的面积。 【1】命令: x=0:0.711:8.534; y2=[0,0.914^2,5.060^2,7.772^2,8.717^2,9.083^2,9.144^2,9.083^2,8.992^2, 8.687^2,7.376^2,2.073^2,0]; %plot(x,y2,'*'); a=polyfit(x,y2,2) 【2】结果: a = -5.2832 46.5248 -16.7465 得y^2=-5.2832*x^2+46.5248*x-16.7465,即y^2/85.68+(x-4.4031)^2/16.2175=1 故面积=0.5*a*b*pi=58.56. 2.物体受水平方向外力作用,在水平直线上运动。测得位移与受力如表8.1 表8.1 X 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 F 20 21 21 20 19 18.5 18.0 13.5 9 4.5 0 求(a) 物体从位移为0到0.4所做的功; (b) 位移为0.4时的速度是多少? 【1】命令: x=0:0.1:1.0; f=[20,21,21,20,19,18.5,18.0,13.5,9,4.5,0]; plot(x,f,'*');hold on; a=polyfit(x,f,2) f2=-34.4988*x.*x+14.8625*x+19.5979; plot(x,f2); syms t y=-34.4988*t.*t+14.8625*t+19.5979; w=vpa(int(y,t,0,0.4),8) V=diff(y);t=2;v=eval(V)

如何撰写数学建模论文

如何撰写数学建模论文 如何撰写数学建模论文 兼谈数学建模竞赛答卷要求 当我们完成一个数学建模的全过程后,就应该把所作的工作进行小结,写成论文。撰写数学建模论文和参加大学生数学建模时完成答卷,在许多方面是类似的。事实上数学建模竞赛也包含了学生写作能力的比试,因此,论文的写作是一个很重要的问题。 首先要明确撰写论文的目的。数学建模通常是由一些部门根据实际需要而提出的,也许那些部门还在经济上提供了资助,这时论文具有向特定部门汇报的目的,但即使在其他情况下,都要求对建模全过程作一个全面的、系统的小结,使有关的技术人员(竞赛时的阅卷人员)读了之后,相信模型假设的合理性,理解在建立模型过程中所用数学方法的适用性,从而确信该模型的数据和结论,放心地应用于实践中。当然,一篇好的论文是以作者所建立的数学模型的科学性为前提的。 其次,要注意论文的条理性。 下面就论文的各部门应当注意的地方具体地来作一些分析。 (一)问题提出和假设的合理性 在撰写论文时,应该把读者想象为对你所研究的问题一无所知或知之甚少的一个群体,因此,首先要简单地说明问题的情景,即要说清事情的来龙去脉。列出必要数据,提出要解决的问题,并给出研究对象的关键信息的内容,它的目的在于使读者对要解决的问题有一个印象,以便擅于思考的读者自己也可以尝试解决问题。历届数学建模竞赛的试题可以看作是情景说明的范例。 对情景的说明,不可能也不必要提供问题的每个细节。由此而来建立数学模型还是不够的,还要补充一些假设,模型假设是建立数学模型中非常关键的一步,关系到模型的成败和 优劣。所以,应该细致地分析实际问题,从大量的变量中筛选出最能表现问题本质的变量,并简化它们的关系。这部分内容就应该在论文的“问题的假设”部分中体现。由于假设一般不是实际问题直接提供的,它们因人而异,所以在撰写这部分内容时要注意以下几方面: (1)论文中的假设要以严格、确切的数学语言来表达,使读者不致产生任何曲解。 (2)所提出的假设确实是建立数学模型所必需的,与建立模型无关的假设只会扰乱 读者的思考。 (3)假设应验证其合理性。假设的合理性可以从分析问题过程中得出,例如从问题

2014年数学建模国家一等奖优秀论文

承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写):B 我们的报名参赛队号为(8位数字组成的编号): 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3. 指导教师或指导教师组负责人(打印并签名): (论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。) 日期:2014 年 9 月 15日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

创意平板折叠桌 摘要 目前住宅空间的紧张导致越来越多的折叠家具的出现。某公司设计制作了一款折叠桌以满足市场需要。以此折叠桌为背景提出了三个问题,本文运用几何知识、非线性约束优化模型等方法成功解决了这三个问题,得到了折叠桌动态过程的描述方程以及在给定条件下怎样选择最优设计加工参数,并针对任意形状的桌面边缘线等给出了我们的设计。 针对问题一,根据木板尺寸、木条宽度,首先确定木条根数为19根,接着,根据桌子是前后左右对称的结构,我们只以桌子的四分之一为研究对象,运用空间几何的相关知识关系,推导并建立了几何模型。接着用MATLAB软件编程,绘制出折叠桌动态变化过程图。然后求出折叠桌各木条相对桌面的角度、各木条长度、各木条的开槽长度等数据,相关结果见表1。然后建立相应的三维坐标系,求出桌角各端点坐标,绘出桌角边缘线曲线图,并用MATLAB工具箱作拟合,求出桌角边缘线的函数关系式,并对拟合效果做分析(见表3)。 针对问题二,在折叠桌高度、桌面直径已知情况下,综合考虑桌子稳固性、加工方便、用材最少三个方面因素,我们运用材料力学等相关知识,对折叠桌作受力分析,确定稳固性、加工方便、用材最少三个方面因素间的相互制约关系,建立非线性优化模型。用lingo软件编程,求出对于高70 cm,桌面直径80 cm的折叠桌,平板尺寸172.24cm×80cm×3cm、钢筋位置在桌腿上距离铰链46.13cm处、各木条的开槽长度(见表3)、最长木条(桌脚)与水平面夹角71.934°。 针对问题三,对任意给出的桌面边缘线(f(x)),不妨假定曲线是对称的(否则,桌子的稳定性难以保证),将对称轴上n等份,依照等份点沿着木板较长方向平行的方向下料,则这些点即是铰接处到木板中垂线(相对于木板长方向)的距离。然后修改问题二建立的优化模型,用lingo软件编程,得到最优设计加工参数(平板尺寸、钢筋位置、开槽长度等)。最后,我们根据所建立的模型,设计了一个桌面边缘线为椭圆的折叠桌,并且给出了8个动态变化过程图(见图10)和其具体设计加工参数(见表5)。 最后,对所建立的模型和求解方法的优缺点给出了客观的评价,并指出了改进的方法。 关键字:折叠桌曲线拟合非线性优化模型受力分析

2011年全国大学生数学建模竞赛测试试题

2011年全国大学生数学建模竞赛测试试题(A) 时量:180分钟满分:150分 院系:专业:学号:姓名: 一、选择题(2分/题×10题=20分) 1、Matlab程序设计中清除当前工作区的变量x,y的命令是( c ) A.clc x,y B.clear(x y) C.clear x y D.remove(x,y) 2、关于Matlab程序设计当中变量名和函数名的描述,下述说法正确的是( B ) A.都不区分大小写 B.都区分大小写 C.变量名区分,函数名不区分 D. 变量名区分,函数名不区分 3、MA TLAB软件中,把二维矩阵按一维方式寻址时的寻址访问是按(B)优先的。 A.行 B.列 C.对角线 D.左上角 4、关于矩阵上下拼接和左右拼接的方式中,下列描述是正确的是( D ) A.上下拼接的命令为C=[A, B],要求矩阵A, B的列数相同; B.左右拼接的命令为C=[A; B],要求矩阵A, B的行数相同; C.上下拼接的命令为C=[A; B],要求矩阵A, B的行数相同; D.左右拼接的命令为C=[A, B],要求矩阵A, B的行数相同。 5、Matlab命令a=[65 72 85 93 87 79 62 73 66 75 70];find(a>=70 & a<80)得到的结果为(C ) A.[72 79 73 75] B.[72 79 73 75 70] C.[2 6 8 10 11] D.[0 1 0 0 0 1 0 1 0 1 1] 6、矩阵(或向量)的范数是用来衡量矩阵(或向量)的(A)的一个量 A.维数大小 B.元素的值的绝对值大小 C.元素的值的整体差异程度 D.所有元素的和 7、计算非齐次线性方程组AX=b的解可转化为计算矩阵X=A-1b,可以用Matlab的命令(A)实现 A.左除命令x=A\b B.左除命令x=A/b C.右除命令x=A\b D.右除命令x=A/b 8、关于Matlab的矩阵命令与数组命令,下列说法正确的是(b) A.矩阵乘A*B是指对应位置元素相乘 B.矩阵乘A.*B是指对应位置元素相乘 C.数组乘A.*B是指对应位置元素相乘 D.数组乘A*B是指对应位置元素相乘 9、生成5行4列,并在区间[1:10]内服从均分布的随机矩阵的命令是(d) A.rand(5,4)*10 B.rand(5,4,1,10) C.rand(5,4)+10 D.rand(5,4)*9+1 10、关于Matlab的M文件的描述中,以下错误的是( d ) A、Matlab的M 文件有脚本M文件和函数M文件两种; B、Matlab的函数M文件中要求首行必须以function顶格开头;

网络学院数学建模作业题

网络学院数学建模作业题

数学建模作业题 注意事项: 作业共十题,每题十分,全部是比较简单的建模计算题,题目既是课本上的习题,在课本304~315有参考解答,又是在线题库的题目,在题库里有更详细的解答。学员应该先自己动脑筋解决,然后才参考一下课本及题库的解答。 评分高低主要是看完成作业的态度、独立程度和表达清晰程度。 上传的作业必须是包括全部作业的单独一份word文档,必须自己录入,不允许扫描,不允许直接插入题库答案中的图片。严重违反者,不及格。 请于有效期结束前两周提交上传作业,教师尽快批改,请学员有效期结束前一周查看成绩,不及格的学员可以在课程答疑栏目提出或者课程论坛提出重交申请,教师删除原作业后,这些学员可以在有效期结束前之前重交作业。每人只有一次重交机会。 作业题与考试相关(当然不会一模一样),认真完成作业的学员,必将在考试取得好成绩。 一、教材76页第1章习题1第7题(来自高中数学课本的数学探究问题,满分10分) 表1.17是某地一年中10天的白昼时间(单位:小时),请选择合适的函数模型,并进行数据拟合. 日期1月1日2月28日3月21日4月27日5月6日

白昼时间 5.59 10.23 12.38 16.39 17.26 日期 6月21日 8月14日 9月23日 10月25日 11月21日 白昼时间 19.40 16.34 12.01 8.48 6.13 解:根据地理常识,某地的白昼时间是以一年为周期而变化的,以日期在一年中序号为自变量x ,以白昼时间为因变量y ,则根据表1.17的数据可知在一年(一个周期)内,随着x 的增加,y 大约在6月21日(夏至)达到最大值,在12月21日(冬至)达到最小值,在3月21日(春分) 或9月21日(秋分)达到中间值。选择函数y=(b x A ++)3652sin(?π)作为函数值。根据表1.17的数据,推测A ,b 和?的值, 作非线性拟合得385.123712.13652sin(9022.6+-=x y π,预测该地12月21日的白昼时间为5.49小时。 二、教材100页第2章习题2第1题(满分10分) 继续考虑第2.2节“汽车刹车距离”案例,请问“两秒准则”和“一车长度准则”一样吗?“两秒准则”是否足够安全?对于安全车距,你有没有更好的建议? 解:“两秒准则”表明前后车距D 与车速v 成正比例关系v K D 2 =,其中s K 22 =,对于小型汽车,“一车长度准则”与“两秒准则”不一致。由)]([1 2 2 K K v K v D d --=-可以计算得到当D d h km K K K v <=-<时有/428.542 12 ,“两秒准则”足够安全,或者把刹车距离实测数据和“两秒准则”都画在同一幅图中,根据图形指出“两秒准则”足够安全的车速范围。用最大刹车距离除以车速,得到最大刹车距离所需的尾随时间,并以尾随时间为依据,提出更安全的准则,如“3秒准则”、“4

数学建模一周作业题目

对作业题目的说明 1. 本次数学建模周一共提供十五道题目供大家选择。每支队伍(2-3人/队)必须从以下题目中任意选取一题(只须选择一道),并完成一篇论文,对论文的具体要求参阅《论文格式规范》。 2. 题目标注为“A ”的为有一定难度的题目,指导老师会根据题目的难度对论文最后的评分进行调整。 (一)乒乓球赛问题 (A) A 、 B 两乒乓球队进行一场五局三胜制的乒乓球赛,两队各派3名选手上场,并各有3种选手的出场顺序(分别记为123,,ααα 和123,,βββ)。根据过去的比赛记录,可以预测出如果A 队以i α次序出场而B 队以j β次序出场,则打满5局A 队可胜 ij a 局。由此得矩阵()ij R a =如下: 12 3 1232 140345 3 1R βββααα?? = ? ? ??? (1) 根据矩阵R 能看出哪一队的实力较强吗? (2) 如果两队都采取稳妥的方案,比赛会出现什么结果? (3) 如果你是A 队的教练,你会采取何种出场顺序? (4) 比赛为五战三胜制,但矩阵R 中的元素却是在打满五局的情况下得到 的,这样的数据处理和预测方式有何优缺点? (二)野兔生长问题 在某地区野兔的数量在连续十年的统计数量(单位十万)如下: 分析该数据,得出野兔的生长规律。 并指出在哪些年内野兔的增长有异常现象,

预测T=10 时野兔的数量。 (三)停车场的设计问题 在New England的一个镇上,有一位于街角处面积100 200平方英尺的停车场,场主请你代为设计停车车位的安排方式,即设计在场地上划线的方案。 容易理解,如果将汽车按照与停车线构成直角的方向,一辆紧挨一辆地排列成行,则可以在停车场内塞进最大数量的汽车,但是对于那些缺乏经验的司机来说,按照这种方式停靠车辆是有困难的,它可能造成昂贵的保险费用支出。为了减少因停车造成意外损失的可能性,场主可能不得不雇佣一些技术熟练的司机专门停车;另一方面,如果从通道进入停车位有一个足够大的转弯半径,那么,看来大多数的司机都可以毫无困难地一次停车到位。当然通道越宽,场内所容纳的车辆数目也越少,这将使得场主减少收入。 请你通过建模的计算结果,来给出一个合理的设计方案。 (四)奖学金的评定(A) 背景 A Better Class (ABC)学院的一些院级管理人员被学生成绩的评定问题所困 ),这使得扰。平均来说,ABC的教员们一向打分较松(现在所给的平均分是A — 无法对好的和中等的学生加以区分。然而,某项十分丰厚的奖学金仅限于资助占总数10%的最优秀学生,因此,需要对学生排定名次。 教务长的想法是在每一课程中将每个学生与其他学生加以比较,运用由此得到的信息构造一个排名顺序。例如,某个学生在一门课程中成绩为A,而在同一课程中所有学生都得A,那么就此课而言这个学生仅仅属于“中等”。反之,如果一个学生得到了课程中唯一的A,那么,他显然处在“中等至上”水平。综合从几门不同课程所得到的信息,使得可以把所有学院的学生按照以10%划分等级顺序(最优秀的10%,其次的10%,等等)排序。 问题 , B+ ,…)这样的方式给出的,教务(1)假设学生成绩是按照(A+,A, A — 长的想法能否实现?

2015年数学建模作业题

数学模型课程期末大作业题 要求: 1)选题方式:共53题,每个同学做一题,你要做的题目编号是你的学号mod52所得的值+1。(例如:你的学号为119084157,则你要做的题为mod(119084157,52)+1=50)。 2)该类题目基本为优划问题,要求提交一篇完整格式的建模论文,文字使用小四号宋体,公式用word的公式编辑器编写,正文中不得出现程序以及程序冗长的输出结果,程序以附录形式附在论文的后面,若为规划求解必须用lingo 集合形式编程,其它可用Matlab或Mathmatica编写。 3)论文以纸质文档提交,同时要交一份文章和程序电子文档,由班长统一收上来,我要验证程序。 1、生产安排问题 某厂拥有4台磨床,2台立式钻床,3台卧式钻床,一台镗床和一台刨床,用以生产7种产品,记作p1至p7。工厂收益规定作产品售价减去原材料费用之余。每种产品单件的收益及所需各机床的加工工时(以小时计)列于下表(表1): 表 到6月底每种产品有存货50件。 工厂每周工作6天,每天2班,每班8小时。 不需要考虑排队等待加工的问题。 在工厂计划问题中,各台机床的停工维修不是规定了月份,而是选择最合

适的月份维修。除了磨床外,每月机床在这6个月中的一个月中必须停工维修;6个月中4台磨床只有2台需要维修。扩展工厂计划模型,以使可作上述灵活安排维修时间的决策。停工时间的这种灵活性价值若何? 注意,可假设每月仅有24个工作日。 5、生产计划 某厂有4台磨床,2台立钻,3台水平钻,1台镗床和1台刨床,用来生产7种产品,已知生产单位各种产品所需的有关设备台时以及它们的利润如表所示: 台镗床,4月—1台立钻,5月—1台磨床和1台立钻,6月—1台刨床和1台水平钻,被维修的设备在当月内不能安排生产。又知从1月到6月份市场对上述7种产品最大需求量如表所示: 量均不得超过100件。现在无库存,要求6月末各种产品各贮存50件。若该厂每月工作24天,每天两班,每班8小时,假定不考虑产品在各种设备上的加工顺序,要求: (a)该厂如何安排计划,使总利润最大; (b)在什么价格的条件下,该厂可考虑租用或购买有关的设备。 34、瓶颈机器上的任务排序 在工厂车间中,经常会出现整个车间的生产能力取决于一台机器的情况(例如,仅有一台的某型号机床,生产线上速度最慢的机器等)。这台机器就称为关键机器或瓶颈机器。此时很重要的一点就是尽可能地优化此机器将要处理的任务计划。

相关文档
最新文档