沉淀池设计与计算

沉淀池设计与计算
沉淀池设计与计算

第六节、普通沉淀池

沉淀池可分为普通沉淀池和浅层沉淀池两大类。按照水在池内的总体流向,普通沉淀池又有平流式、竖流式和辐流式三种型式。

普通沉淀池可分为入流区、沉降区、出流区、污泥区和缓冲区5个功能区。入流区和出流区的作用是进行配水和集水,使水流均匀地分布在各个过流断面上,为提高容积利用、系数和固体颗粒的沉降提供尽可能稳定的水力条件。沉降区是可沉颗粒与水分离的区域。污泥区是泥渣贮存、浓缩和排放的区域。缓冲层是分隔沉降区和污泥区的水层,防止泥渣受水流冲刷而重新浮起。以上各部分相互联系,构成一个有机整体,以达到设计要求的处理能力和沉降效率。

一、平流沉淀池

在平流沉淀池内,水是按水平方向流过沉降区并完成沉降过程的。图3-16是没有链带式刮泥机的平流沉淀池。废水由进水槽经淹没孔口进入池内。在孔口后面设有挡板或穿孔整流墙,用来消能稳流,使进水沿过流断面均匀分布。在沉淀池末端没有溢流堰(或淹没孔口)和集水槽,澄清水溢过堰口,经集水槽排出。在溢流堰前也设有挡板,用以阻隔浮渣,浮渣通过可转动的排演管收集和排除。池体下部靠进水端有泥斗,斗壁倾角为50°~60°,池底以0.01~0.02的坡度坡向泥斗。当刮泥机的链带由电机驱动缓慢转动时,嵌在链带上的刮泥板就将池底的沉泥向前推入泥斗,而位于水面的刮板则将浮渣推向池尾的排渣管。泥斗内设有排泥管,开启排泥阀时,泥渣便在静水压力作用下由排泥管排出池外。[显示图片]

链带式刮泥机的缺点是链带的支承和驱动件都浸没于水中,易锈蚀,难保养。为此,可改用桥式行车刮泥机,这种刮泥机不但运行灵活,而且保养维修都比较方便。对于较小的平流沉淀池,也可以不设刮泥设备,而在沿池的长度方向设置多个泥斗,每个泥斗各自单独排泥,既不相互干扰,也有利于保证污泥浓度。

沉淀池的设计包括功能构造设计和结构尺寸设计。前者是指确定各功能分区构件的结构形式,以满足各自功能的实现;后者是指确定沉淀池的整体尺寸和各构件的相对位置。设计良好的沉淀池应满足以下三个基本要求;有足够的沉降分离面积:有结构合理的人流相出流放置能均匀布水和集水;有尺寸适宝、性能良好的污泥和浮渣的收集和排放设备。

进行沉淀池设计的基本依据是废水流量、水中悬浮固体浓度和性质以及处理后的水质要求。因此,必须确定有关设计参数,其中包括沉降效率、沉降速度(或表面负荷)、沉降时间、水在池内的平均流速以及泥渣容重和含水率等。这些参数一般需要通过试验取得;若无条件,也可根据相似的运行资料,因地制宜地选用经验数据。以-萨按功能分区介绍设计和计算方法。

1.入流区和出流区的设计

入流和出流区设计的基本要求,是使废水尽可能均匀地分布在沉降区的各个过流断面,既有利于沉降,也使出水中不挟带过多的悬浮物。

常用的配水方式如图3-17。紧靠池壁内侧是一条横向配水槽,其后的人流装置可以有三种不同组合。溢流堰的堰口要确保水平;底孔应沿池宽等距离分布且大小相等;为了减弱射流对沉降的干扰,整流墙的开孔率应在10~20%,孔口的边长或直径应为50~150mm,最上一排孔口的上缘应在水面以下0.12~0.15m处,最下一排的下缘应在泥层以上0.3~O.5m处;挡板需高出水面0.15~0.2m,淹没深度不小于O.2m,距离进水口0.5~1.0m。[显示图片]

集水槽的布置有图3--18所示的三种基本方式。其中以(a)最为简单,但因长度短,流速大,容易挟带较多的悬浮物;(b)种加设了一组纵向支渠,水力条件最好,但结构较复杂。目前,也有在沉淀池中、后部加设横向中途集水槽的。出流口常采用溢流堰和淹没潜孔。前者可为自由堰,也可为锯齿形三角堰,堰前设置挡板,用以稳流和阻挡浮渣,挡板淹没深度为0.3~O.4m,距溢流堰O.25~O.5m。出水溢流堰不仅控制着池内水面的高崖,而且对水流的与勺分布和出入水质古重要影M向,由此堰白必匆严格水平,以征证堰负荷(即单位堰长在单位时间的排水量)适中且各处相等。在采用淹没潜孔时,要求孔径相等,并应沿池子宽度上均匀分布,淹没深度征0.15-0.2m。[显示图片]

2.沉降区的设计

沉降区设计的主要内容是确定沉降区的长、览、浇尺寸和沉淀池座数或分格数,其主要内容如下:

(1)由设计流量Q(m3/h)和表面负荷q(m3/m2.h),按A=Q/q计算沉降区表面积A(m2)。

(2)由与Q对应的水平流速v(mm/s)和沉降时间t,按L2=3.6vt计算沉降区长L2(m)。一般取v≤5mm/s;t取l.5~2.0h。(3)

按B2=A/L2计算池宽B2(m),并按L2/b=4~5的要求得单池或单格宽b(m)的近似尺寸。

(4)由n=B2/b确定沉淀池座数或分格数n。显然,由于n只能为正整数,而n、B2和b又互相关联,因此在确定n值后,需对b或B2作必要调整,但仍需满足L2/b≥4的要求。此外,在采用机械刮泥时,b值还必须与刮泥机的衍架宽度相匹配。为了便于检修倒换,n值不应小于2,但也不宜过大,以免增大造价。

3.污泥区的设计

污泥斗的容积可由排泥周期内沉降的泥渣量确定。泥渣体积V w(m3)按下式计算:

(3-22)

式中Q--废水设计流量,m3/h;

C和C--分别为进水和出水的SS浓度,mg/L;

P--泥渣含水率(%);

γ--泥渣容重,kg/m3,当泥渣主要为有机物且含水率在95%以上时,可取1000kg /m3;

T--排泥周期,一般取1~2d。

对倒正棱台形泥斗,其容积Vd(m3)按下式计算:

(3-23)

式中a1和a2--分别为泥斗上、下底边长,m;

h4--泥斗高度,m;,a为泥斗壁烦角,按污泥滑动性取450~600。

设m为沉淀池的泥斗数,如mV d≥V w,则能满足要求,否则应增加泥斗数或缩短排泥周期。

4.沉淀池的整体尺寸

设前、后挡板与进、出水口的距离分别为L1和L3,则沉淀池总长L(m)为:

(3-24)

设缓冲层高度为h3,当没有刮泥机时,h3=(h m+0.3),h m为刮泥板高度;不设刮泥机时,h3取O.5m。为了适

应冲击负荷的水位变化,有效水深以上应有保护高度h1,常取0.3m。故沉淀池总高H(m)为:

(3-25)

二、竖流沉淀池

竖流沉淀池多用于小流量废水中絮凝性悬浮固体的分离,池面多呈圆形或正多边形。图3-19为圆形竖流沉淀池的结构示意图,其上部圆筒形部分为沉降区,下部倒圆台部分为污泥区,二者之间有0.3~O.5m的缓冲层。沉淀池运行时,废水经进水管进入中心管,由管口出流后,借助反射板的阻挡向四周分布,并沿沉降区断面缓慢竖直上升。沉速大于水速的颗粒下沉到污泥区,澄清水则由周边的溢流堰溢入集水槽排出。溢流堰内侧设有半浸没式挡板来阻止浮渣被水带出。[显示图片]

竖流沉淀池的直径一般在4~8m,最大不超过10m,以1.5~2.0m的静水压力排泥。为保证水流的竖向运动,池径与沉降区深度之比不宜大于3。如池径大于8m,应增设径向集水槽。

竖流沉淀池内,水流水平分速为零,在静水中沉速为u s的颗粒在池内的实际沉速为u s 与水上升流速v的矢量和(u s-v),颗粒被分离的条件为u s>v,而u s≤v的颗粒始终不能沉底,因而其沉降效率与具有相同表面负荷的平流沉淀池相比减小了;即E T=(1-p0) 100(%)。

竖流沉淀池的设计参数如下:(1)表面负荷,按公式(3-20)计算,当无资料时,可按v=(O.5∽0.8)mm/s,即q (2.0~3.O)m3/m2·h取用。(2)沉降时间按公式(3-20)求取;当无资料时,可取t=(1.0~2.0)h a。

(3)管口不设反射板时,取中心管内流速v0≤0.03m/s;设反射板时,v0≤0.1m/s。

(4)中心管与反射板之间的

流速v1一般不大于0.04m/s。(5)中心管及反射板的结构尺寸如图3-20。(6)保护高度取0.3~0.6m,缓冲层高度取0.3m,泥斗壁倾角取45°~55°。[显示图片]

竖流沉淀池的设计计算内容如下:

(1)中心管的断面A1(m2)和直径d(m)由单池流量Q/n(m3/h)及中心管流速v0(m/h)计算,其中Q为废水流量(m3/h),n为池数

(2)由表面负荷q(m3/m2·h)及单池流量计算沉淀区断面积人A(m2)。

(3)由A1和A2计算沉淀池表面积A(m2)和直径D(m)。

(4)由上升流速v(m/h)和沉降时间t(h)计算沉降区有效水深h2(m)。

(5)由中心管出流速度v(m/h)和喇叭口直径d1(m)计算喇叭口与反射板问高度h3(m)。

(6)污泥体积V w的计算同平流沉淀池,污泥斗实际体积V d(m3)为:

(3-26)

式中h5--泥斗圆台部分高度(m);

R和r--分别为圆台上、下底半径(m)。

(7)沉淀池总高H(m)按下式计算:

(3-27)

式中h1--保护高度,m;

h4--缓冲层高度,m。

三、辐流沉淀池

辐流沉淀池是一种直径较大的圆形池,其结构如图3-21。废水经进水管进入中心布水筒后,通过筒壁上的孔口和外围的环形穿孔整流挡板,沿径向呈辐射状流向池周,经温流堰或淹没孔口汇入集水榴排出。沉于池底的泥渣,由安装于衍架底部的刮板以螺线形轨迹刮入泥斗,再借静压或污泥泵排出。[显示图片]

悬浮固体颗粒在辐流沉淀池中的沉降规律如图3-22。由于过流断面由中心向周边不断增大,水平分速逐渐减小,因此其沉降轨迹呈下垂曲线。如没中心筒半径为r l,池半径为R,沉降区水深为H,那么在半径为r的任意点上,颗粒在dt时间内在水平方向和竖直方向上的位移分别为d r=vdt和dH=udt。由于dH/u=dr/v,故颗粒的分离

条件为。将代入,整理后可得:[显示图片]

或(3-28)

可见,辐流沉淀池中颗粒的分离条件与平流沉淀池相同,总沉降效率仍为

辐流沉淀池的直径一般为20~40m最大可达100m。池中心深度为2.5~5.0m,周边深度为1.5~3.0m。池底以0.06~0.08的坡度坡向泥斗。这种沉淀池的缺点主要是中心进水口处流速较大,且呈紊流,容易影响初期沉降效果。为此,目前已出现了一些新的池型,如回转悬槽配水式和向心辐流式等。

辐流沉淀池的表面负荷q和沉降时间t应通过沉降试验确定,对生活污水,q可取2.0~3.6m3/m2·h,t取1.5~2.0h。将效水深h2通常取池半径1/2处的深度值。池表面积和直径的计算与竖流沉淀池相同;泥渣体积和波斗尺寸的计算与平流沉淀池相同,但排泥周期一般为4h。沉淀池总高H(m)按下式计算:

(3-29)

式中h1--保护高度,取0.3m;

h3--缓冲层高度,计算方法同机械刮泥手流沉淀池;

h4--泥斗上缘到池半径1/2处的高度,h4=D i/4,i为池底坡度;

h5--污泥斗高度。

第七节斜板和斜管沉淀池

斜板、斜管沉淀池是根据浅层沉降原理没汁的新型沉淀池。与普通沉淀池比较,它有容积利用率高和沉降效率高的明显优点。

一、浅层沉降原理

设有一理想沉淀池,其沉降区的长、宽、深分别为L、B和H,表面积为A,处理水量为Q,表面负荷为q0,颗粒沉速为u0,则由公式(3-19),可得Q=u0A。由此可见,在A一定的条件下,若增大Q,则u0成正比增大,从而使u≥u0。的颗粒所占分率(1-p0)和u<u0的颗粒中能被除去的分率u/u0都减小,总沉降效率ET相应降低:反之,要提高沉降效率,则必须减小u0,结果Q成正比减小。以上分析说明,在普通沉淀池中提高沉降效率和增大处理能力相互矛盾,二者之间呈此长被落的负相关关系。

但是,如果象图3-23那样,将沉降区高度分隔为n层,即n个高度为h=H/n的浅层沉降单元,那末在Q不变的条件下,颗粒的沉降深度由H减小到H/n,可被完全除去的颗粒沉速范围由原来的u≥u0扩大到u≥u/n,沉速u<u0的颗粒中能被除去的分率也由u/u0增大到n u/u0,从而使公值大幅度提高;反之,在E T值不变,即沉速为u0的颗粒在下沉了距离h后恰好运动到浅层的右下端点,那末由u0/v`=h/L和h=H/n可得v`=n v,即n

个浅层的处理水量Q`=HBnv=nQ,比原来增大了n倍。显然,分隔的浅层数愈多,E T值提高愈多或Q`值增加愈多。[显示图片]

此外,沉淀池的分隔还能大大改善沉降过程的水力条件,当水以速度v流过当量直径为d e的断面时,雷诺数Re=d e vρ1/μ,d e=4R(R为水力半径)。若原沉淀池内水流的雷诺数为Re,则分隔为n个浅层后的雷诺数Re`=(B+H)Re/(nB+H)。如果再沿纵向将池宽B也分为n格,即相当于n2个管形沉降单元,那末其雷诺数Re"=Re/n。显然,只Re"<R`<Re。实际上,普通沉淀池中,Re=4.O×103-1.5×105,水流处于紊流状改而在斜板和斜管沉淀池内则可分别降至500和100,远小于各自的层流临界雷诺数103和2.0×lO3,可使颗粒在稳定的层流状态下沉降。其次,由于浅层和管形沉降单元的水力半径R很小,表征水流稳定性的佛劳德数Fr=v2/Rg可增大至10-3~10-4以上。上述沉降面棚大和水力条件改善的双重有利因素,不但使斜板、斜管沉淀池能在接近于理想的稳定-条件下高效率运行,而且也大大缩小了处理单位水量所需的池容。

二、斜板、斜管沉淀池的构造

将浅层沉降原理应用于工程实际时,必须解决沉泥从隔板上侧顺利滑入泥斗的问题。为此,要把隔板倾斜放置,而且相邻隔板之间要留有适当的间隔。一块隔板和它上面间隔雌的空间就构成…个斜板沉降单元。如果再用垂直于斜板的隔板进行纵向分隔,每个斜板单元就变为若干个斜管沉降单元。斜板倾角θ通常按污泥的滑动性及其滑动力向与水流方向是否一致取300~600,为了安装和检修的方便,通常将许多斜板或斜管预制成规格化的整体,然后安装在沉淀池内,就构成如图3-24所示的斜板或斜管沉淀池。图中,安装斜板或斜管的区域为沉降区,沉降区以下依次为入流区和污泥区,沉降区上面为出流区。沉淀池工作时,水从斜板之间或斜管内流过,沉落在斜板、斜管底面上的泥渣靠重力自动滑入泥斗。这种沉淀池常用穿孔整流墙布水,以穿孔管或淹没孔口集水,也可在池面上增设潜孔式中途集水槽使集水更趋均匀。集泥常采用多斗式,以穿孔管靠静压或泥泵排泥。沉降区高度大多为0.6~1.Om,入流、出流区高度分别为0.6~1.2m和0.5~1.0m。为防止水流短路,须在池壁与斜板或斜管体间隙处安装阻流板。[显示图片]

根据沉降区内水流与污泥的相对运动方向,斜板、斜管沉淀池分为异向流、同向流和横向流三种。异向流可采用斜板或斜管单元,而同向流和横向流则只能采用斜板单元。目前主要采用异向流。

斜板和斜管体常用薄塑料板模压和粘结制成。斜板可用平板或波纹板。斜管断面有正六边形、菱形、圆形和正方形,其中以前两种最为常用。斜板断面与斜管断面并无严格的界限,若以R 和d 分别代表水力半径和断面高度,则当R >d /3时称为斜板,而R≤d /3时则称为斜管。

三、斜板、斜管沉淀池的设计计算

异向流斜板、斜管沉淀池及同向流斜板沉淀池的设计参数如表3-7。

图3-25为固体颗粒在异向流、同向流和横向流斜板沉降单元内的沉降规律图尔。没斜板长为l ,宽为w ,倾角为θ,板间净距为d ,单元内的水速为v ,颗粒沉速为u 0,则颗粒的运动由v 和u 0合成。按图3-25(a)中的几何关系,可得:[显示图片] (3-30)

因通过每个沉降单元的流量 ,即q=v·d·w ,即v=q/d·

w 。将其代入上式,则可得:

(3-31)

上式中的lwcosθ为一个沉降单元的斜板在水平方向上的投影面积,用a f表示;dw/sinθ

为沉降单元的水平底面积,用a表示。a f+a即为一个沉降单元的总沉降面积。若沉降单元数为n,斜板利用系数为k,则有:

(3-32)

式中Q--沉淀池设计流量;

A f--所有沉降单元的斜板的总水平投影面积;

A--所有沉降单元的水平底面积。

同理可以证明,对同向流斜板沉淀池有:

(3-33)

对横向流沉淀池有:

(3-34)

由公式(3-32)~(3-34)可以看出:(1)斜板、斜管沉淀池的沉降面积远大于相同尺寸的普通沉淀池的表面积,因而可以大幅度提高沉降效率和单位池容的处理能力;(2)在颗救沉速u0、沉降单元数n和倾角θ一定时,以异向流的处理能力最大,同向流居中,横向流最小。而在类型和尺寸满足设计参数允许值的条件下,n值愈大(即单元高度d愈小),倾角θ愈小,则A f值愈大;(3)流量Q、沉降面积A f和A与颗粒沉速u0之间仍保持着u0=Q/A的关系。因此,在进行设计计算时,仍可先由沉降曲线上查到u0,再根据选定的其它设计参数计算a f和a的值,便可利用公式(3-32)、(3-33)和(3-34)确定所需的沉降单元数n,并进而确定沉降区的整体尺寸;(4)沉降单元数为n2或n·m的斜管的沉降面积与沉降单元数为n的斜板基本相等,因而仍可按斜板沉淀池的方法计算,只是设计参数有所不同.

例3-3现拟用异向流斜板沉淀池处理流量Q=300m3/h的某种废水。已知斜板长l

=1.0m,宽w=2.0m,厚δ=5mm,安装倾角θ取600。,板间净距d取80mm,斜板利用系数k取0.9,并查得颗粒沉速u0为1.5mm/s。试确定该沉淀池沉降区的整体尺寸。

解取池宽等于斜板宽2.0m,并作沉降单元断面图。按公式(3-32)得:[显示图片]

、故有

沉降单元数n=55.6/1.185*0.9=52.10(个),取53个。斜板数n`=n+1=54(块)这样,沉降区整体尺寸为;

宽度B=w=2.0m

高度

长度

沉淀池设计计算

沉淀池设计计算 二沉池设在生物处理构筑物的后面,用于沉淀去除活性污泥或腐殖污泥(指生物膜法脱落的生物膜)。本设计二沉池采用中心进水、周边出水的辐流式沉淀池。 设计要求 (1)沉淀池个数或分格数不应少于两个,并宜按并联系列设计;(2)沉淀池的直径一般不小于10m;当直径大于20mm时,应采用机械排泥; (3)沉淀池有效水深不大于4m,池子直径与有效水深比值不小于6;(4)池子超高至少应采用; (5)为了使布水均匀,进水管四周设穿孔挡板,穿孔率为10%—20%。出水堰应用锯齿三角堰,堰前设挡板,拦截浮渣。 (6)池底坡度不小于; (7)用机械刮泥机时,生活污水沉淀池的缓冲层上缘高出刮板,工业废水沉淀池的缓冲层高度可参照选用,或根据产泥情况适当改变其高度。 (8)当采用机械排泥时,刮泥机由绗架及传动装置组成。当池径小于20m时用中心传动,当池径大于20m时用周边传动,转速为—min (周边线速),将污泥推入污泥斗,然后用静水压力或污泥泵排除;作为二沉池时,沉淀的活性污泥含水率高达99%以上,不可能被刮板刮除,可选用静水压力排泥。 (9)进水管有压力时应设置配水井,进水管应由井壁接入不宜由井

底接入,且应将进水管的进口弯头朝向井底。 设计参数 (1)表面负荷取—2m 3/,沉淀效率40%—60%; (2)池子直径一般大于10m ,有效水深大于3m ; (3)池底坡度一般采用; (4)进水处设闸门调解流量,进水中心管流速大于s ,进水采用中心管淹没或潜孔进水,过孔流速为—s ,潜孔外侧设穿孔挡板或稳流罩,保证水流平稳;出水处应设置浮渣挡板,挡渣板高出池水面—,排渣管直径大于,出水周边采用双边90°三角堰,汇入集水槽,槽内流速为—s ; (5)排泥管设于池底,管径大于200mm ,管内流速大于s ,排泥静水压力—,排泥时间大于10min 。 设计计算 污水总量:5000m 3/d=s ,单池设计流量为s (1)主要尺寸计算 1)池表面积: A=q Q ' m ax 式中:A ——池表面积,m 2; Q max ——最大设计流量,m 3/s ; q '——水力表面负荷,本设计m 2·h 。 ∴A=0 .13600058.0?= 2)单池面积:

表流湿地计算案例

1 基础资料 拟在某地建设一处河滨表面流人工湿地处理附近城市道路路面雨水径流,道路长度为2km,汇水面积为8ha,路面雨水径流经由雨水管网输送至湿地处理系统,雨水管网设计标准为100年一遇,要求湿地建成后该段道路年径流总量控制率达到80%。 2 参数计算 2.1设计流量 一般降雨事件径流量Q1:降雨重现期P取10年,降雨历时t取15min。 径流系数α根据下表取得0.9。 极端降雨事件径流量Q2:降雨重现期P取100年,降雨历时t取10min。

径流系数α取得0.9, 2.2进水区设计 进水区设计包括沉淀池尺寸确定、沉淀池入口设计、沉淀池出口设计、植物选配。其中,沉淀池出口设计包括沉淀池至湿地处理区出口设计和沉淀池至溢洪道出口设计。 进水区主要结构如图1。 (1)沉淀池入口: 沉淀池入口设置100mm粒径砾石消能。入口示意图如图2所示。

(2)沉淀池尺寸: 沉淀池面积A: 沉淀池深度H取2m。 沉淀池最小长度Lmin: Lmin=2.55m明显不满足沉淀池长宽比应不小于4的要求,结合场地实际情况,沉淀池长宽比取5:1,即沉淀池实际长度B定为34m,实际宽度B定为7m,深度H为2m。 (3)沉淀池出口(至湿地处理区): 沉淀池出口(至湿地处理区)采用混凝土溢流坑,置于沉淀池末端,溢流坑上设置格栅。 溢流坑周长P: 溢流坑表面积:

综上,溢流坑选用圆形混凝土溢流井,直径为6.2m。 排水管出口设计在湿地处理区水面以下,进出水口高度差h取0.6m,由式3-6可得, 排水管断面面积 因此选取DN1200混凝土管。 (4)沉淀池出口(至溢洪道): 溢流堰周长L: 结合沉淀池实际尺寸,溢流堰采取增设出水支渠的方式设置于沉淀池最末端,具体样式及实际尺寸如下图所示,溢流堰顶高度高出湿地处理区正常水位0.6m。

【精品】普通辐流式沉淀池设计计算

普通辐流式沉淀池设计计算(中心进水周边出水) 1、每座池表面积A1(m^2) Qmax=2450 n=2q0=2 A1=Qmax/(n*q0)=612.5 其中: Qmax——最大设计流量(m^3/h) n——池子数(座) 表面负荷(m^3/(m^2*h)),见设计参数 q0—— 2、池径D(m) π=3.14 D=SQRT(4A1/π)=27.9取28 3、有效水深h2(m) t=1.5 h2=q0*t=3 其中:t——沉淀时间(h),见设计参数 4、沉淀区有效容积V'(m^3) V'=A1*h2=1837.5 5、污泥量W(m^3) S=0.5N=340000T=4 W=SNT/(1000*24*n)=14.2 其中:S——每人每日污泥量(L/(p*d)),一般0.3~0.8 N——设计人口数(p) T——两次排泥的时间间隔(h),见设计参数 6、污泥斗容积V1(m^3) r1=2r2=1а=60 R=D/2=14 h5=(r1-r2)*tgа=0.3 V1=π*h5*(r1^2+r1*r2+r2^2)/3= 2.3 其中:r1.r2——泥斗上下部半径(m) R——池半径(m) а——泥斗壁与底面夹角(度) h5——泥斗高度(m) 7.污泥斗以上圆锥体部分污泥容积V2(m^3) i=0.05 h4=(R-r1)*i=0.60 V2=π*h4*(R^2+R*r1+r1^2)/3=142.2 其中:i——池底坡度,一般0.05~0.10

h4——底坡落差(m) 8.池高H(m) h1=0.3h3=0.5 H=h1+h2+h3+h4+h5=4.7 其中:h1——超高(m),一般0.3 h3——缓冲层高(m),一般非机械排泥时0.5,机械排泥时高出刮泥板0.3 9.径深比校核 D/h2=9.3 说明:D/h3应介于6~12

设计说明书与计算书示例

目录 第一部分设计说明书 第1章绪论 (6) 1.1水资源状况 (6) 1.1.1世界水资源状况 (6) 1.1.2中国水资源状况 (6) 1.2 我国城市污水处理现状及存在的一些问题 (6) 1.2.1 我国城市污水处理现状 (6) 1.2.2 ,,,,,,,,, ................................................................... 错误!未定义书签。 1.3 ,,,,,,,, (6) 1.4 ,,,,,,,,, (6) 1.5 ,,,,,,,,,,,, (6) 1.5.1 传统活性污泥法 (6) 1.5.2 AB法 (6) 1.5.3 SBR法 (6) 1.5.4 氧化沟法 (6) 1.5.5 , ........................................................................... 错误!未定义书签。 1.5.6 ,,,,,, (7) 1.5.7 倒置A2/O法 (7) 1.6 生物脱氮、除磷的技术新发展 (7) 1.6.1 生物脱氮新技术 (7) 1.6.2 除磷脱氮新技术 (7) i

第2章设计资料 (8) 2.1设计题目 (8) 2.2工程概况 (8) 2.2.1 地理位置及地势 (8) 2.2.2 .. (8) 2.2.3 . (8) 2.3 设计水质资料 (8) 2.3.1 污水厂设计进水水质 (8) 2.3.2 设计出水水质 (8) 2.4 设计内容 (8) 2.5. (8) 第3章设计方案的确定 (9) 3.1污水处理程度 (9) 3.2 设计水量及规模 (9) 3.3 水质特点 (9) 3.4 ..... .. (9) 3.5 污水处理设计方案选择 (9) 3.6污泥处理设计方案的选择 (9) 3.7 设计工艺流程的确定 (9) 3.8 主要构筑物类型的选择 (10) 3.8.1 污水提升泵房 (10) 3.8.2 沉砂池 (10) i i

沉淀池设计计算

沉淀池 沉淀池是利用重力沉降作用将密度比水大的悬浮颗粒从水中去除的处理构筑物,是废水处理中应用最广泛的处理单元之一,可用于废水的处理、生物处理的后处理以及深度处理。在沉砂池应用沉淀原理可以去除水中的无机杂质,在初沉池应用沉淀原理可以去除水中的悬浮物和其他固体物,在二沉池应用沉淀原理可以去除生物处理出水中的活性污泥,在浓缩池应用沉淀原理分离污泥中的水分、使污泥得到浓缩,在深度处理领域对二沉池出水加絮凝剂混凝反应后应用沉淀原理可以去除水中的悬浮物。 沉淀池包括进水区、沉淀区、缓冲区、污泥区和出水区五个部分。进水区和出水区的作用是使水流均匀地流过沉淀池,避免短流和减少紊流对沉淀产生的不利影响,同时减少死水区、提高沉淀池的容积利用率;沉淀区也称澄清区,即沉淀池的工作区,是沉淀颗粒与废水分离的区域;污泥区是污泥贮存、浓缩和排出的区域;缓冲区则是分隔沉淀区和污泥区的水层区域,保证已经沉淀的颗粒不因水流搅动而再行浮起。 沉淀池的原理 沉淀池是利用水流中悬浮杂质颗粒向下沉淀速度大于水流向卜流动速度、或向下沉淀时间小于水流流出沉淀池的时间时能与水流分离的原理实现水的净化。 理想沉淀池的处理效率只与表面负荷有关,即与沉淀池的表面积有关,而与沉淀池的深度无关,池深只与污泥贮存的时间和数量及防止污泥受到冲刷等因素有关。而在实际连续运行的沉淀池中,由于水流从出水堰顶溢流会带来水流的上升流速,因此沉淀速度小于上升流速的颗粒会随水流走,沉淀速度等于卜-升流速的颗粒会悬浮在池中,只有沉淀速度大于上升流速的颗粒才会在池中沉淀下去。而沉淀颗粒在沉淀池中沉淀到池底的时间与水流在沉淀池的水力停留时间有关,即与池体的深度有关。 理论上讲,池体越浅,颗粒越容易到达池底,这正是斜管或斜板沉淀池等浅层沉淀池的理论依据所在。为了使沉淀池中略大于上升流速的颗粒沉淀下去和防止已沉淀下去的污泥受到进水水流的扰动而重新浮起,因而在沉淀区和污泥贮存区之间留有缓冲区,使这些沉淀池中略大于上升流速的颗粒或重新浮起的颗粒之间相互接触后,再次沉淀下去。 用沉淀池的类型 按水流方向划分,沉淀池可分为平流式、辐流式和竖流式三种,还有根据“浅层理论”发展出来的斜板(管)沉淀池。各自的优缺点和适用范围见表3—3。

加磁混凝沉淀池用于一级A提标改造典型案例

加磁混凝沉淀池用于一级A提标改造典型案例目前,国内污水处理厂一级A提标改造深度处理常用工艺有高效斜管沉淀池+滤池(或活性砂滤池);威立雅Actiflo微砂絮凝沉淀池净水系统和最近由华北院、上海院、北京院、天津院、东北院等主推的M+FLO加磁絮凝沉淀澄清池净水工艺,三种工艺比较M+FLO沉淀池以占地小、工程造价低、运行费用低、出水效果好且耐冲击(出水指标稳定)等优势,已成为污水处理厂一级A提标改造深度处理工艺的首选方案。其运行消耗指标为: 混凝剂PAC:25-35g/m3助凝剂PAM(阴离子):0.5-0.8g/m3 磁粉消耗: 1.0g/m3电耗:0.015-0.02KW·h/m3加磁絮凝净水技术由美国麻省理工皮特博士等在90年代初针对污水深度处理化学除磷而开发(化学法除磷中形成的铝、铁等磷酸盐沉淀性能很差,常规沉淀池分离困难),并获得美国环保署推广,美国剑桥水务皮特博士等于2006年在中国青岛设立公司推广加磁絮凝净水技术,限于当时国内尚未严格执行一级A 排放标准,无需生化后污水的深度处理,故最初未能应用于市政和工业园污水处理厂,主要用于了油田、石化、食品、化工等的工业污水处理。 青岛太平洋化工装备公司作为中国最早参与美国剑桥水务磁混凝净水技术装备的开发合作者,历经十年并通过20多个M+FLO加磁絮凝净水项目的设计/制造/安装/调试和持续改进,至今已有数十项技术改进并申报了部分相关专利,包括加磁快混絮凝系统;超高速斜管沉淀池系统;磁粉污泥回流系统;磁粉污泥剪切和分离回收系统;药剂制备投加系统;控制系统,特别是最关键的磁粉回收率≥99.5%(或磁粉损耗率≤1g/m3)已远优于美国技术,磁泥絮体剪切机也有重大改进,具有剪切和破碎离散双重作用,其优点是磁粉污泥离散效果好/低转速/长寿命。 ●案例一:石油化工废水处理提标改造/深度处理 中石化齐鲁炼油厂废水一级A提标改造/深度处理,污水来源为炼油厂综合废水,目标去除污染物为:SS、COD。改造后主体工艺流程和水质指标如下:

三种沉淀池设计计算设计参数

平流式沉淀池的基本要求有哪些 平流式沉淀池表面形状一般为长方形,水流在进水区经过消能和整流进入沉淀区后,缓慢水平流动,水中可沉悬浮物逐渐沉向池底,沉淀区出水溢过堰口,通过出水槽排出池外。 平流式沉淀池基本要求如下: (1)平流式沉淀池的长度多为30~50m,池宽多为5~10m,沉淀区有效水深一般不超过3m,多为2.5~3.0m。为保证水流在池内的均匀分布,一般长宽比不小于4:1,长深比为8~12。 (2)采用机械刮泥时,在沉淀池的进水端设有污泥斗,池底的纵向污泥斗坡度不能小于0.01,一般为0.01~0.02。刮泥机的行进速度不能大于1.2m/min,一般为0.6~0.9m/min。 (3)平流式沉淀池作为初沉池时,表面负荷为1~3m3/(m·h),最大水平流速为7mm/s;作为二沉池时,最大水平流速为5mm/s。 (4)人口要有整流措施,常用的人流方式有溢流堰一穿孔整流墙(板)式、底孑L人流一挡板组合式、淹没孔人流一挡板组合式和淹没孔人流一穿孔整流墙(板)组合式等四种。使用穿孔整流墙(板)式时,整流墙上的开孔总面积为过水断面的6%~20%,孔口处流速为0.15~0.2m/s,孔口应当做成渐扩形状。 (5)在进出口处均应设置挡板,高出水面0.1~0.15m。进口处挡板淹没深度不应小于0.25m,一般为0.5~1.0m;出口处挡板淹没深度一般为0.3~0.4m。进口处挡板距进水口0.5~1.0m,出口处挡板距出水堰板0.25~0.5m。 (6)平流式沉淀池容积较小时,可使用穿孔管排泥。穿孔管大多布置在集泥斗内,也可布置在水平池底上。沉淀池采用多斗排泥时,泥斗平面呈方形或近于方形的矩形,排数一般不能超过两排。大型平流式沉淀池一般都设置刮泥机,将池底污泥从出水端刮向进水端的污泥斗,同时将浮渣刮向出水端的集渣槽。 (7)平流式沉淀池非机械排泥时缓冲层高度为0.5m,使用机械排泥时缓冲层上缘宜高出刮泥板0.3m。 例:某城市污水处理厂的最大设计流量Q=0.2m3/s,设计人数N=10万人,沉淀时

水污染控制工程重点计算题示例

《水污染控制工程》(第三版,下册)重点计算题示例 Problem 1 沉砂池与沉淀池的设计计算 1. 平流式沉淀池计算 Rectangular Sedimentation Tank 平流沉淀池设计流量为1800m 3/h 。要求沉速等于和大于0.5mm/s 的颗粒全部去除。试按理想沉淀条件,求: (1)所需沉淀池平面积为多少m 2? (2)沉速为0.1mm/s 的颗粒,可去除百分之几? 解:已知 Q=1800m 3/h=0.5m 3/s ,u 0=0.5mm/s ,u i =0.1mm/s (1) 所需沉淀池平面积为 230100010 5.05.0m u Q A =?==- (2) 沉速为0.1mm/s 的颗粒的去除率为 2. 辐流式沉淀池设计 Circular Sediementation Tank 计划为居住人口45000人的城镇设计一圆形径向流沉淀池。假定废水的流量为400L/人.d ,平均流量下停留时间为2h 。确定平均流量下的溢流速率为36m 3/m 2.d ,求深度和直径。 解: 3 32 233150024h/d 2h /L 0.001m 400L/per.d 45000per 450.d /m 40m /L 0.001m 400L/per.d 45000per m V m A s =???==??= Diameter=m 249.234 /450≈=π Depth=m 5.33.324 )4/(15002≈=π 3. 曝气沉砂池设计计算 Grit Chamber 设计一只曝气沉砂池,污水的最大流量为2.0 m 3/s ,有效深度为3m ,宽深比为 1.5:1,最大流量下停留时间为 3.5min ,曝气速率为0.4m 3/min.m 池长,确定沉砂池的尺寸和空气用量。 %2020.05.01.00====u u E i

沉淀池设计与计算

第六节、普通沉淀池 沉淀池可分为普通沉淀池和浅层沉淀池两大类。按照水在池内的总体流向,普通沉淀池又有平流式、竖流式和辐流式三种型式。 普通沉淀池可分为入流区、沉降区、出流区、污泥区和缓冲区5个功能区。入流区和出流区的作用是进行配水和集水,使水流均匀地分布在各个过流断面上,为提高容积利用、系数和固体颗粒的沉降提供尽可能稳定的水力条件。沉降区是可沉颗粒与水分离的区域。污泥区是泥渣贮存、浓缩和排放的区域。缓冲层是分隔沉降区和污泥区的水层,防止泥渣受水流冲刷而重新浮起。以上各部分相互联系,构成一个有机整体,以达到设计要求的处理能力和沉降效率。 一、平流沉淀池 在平流沉淀池内,水是按水平方向流过沉降区并完成沉降过程的。图3-16是没有链带式刮泥机的平流沉淀池。废水由进水槽经淹没孔口进入池内。在孔口后面设有挡板或穿孔整流墙,用来消能稳流,使进水沿过流断面均匀分布。在沉淀池末端没有溢流堰(或淹没孔口)和集水槽,澄清水溢过堰口,经集水槽排出。在溢流堰前也设有挡板,用以阻隔浮渣,浮渣通过可转动的排演管收集和排除。池体下部靠进水端有泥斗,斗壁倾角为50°~60°,池底以0.01~0.02的坡度坡向泥斗。当刮泥机的链带由电机驱动缓慢转动时,嵌在链带上的刮泥板就将池底的沉泥向前推入泥斗,而位于水面的刮板则将浮渣推向池尾的排渣管。泥斗内设有排泥管,开启排泥阀时,泥渣便在静水压力作用下由排泥管排出池外。[显示图片] 链带式刮泥机的缺点是链带的支承和驱动件都浸没于水中,易锈蚀,难保养。为此,可改用桥式行车刮泥机,这种刮泥机不但运行灵活,而且保养维修都比较方便。对于较小的平流沉淀池,也可以不设刮泥设备,而在沿池的长度方向设置多个泥斗,每个泥斗各自单独排泥,既不相互干扰,也有利于保证污泥浓度。 沉淀池的设计包括功能构造设计和结构尺寸设计。前者是指确定各功能分区构件的结构形式,以满足各自功能的实现;后者是指确定沉淀池的整体尺寸和各构件的相对位置。设计良好的沉淀池应满足以下三个基本要求;有足够的沉降分离面积:有结构合理的人流相出流放置能均匀布水和集水;有尺寸适宝、性能良好的污泥和浮渣的收集和排放设备。 进行沉淀池设计的基本依据是废水流量、水中悬浮固体浓度和性质以及处理后的水质要求。因此,必须确定有关设计参数,其中包括沉降效率、沉降速度(或表面负荷)、沉降时间、水在池内的平均流速以及泥渣容重和含水率等。这些参数一般需要通过试验取得;若无条件,也可根据相似的运行资料,因地制宜地选用经验数据。以-萨按功能分区介绍设计和计算方法。 1.入流区和出流区的设计 入流和出流区设计的基本要求,是使废水尽可能均匀地分布在沉降区的各个过流断面,既有利于沉降,也使出水中不挟带过多的悬浮物。

环境工程案例作业-1

环境工程案例 1、某城市污水处理厂,最大日污水量为1×104m3/d,平均日污水量为8000m3/d,最大日最高时污水量为550m3/h,计算总变化系数: A.1.25 B 1.32 C 1.50 D 1.65 2、某造纸厂的污水量为1000m3/d,采用加压溶气气浮法工艺去除悬浮物(密度ρ=1.2kg/m3),减压后理论空气释放量为120kg/d(比重?=1164mg/L),气固比为0.08,该厂运行一段时间后对气浮前处理工艺进行改造,降低了进入气浮工艺的进水悬浮物浓度,在维持气固比不变的条件下,回流比降低到原来的1/2,计算改造后,进入气浮工艺的进水悬浮物浓度Sa及减压后理论空气释放量A。 A.S a=0.75kg/m3,A=60kg/d B.S a=1.50kg/m3,A=120kg/d C.Sa=1.20kg/m3,A=60kg/d D.Sa=1.20kg/m3,A=96kg/d 3、北方某厂废水量3000m3/d,拟采用双层滤料池处理,设计滤速为5m/h,冲洗强度为14L/(s.m3)或16L/(s.m3),滤池工作时间为24h,冲洗周期12h,滤池实际工作时间为23.7h(每次反冲洗3分钟,其他操作时间6分钟),并考虑5%的水厂自用水(包括反冲洗用水),过滤池设置在清水池上,滤池高度为3.4m,清水池深度3m,大阻力配水系统水头损失为3.5m,砾石支撑层水头损失为0.14m,滤料层水头损失0.7m,安全富裕水头1.9m,用水泵反冲洗,计算每次反冲洗水量及泵的扬程。 A.76.6m3,10.74m B.76.6m3,12.64m C.63.8m3,10.74m D.63.8m3,12.64m 4、某地表水含有少量胶体物质,采用混凝工艺处理,当原水碱度不足时,水的PH值下降以致影响混凝剂水解,原水总碱度为0.2mmol/L,为保证混凝顺利水解,需投加CaO 以中和混凝过程中产生的H+,使投加混凝剂后碱度保持在0.4mmol/L,选用下列混凝剂时,投加正确的是: A.选用25mg/L精制硫酸铝(硫酸铝的含量为60%),则生石灰投加量为 59.2mg/L B.选用25mg/L精制硫酸铝(硫酸铝的含量为60%),则生石灰投加量为37mg/L C.选用8mg/L无水氯化铁(氯化铁的含量为95%), 则生石灰投加量为 15.1mg/L D.选用8mg/L无水氯化铁(氯化铁的含量为95%), 则生石灰投加量为 38.2mg/L 5、某污水处理厂利用氯气氧化亚氯酸钠制备二氧化氯,用于外排水的消毒,氯气使用量为600kg/d,由于消毒剂量不足,拟进行改造,再增加氯气使用量200kg/d,计算改造后二氧化氯的理论生成量和亚氯酸钠的需求量

竖流式沉淀池设计计算

竖流式沉淀池设计计算 按水流方向划分,沉淀池可分为平流式、辐流式和竖流式三种,还有根据“浅层理论”发展出来的斜板(管)沉淀池。 设置沉淀池的一般要求有哪些 (1)沉淀池的个数或分格数一般不少于2个,为使每个池子的人流量均等,要在人流口处设置调节阀,以便调整流量。池子的超高不能小于0.3m,缓冲层为0.3m~0.5m。 (2)一般沉淀池的停留时间不能小于1h,有效水深多为2~4m(辐流式沉淀池指周边水深),当表面负荷一定时,有效水深与沉淀时间之比也为定值。 (3)沉淀池采用机械方式排泥时,可以间歇排泥或连续排泥。不用机械

排泥时,应每日排泥,初沉池的静水头不应小于1.5m,二沉池的静水头,生物膜法后不应小于1.2m,活性污泥法后不应小于0.9m。 (4)采用多斗排泥时,每个泥斗均应没单独的排泥管和阀门,排泥管的直径不能小于200mm。污泥斗的斜壁与水平面的倾角,采用方斗时不能小于60°,采用圆斗时不能小于55 (5)当采用重力排泥时,污泥斗的排泥管一般采用铸铁管,其下端伸入斗内,顶端敞口伸出水面,以便于疏通,在水面以下1.5~2.0m处,由排泥管接出水平排泥管,污泥借静水压力由此管排出池外。 (6)使用穿孔排泥管排泥时,排泥管长度应在15m以内,排泥管管径150~200mm,孔径15~25mm,孔眼内流速4~5m/s,孔眼总面积与管截面积的比值为0.6~0.8,孔眼向下成45°~60°交错排列。为防止排泥管堵塞,应设压力水冲洗管,根据堵塞情况及时疏通。

(7)进水管有压力时,应设置配水井,进水管由配水井池壁接人,且应将进水管的进口弯头朝向井底。沉淀池进、出水区均应设置整流设施,同时具备刮渣设施。 (8)沉淀池的出水整流措施通常为溢流式集水槽,出水堰可用三角堰、孔眼等形式,普遍采用的是直角锯齿形三角堰,堰口齿深通常为50mm,齿距为200mm左右,正常水面应当位于齿高的1/2处。堰口设置可调式堰板上下移动机构,在必要时可以调整。 (9)沉淀池最大出水负荷,初沉池不宜大于2.9L/(s·m),二沉池不宜大于1.7 L/(s·m)。在出水堰前必须设置收集与排除浮渣的措施,如果使用机械排泥,排渣和排泥可以综合考虑。

平流式沉淀池设计案例(附图纸)

平流沉淀池设计案例 某城市污水处理厂最大设计流量Qmax=720m3/h ,设计人口数N=10万人,试设计平流式沉淀池。 解:取沉淀时间t=1.5h ,表面水力负荷q=2m3/m2·h ,排泥间隔2d ,人均干泥量25g/人.d ,污泥含水率95%,水平流速v ≤5mm/s 取4.63mm/s 1.沉淀区 面积:2233m ax 360/2/720m h m m h m q Q A =?== 有效水深:m h m m q h 3h 5.1/2t 2 32=??== 有效体积:m m m h A V 1080336022=?=?= 长度:m h h m t v L 255.1/)63.46.3(6.3=??=??= 总宽度:m m m L A B 4.1425/360/2=== 池子格数格38.4/4.14/===m m b B n 2. 校核尺寸比例 长宽比:L/b=25/4.8=5.21满足“每格长宽比不宜小于4”要求 长深比:L/ h 2=25/3=8.33 满足“每格长深比不宜小于8”要求 3.污泥区 (1)污泥所需总容积 31001000 1000%95-1d 2100000d /25m g V =?????=)(人人 每格池子污泥量 V/3=34m 3 (2)污泥斗尺寸及其容积

泥斗倾角60度,斗底尺寸0.5×0.5m, 上口为4.8×4.8m 泥斗高度:h4’=(4.8-0.5) /2×tan60= 3.72 取3.75m 泥斗容积: 3 222121'4111.32)8.45.08.48.45.05.0(75.33 1)(3 1m S S S S h V =?+?+???=?++??= (3)污泥斗以上梯形部分高度: h4’’=(L1-L2)×0.01=(25-4.8) ×0.01=0.202m 污泥斗以上梯形部分体积: 3 "421245.148.4202.02/)258.4(2/)(m b h L L V =??+=??+= (4)实际存泥体积 V = V 1+V 2=32.11+14.45 =46.56m 3>34m 3 满足要求 4.沉淀池总高度: 超高h1:沉淀池高度一般为0.3m ; 有效水深h2:即沉淀区高度=3m 缓冲层高度h3:无机械刮泥设备时为0.5m ; 污泥区高度h4:贮泥斗高度h4’=3.75与梯形部分高度 h4’’=0.202之和 m h h h h H 752.7)202.075.3(5.033.04321=++++=+++=

案例1AAO法设计流程——jll毕设正文修改版2

目录 引言4 1设计任务及设计资料5 1.1设计任务与内容5 1.2设计原始资料5 1.2.1城市气象资料5 1.2.2地质资料6 1.2.3设计规模6 1.2.4进出水水质6 2、设计说明书7 2.1去除率的计算7 2.1.1溶解性BOD5的去除率7 2.1.2 COD r的去除率:7 2.1. 3.SS的去除率:8 2.1.4.总氮的去除率:8 2.1.5.磷酸盐的去除率8 2.2城市污水处理工艺选择8 2.3、污水厂总平面图的布置9 2.4、处理构筑物设计流量(二级)10 2.5、污水处理构筑物设计10 2.5.1.中格栅和提升泵房(两者合建在一起)10 2.5.2、沉沙池11 2.5.3、初沉池12 2.5.4、厌氧池12 2.5.5、缺氧池13 2.5.6、曝气池13 2.5.7、二沉池13 2.6、污泥处理构筑物的设计计算14 2.6.1污泥泵房14 2.6.2污泥浓缩池14 2.7、污水厂平面,高程布置15 2.7.1平面布置15

2.7.2管线布置15 2.7.3 高程布置15 3 污水厂设计计算书16 3.1污水处理构筑物设计计算16 3.1.1中格栅16 3.1.2污水提升泵房18 3.1.3、沉砂池20 3.1.4、初沉池22 3.1.5、厌氧池23 3.1.6、缺氧池计算24 3.1.7、曝气池设计计算24 3.1.8、二沉池32 3.1.9计量堰设计计算34 3.2 污泥处理部分构筑物计算35 3.2.1污泥浓缩池设计计算:35 3.2.2 储泥灌与污泥脱水机房设计计算38 3.3、高程计算38 3.3.1污水处理部分高程计算:39 3.3.2污泥处理部分高程计算:39 参考文献40 致谢41

沉淀池设计规则

一般规则: ①污水自流进入,按最大设计流量计算;提升泵进入,按工作水泵的最大组合流量计算;按最小流量校核。 ②沉淀池个数或分格数不应少于两个,宜并联。 ③池子超高至少采用。 ④一般沉淀时间不小于,有效水深多采用2~4m,对辐流沉淀池指池边水深。 ⑤沉淀池缓冲层高度一般采用~。 ⑥污泥斗的斜壁与水平面的倾角,方斗不宜小于60°,圆斗不宜小于55°。 ⑦初沉池储泥时间应与排泥方式适应,静压排泥时储泥时间2d,机械排泥时可按4h污泥量计算;二沉池排泥时间不宜大于2h。 ⑧排泥管直径不应小于200mm。 平流沉淀池设计: ①池子(或分格)长宽比不小于4,长深比一般8~12. ②有效水深多采用2~4m。 ③池底坡度多采用~,采用你都时,每斗应设单独的排泥管及排泥底阀,池底横向坡度采用. 竖流式沉淀池设计: ①池子直径(或正方形一边)与有效水深之比不大于3. ②池子直径不宜大于8m,一般采用4~7m,最大10m。 ③中心管内流速不大于s。 ④中心管下端至反射板之间的缝隙中污水流速不大于s。 ⑤中心管下端至反射板之间的缝隙高在~。 ⑥喇叭口直径及高度为中心管直径的倍。 辐流式沉淀池: ①池子直径与有效水深的比值一般在6~12.

②池径不小于16m。 ③池底坡度一般采用. 斜板(管)沉淀池设计: ①斜板垂直净距一般采用80~100mm,管孔径50~80mm。 ②长度一般1~。 ③倾角一般采用60°。 ④斜板(管)区底部缓冲层高度一般~。 ⑤斜板(管)区上部水深一般为~。 ⑥斜板(管)沉淀池一般采用重力排泥,每日至少排泥1~2次,或连续排泥。 ⑦初沉池池内停留时间不超过30min,二沉池不超过60min。

平流沉淀池设计计算

平流式沉淀池设计说明 1构筑物设计说明 1.1工程概况 废水排放量为0.2m3/s,人数为80000人,悬浮物为350mg/l 1.2设计依据及原则 《污水综合排放标准》(GB8978-1996) 《城镇污水处理厂污染物排放标准》(GB18918-2002) 1.3平流式沉淀池简述 平流式沉淀池的池型呈长方形,由进水装置、出水装置、沉淀区、缓冲层、污泥区及排泥装置等组成。污水在池内按水平方向流动,从池一端流入,从另一端流出。污水中悬浮物在重力作用下沉淀,在进水处的底部设贮泥斗。平流式沉淀池的主要优点是:有效沉淀区大,沉淀效果好,造价较低,对污水流量的适应性强。缺点是:占地面积大,排泥较困难[1]。 2平流式初沉池的设计计算[2] 2.1设计参数 (1)沉淀池的个数或分格数应至少设置2个,按同时运行计算。 (2)初沉池沉淀时间取1-2h,表面负荷取 1.5-2.5m3/(m2·h),沉淀效率为40%-60% 。 (3)设计有效水深不大于3.0m,多介于2.5-3.0之间。 (4)池(或分格)的长宽比不小于4,长深比采用8-12。 (5)池的超高不宜小于0.3m。 (6)池底坡度一般为0.01-0.02。 (7)泥斗坡度约为45°-60°。 (8)进口需设挡板,一般高出水面0.1-0.15m,浸没深度≥0.25m,一般取0.5-1.0m,距离进水口0.5-1.0m;出口也需设挡板,距离出水口0.25-0.5m,浸没深度0.3-0.4m,高出水面0.1-0.15m。

2.2设计计算 设计采用2座沉淀池,计算尺寸如下: (1)悬浮物的去除率 η=94%%100350 20350=?- (2)沉淀区总面积 设计处理污水量 Q max =0.2 (m 3/s)=0.2?3600=720 (m 3/h) 设表面负荷q=1.5m 3/(m 2·h ),沉淀时间t=2h A=5.1720 q 3600Qmax ==480(m 2) (3)沉淀池有效水深 h 2=qt=2?1.5=3(m) (4)沉淀区有效容积 v 。=3600Qmax t=720×2=1440 m 3 (5)沉淀池长度 设初沉池流速v=4.8mm/s L=3.6vt=4.8?3.6?2=34.56(m) 池总宽 B=56.34480 =L A =13.89(m) 池宽 b=289 . 13n =B =6.95(m) 校核 长宽比95.656 . 34b =L =4.97>4 满足 长深比3 56.34h 2=L =11.52<12 满足 ∴设计合理 沉淀池总长度 设流入口至挡板距离为0.5m ,流出口至挡板距离为0.5m L 1=0.5+0.5+34.56=35.56(m) (6)污泥所需容积 设每人每天污泥量S=0.55L/(人·d ),初沉池排泥时间T= 2d V=10002 8000055.01000?? =SNT =88(m 3)

(完整版)《水污染控制工程》习题案例

《水污染控制工程》习题案例 1.试分析水资源与水的自然循环的关系。 2.试分析水体污染与水的社会循环的关系,以及产生水体污染的根本原因。3.试述水污染控制工程在水污染综合防治中的作用和地位。 4.试述水污染控制工程在水污染综合防治中的作用和地位。 5.水体自净能力、水环境容量与水污染控制工程有怎样的关系?试举例说明之6.试归纳污染物的类别、危害及相应的污染指标。 7.含氮有机物的好氧分解过程分氰化和硝化两个阶段,这两个阶段能否同时进行,为什么?生活污水水质指标中BOD5是和哪个阶段的需氧量相对应? 8.试简述BOD、COD、TOD、TOC的内涵,根据其各自的内涵判断这四者之间在数量上会有怎样的关系,并陈述其原因。 9.废水处理系统的作用是什么?它与处理单元及核心单元、核心设备间有怎样的关系? 10.什么是废水处理的级别?对于城市污水而言,通常有怎样的级别划分? 11.为什么要对废水进行预处理?通常有哪几种具体的预处理方法? 12.某企业生产废水排放量为60m3/h,其浓度变化为每8h一周期,每周期内的小时浓度为30、80、90、140、60、50、70、100mg/L。试求将其浓度均和到70mg/L所需要的均和池容积及均和时间。 13.某酸性废水的pH值逐时变化为4.5、5、6.5、5、7,其水量的逐时变化依次为5、6、4、7、9m3/h,废水排放标准为pH=6~9,问完全均和后是否满足排放标准的要求? 14.试说明沉淀有哪几种类型?各有何特点,并讨论各种类型的内在联系与区别,各适用在哪些场合? 15.设置沉砂池的目的和作用是什么?曝气沉砂池的工作原理与平流式沉砂池有何区别? 16.水的沉淀法处理的基本原理是什么?试分析球形颗粒的静水自由沉降(或浮上)的基本规律,影响沉淀或浮上的因素有哪些? 17.水中油珠的密度ρs=800kg/m3,直径众=50μm,求它在20℃水中的上浮速度? 18.某废水的静置沉降试验数据如下表,试验有效水深H=1.8m,污水悬浮物浓 19.悬浮物浓度为430mg/L的有机废水进行絮凝沉降试验,实验数据如下表,试求沉降时间为60min、深度为1.8m时的悬浮物总去除率。

斜管沉淀池设计计算

斜管沉淀池设计方案 1.二层池改建说明 二沉池设在生物处理构筑物的后面,用于沉淀去除活性污泥或腐殖污泥取消MBR膜池,增加三个二次沉淀池,更好的对污水的处理、沉淀,达到排放要求。再改建好氧区,各部分,多增加回流部分,充分利用污泥,并增设添加药剂管道。 池体结构复杂、设备安装和使用精度要求高,必须保证池体结构具有相当高的尺寸、标高和公差配合要求,以便顺利安装和保证正常使用,例如反应区池壁的标高、角度和斜板的平直度;过墙柔性套管的位置和标高以及平直度;各种设备基础、预埋螺栓轴线及位置和尺寸均需精确无偏差,反应区、集泥槽底部工艺混凝土的坡度控制、位置尺寸等必须精确控制。 池体平面为矩形,进口设在池长的一端,一般采用淹没进水孔,水由进水渠通过均匀分布的进水孔流入池体,进水孔后设有挡板,使水流均匀地分布在整个池宽的横断面。沉淀池的出口设在池长的另一废水沉淀池端,多采用溢流堰,以保证沉淀后的澄清水可沿池宽均匀地流入出水渠。堰前设浮渣槽和挡板以截留水面浮渣。水流部分是池的主体。池宽和池深要保证水流沿池的过水断面布水均匀,依设计流速缓慢而稳定地流过。污泥斗用来积聚沉淀下来的污泥,多设在池前部的池底以下,斗底有排泥管,定期排泥。 【构造】

根据水流和泥流的相对方向,可将斜板斜管沉淀池分为异向流(逆向流)、同流向和测向流(横向流)三种类型,其中异向流,应用的最广。异向流的特点:水流向上、泥流向下,倾角60度。初步设定为横向流。 【斜管沉淀池的排泥】 斜管沉淀池由于单位面积出水量高,因而泥量亦相应增加,与普通平流式沉淀池相比,每单位面积的积泥量,将增加好几倍,积泥分布在整个底板上,虽比较均匀,但积泥不及时排除将会严重影响出水水质。 常用的排泥措施: A机械刮泥;适用于大型斜板沉淀池,管理简单,可以自动控制。但加工维修困难,某些部件质量尚未过关,容易发生故障,影响使用,在国内积累经验上不多,有待提高和巩固。 B穿孔管排泥;应用于平流沉淀池已有相当历史,目前用于斜板沉淀池也不少,但须严格管理,不然容易堵塞,

表流湿地计算案例

1 基础资料 拟在昆山某地建设一处河滨表面流人工湿地处理附近城市道路路面雨水径流,道路长度为2km,汇水面积为8ha,路面雨水径流经由雨水管网输送至湿地处理系统,雨水管网设计标准为100年一遇,要求湿地建成后该段道路年径流总量控制率达到80%。 2 参数计算 2.1设计流量 一般降雨事件径流量Q1:降雨重现期P取10年,降雨历时t取15min。 径流系数α根据下表取得0.9。 极端降雨事件径流量Q2:降雨重现期P取100年,降雨历时t取10min。

径流系数α取得0.9, 2.2进水区设计 进水区设计包括沉淀池尺寸确定、沉淀池入口设计、沉淀池出口设计、植物选配。其中,沉淀池出口设计包括沉淀池至湿地处理区出口设计和沉淀池至溢洪道出口设计。 进水区主要结构如图1。 (1)沉淀池入口: 沉淀池入口设置100mm粒径砾石消能。入口示意图如图2所示。

(2)沉淀池尺寸: 沉淀池面积A: 沉淀池深度H取2m。 沉淀池最小长度Lmin: Lmin=2.55m明显不满足沉淀池长宽比应不小于4的要求,结合场地实际情况,沉淀池长宽比取5:1,即沉淀池实际长度B定为34m,实际宽度B定为7m,深度H为2m。 (3)沉淀池出口(至湿地处理区): 沉淀池出口(至湿地处理区)采用混凝土溢流坑,置于沉淀池末端,溢流坑上设置格栅。 溢流坑周长P: 溢流坑表面积:

综上,溢流坑选用圆形混凝土溢流井,直径为6.2m。 排水管出口设计在湿地处理区水面以下,进出水口高度差h取0.6m,由式3-6可得, 排水管断面面积 因此选取DN1200混凝土管。 (4)沉淀池出口(至溢洪道): 溢流堰周长L: 结合沉淀池实际尺寸,溢流堰采取增设出水支渠的方式设置于沉淀池最末端,具体样式及实际尺寸如下图所示,溢流堰顶高度高出湿地处理区正常水位0.6m。

沉淀池设计计算

沉淀池设计计算 1、清水区 流量Q总取实际值 表面负荷V(一般取12m3/(m2.h)~25 m3/(m2.h)) 斜管结构占用面积按4%计 清水池面积F=(1+4%)Q总/V 2、集水槽 每个小矩形堰流量q 流量系数m取0.43 堰宽b取0.05m 堰上水头H=(q/mb(2g)0.5)1.5 集水槽宽取b’ 堰口负荷V 一般取7L/(m.s) 进水流量Q总(单位:m3/s) 单个集水槽长度L 集水槽数量n=Q总/VL 单个集水槽流量q=Q总/n 末端临界水深h k=(q2/gb’2)^(1/3) 集水槽起端水深h=1.73h k 集水槽水头损失:h-h k 3、池体高度 ⑴超高H1=0.4m 根据室外给排水设计规范 ⑵斜管沉淀池清水区高度H2=1.0m ⑶斜管倾角α长度L 斜管高度H3=L.SINαα一般取值60° ⑷斜管沉淀池布水区高度H4=1.5m ⑸污泥回流比R1(0.5%~4%),污泥浓缩时间t n=8h 流量Q总清水区面积取F 污泥浓缩高度H5=R1Q总t n/F (6) 贮泥区高度H6=0.95m (7) 总高H=H1+H2+H3+H4+H5+H6

混合室计算 1、混合室长、宽:L 混合池底面积s 水深:H+0.2(混合池高度比沉淀池高0.2m) 流量Q总 S=Q总/(H+0.2) L=S0.5 停留时间t=S(H+0.2)/Q总 2、最小水力梯度G(一般取500~1000) 水温T(15℃) 停留时间t 水的粘度μ0.00114pa.s 最小吸收功率p=μG2Q T t/1000 搅拌机总机械效率η1 搅拌机传动效率η2 旋转轴所需电机功率N=P/η1/η2 3、池体边长L 池体当量直径:D0=(4L.L/3.14)^(1/2) 搅拌器直径D=(1/3~2/3)D0 搅拌器外缘速度V(1m/s~5m/s) 转速n=60v/3.14D 搅拌机距池底H=(0.5~1.0)D 4、搅拌器排液量Q=k q nD3(k q桨液流量准数取0.77) n:搅拌器转速D:搅拌器直径 体积循环次数:Z=Qt/v t:混合时间v:混合池有效容积

沉淀池设计计算例子

某造纸厂废水沉淀处理的实验室数据列于表3. 7中。试设计一个沉淀池,出口最大悬浮颗粒浓度为150mg/L

平流式沉淀池的设计主要是对沉淀区及污泥系统的尺寸及设备的设计,目前常用的设计方法主要包括按过流率q(经验或通过试验求取)或按沉淀时间(t)和水平流速(v)进行计算。计算方法如下: a). 按沉淀时间(t)和水平流速(v):池长L=vt ,沉淀区过水断面面积F=Q/v ,池的总宽度B=F/h1(沉淀区的深度),所需池数或分格数n=B/b(单池或单格宽度); b). 按过流率q 计算:池平面面积A=Q/u ,h1=Qt/A 。 在设计中有以下几点需要注意: 1).设计的池数或分格数不应少于2个,特殊的只有1个的一定要设置超越管; 2).池内水平流速混凝沉降一般为5~20mm/s ,自然沉淀不超过3mm/s ; 3).池的长宽比应不小于4:1;长深比应不小于10:1;如采用机械排泥,则池宽应根据排泥机

械的要求进行确定;4).正规设计时沉淀池的水力条件可用佛罗德准数Fr 进行复核,一般在10-4~10-5 式中v 为池内平均水平流速(cm/s),ω水流断面积(cm2) ,g 重力加速度(cm2/s),B 池宽(cm),H 池内有效水深(cm),R 为水力半径(cm),ρ湿周(cm); 5).对于污泥区的设计可根据污泥量及污泥储存时间进行计算,其容积 WN=Q*T*(C0-C1)*100*T/(γ*(100-p)),其中p 为污泥含水率,C0、C1为进出水中的悬浮物浓度,γ为污泥容重,T 为排泥间隔时间。

竖流式沉淀池设计主要参数为上升流速。在设计中应按试验数据确定最小沉速及停留时间,无试验参数时可按经验设计。 常见的计算公式如下:中心管面积: 由此得出中心管直径d 沉淀部分有效断面积 沉淀池直径: 沉淀区有效深度: 在设计中有以下几点需要注意: 1).沉淀池的直径或边长一般在4~7米之间,泥斗倾角在45~60度; 2). 沉淀池的直径D 与沉淀区深度之比要小于3:1; 3).无反射板时,中心管流速应不大于30mm/s ,有时不大于100mm/s ,废水从反射板与喇叭口缝隙间的流速不大于40mm/s ; 4).出口堰的最大负荷为1.5(l/m*s)。

相关文档
最新文档