离网型风力发电机系统的MPPT控制策略研究

离网型风力发电机系统的MPPT控制策略研究
离网型风力发电机系统的MPPT控制策略研究

关于离网型风力发电系统的研究

关于离网型风力发电系统的研究 【摘要】进入二十一世纪以来,人民的生活水平在不断的提高,但是经济的增长带来的是资源的浪费,和环境的污染,近几年来,环境的恶化进一步加大,政府对于环境的重视程度不断提高,随着国民素质的普遍提高,环保意识不断的增强。那么为了缓解环境的压力,人们开始研发新型能源。风能作为一种新型能源,逐渐受到人们的重视。风能具有很多有点。它最重要的是无污染,能量来自于自然界存在的风力。在一些地区,风力发电已经成为了主要的电力来源,缓解了火力发电造成的环境污染。本文就风力发电中的离网型发电系统做系统的介绍。希望能够对今后的风力发电系统提供一些参考和借鉴,将风力发电的一些前景展现出来,以供人们参考。 【关键词】风力发电;离网原理;特性;发展前景 随着经济的飞速发展以及不可再生能源的大量消耗,风能作为一种绿色能源已成为研究的热点。风力发电有很多的优点,例如:占地少、无污染等。在各个地区都受到了广泛地欢迎。随着科技的发展,风力发电技术不断提高,离网型系统作为比较古老的系统慢慢的被社会所淘汰,它对偏远地区的人们来说还是极其重要的。同时,它在各方面的原理对于风力系统的发展具有指导意义。 1.风力发电系统的现状 风力发电无需借助外部能源,风险性小,也不会造成大气污染。这些优点使得风力发电得到了广泛应用和大力发展。 目前,绝大多数国家都已应用了风力发电系统。我国拥有着较为丰富的风力资源,是较早利用风力发电的国家。我国的偏远地区由于地形、自然条件的限制,电网无法到达,此时离网型风力发电系统便处于无可替代的地位,为人们带来了极大的便利。 1.1国内风力发展现状 我国于20世纪60年代初期开始发展风能发电,首先采用的是离网式小风机技术。我国因没有充分依靠国内机电制造业基础,没有吸收引进国外先进技术,力求自主研发。这就导致了我国风电建设比较落后。目前,国内的风电容量设备大部分是从国外引进的成套设备,致使风力发电设备成本增高,为了保证收益,导致电费增高。与火力发电、水力发电相比,缺少市场竞争力。经过我国政府有关部门的积极规划和支持,我国在风电装机容量的世界排名从2004年的第10位历经3年跃居到了第5位,发展迅猛,由此可见,我国的风力发展潜力巨大。 1.2国外风力发展现状 美国等西方国家于20世纪80年代开始研发风力发电技术,并将风力发电进

风力发电机控制原理

风力发电机控制原理 本文综述了风力发电机组的电气控制。在介绍风力涡轮机特性的基础上介绍了双馈异步发电系统和永磁同步全馈发电系统,具体介绍了双馈异步发电系统的运行过程,最后简单介绍了风力发电系统的一些辅助控制系统。 关键词:风力涡轮机;双馈异步;永磁同步发电系统 概述: 经过20年的发展风力发电系统已经从基本单一的定桨距失速控制发展到全桨叶变距和变速恒频控制,目前主要的两种控制方式是:双馈异步变桨变速恒频控制方式和低速永磁同步变桨变速恒频控制方式。 在讲述风力发电控制系统之前,我们需要了解风力涡轮机输出功率与风速和转速的关系。 风力涡轮机特性: 1,风能利用系数Cp 风力涡轮从自然风能中吸取能量的大小程度用风能利用系数Cp表示: P---风力涡轮实际获得的轴功率 r---空气密度 S---风轮的扫风面积 V---上游风速 根据贝兹(Betz)理论可以推得风力涡轮机的理论最大效率为:Cpmax=0.593。 2,叶尖速比l 为了表示风轮在不同风速中的状态,用叶片的叶尖圆周速度与风速之比来衡量,称为叶尖速比l。 n---风轮的转速 w---风轮叫角频率 R---风轮半径 V---上游风速 在桨叶倾角b固定为最小值条件下,输出功率P/Pn与涡轮机转速N/Nn的关系如图1所示。从图1中看,对应于每个风速的曲线,都有一个最大输出功率点,风速越高,最大值点对应得转速越高。如故能随风速变化改变转速,使得在所有风速下都工作于最大工作点,则发出电能最多,否则发电效能将降低。

涡轮机转速、输出功率还与桨叶倾角b有关,关系曲线见图2 。图中横坐标为桨叶尖速度比,纵坐标为输出功率系统Cp。在图2 中,每个倾角对应于一条Cp=f(l)曲线,倾角越大,曲线越靠左下方。每条曲线都有一个上升段和下降段,其中下降段是稳定工作段(若风速和倾角不变,受扰动后转速增加,l加大,Cp减小,涡轮机输出机械功率和转矩减小,转子减速,返回稳定点。)它是工作区段。在工作区段中,倾角越大,l和Cp越小。 3,变速发电的控制 变速发电不是根据风速信号控制功率和转速,而是根据转速信号控制,因为风速信号扰动大,而转速信号较平稳和准确(机组惯量大)。 三段控制要求: 低风速段N<Nn,按输出功率最大功率要求进行变速控制。联接不同风速下涡轮机功率-转速曲线的最大值点,得到PTARGET=f(n)关系,把PTARGET作为变频器的给定量,通过控制电机的输出力矩,使风力发电实际输出功率P=PTARGET。图3是风速变化时的调速过程示意图。设开始工作与A2点,风速增大至V2后,由于惯性影响,转速还没来得及变化,工作点从A2移至A1,这时涡轮机产生的机械功率大于电机发出的电功率,机组加速,沿对应于V2的曲线向A3移动,最后稳定于A3点,风速减小至V3时的转速下降过程也类似,将沿B2-B1-B3轨迹运动。 中风速段为过渡区段,电机转速已达额定值N=Nn,而功率尚未达到额定值P<Pn。倾角控制器投入工作,风速增加时,控制器限制转速升,而功率则随着风速增加上升,直至P=Pn。 高风速段为功率和转速均被限制区段N=Nn/P=Pn,风速增加时,转速靠倾角控制器限制,功率靠变频器限制(限制PTARGET值)。 4,双馈异步风力发电控制系统 双馈异步风力发电系统的示意见图4,绕线异步电动机的定子直接连接电网,转子经四象限IGBT电压型交-直-交变频器接电网。 转子电压和频率比例于电机转差率,随着转速变化而变化,变频器把转差频率的转差功率变为恒压、恒频(50HZ)的转差功率,送至电网。由图4可知: P=PS-PR;PR=SPS;P=(1-S)PS P是送至电网总功率;PS和PR分别是定子和转子功率 转速高于同步速时,转差率S<0,转差功率流出转子,经变频器送至电网,电网收到的功率为定、转子功率之和,大于定子功率;转速低于同步转速食,S>0,转差功率从电网,

风力发电机的控制方式综述

风力发电机及风力发电控制技术综述 摘要:本文分析比较了各种风力发电机的优缺点,介绍了相关风力发电控制技术,风力发 电系统中的应用,最后对未来风力发电机和风力发电控制技术作了展望。 关键词:风力发电机电力系统控制技术 Overview of Wind Power Generators and the Control Technologies SU Chen-chen Abstract:This paper analyzes the advantages and disadvantages of the various wind turbine control technology of wind power, wind power generation system, and finally prospected the future control of wind turbines and wind power technology. 1 引言 在能源短缺和环境趋向恶化的今天,风能作为一种可再生清洁能源,日益为世界各国所重视和开发。由于风能开发有着巨大的经济、社会、环保价值和发展前景,近20年来风电技术有了巨大的进步,风电开发在各种能源开发中增速最快。德国、西班牙、丹麦、美国等欧美国家在风力发电理论与技术研发方面起步较早,因而目前处于世界领先地位。与风电发达国家相比,中国在风力发电机制造技术和风力发电控制技术方面存在较大差距,目前国内只掌握了定桨距风机的制造技术和刚刚投入应用的兆瓦级永磁直驱同步发电机技术,在风机的大型化、变桨距控制、主动失速控制、变速恒频等先进风电技术方面还有待进一步研究和应用[1]。发电机是风力发电机组中将风能转化为电能的重要装置,它不仅直接影响输出电能的质量和效率,也影响整个风电转换系统的性能和装置结构的复杂性。风能是低密度能源,具有不稳定和随机性特点,控制技术是风力机安全高效运行的关键,因此研制适合于风电转换、运行可靠、效率高、控制且供电性能良好的发电机系统和先进的控制技术是风力发电推广应用的关键。本文分析比较了各种风力发电机的优缺点,介绍了相关风力发电控制技术,风力发电系统中的应用,最后对未来风力发电机和风力发电控制技术作了展望。 2 风力发电机 2.1 风电机组控制系统概述 图1为风电机组控制系统示意图。系统本体由“空气动力学系统”、“发电机系统”、“变流系统”及其附属结构组成; 电控系统(总体控制)由“变桨控制”、“偏航控制”、“变流控制”等主模块组成(此外还有“通讯、监控、健康管理”等辅助模块)。各种控制及测量信号在机组本体系统与电控系统之间交互。“变桨控制系统”负责空气动力系统的“桨距”控制,其成本一般不超过整个机组价格5%,但对最大化风能转换、功率稳定输出及机组安全保护至关重要,因此是风机控制系统研究重点之一。“偏航控制系统”负责风轮自动对风及机舱自动解缆,一般分主动和被动两种偏航模式,而大型风电机组多采用主动偏航模式。“变 流控制系统”通常与变桨距系统配合运行,通过双向变流器对发电机进行矢量或直接转矩控制,独立调节有功功率和无功功率,实现变速恒频运行和最大(额定)功率控制。

离网型风力发电机性能测试系统

离网型风力发电机性能测试系统 嘉兆科技 概述 风能发电是利用风能的一个很好的途径。根据《离网型风力发电机组(第2部分):试验方法(GB/T 》中的要求。在开发和改进风力发电机,更好地利用风能资源的进程中,需要对风力发电机本身及与风力发电机相关的一些参数进行准确测试,作为改进风力发电机性能的必要依据。 这套测试系统采用了虚拟仪器测试技术,可以实现对被测风力发电机实时实地的数据采集监控以及数据分析处理功能。被测数据可以包括大气压力、大气温度、直流电流、直流电压、频率、风速等。 系统特点 1、成熟的硬件设备与系统架构。 系统以RS-485数据总线为无线采集终端的传输骨干,以嵌入式PC机为数据采集终端控制中心,以以太网,WIFI,2G,3G做为与上层系统的通讯方法。保证了系统的稳定性。 2、优越的系统压缩扩展性能,灵活可控的成本。

底层数据终端采用RS485数据采集方式,每个数据采集终端最多可以连接256个节点,RS485连接最长可达到1000m,可根据现场情况灵活压缩或扩展系统,成本控制非常灵活。 3、小巧坚固的无线采集终端。 采集终端体积小,重量轻,可扩展性强,机箱防护等级为IP65。可选择使用内部电池或外部电源供电。 4、灵活的数据查看报警方式。 采集点采集到的数据可先做预处理再传输回远端集控中心。增强整个系统的信号传输能力和稳定性。 用户可通过采集终端、服务器、远程客户端查看现场数据。通过系统扩展,可增加短信报警及邮件报警等功能。 5、灵活可选的上层通讯链路。 由于数据采集底层采用了嵌入式控制系统,在成本变化不大的情况下,可依据实际情况灵活选择上层通讯链路,如:以太网,WIFI,GPRS,3G等。 6、完善的自我诊断功能。 通过软硬件的设计,系统的能够进行自我检测与诊断,实时发现系统内各组件故障,以便及时的维修与维护。 7、强大的软件功能。 上位机软件与下位机软件协同工作,确保最优数据处理及系统稳定。 通过软件可实时查看发电机运行时现场数据,所有的数据都以数据库的形式保存,方便及时查看和分析。 软件主要功能有: a) 通信管理:系统可自动与各采集模块建立通讯连接,整个系统具有自我诊断功能,当通信因外部原因中断后可在最短时间内重新建立连接。 b) 实时检测:可以实时检测发电机现场的发电机参数和环境参数。

风力发电机结构介绍

风力发电机结构介绍 风力发电机组是由风轮、传动系统、偏航系统、液压系统、制动系统、发电机、控制与安全系统、机舱、塔架和基础等组成。该机组通过风力推动叶轮旋转,再通过传动系统增速来达到发电机的转速后来驱动发电机发电,有效的将风能转化成电能。风力发电机组结构示意图如下。 1、叶片 2、变浆轴承 3、主轴 4、机舱吊 5、齿轮箱 6、高速轴制动器 7、发电机 8、轴流风机9、机座10、滑环11、偏航轴承12、偏航驱动13、轮毂系统 各主要组成部分功能简述如下 (1)叶片叶片是吸收风能的单元,用于将空气的动能转换为叶轮转动的机械能。叶轮的转动是风作用在叶片上产生的升力导致。由叶片、轮毂、变桨系统组成。每个叶片有一套独立的变桨机构,主动对叶片进行调节。叶片配备雷电保护系统。风机维护时,叶轮可通过锁定销进行锁定。 (2)变浆系统变浆系统通过改变叶片的桨距角,使叶片在不同风速时处于最佳的吸收风能的状态,当风速超过切出风速时,使叶片顺桨刹车。 (3)齿轮箱齿轮箱是将风轮在风力作用下所产生的动力传递给发电机,并使其得到相应的转速。 (4)发电机发电机是将叶轮转动的机械动能转换为电能的部件。明阳1.5s/se机组采用是带滑环三相双馈异步发电机。转子与变频器连接,可向转子回路提供可调频率的电压,输出转速可以在同步转速±30%范围内调节。 (5)偏航系统偏航系统采用主动对风齿轮驱动形式,与控制系统相配合,使叶轮始终处于迎风状态,充分利用风能,提高发电效率。同时提供必要的锁紧力矩,以保障机组安全运行。 (6)轮毂系统轮毂的作用是将叶片固定在一起,并且承受叶片上传递的各种载荷,然后传递到发电机转动轴上。轮毂结构是3个放射形喇叭口拟合在一起的。 (7)底座总成底座总成主要有底座、下平台总成、内平台总成、机舱梯子等组成。通过偏航轴承与塔架相连,并通过偏航系统带动机舱总成、发电机总成、变浆系统总成。 MY1.5s/se型风电机组主要技术参数如下: (1)机组: 机组额定功率:1500kw

小型风力发电机控制器设计

电子设计竞赛教程 考试(设计报告) 题目:小型风力发电机控制器设计

摘要 现有的小型风力发电系统存在能量转换效率低、蓄电池使用寿命短、控制简单和缺乏完整的系统功率控制等问题。因此提高对蓄电池的充电速度,减少充电损耗,正确地监控蓄电池状态,确保蓄电池的正确使用、延长蓄电池的使用寿命对小型风力发电有着重要意义。本设计的目的是在分析现有的小型风力发电系统的基础上,设计简单、高效、高可靠性的风机控制器,实现风电系统可靠及优化运行。 本设计以单片机8051的加强版STC12C5A60S2为核心控制整个电路,具体由风力发电机、控制系统、整流电路、斩波电路、蓄电池充放电控制电路、蓄电池及其用电设备组成,功能上能保证系统安全运行,在电气特性和机械特性允许范围内运行。减少风速随机变化对输出电能的影响,使输出电压稳定,减少纹波。合理调度系统电能,保证向负载提供连续电能。保护蓄电池,防止过充和过放,提供足够充电能量进行快速充电。 综上所述,本设计将具有可靠性更高、价格更廉等优势,对于增强市场竞争能力,加速小型风力发电的普及和应用,节约能源和保护环境都具有重要意义。 关键词:发电机整流锂电池环保

目录 一绪论 0 二小型风力发电系统原理 (1) 2.1 风力发电系统组成 (1) 2.2 风电系统的运行特点 (1) 2.3 电能变换单元和控制单元 (3) 2.3.1 整流器 (3) 2.3.2 DC/DC 变换器 (4) 2.4 锂电池 (4) 2.4.1 锂电池的介绍 (4) 2.4.2 锂电池的种类 (5) 2.4.3 锂电池的充电方法 (5) 三小型风力发电机控制器的设计 (6) 3.1 电机的选择 (6) 3.1.1 手摇发电机 (6) 3.1.2 电机特性曲线 (8) 3.2 单片机(单片机STC12C5A60S2) (10) 3.2.1 产品介绍 (10) 3.2.2 单片机STC12C5A60S2的特点 (10) 四流程图和电路图 (13) 4.1流程图和控制原理图 (13) 4.2 显示屏 (17) 4.3 锂电池选择 (19) 4.4 检测电路 (20) 4.4.1 电压检测 (20) 4.4.2 电流检测 (21) 五调试 (21)

离网风力发电系统的应用设计实例

离网风力发电系统的应用设计实例 一、任务导入 我国还有很多远离电网的农村、牧区、边防连队、海岛驻军等地方使用柴或汽油发电机组供电,发电成本相当高,而这些地方大部分处在风力资源丰富地区。通过采用风力发电机组供电,节约了燃料和资源,同时还减少了对环境的污染,一举多得,有着十分显著的经济效益和社会效益。 如何选择一台真正适合本地区使用的小型风力发电机进行风力发电呢? 二、相关知识 风力发电机根据应用场合的不同又分为并网型和离网型风力机,离网型风力发电机亦称独立运行风力机是应用在无电网地区的风力机,一般功率较小。独立运行风力机一般需要与蓄电池和其他控制装置共同组成独立运行风力机发电系统。这种独立运行系统可以是几千瓦乃至上几十千瓦解决一个村落的供电系统,也可以是几十到几百瓦的小型风力发电机组以解决一家一户的供电,我们这里主要介绍适合我国边远无电地区的小型风力发电机组的应用。 学习情境离网风力发电系统的设计方法 根据安装地点的风能资源情况,以及用户的用电负荷和用电要求,合理选配小型风力发电机组的类型和配置,以获得最佳效益是离网风力发电系统的设计要求。 (一)风力发电设计应注意的问题 1.风力发电系统应用环境的分类 为了使风力发电系统适应不同的使用环境,降低因为环境原因造成的风力发电机组故障,将风力发电系统的使用环境分成3类。根据不同环境的实际需要选择相适应的产品。 I类地区:沿海地区。抗风能力强,风力发电机在承受60m/s风速时,不至于损坏;耐腐蚀,要求在沿海地区耐腐蚀年限为10年。 Ⅱ类:高寒、高海拔地区。要求可以适应低温环境;适应高海拔低气压环境。 Ⅲ类:沙漠、戈壁地区。要求可以适应高温酷热环境;适应沙尘天气。 I类地区风力发电机的安全风速不小于60m/s;Ⅱ类和Ⅲ类地区机组的安全风速不小于50m/s。风力发电机的启动风速和额定风速应根据年平均风速频率分布图来确定,无年平均风速频率分布图时,应根据平均风速最低月份确定。风力发电机的噪声应不高于70dB。 2.影响风力发电系统设计的因素 由于风力资源随地点而变,因此即使在很相近的两个地点,风力资源特性也不会相同,因此,对于任何风光互补发电项目,必须进行实地短期风力测量、长期风力资源预测、风流模拟计算和发电量估算等。 如果需要安装超过一台风力发电机,每台风力发电机在特定风向下部可能成为其他风力发电机的障碍物,造成尾流效应。风电场总发电量估算须考虑尾流效应的影响。根据当地风力特征选择适当的风力发电机。风力资源中等的地方,使用可变速型号比固定速度型号的风力发电机能够有更好的发电量。考虑到部分地区有台风,因此应选择市场上最牢固的风力发电机。国际电工协会标准分级中,1级风力发电机可以抵受最高的极端负荷。此外,湍流强度也影响风力发电机的选择。 只有结合安装地点的实际环境条件选择使用风力发电机,才能充分地利用当地的风力资源,最大限度地发挥风力发电机的效率,取得较高的经济效益。应该指出的是,在风力资源丰富地区,最好选择额定设计风速与当地最佳设计风速相吻合的风力发电机。如能做到这一点无论是从风力发电机的选择上,还是利用风力资源的经济意义上都有重要的意义。风洞试

风力发电机的几种功率调节方式

风力发电机的几种功率调节方式 作者:佚名发布时间:2009-5-5 随着计算机技术与先进的控制技术应用到风电领域,并网运行的风力发电控制技术得到了较快发展,控制方式从基本单一的定桨距失速控制向变桨距和变速恒频控制方向发展,甚至向智能型控制发展。作为风力资源较为丰富的国家之一,我国加快了风电技术领域的自主开发与研究,兆瓦级变速恒频的风力发电机组国产化已列入国家“863”科技攻关顶目。本文针对当前并网型风力发电机组的几种功率凋节控制技术进行了介绍。 l 定桨距失速调节型风力发电机组 定桨距是指桨叶与轮载的连接是固定的,桨距角固定不变,即当风速变化时,桨叶的迎风角度不能随之变化。失速型是指桨叶翼型本身所具有的失速特性,当风速高于额定风速69,气流的攻角增大到失速条件,使桨叶的表面产生涡流,效率降低,来限制发电机的功率输出。为了提高风电机组在低风速时的效率,通常采用双速发电机(即大/小发电机)。在低风速段运行的,采用小电机使桨叶具有较高的气动效率,提高发电机的运行效率。失速调节型的优点是失速调节简单可靠,当风速变化引起的输出功率的变化只通过桨叶的被动失速调节而控制系统不作任何控制,使控制系统大为减化。 2 变桨距调节型风力发电机组 变桨距是指安装在轮载上的叶片通过控制改变其桨距角的大小。其调节方法为:当风电机组达到运行条件时,控制系统命令调节桨距角调到45”,当转速达到一定时,再调节到0“,直到风力机达到额定转速并网发电;在运行过程中,当输出功率小于额定功率时,桨距角保持在0°位置不变,不作任何调节;当发电机输出功率达到额定功率以后,调节系统根据输出功率的变化调整桨距角的大小,使发电机的输出功率保持在额定功率。随着风电控制技术的发展,当输出功率小于额定功率状态时,变桨距风力发电机组采用OptitiP技术,即根据风速的大 风力发电机的几种功率调节方式 作者:佚名发布时间:2009-5-5 调整发电机转差率,使其尽量运行在最佳叶尖速比,优化输出功率。变桨距调节的优点是桨叶受力较小,桨叶做的较为轻巧。桨距角可以随风速的大小而进行自动调节,因而能够尽可能多的吸收风能转化为电能,同时在高风速段保持功率平稳输出。缺点是结构比较复杂,故障率相对较高。 3 主动失速调节型风力发电机组 将定桨距失速调节型与变桨距调节型两种风力发电机组相结合,充分吸取了被动失速和桨距调节的优点,桨叶采用失速特性,调节系统采用变桨距调节。在低风速肘,将桨叶节距调节到可获取最大功率位置,桨距角调整优化机组功率的输出;当风力机发出的功率超过额定功率后,桨叶节距主动向失速方向调节,将功率调整在额定值以下,限制机组最大功率输出,随着风速的不断变化,桨叶仅需要微调维持失速状态。制动刹车时,调节桨叶相当于气动刹车,很大程度上减少了机械刹车对传动系统的冲击。主动失速调节型的优点是其言了定奖距失速型的特点,并在此基础上进行变桨距调节,提高了机同频率后并入电网。机组在叶片设计上采用了变桨距结构。其调节方法是:在起动阶段,通过调节变桨距系统控制发电机转速,将发电机转速保持在同步转速附近,寻找最佳并网时机然后平稳并网;在额定风速以下时,主要调节发电机反力转矩使转速跟随风速变化,保持最佳叶尖速比以获得最大风能;在额定风速以上时,采用变速与桨叶节距双重调节,

风电机组控制安全系统安全运行的技术要求(正式)

编订:__________________ 单位:__________________ 时间:__________________ 风电机组控制安全系统安全运行的技术要求(正式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-5841-15 风电机组控制安全系统安全运行的 技术要求(正式) 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 控制与安全与系统是风力发电机组安全运行的大脑指挥中心,控制系统的安全运行就是保证了机组安全运行,通常风力发电机组运行所涉及的内容相当广泛就运行工况而言,包括起动、停机、功率调解、变速控制和事故处理等方面的内容。 风力发电机组在启停过程中,机组各部件将受到剧烈的机械应力的变化,而对安全运行起决定因素是风速变化引起的转速的变化。所以转速的控制是机组安全运行的关键。风力发电机组组的运行是一项复杂的操作,涉及的问题很多,如风速的变化、转速的变化、温度的变化、振动等都是直接威胁风力发电机组的安全运行。

一控制系统安全运行的必备条件 1、风力发电机组开关出线侧相序必须与并网电网相序一致,电压标称值相等,三相电压平衡。 2、风力发电机组安全链系统硬件运行正常。 3、调向系统处于正常状态,风速仪和风向标处于正常运行的状态。 4、制动和控制系统液压装置的油压、油温和油位在规定范围内。 5、齿轮箱油位和油温在正常范围。 6、各项保护装置均在正常位置,且保护值均与批准设定的值相符。

风力发电控制系统

摘要介绍了世界风力发电控制系统的发展历程和我国的研究现状。分析并得 出风力发电系统中,控制系统是确保机组安全可靠运行、优化机组效率的关键。详细介绍了控制系统的功能,并给出了DCS控制系统结构图,同时探讨了控制系统发展趋势。仿真表明:风力发电控制技术的研究,对增强我国大型风力发电机组的自主开发能力、提高风力发电机组的国产化率和降低机组成本具有重要意 义。 关键词:风力发电控制系统功能结构研究动态 引言 煤炭、石油和天然气等化石燃料的蕴藏量是有限的,人类赖以生存、发展的能源总有一天要枯竭,并且不断增长的能源消耗所造成的环境污染和安全问题已经成为社会的主要突出矛盾。无论从人类将来的能源危机,或是眼前的环境污染问题来看,研究开发风力发电技术都具有十分重要的意义,而且,地球上蕴藏的风力资源也十分丰富,具有广阔的开发前景。开发利用风力资源,要用到许多高新技术。其中最关键的是电力电子技术以及控制技术。将最新的电力电子技术、控制技术应用于风力发电系统中,提高风力发电的效率和电力变换质量、降低风电的成本,使得清洁可再生能源逐步替代传统的化石燃料,以改善人类生存的环境,提高人们的生活水平,具有重大的经济效益和社会价值。 1风力发电的发展现状 现代风力发电崛起于上世纪八九十年代以来取得了飞速的进展。从控制系统的实现来说,由19世纪末第一台现代风力发电机组在丹麦诞生,到20世纪80年代初,风力发电机组电气控制系统得以实现,但仍局限于采用模拟电子器件。到了80年代中后期,随着计算机技术的发展及其在控制领域的应用,出现了基于微处理器的风力发电机组电气控制系统。步入90年代,随着微处理器在电力电子、数据采集、信号处理、工业控制等领域的广泛应用,风力发电机组的电气控制系统往往采用基于单板机、单片机或可编程控制器的微机控制。目前国外对大型风力发电机组控制系统的研究非常活跃,以提高机组的运行性能、降低发电成本。我国的风电产业与世界水平有所差距。为跟上国际发展步伐,在未来世界风电市场激烈竞争中占有一席之地,我国政府为风电产业从业者提供了更为广阔的空间,风力发电在我国将大有所为。 2风力发电系统 风力发电机组主要由风轮、发电机、电能变换单元和控制系统组成,如图1所示。 风轮通过叶片捕获风能,是吸收风能并将其转换成机械能的部件。发电机实现机械能-电能转换。由于异步发电机结构简单、运行可靠,目前风力发电几乎均采用异步发电机。 发电机所发出的电能有两种处理方式:可以直接给负载供电或并入电网;也可以通过储能设备进行蓄能,再由电能变换单元将储能设备输出的直流电转换成交

(完整版)风力发电标准汇总表

风力发电标准汇总表 序号标准号名称备注一国家标准,共30项 1 GB/T 2900.53-2001 电工术语风力发电机组 2 GB 8116—1987 风力发电机组型式与基本参数 3 GB/T 10760.1-2003 离网型风力发电机组用发电机第1部分:技术条件 4 GB/T 10760.2-2003 离网型风力发电机组用发电机第2部分:试验方法 5 GB/T 13981—1992 风力设计通用要求 6 GB/T 16437—1996 小型风力发电机组结构安全要求 7 GB 17646-1998 小型风力发电机组安全要求 8 GB 18451.1-2001 风力发电机组安全要求 9 GB/T 18451.2-2003 风力发电机组功率特性试验 10 GB/T 18709—2002 风电场风能资源测量方法 11 GB/T 18710—2002 风电场风能资源评估方法 12 GB/T 19068.1-2003 离网型风力发电机组第1部分技术条件 13 GB/T 19068.2-2003 离网型风力发电机组第2部分试验方法 14 GB/T 19068.3-2003 离网型风力发电机组第3部分风洞试验方法 15 GB/T 19069-2003 风力发电机组控制器技术条件 16 GB/T 19070-2003 风力发电机组控制器试验方法 17 GB/T 19071.1-2003 风力发电机组异步发电机第1部分技术条件 18 GB/T 19071.2-2003 风力发电机组异步发电机第2部分试验方法 19 GB/T 19072-2003 风力发电机组塔架 20 GB/T 19073-2003 风力发电机组齿轮箱 21 GB/T 19115.1-2003 离网型户用风光互补发电系统第1部分:技术条件 22 GB/T 19115.2-2003 离网型户用风光互补发电系统第2部分:试验方法

风力发电机偏航系统控制

摘要 能源、环境是当今人类生存和发展所要解决的紧迫问题。风力发电作为一种可持续发展的新能源,不仅可以节约常规能源,而且减少环境污染,具有较好的经济效益和社会效益,越来越受到各国的重视。 由于风能具有能量密度低、随机性和不稳定性等特点,风力发电机组是复杂多变量非线性不确定系统,因此,控制技术是机组安全高效运行的关键。偏航控制系统成为水平轴风力发电机组控制系统的重要组成部分。风力发电机组的偏航控制系统,主要分为两大类:被动迎风偏航系统和主动迎风系统。前者多用于小型的独立风力发电系统,由尾舵控制,风向改变时,被动对风。后者则多用大型并网型风力发电系统,由位于下风向的风向标发出的信号进行主动对风控制。本文设计是大型风力发电机组根据风速仪、风向标等传感器数据,对风、制动、开闸并确定起动,达到同步转速一段时间后,进行并网操作,开始发电。 本文介绍了风力机的偏航控制机构、驱动机构的基础上,采用PLC作为主控单元,设计了风电机组的偏航控制系统。系统根据风向、风速传感器采集的数据,采取逻辑控制主动对风,实现了对风过程可控。论文给出了基于风向标、风速仪的偏航控制系统的软硬件设计结果。 关键词:风力发电机;风向标;偏航控制系统;驱动机构

目录 第1章绪论 (2) 1.1 课题的背景和意义 (2) 1.2 国内风力发电的发展 (3) 第2章风力发电机组系统组成及功能简介 (5) 2.1 风力机桨叶系统 (5) 2.2 风力机齿轮箱系统 (6) 2.3 发电机系统 (7) 2.4 偏航系统 (8) 2.6 刹车系统 (8) 2.8 控制系统 (8) 第3章偏航控制系统功能和原理 (10) 3.1 偏航控制机构 (10) 3.1.1 风向传感器 (10) 3.1.2 偏航控制器 (12) 3.1.3 解缆传感器 (12) 3.2 偏航驱动机构 (13) 3.2.2 偏航驱动装置 (15) 3.2.3 偏航制动器 (16) 第4章偏航控制系统设计及结果分析 (18) 4.1 偏航系统控制过程分析 (18) 4.1.1 自动偏航 (18) 4.1.2 90度侧风控制 (19) 4.1.3 人工偏航控制 (20) 4.1.4 自动解缆 (20) 4.1.5 阻尼刹车 (21) 4.2 偏航控制系统总体设计结构与思想 (22) 4.3 偏航控制系统设计各组成器件简介、选型及原理 (22) 总结与展望 (23) 参考文献 (24) 致谢 (24)

风电机组监测与控制

课程设计报告 ( 2014– 2015 年度第一学期) 名称:风电机组监测与控制课程设计院系:可再生能源学院 班级: 学号: 学生姓名: 组员: 指导教师:邓英 设计周数:2周 成绩: 日期:2015年1月9日

一、课程设计的目的与要求 本课程设计是在风能与动力工程专业课《风电机组检测与控制》以及进行风力发电机组模拟监测与控制的基础上进行的。 主要目的是: 1、加强同学们对风电机组监测与控制的各个环节的认识,设计并制作风电机组控制手动操作模型,并进行模拟实验,模拟风电机组启动、停机、并网、变桨、偏航、故障停机等运行状态。 2、理解PLC编程的梯形图的含义,并学会使用PLC与仪器箱的电子元件器件完成风电机组自动运行模拟仿真实验。 3、培养同学们的动手能力与排查错误的能力。 二、课程设计内容 (1)风力发电机组运行的监测与控制系统不仅监视电网、风况和机组的运行参数,保证机组在参数正常的情况下运行,在发生故障时能够脱网停机,以确保运行的安全性和可靠性,并根据风速与风向的变化,对机组进行优化控制以保证机组稳定高效运行。 6个安全链条件无故障时,且满足安全链电路连上时,启动灯亮,在此基础上,按下开机、松闸、开桨进行外接风机运行;在风力发电机组运行过程,可以通过风速调节控制其转速;当安全链有故障或启动条件不满足时急停灯亮,停止运行。风机停后不能进行偏航操作。 (2)手动电路 1、安全链电路实验 根据实验要求确定安全元素是否激励,若无动作,按钮处于闭合状态,将继电器接入电路中,接入电源,继电器灯亮,急停灯灭;反之,若有任一安全元素激励,安全链无法闭合,急停灯亮。 2、开桨电路实验 确定风电机组启动条件、实验条件全部满足,将5、6接线柱分别串开桨电路中,按开机键,对应指示灯亮,使开桨电机激励做开桨运动,实验毕应按复位键使其回到原来状态。 3、并网发电实验 当安全链闭合,运行参数在工作范围之内,且系统无报警故障,在机组开桨

风力发电机功率过高或过低的处理

风力发电机功率过高或过低的处理 1.功率过低 如果发电机功率持续(一般设置30~60s)出现逆功率,其值小于预置值Ps,风力发电机组将退出电网,处于待机状态。脱网动作过程如下:断开发电机接触器,断开旁路接触器,不释放叶尖扰流器,不投入机械刹车。 重新切入可考虑将切人预置点自动提高0.5%,但转速下降到预置点以下后升起再并网时,预置值自动恢复到初始状态值。 重新并网动作过程如下:合发电机接触器,软启动后晶闸管完全导通。当输出功率超过Ps3s时,投入旁路接触器,转速切人点变为原定值。功率低于Ps,时由晶闸管通路向电网供电,这时输出电流不大,晶闸管可连续工作。 这一过程是在风速较低时进行的。发电机出力为负功率时,吸收电网有功,风力发电机组几乎不做功。如果不提高切人设置点,起动后仍然可能是电动机运行状态。 2.功率过高 一般说来,功率过高现象由两种情况引起:一是由于电网频率波动引起的。电网频率降低时,同步转速下降,而发电机转速短时间不会降低,转差较大;各项损耗及风力转换机械能瞬时不突变,因而功率瞬时会变得很大。二是由于气候变化,空气密度的增加引起的。功率过高如持续一定时间,控制系统应作出反应。可设置为:当发电机出力持续10min大于额定功率的15%后,正常停机;当功率持续2s大于额定功率的50%,安全停机。 风力发电机组退出电网

风力发电机组各部件受其物理性能的限制,当风速超过一定的限度时,必需脱网停机。例如风速过高将导致叶片大部分严重失速,受剪切力矩超出承受限度而导致过早损坏。因而在风速超出允许值时,风力发电机组应退出电网。 由于风速过高引起的风力发电机组退出电网有以下几种情况: 1)风速高于25m/s,持续10min。一般来说,由于受叶片失速性能限制,在风速超出额定值时发电机转速不会因此上升。但当电网频率上升时,发电机同步转速上升,要维持发电机出力基本不变,只有在原有转速的基础上进一步上升,可能超出预置值。这种情况通过转速检测和电网频率监测可以做出迅速反应。如果过转速,释放叶尖扰流器后还应使风力发电机组侧风90°,以便转速迅速降下来。当然,只要转速没有超出允许限额,只需执行正常停机。 2)风速高于33m/s,持续2s,正常停机。 3)风速高于50m/s,持续ls,安全停机,侧风90°。

风力发电机变桨系统DOC

风力发电机变桨系统 1、综述 变桨系统的所有部件都安装在轮毂上。风机正常运行时所有部件都随轮毂以一定的速度旋转。 变桨系统通过控制叶片的角度来控制风轮的转速,进而控制风机的输出功率,并能够通过空气动力制动的方式使风机安全停机。 风机的叶片(根部)通过变桨轴承与轮毂相连,每个叶片都要有自己的相对独立的电控同步的变桨驱动系统。变桨驱动系统通过一个小齿轮与变桨轴承内齿啮合联动。 风机正常运行期间,当风速超过机组额定风速时(风速在12m/s到25m/s之间时),为了控制功率输出变桨角度限定在0度到30度之间(变桨角度根据风速的变化进行自动调整),通过控制叶片的角度使风轮的转速保持恒定。任何情况引起的停机都会使叶片顺桨到90度位置(执行紧急顺桨命令时叶片会顺桨到91度限位位置)。 变桨系统有时需要由备用电池供电进行变桨操作(比如变桨系统的主电源供电失效后),因此变桨系统必须配备备用电池以确保机组发生严重故障或重大事故的情况下可以安全停机(叶片顺桨到91度限位位置)。此外还需要一个冗余限位开关(用于95度限位),在主限位开关(用于91度限位)失效时确保变桨电机的安全制动。 由于机组故障或其他原因而导致备用电源长期没有使用时,风机主控就需要检查备用电池的状态和备用电池供电变桨操作功能的正常性。 每个变桨驱动系统都配有一个绝对值编码器安装在电机的非驱动端(电机尾部),还配有一个冗余的绝对值编码器安装在叶片根部变桨轴承内齿旁,它通过一个小齿轮与变桨轴承内齿啮合联动记录变桨角度。 风机主控接收所有编码器的信号,而变桨系统只应用电机尾部编码器的信号,只有当电机尾部编码器失效时风机主控才会控制变桨系统应用冗余编码器的信号。 2、变浆系统的作用 根据风速的大小自动进行调整叶片与风向之间的夹角实现风轮对风力发电机有一个恒定转速;利用空气动力学原理可以使桨叶顺浆90°与风向平行,使风机停机。 SSB变桨系统为寒冷环境设计。环境温度定义如下 工作温度为 -30 ~ +40 ℃ 静态温度为 -40 ~ +50 ℃ 在主电源失电后,单独的加热系统会开始工作来保持柜体温度,只有必要的设备被通电。在每个柜体的温度到达 5 ℃一段时间后,系统被启动,这个默认的时间是60分钟。 在这段可调整的时间过后,这个系统被释放和通电。 3、主要部件 电控柜(一个主控柜、三个轴柜)4套 变桨电机(配有变桨系统主编码器:A编码器)3套 备用电池3套 直流电机3个 机械式限位开关3套(6个) 冗余编码器(B编码器)3套

小型风力发电机控制器的设计

1 引言 1.1本课题的意义 1.1.1 风力发电的意义 随着现代工业的发展和社会的进步,人们对供电持续性和供电量的要求也越来越高。而煤炭、石油的日趋减少,开发新能源成为当今社会最热门的话题之一。风能作为一种自然资源,它有取之不尽、清洁无污染等优点,所以被人们称为“绿色资源”受到青睐[1]。利用可再生能源可以节约能源和保护环境,而风力发电与其它再生能源相比,更具竞争潜力,因而发展迅速。我国幅员辽阔,居民分布东多西少。考虑到生活在边远地区的农、牧民以及沿海地区岛屿上的渔民、边、海防哨所、通讯塔站及微波中继站等居民的用电特点,用常规电网覆盖他们十分困难,而且也很不经济。因此在我国的许多边远地区,电力短缺造成经济,文化与教育的严重落后。但由于这些地区一般风力资源比较丰富,因此在这些地区大力推广小型风力发电机系统的应用也将是一种比较理想的策略[2]。 1.1.2 目前户用小型风力发电存在的问题 风力发电是涉及电机、电力电子、电化学、机械、空气动力学、计算机、自动控制、气象等多种学科的综合课题,大型风力发电机组发出的电能直接并到电网上,向电网馈电;小型风力发电机一般将风力发电机组发出的电能用除能设备储存起来(一般用蓄电池),需要时再提供给负载(可直流供电,亦可用逆变器变换为交流供给用户)。常见的独立运行小型风力发电系统框图如图1.1所示[3]。 由于风能的随机性和不稳定性以及负载的随时变化使得现有小型风电系统仍然存在不少问题。 1、效率较低,现有系统一般采用发电机输出直接对蓄电池进行充电,并没有对风电转换环节进行控制,使得风能利用系数比较低,一般在0.3左右。据贝茨理论风能利用系数的极限值为0.593,如果控制风力机总是以最佳叶尖速比运行,年发电量可以提20%~

风力发电机功率调整方法

风力发电机功率调整方法 风力发电的功率调整 1.功率过低 如果发电机功率持续(一般设置30~60s)出现逆功率,其值小于预置值Ps,风力发电机组将退出电网,处于待机状态。脱网动作过程如下:断开发电机接触器,断开旁路接触器,不释放叶尖扰流器,不投入机械刹车。重新切入可考虑将切人预置点自动提高0.5%,但转速下降到预置点以下后升起再并网时,预置值自动恢复到初始状态值。 重新并网动作过程如下:合发电机接触器,软启动后晶闸管完全导通。当输出功率超过Ps3s时,投入旁路接触器,转速切人点变为原定值。功率低于Ps,时由晶闸管通路向电网供电,这时输出电流不大,晶闸管可连续工作。 这一过程是在风速较低时进行的。发电机出力为负功率时,吸收电网有功,风力发电机组几乎不做功。如果不提高切人设置点,起动后仍然可能是电动机运行状态。 2.功率过高 一般说来,功率过高现象由两种情况引起:一是由于电网频率波动引起的。电网频率降低时,同步转速下降,而发电机转速短时间不会降低,转差较大;各项损耗及风力转换机械能瞬时不突变,因而功率瞬时会变得很大。二是由于气候变化,空气密度的增加引起的。功率过高如持续一定时间,控制系统应作出反应。可设置为:当发电机出力持续10min大于额定功率的15%后,正常停机;当功率持续2s大于额定功率的50%,安全停机。 风力发电机组退出电网 风力发电机组各部件受其物理性能的限制,当风速超过一定的限度时,必需脱网停机。例如风速过高将导致叶片大部分严重失速,受剪切力矩超出承受限度而导致过早损坏。因而在风速超出允许值时,风力发电机组应退出电网。 由于风速过高引起的风力发电机组退出电网有以下几种情况: 1)风速高于25m/s,持续10min。一般来说,由于受叶片失速性能限制,在风速超出额定值时发电机转速不会因此上升。但当电网频率上升时,发电机同步转速上升,要维持发电机出力基本不变,只有在原有转速的基础上进一步上升,可能超出预置值。这种情况通

风力发电系统运行及控制方法

龙源期刊网 https://www.360docs.net/doc/2f3579887.html, 风力发电系统运行及控制方法 作者:胡飞 来源:《中国科技纵横》2016年第24期 【摘要】随着各类新型能源的开发与使用,风力发电系统作为一种新能源也逐渐应用于 人们的生活与工作中,风力发电系统的使用不仅可以减少煤炭等资源的应用,保护环境,减少污染环境的气体,也可以不断地为我国提供安全、高效率的供电质量。本文就主要针对风力发电系统的运行及控制进行相关探究。 【关键词】风力发电系统运行控制方法 在提倡无污染、高效率发展的今天,各个国家也都在相继追求与研究风能以及其他各类新能源的发展,尤其是在现在这个能源及其短缺的情况下,风力发电系统的研究更显得极为重要。依据各种各样的运行方式和控制技术,风力发电系统可以分为恒速恒频系统和变速恒频系统,都可以有效地利用风能。 1 风力发电系统的系统结构 风力发电系统的系统结构主要是由风轮、齿轮箱、发电机和变流设备等设备组成,其中风轮主要是用于捕捉风能,然后再进一步将捕捉到的风能转化为机械能,而机械能转化为人们可以进一步使用的风能主要是由发电机来完成的,最终再由变流设备将发电机发出的频率转化为一样频率的交流电,再移送至电网就可以达到发电的目的。 在风力发电机中以小型风力发电系统为例进行简单介绍,小型风力发电系统主要是由小型风力机、交流发电机、三相不控整流桥、Boost变换器、单相并网逆变器、滤波器、直流调压负载以及本地用户负载等各个部分组成,这几大部分相互调节,和谐运作,共同促进了风力发电系统的正确运行与控制。 在对风力发电系统的运行控制过程中,为了实现风力发电机的最大功率跟踪,研究人员对Boost变换器进行了一系列的相关控制研究。 2 风力发电系统的运行 风力发电系统主要包括两种运行状态,即为最大风能追踪状态与额定功率运行状态。 2.1 最大风能追踪状态 风力发电系统的最大风能追踪状态,就是指当风速比额定风速低时,但是为了达到该风力发电机的最大输出功率,要不断地让风轮的转速随着风波的变化而不断变化,从而可以最大程度的利用风能,提高最大风能利用系数。

相关文档
最新文档