?">?@作者简介:肖刚(?A$B>),男,河北交河县人,西安电子科技大学计算机学院讲师,硕士研究生。庞宝茂(?ACC>),男,浙江" />

智能天线及其性能度量方法研究

!""#年$月第%卷第#期西安邮电学院学报

&’()*+,’-./’+*(*/01)2/34’-5’23+*631,17’88(*/7+3/’*2&9:;

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!0=:<%*=<#

收稿日期:!""!>?">?@作者简介:肖

刚(?A$B >),男,河北交河县人,西安电子科技大学计算机学院讲师,硕士研究生。

庞宝茂(?ACC >),男,浙江天台县人,空军工程大学电讯工程学院讲师。田捷力(?AC%>),女,天津人,电子第#A 所?"$室工程师。

智能天线及其性能度量方法研究

刚?,庞宝茂!,田捷力#

(?西安电子科技大学计算机学院,陕西西安$?""$?;

!空军工程大学电讯工程学院,陕西西安$?""$$;#电子第#A 所?"$室,

陕西西安$?""C@)摘要:智能天线是第三代移动通信不可缺少的空域信号处理技术。本文叙述了智能天线的基本原理,并给出了几种智能天线的性能度量准则。

关键词:第三代移动通信;智能天线;最小均方误差;最大信噪比;似然性能准则中图分类号:3*A!#

文献标识码:+

文章编号:?""$>#!CB (!""#)"#>"""%>"!

引言

智能天线是一门综合性很强的学科。它涉及到天线技术、无线电传输技术、信号检测与处理技术等。由于智能天线能根据信号的来波方向(6’+),自适应地调整其方向图、跟踪强信号、减少或抵消干扰信号、提高信噪比、增加移动通信系统容量、提高频谱利用率、降低信号发射功率、增大通信覆盖范围等等。这些均起到提高移动通信系统综合性能的效果,因此,目前在第三代移动通信系统中智能天线技术受到广泛的关注。尤其适合于366方式的76D

8+系统,

例如在我国提出的36>2768+标准中,就把智能天线技术作为一项关键技术。美、日、欧等发达国家非常重视智能天线技术在第三代及未来移动通信中的作用,花费大量的人力和资金开展研究,并进行试验。我国目前仍处于理论研究和技术跟踪阶段,但国家“%C#”、国家自然科学基金、博士点基金也相应地支持有关单位进行理论和技术平台的研究。

智能天线利用其空间滤波的特性提高移动通信的性能,所以,其性能的优劣将直接影响移动通信的容量和质量。本文给出了智能天线的基本原理,并提出几种度量智能天线性能的准则。

?智能天线的基本原理

从本质上来说,智能天线技术是自适应天线阵

在移动通信中的新应用,它是在传统自适应天线阵技术发展的基础上,结合了先进的智能处理技术,使天线阵具有智能处理、空间分集、空间扇面分区等功能的新技术,移动通信中采用智能天线技术,能进一步增加系统容量,提高系统性能。如图?所示,在移动通信中,智能天线的阵元数一般取%,?C 等。它由两个主要部分组成:

(?)以数字信号处理器和自适应算法为核心的自适应的数字信号处理器,用来产生自适应的最优加权系数!?,!!,…,!"。

(!)以动态自适应加权网络构成的自适应波束

形成网络。

图?

智能天线原理图

万方数据

MIMO无线技术的研究现状与发展趋势

MIMO无线技术的研究现状与发展趋势 2009-07-28 17:19:47 https://www.360docs.net/doc/2f4881521.html, 来源:互联网 摘要MIMO无线技术是通信领域的一项重要技术突破,堪称新一代无线通信系统中的关键技术之一。文章详细探讨了MIM0无线通信技术的原理,并与智能天线技术进行对比,分析了国内外研究现状与发展趋势,包 ... 摘要 MIMO无线技术是通信领域的一项重要技术突破,堪称新一代无线通信系统中的关键技术之一。文章详细探讨了MIM0无线通信技术的原理,并与智能天线技术进行对比,分析了国内外研究现状与发展趋势,包括MIMO的算法开发、信道建模、天线设计、测试平台构建、芯片开发与技术标准化进展等,为深入认识与研究MIM0通信技术奠定了基础。 1、引言 随着无线互联网多媒体通信的快速发展,无线通信系统的容量与可靠性亟待提升,常规单天线收发通信系统面临严峻挑战。采用常规发射分集、接收分集或智能天线技术已不足以解决新一代无线通信系统的大容量与高可靠性需求问题。可幸的是,结合空时处理的多天线技术——多入多出(MIMO)通信技术,提供了解决该问题的新途径。它在无线链路两端均采用多天线,分别同时接收与发射,能够充分开发空间资源,在无需增加频谱资源和发射功率的情况下,成倍地提升通信系统的容量与可靠性。然而,与常规单天线收发通信系统相比,MIMO通信系统中多天线的应用面临大量亟待研究的问题。 2、MIMO无线通信技术 2.1传统单天线系统向多天线系统演进 传统无线通信系统采用一副发射天线和一副接收天线,称作单入单出(SISO)系统。SISO系统在信道容量上具有一个不可突破的瓶颈——Shannon容量限制。针对移动通信中的多径衰落与提高链路的稳定性,人们提出了天线分集技术。而将天线分集与时间分集联合应用,还能获得空间维与时间维的分集效益。因此,从传统单天线系统向多天线系统演进是无线通信发展的必然趋势。 2.2智能天线向多天线系统演进

智能天线技术原理及其应用

智能天线技术原理及其应用 一、智能天线技术的原理 智能天线原名自适应天线阵列(AAA,Adaptive Antenna Ar-ray)。最初的智能天线技术主要用于雷达、声纳、抗干扰通信等,用来完成空间滤波和定位,后来被引入移动通信系统中。智能天线通常包括波束转换智能天线(Switched Beam Antenna)和自适应阵列智能天线(Adaptive Array Antennal。智能天线的原理是将无线电的信号导向具体的方向,产生空间定向波束,使天线主波束对准用户信号到达方向DOA(DirectionofArrlnal),旁瓣或零陷对准干扰信号到达方向,达到充分高效利用移动用户信号并删除或抑制干扰信号的目的。同时,智能天线技术利用各个移动用户间信号空间特征的差异,通过阵列天线技术在同一信道上接收和发射多个移动用户信号而不发生相互干扰,使无线电频谱的利用和信号的传输更为有效。在不增加系统复杂度的情况下,使用智能天线可满足服务质量和网络扩容的需要。总之。自适应阵列智能天线利用基带数字信号处理技术,通过先进的算法处理,对基站的接收和发射波束进行自适应的赋形,从而达到降低干扰、增加容量、扩大覆盖和提高无线数据传输速率的目的。 移动通信信道传输环境较恶劣。实际环境中的干扰和多径衰落现象异常复杂。多径衰落、时延扩展造成的符号间串扰ISI、FDMATDMA系统(如GSM)由于频率复用引入的同信道干扰、CDMA系统中的MAI等都使链路性能、系统容量下降。使用自适应阵列天线技术能带来很多好处,如扩大系统覆盖区域、提高系统容量、提高数据传输速率、提高频谱利用效率、降低基站发射功率、节省系统成本、减少信号间干扰与电磁环境污染等。自适应阵天线一般采用4-16天线阵元结构,在FDD中阵元间距1/2波长,若阵元间距过大,则接收信号彼此相关程度降低:太小则会在方向图形成不必要的栅瓣,故一般取半波长。而在TDD 中,如美国Ar-rayComm公司在PHS系统中的自适应阵列天线的阵元间距为5个波长。间距宽而波束更窄,而PHS系统中采用TDD模式,因而更容易进行定位处理。即使旁瓣多,但由于用户和信道都比较少,因而不会带来不利的影响。阵元分布方式有直线型、圆环型和平面型。自适应天线是智能天线的主要类型,可以实现全向天线,完成用户信号接收和发送。自适应阵天线系统采用数字信号处理技术识别用户信号到达方向,并在此方向形成天线主波束。自适应阵天线根据用户信号的不同空间传播方向提供不同的空间信道,等同于信号有线传输的线缆,有效克服了干扰对系统的影响。虽然天线阵列是射频前端的很重要的设备,但自适应阵列天线技术最重要的部分还在于基带处理部分。基带部分将自适应天线阵接收到的信号进行加权和合并,从而使信号与干扰加噪声比最大。 二、智能天线在移动通信中的应用 第三代移动通信标准组织已经认识到智能天线在降低网络干扰方面的重要作用,因此,在3G标准如WCDMA和CDMA2000中,支持智能天线的条款已经出现,智能天线已成为3G的重要组成部分。

天线的基本参数

1.1天线得基本参数 从左侧得传输线得角度瞧,天线就是一个阻抗(impedance)为Z得2终端电路单元(2-terminal circuit element),其中Z包含得电阻部分(resistiv eponent)被称为辐射电阻(radiationresistance,Rr);从右侧得自由空间角度来瞧,天线得特征可以用辐射方向图(radiation pattern)或者包含场量得不等于天线材料自己得电阻,而就是天线、天线所处得环境(比如温度)方向图。R r 与天线终端得综合结果。 影响辐射电阻Rr得还包括天线温度(antennatemperature,T A)。对于 与天线材料本身得温度一点都没有关系,而就是与自无损天线来说,天线温度T A 由空间得温度有关。确切地说,天线温度与其说就是天线得固有属性,还不如说就是一个取决于天线“瞧到”得区域得参数。从这个角度瞧,一个接收天线可以被视作能遥感测温设备。 辐射电阻Rr与天线温度T A都就是标量。另一方面,辐射方向图包括场变量或者功率变量(功率变量与场变量得平方成正比),这两个变量都就是球体坐标θ与Φ得函数。 1.2天线得方向性(D,Directivity)与增益(G,Gain) D=4π/ΩA,其中ΩA就是总波束范围(或者波束立体角)、ΩA由主瓣范围(立+副瓣范围(立体角)Ωm。 体角)Ω M 如果就是各向同性得(isotropic)天线,则ΩA=4π,因此D=1。各向同性天线具有最低得方向性,所有实际得天线得方向性都大于1。 如果一个天线只对上半空间辐射,则其波束范围ΩA=2π,因此D=4π/2π=2=3.01dBi、 简单短偶极子具有波束范围ΩA=2.67πsr,与定向性D=1、5(1、76dBi)。 如果一个天线得主瓣在θ平面与Φ平面得半功率波束宽度HPBW都就是20度,则D=4πsr/ΩA sr=41000deg2/(20deg)*(20 deg) ≈103≈20dBi(dB over isotropic)。这意味着,当输入功率相同时,该天线在主瓣方向得辐射功率就是各向同性天线得103倍。 天线增益G既考虑天线得方向性,又考虑天线得效率。G=kD。只要天线不就是100%损耗,那么G就小于D。k就是天线得效率因子(0≤k≤1)。天线效率只与天线得欧姆电阻损耗有关、在发射状态时,这些电阻损耗使得收到得能量没有被

卫星天线安装图解

卫星天线安装图解 天线的安装: 安装前的准备: 1.按说明书的地基施工图做好天线地基。 2.安装工具。包括:活动扳手(大18寸*2、小4寸*2或钳子)、专用改锥、剪子、水平仪、防水胶布等。 3.按照说明书清点卫星天线的另件数是否正确。 4.请准备12寸--14寸带AV输入的彩色或黑白电视机一台,视音频线(AV线)一套,一根3米左右的和一根30米左右的同轴电缆,一条临时的220V电源及插座。 安装步骤: 第一步:注意安装的基座立柱必须保证水平和垂直,可使用水平尺等进行调整。 第二步:安装天线的锅体四脚支撑。注意螺杆、螺母的正反方向。不要旋紧螺丝。 第三步:安装天线的方向轴。方向轴与天线的四脚支撑进行连接。注意方向轴的方向,使天线高频头支撑杆,中间的那只,保持在锅体下方即可。旋紧与之连接的固定螺丝。 第四步:把天线抬起,安装到天线基座的立柱上。 第五步:安装高频头支撑杆。不要把螺丝拧死。 第六步:把高频头置于高频头固定盘上。(可能需要专用螺丝刀,拆开高频头的保护罩) 第七步:使用馈线(同轴电缆)连接高频头的高频输出端至接收机的高频输入端。 第八步:上好其他部分的固定螺丝。注意都不要拧死。 第九步:使用AV线(视音频线)连接卫星接收机的视频输出到电视机的视频输入。 至此,天线的安装已经完成。 寻星指南: 调试前准备:1.安装工具。2.调试器材。3.连接线材。4.寻星参数。 寻星时间:根据你所在的地点和接收卫星的位置计算出当地的寻星时间。这对于卫星覆盖边缘地区、小天线尤为重要。 天线方向的调试:粗调:根据事先算出的仰角和方位角,将天线的这两个角度分别调到这两个数值上,使之对准所要接收的卫星,直至接收到电视信号。细调:使所收的信号最佳。根据现场的条件,可以有多种简易而有效的调整方法。 第一步:检查连接好的线路。 第二步:用量角器调整好天线仰角。 仰角直接用量角器就可以量 先将直尺最低端固定在天线最低端边沿上,另一端固定在天线最高端边沿上,注意直尺一定要通过天线中心,找准直径,不能倾斜,这是关键。直尺顶端留出20㎝以供固定量角器。在量角器中心钻一小孔,用小钉将带有重锤的线穿过量角器中心孔,将量角器一同

智能天线平台研究论文

智能天线平台研究论文 摘要:介绍了智能天线的起源、发展以及天线实验平台的研究概况;提出了一个智能天线实验平台的实现方案。该方案基于新一代数字信号处理器TMS320C6701,采用高速A/D、D/A以及零中频I/Q调制解调技术,工作于2.4GHz,采用八元天线阵列。该平台用于移动通信中智能天线算法、空时编码、MIMO技术和软件无线电技术的研究。 关键词:移动通信智能天线DSP软件无线电 1智能天线技术的起源与发展 智能天线的概念是二十世纪80年代末到90年代初提出的。广义的智能天线可以理解为能够收集、处理信息并利用已获得的知识自动调整结构参数以适应不同情况的天线。目前大家讨论的智能天线系统都与移动,特点是蜂窝移动系统紧相连,一般指由多个天线单元组成的天线阵列系统。它可以利用数字信号处理技术的多个不同的用户产生多个不贩空间波束。每个波速的最大方向自动地对准各自用户的方法,而把零接收方向对准干扰方向,从而提高移动通信系统的性能。 近年来大量的研究表明,智能天线可以在以下方面提高未来移动通信系统的性能:(1)扩大系统的覆盖区域;(2)提高系统容量;(3)提高频谱利用率;(4)减少信号间干扰(如同信道干扰、多址干扰和多径干扰等);(5)降低基站发射功率,减少电磁环境污染。 智能天线最初以自适应天线的形式广泛应用于雷达、声纳及军事通信领域。由于价值等因素一直未能普及到其他通信领域。近二十年来,移动通信事业飞展,移动礁用户呈爆炸性增长,通信资源匮乏日益严重,通信容量不足、通信质量下降等成亟待解决的问题。如何消除同信道干扰、多十干扰与多径衰落的影响成为提高无线通信系统性能考虑的主要因素。自二十世界80年代开始,即第一代蜂窝移动通信系统开始,人们便开始探讨利用自适应天线消除同信道干扰和多径衰落的影响、获得多分集增益。到二十世纪90年代初,这一思想发展为智能天线的概念;二十世纪90年代末,随着软件无线电技术的发展,人们进一步提出了软件天线的概念。近年来,由于数字信号处理技术的迅速发展,数字信号处理芯片处理能力不断提高,使利用数字技术在基带进行波束成形成为可能,由此代替

基于软件无线电的智能天线技术研究

基于软件无线电的智能天线技术研究 摘要:针对无线通信领域中存在的多种通信体系共存,各种标准竞争激烈等问题提出基于软件无线电的智能天线技术。简述了目前软件无线电的研究状况及无线电的关键技术之一——智能天线,采用软件无线电和智能天线融合的方法研究,较好地解决了体系共存和频带资源使用问题。基于软件无线电技术的智能天线采用开放式结构,系统可重构,通过同时对信号在时间和空间上进行采样和处理,可以更充分地开发信号中蕴含的有用信息。 关键词:软件无线电;智能天线 1. 引言 智能天线是一种用于个人移动通信,能够根据所处的电磁环境智能地调节自身参数,从而使通信系统保持最佳性能的阵列天线,它通过调节各阵元信号的加权幅度和相位来改变阵列的方向图形状,从而对干扰信号进行抑制,提高所需信号的信噪比,改善整个通信系统的性能。 2. 智能天线的基本特点 2.1智能天线与通常的自适应天线的不同点 1)首先,两者的应用目的不同。自适应天线阵是采用迭代自适应算法,应用于军事抗干扰通信的阵列天线,主要用于雷达系统的目标跟踪和干扰抵消;而发展智能天线的初衷是通过抑制干扰和抵抗衰落来增加移动系统的容量,提高频谱利用率,进而实现SDMA。 2)常规自适应天线阵一般接收到的干扰信号具有很强的功率电平,并且干扰源数目与天线阵列单元数相当。而在无线通信系统中,由于多用户通信以及多径传播环境,使得到达天线阵列的干扰数目远大于天线阵列单元数,同时其功率电平一般都小于直射信号。 3)自适应天线只是从干扰中捕获一个源的期望信号,而智能天线是多用户系统,需要从同一信道中提取出各个用户的信号,不仅包括智能化接收,还包括多用户多波束智能化发射。考虑到用户的移动将带来信道的时变性,因此智能天线实现起来更复杂,技术要求更高。2.2.智能天线应用于移动通信具有以下优势: 1)可以大大减少电波传播中的多径衰落。由于无线通信系统的性能很大程度上取决于衰落的深度和速度,因此,降低信号在传播中的变化可以提高通信系统的性能。 2)可以大大提高系统容量。采用智能天线可以提高信号干扰比SlR,而系统容量取决于SIR,SIR的提高意味着容量的增加。 3)可以延长移动台电池的使用寿命。天线波束赋形的结果等效于提高天线的增益,因此

天线简介

天线一般理论简介 为了有效斯将能量从发射机馈送到天线,需要解决如下三个问题:1、有效地进行能量转换,提高辐射功率或提高天线系统的信噪比,天线作为传输线的终端负载,要求天线与传输线匹配;2、天线作为一种辐射或接受器件,应具有向所需方向辐射无线电波的能力;3、天线作为一种极化器件,可分为线极化,圆极化和椭圆极化。在同一系统中收发天线应具有相同的极化形式。天线一般都是可逆的,即同一副天线即可用做接收天线,也可用作发射天线。天线按结构形式分为两大类:一类是导线,金属棒或金属板构成的天线,称为线天线;另一类是似声学或光学设备,由金属面或介质面构成的面天线。 一、基本元的辐射: 1、电基本振子的辐射 给出在球坐标原点沿z 轴放置的电基本振子在各向同性理想均匀无限大自由空间的表达式: 3202 32022 cos 41sin 41 sin 40 jkr A r jkr A jkr A r I l j k E e r r I l j k jk E e r r r I l jk H e r r H H E θ?θ?θπωεθπωεθπ---? ?= -+ ?????=-+- ?????= + ??? ===注:9 02 2 000 010 362/E 120H k k θ? εεπ πλωεμηπ-== === =相移常数;波阻抗(远区场) (1)近区场

当kr<<1时称为近区场,此时 2 3 3 sin 42 cos 41 sin 40 A A r A r I l H r I l E j r I l E j r H H E ?θθ?θ πθωεπθ ωεπ= =-=-=== 不难看出,上述表达式和稳态场的公式完全相符,因此,近区场又称为似稳区。场随距离的增大而迅速减少。电场滞后于磁场90度,因此复坡印延矢量是虚数(12S E H =?),每周平均 辐射的功率为零。这种没有能量向外辐射的场称之为“感应场”。 (2)远区场 当kr>>1时称为远区场,此时60sin e sin e 20 jkr A jkr A r r I l E j r I l H j r E H H E θ? θ?πθλθλ--==≈=== 此时,有电场和磁场两个分量在空间相互垂直且与r 矢径方向垂直,三者构成右手螺旋系统。电场、磁场在时间上同相,其复坡印延矢量* 12S E H =?是实数,为有功功率且指向r 增加的 方向上。二者比值为一实数0 120η π =,所以仅需讨论二者之一。 且电基本振子远区场是沿着径向向外传播的横电磁波TEM 。在0180 o o θ =、方向上辐射为0,在90 o θ =方向辐射最强。方向图: E 面(包含振子轴)为一个8字形,H 面(垂直振子轴)为一个圆。 (3)辐射功率

卫星天线的调试策略和技巧

卫星天线的调试策略和 技巧 标准化管理部编码-[99968T-6889628-J68568-1689N]

浅谈地面卫星天线的调试方法和技巧 ——普陀区广电台张皓摘要:本文阐述了调试地面卫星天线中需要注意的各种要素、原则、方法和以及调试过程中的注意事项。 关键词:卫星天线搜星要素调整方法注意事项 随着卫星转发的广播电视节目和数据不断增多,各电视台下行接收设施也越来越多,而且由于各种原因导致传输原节目的卫星轨道经常变化,因此地面卫星接收站也需要不断调整天线方向来对准卫星,以保证正常收视。 一、地面站搜星要素 搜索卫星一般要注意四个要素:仰角、方位角、极化和焦距。 仰角:指卫星地面站的天线主瓣波束轴线对准卫星的连线与其在地平面的投影夹角,常用EL表示。 方位角:指当以地理正北为零度,按顺时针方向参考时,天线波束主瓣轴瞄准卫星的连线的投影线与正北方向线的夹角,常用AZ来表示。 极化:指电磁波在传播过程中的电场矢量方向和幅度随时间变化的特性,一般包括左旋、右旋圆极化及水平、垂直线极化四种极化方式,我国卫星接收信号通常采用水平、垂直线极化波。地卫站天线的极化方式一定要与所接收的卫星下行信号的极化方式一致即极化匹配,才能保证接收质量达到规定的标准,否则将影响信号的正常接收及质量。 焦距是指卫星接收天线对接收信号反射后信号汇聚最强的位置点。 二、常用计算公式与调星原则 地面站方位角、仰角是卫星接收天线指向的两个重要数据,馈源极化角ρ、焦距f是卫星接收天线调整中另外两个不容忽视的参数。四个参数可由以下卫星天线定位经验计算公式获得,实际应用中我们一般以Az的大小与正负来确定方位角。

智能天线技术的工作原理概要

智能天线技术的工作原理 智能天线技术的工作原理,特征和技术优势分析 智能天线(SmartAntenna或IntelligentAntenna)最初应用于雷达,声纳及军用通信领域.近年来,现代数字信号 处理技术发展迅速,DSP芯片处理能力的不断提高和芯片价格的不断下降,使得 利用数字技术在基带形成天线波束成为可行,促使智能天线技术开始在.采用波束空间处理方式可以从多波束中选择信号最强的几个波束,以取得符合质量要求的信号,在满足阵列接收效果的前提下减少运算量和降低系统复杂度.波束赋型算法概况 智能天线技术研究的核心是波束赋型的算法.从是否需要参考信号(导频序列或导频信道)的角度来划分,这些算法可分为盲算法,半盲算法和非盲算法三类.非盲算法是指须借助参考信号的算法.由于发送时的参考信号是预先知道的,对接收到的参考信号进行处理可以确定出信道响应,再按一定准则(如著名的迫零准则)确定各加权值,或者直接根据某一准则自适应地调整权值(也即算法模型的抽头系数),以使输出误差尽量减小或稳定在可预知的范围内.常用的准则有 MMSE(最小均方误差),LMS(最小均方)和RLS(递归最小二乘)等等;而自适应调整则采取最优化方法,最常见的就是最大梯度下降法.盲算法则无须发送参考信号或导频信号,而是充分利用调制信号本身固有的,与具体承载信息比特无关的一些特征(如恒包络,子空间,有限符号集,循环平稳等)来调整权值以使输出误差尽量小.常见的算法有常数模算法(CMA),子空间算法,判决反馈算法等等.常数模算法利用了调制信号具有恒定的包络这一特点,具体又分最小二乘CMA算法,解析CMA算法,多目标LS-CMA算法等;子空间算法则将接收端包含有其它用户干扰及信道噪声的混合空间划分为信号子空间和噪声子空间,对信号子空间进行处理;判决反馈算法则由收端自己估计发送的信号,通过多次的迭代,使智能天线输出向最优结果不断逼近.非盲算法相对盲算法而言,通常误差较小,收敛速度也较快,但发送参考信号浪费了一定的系统带宽.为此,学者们又发展了半盲算法,即先用非盲算法确定初始权值,再用盲算法进行跟踪和调整.这样做一方面可综合二者的优点,一方面也是与实际的通信系统相一致的,因为通常导频信息不是时时发送而是与对应的业务信道时分复用的.智能天线的优点 智能天线可以明显改善无线通信系统的性能,提高系统的容量.具体体现在下列方面: 提高频谱利用率.采用智能天线技术代替普通天线,提高小区内频谱复用率,可以在不新建或尽量少建基站的基础上增加系统容量,降低运营商成本. 迅速解决稠密市区容量瓶颈.未来的智能天线应能允许任一无线信道与任一波束配对,这样就可按需分配信道,保证呼叫阻塞严重的地区获得较多信道资源,等效于增加了此类地区的无线网络容量. 抑制干扰信号.智能天线对来自各个方向的波束进行空间滤波.它通过对各天线元的激励进行调整,优化天线阵列方向图,将零点对准干扰方向,大大提高阵列的输出信干比,改善了系统质量,提高了系统可靠性.对于软容量的CDMA系统,信干比的提高还意味着系统容量的提高. 抗衰落.高频无线通信的主要问题是信号的衰落,普通全向天线或定向天线都会因衰落使信号失真较大.如果采用智能天线

智能天线及其性能度量方法研究

!""#年$月第%卷第#期西安邮电学院学报 &’()*+,’-./’+*(*/01)2/34’-5’23+*631,17’88(*/7+3/’*2&9:;?">?@作者简介:肖 刚(?A$B >),男,河北交河县人,西安电子科技大学计算机学院讲师,硕士研究生。 庞宝茂(?ACC >),男,浙江天台县人,空军工程大学电讯工程学院讲师。田捷力(?AC%>),女,天津人,电子第#A 所?"$室工程师。 智能天线及其性能度量方法研究 肖 刚?,庞宝茂!,田捷力# (?西安电子科技大学计算机学院,陕西西安$?""$?; !空军工程大学电讯工程学院,陕西西安$?""$$;#电子第#A 所?"$室, 陕西西安$?""C@)摘要:智能天线是第三代移动通信不可缺少的空域信号处理技术。本文叙述了智能天线的基本原理,并给出了几种智能天线的性能度量准则。 关键词:第三代移动通信;智能天线;最小均方误差;最大信噪比;似然性能准则中图分类号:3*A!# 文献标识码:+ 文章编号:?""$>#!CB (!""#)"#>"""%>"! 引言 智能天线是一门综合性很强的学科。它涉及到天线技术、无线电传输技术、信号检测与处理技术等。由于智能天线能根据信号的来波方向(6’+),自适应地调整其方向图、跟踪强信号、减少或抵消干扰信号、提高信噪比、增加移动通信系统容量、提高频谱利用率、降低信号发射功率、增大通信覆盖范围等等。这些均起到提高移动通信系统综合性能的效果,因此,目前在第三代移动通信系统中智能天线技术受到广泛的关注。尤其适合于366方式的76D 8+系统, 例如在我国提出的36>2768+标准中,就把智能天线技术作为一项关键技术。美、日、欧等发达国家非常重视智能天线技术在第三代及未来移动通信中的作用,花费大量的人力和资金开展研究,并进行试验。我国目前仍处于理论研究和技术跟踪阶段,但国家“%C#”、国家自然科学基金、博士点基金也相应地支持有关单位进行理论和技术平台的研究。 智能天线利用其空间滤波的特性提高移动通信的性能,所以,其性能的优劣将直接影响移动通信的容量和质量。本文给出了智能天线的基本原理,并提出几种度量智能天线性能的准则。 ?智能天线的基本原理 从本质上来说,智能天线技术是自适应天线阵 在移动通信中的新应用,它是在传统自适应天线阵技术发展的基础上,结合了先进的智能处理技术,使天线阵具有智能处理、空间分集、空间扇面分区等功能的新技术,移动通信中采用智能天线技术,能进一步增加系统容量,提高系统性能。如图?所示,在移动通信中,智能天线的阵元数一般取%,?C 等。它由两个主要部分组成: (?)以数字信号处理器和自适应算法为核心的自适应的数字信号处理器,用来产生自适应的最优加权系数!?,!!,…,!"。 (!)以动态自适应加权网络构成的自适应波束 形成网络。 图? 智能天线原理图 万方数据

天线的几个重要参数介绍

一、天线的几个重要参数介绍 1.天线的输入阻抗 天线的输入阻抗是天线馈电端输入电压与输入电流的比值。天线与馈线的连接,最佳情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输入阻抗随频率的变化比较平缓。天线的匹配工作就是消除天线输入阻抗中的电抗分量,使电阻分量尽可能地接近馈线的特性阻抗。匹配的优劣一般用四个参数来衡量,即反射系数,行波系数,驻波比和回波损耗,四个参数之间有固定的数值关系,使用那一个纯出于习惯。在我们日常维护中,用的较多的是驻波比和回波损耗。 xx: 它是行波系数的倒数,其值在1到无穷大之间。驻波比为1,表示完全匹配;驻波比为无穷大表示全反射,完全失配。在移动通信系统中,一般要求驻波比小于 1.5。回波损耗: 它是反射系数绝对值的倒数,以分贝值表示。回波损耗的值在0dB的到无穷大之间,回波损耗越大表示匹配越差,回波损耗越大表示匹配越好。0表示全反射,无穷大表示完全匹配。在移动通信系统中,一般要求回波损耗大于 14dB。 2.天线的极化方式 所谓天线的极化,就是指天线辐射时形成的电场强度方向。当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保证了信号的有效传播。因此,在移动通信系统中,一般均采用垂直极化的传播方式。另外,随着新技术的发展,最近又出现了一种双极化天线。就其设计思路而言,一般分为垂直与水平极化和±45°极化两种方式,性能

如何调试卫星天线角度介绍

如何调试卫星天线角度介绍 1、卫星转发器 卫星转发器,是这样的设备,接收地面发射站发来的14GHz或6GHz的微弱的上行电视信号,经频率变换(一次变频、二次变频)为不同的下行频率12GHz或4GHz,再由技术处理放大到一定功率向地球发射,有卫星电视接收设备接收。每一路音视频和数据通道都是由一个卫星转发器进行接收处理然后再传输,每一个转发器所处理的信号都有一个中心频率及一个特定的带宽,目前卫星转发器主要使用L、S、C、Ku和Ka频段。 2、水平极化、垂直极化 极化通常是指与电波传播方向垂直的平面内,瞬时电场矢量的方向。在极化波中,以地平线为准,当极化方向与地面平行时,称为水平极化。当极化方向与地面垂直时,称为垂直极化。 3、卫星天线 卫星天线的作用是收集由卫星传来的微弱信号,并尽可能去除杂讯。大多数天线通常是抛物面状的,也有一些多焦点天线是由球面和抛物面组合而成。卫星信号通过抛物面天线的反射后集中到它的焦点处。 4、馈源 馈源的主要功能是将天线收集的信号聚集送给高频头(LNB),馈源在

接收系统中的作用是非常重要的。 馈源的种类 锥形馈源 环形馈源 圆锥馈源 梯状馈源 6、LNB高频头 高频头(Low Noise Block)即下行解频器,其功能是将由馈源传送的卫星经过放大和下变频,把Ku或C波段信号变成L波段,经同轴电缆传送给卫星接收机。 调试过程 由于一般用户都没有场强仪等专用设备,因此本文将介绍的是如何使用指南针、量角器等常用设备寻星。 器材准备:卫星天线、高频头(馈源一体化)、卫星接收机、电视机、指南针、量角器以及连接线若干。 计算寻星所需参数 对于固定式天线系统,需要根据天线所在地的经纬度及所要接收卫星的经度计算出天线的方位角和仰角,并以此角度调整天线使其对准相应的卫星。

RFID天线调试总结

RFID 天线调试总结 一. R FID 天线工作原理 RFID 天线不是传统意义上的天线,传统天线是通过向空中辐射电磁波来传输电磁信号,天线工作于远场区,为了能把电磁信号辐射到空中,天线的长度需和工作的波长相比拟。RFID 天线的工作距离远小于传统天线,传统天线的工作距离远大于波长,例如手机天线需要接收来自几百米甚至几十公里以外的基站信号,收音机天线需要接收来自几十甚至几百公里以外的发射塔的信号。RFID 天线工作距离远小于工作波长,工作于近场耦合区。例如ISO14443-A/B 的工作距离只有几个厘米,远小于22.12m 的工作波长,通过电磁耦合进行电磁能量的传输,RFID 天线可以看作是一个耦合线圈。RFID 天线是利用安培定律:电流流经线圈,在线圈周围产生磁场,再利用电磁感应定律:时变磁场穿过闭合空间产生感应电压,让标签得电开始工作。标签和读卡器也通过该电磁场来进行信息交换。 二. R FID 天线等效电路 RFID 天线可以用如图1所示的等效电路表示。线圈电感为Lant ,Rs_ant 为线圈的损耗电阻,Cant 为线圈之间和连接器之间的寄生电容。 图1 天线等效电路 要使得天线工作于13.56MHz ,那么可以在天线外部并联或串联一个电容,将电容和天线线圈组成一个LC 谐振电路,调整该并联或串联的电容大小,使得谐振频率为13.56MHz 。那么此时,读写器可通过此谐振电路将能量传输至射频卡。由汤姆逊公式: (1 2f π= 可知,天线的工作频率(谐振频率)和Lant 、C 有关。 三. 天线调试 读写卡模块天线原始匹配电路如图2所示。

图2 天线匹配电路 该天线匹配电路采用串联匹配的形式,由于读卡芯片支持双天线,且为了增强抗干扰能力,匹配电路采用此平衡电路。电容C1~C6是匹配电路用于调整输入阻抗和工作频率的,电阻R1,R2是调整天线Q值的,在此,天线Q值确定,所以不用调整该电阻值。 读写卡模块样机制作出来未调节天线匹配电路时,用公司门禁卡(S50卡,后面测试均使用该卡测试)测试读卡距离仅为3.6cm左右,远远达不到要求。通过用网络分析仪测量天线,Smith圆图如图3所示: 图3 未调电容前的天线Smith图 由图可知,此时的谐振点偏低,那么需要将谐振点调高,即需要将电容调小。对应图2中,需要将C2,C3并联后的值,以及C4,C5并联后的值调小,调试过程中,发现将C3,C5的值调为36pF时,用公司门禁卡(S50卡)测试读卡距离,发现有5cm左右,用网络分析仪测量天线,Smith圆图如图4所示:

天线及其测量方法

现代微波与天线测量技术
第 6 讲:无源天线及其测量技术
彭宏利
博士
2008.11
微波与射频研究中心 上海交通大学-电信学院-电子工程系

第 8 节:无源天线及其测量技术
8.1. 8.2. 8.3. 8.4. 8.5. 8.6. 8.7. 能的影响 8.8. 8.9. 8.10. 8.11. 天线概述; 天线主要性能指标; Helical 外置天线; PIFA 内置天线; Monopole 内置天线; PIFA 和 Monopole 天线比较; 天线性能与环境: 其它部件对手机天线性 天线测量条件和测量参数; 天线方向图测量技术; 天线增益测量技术; 天线极化参数测量
第 1/ 39 页

8.1. 天线概述
8.1.1. 天线的定义
在无线电发射和接收系统中,用来发射或接收电磁波的元件,被称为天线。
8.1.2. 天线的作用
天线的作用是转换电磁波的型态:
? ? ? ? 发射天线将电路传输结构中的导引波转换成空间中的辐射波; 接收天线将空间中的辐射波转换成电路传输结构中的导引波; 接收和发射天线是互易的。 导引波(Guided wave) :电磁波被局限在一般电路中,沿传输线往特定的方向前进, 分析参数为电压和电流。 ? 辐射波(Radiation wave) :电磁波可以往空间任意方向传播,分析参数为电场和磁场。
8.1.3. 天线工作机理
第 2/ 39 页

导线载有交变电流时,就可以形成电磁波的辐射,辐射的能力与导线的长短和形状有关。 如果两平行导线的距离很近,则两导线所产生的感应电动势几乎可以抵消,辐射很微弱。如果 两导线张开,则由于两导线的电流方向相同,两导线所产生的感应电动势方向相同,因而辐射 较强。 当导线的长度l远小于波长时,导线的电流很小,辐射很微弱。当导线的长度可与波长相 比拟时,导线上的电流就大大增加,能形成较强的辐射。通常将能产生显著辐射的直导线称为 振子。
8.1.4. 天线分类 基站天线:
第 3/ 39 页

智能天线介绍

智能天线介绍 技术室:李盼星 摘要:智能天线是天线技术发展的一个方向,了解智能天线的基本构造和原理,对以后的工作有重要的意义。 关键词:智能天线、波束、阵元、端口 第一章:引言 1.1 智能天线的基本功能 智能天线是N列取向相同的天线按照一定方式排列和激励,利用波的干涉原理形成预定波束的阵列结构天线。智能天线可以通过镇原信号的加权幅度和香味来改变阵列的方向图形,即自适应或以预制方式控制波束宽度,指向和零点位置,使波束指向期望的方向,实现对移动用户的波束跟踪,并自动地一直干扰方向的副瓣电平。 1.2智能天线与GSM天线的区别 1.2.1结构组成区别 智能天线由两个以上天线阵列组成,而GSM系统天线只由一个天线阵列构成

1.2.2功能区别 智能天线可以通过改变对各天线阵列的激励(即权值)形成预定波束。而GSM天线只有一个阵列,起波束在设计师已确定,出厂后不可改变。 在进行小区覆盖宽度调整是,GSM天线只能更换,TD-SCDMA智能天线可以通过软件改变预定波束的宽度(特指广播波束),灵活的调整覆盖范围。 第二章智能天线的分类 2.1 全向天线 在360°任意方位上均可进行波束扫描的智能天线阵列。 2.2定向单极化天线 特指采用单极化辐射单元,组成定向阵列,可以在特定方向内进行波束扫面的天线阵列。 2.3定向双极化天线 特指采用双极化辐射单元,组成定向阵列,可以在特定方向内进行波束扫描的天线阵列。

第三章:相关基本概念 3.1单元波束、广播波束、业务波束 单元波束定义为:智能天线单一阵列的接收或者发射的水平面辐射方向图。 即智能天线阵列中任意馈电端口在其他所有端口都接负载是发射或接收到的辐射方向图。广播波束定义为:对智能天线阵列施加的幅度和相位激励所形成的全向覆盖或扇区覆盖的辐射方向图。 业务波束定义为:对智能天线阵列市价特定的幅度和相位激励所形成的在工作角域内具有任意波束指向扫描以及具有高增益窄束的方向图。 3.2波束宽度 波束宽度值波束的主瓣中功率电平下降一半(3DB)的角度范围,如下图所示:横坐标是角度值,纵坐标-3db处的虚线与波束图相交叉的两个点之间的角度约为65°。

MIMO无线技术的研究现状与发展趋势

MIMO无线技术的研究现状与发展趋势 摘要MIMO无线技术是通信领域的一项重要技术突破,堪称新一代无线通信系统中的关键技术之一。文章详细探讨了MIM0无线通信技术的原理,并与智能天线技术进行对比,分析了国内外研究现状与发展趋势,包 ... 摘要 MIMO无线技术是通信领域的一项重要技术突破,堪称新一代无线通信系统中的关键技术之一。文章详细探讨了MIM0无线通信技术的原理,并与智能天线技术进行对比,分析了国内外研究现状与发展趋势,包括MIMO的算法开发、信道建模、天线设计、测试平台构建、芯片开发与技术标准化进展等,为深入认识与研究MIM0通信技术奠定了基础。 1、引言 随着无线互联网多媒体通信的快速发展,无线通信系统的容量与可靠性亟待提升,常规单天线收发通信系统面临严峻挑战。采用常规发射分集、接收分集或智能天线技术已不足以解决新一代无线通信系统的大容量与高可靠性需求问题。可幸的是,结合空时处理的多天线技术——多入多出(MIMO)通信技术,提供了解决该问题的新途径。它在无线链路两端均采用多天线,分别同时接收与发射,能够充分开发空间资源,在无需增加频谱资源和发射功率的情况下,成倍地提升通信系统的容量与可靠性。然而,与常规单天线收发通信系统相比,MIMO通信系统中多天线的应用面临大量亟待研究的问题。

2、MIMO无线通信技术 传统单天线系统向多天线系统演进 传统无线通信系统采用一副发射天线和一副接收天线,称作单入单出(SISO)系统。SISO系统在信道容量上具有一个不可突破的瓶颈——Shannon容量限制。针对移动通信中的多径衰落与提高链路的稳定性,人们提出了天线分集技术。而将天线分集与时间分集联合应用,还能获得空间维与时间维的分集效益。因此,从传统单天线系统向多天线系统演进是无线通信发展的必然趋势。 智能天线向多天线系统演进 智能天线的核心思想在于利用联合空间维度与天线分集,通过最优加权合并而最大化信干噪比,使信号出错的概率随独立衰落的天线单元数目呈指数减小,而系统容量随天线单元数目呈对数增长。然而,开关波束阵列仅适于信号角度扩展较小的传播环境,且自适应阵列虽可以用于信号角度扩展较大的多径传播环境,但在高强度的多径分量比较丰富的环境下,自适应天线系统抗衰落的能力相当有限,这是因为智能天线技术没有利用多径传播。由于增大阵元间距与角度扩展及结合空时处理都有利于捕获与分离多径,因此结合天线发射分集与接收分集技术,充分利用而不是抑制多径传播,进一步开发空域资源,提高无线传输性能,成为了无线通信发展的必然趋势,即从智能天线向多天线系统演进。 无线通信技术 MIMO无线通信技术是天线分集与空时处理技术相结合的产物,它源于天线分集与智能天线技术,具有二者的优越性,属于广义的智能天线的范畴。结合天线

各种天线参数和分类

汽车天线 汽车天线又叫车载天线,一般汽车上的天线用于车上的收音机和电台,可分汽车内置天线和外置天线。但根据不同用途的汽车也有安装其他的天线。如公交车有DVB-T天线,车载TV天线。物流及出租车还装有GSM天线、GPS卫星天线。收音机和电台天线主要就是AM/FM天线、软PCB数字天线、AM/FM/TV天线等。根据不同的功能和用途,所用的天线的频率也不同。 目录 名词释义: 又叫车载天线,是指设计安装在车辆上的移动通讯天线。最常见就是吸盘天线。由于吸盘天线安装摆放容易,所以在一些简易设台场合常常用吸盘天线代替基地天线。 结构分类: 车载天线结构上有缩短型、四分之一波长、中部加感型、八分之五波长、双二分之一波长等形式的天线,理论上它们的效率依次增加,同样工作频段的天线的长度也依次增加。 缩短型: 由于车辆本身有限高,加上过长的天线在车辆高速行进时形成的风阻,过桥洞、进入地下车库都是问题,所以车载天线并不是越长越好,一般要求轿车天线不超过70厘米,面包车类要求天线更短。缩短型天线体积小巧,虽然增益不高,但适合使用于需要隐蔽天线的场合。 八分之五波长和中部加感型

一般的警用车辆建议安装高增天线,尤其是在活动区域范围比较大的车辆,350MHZ高增益天线多分为八分之五波长加感的形式,在距天线顶部二分之一波长距离处有一个加感线圈。400MHZ频段双二分之一波长天线具有较高的增益,它的外观特征是天线的振子上有两个加感线圈。八分之五波长和中部加感型也有较高的增益,且价格比较便宜,因此得到广泛的使用。在作为临时固定台天线使用的场合可以考虑选用增益高的吸盘天线,天线的长度不必有过多限制。由于吸盘天线是根据汽车使用环境而设计所以在作为固定使用时在其下吸一块半径大于1米的金属板(如铁皮)会有更好的使用效果。由于进口原装的车载天线价格非常昂贵且优势不突出,所以一般都选用国产车载天线。在天线选型阶段主要参考天线的外型和增益。建议选用大厂家的名牌产品,他们提供的参数真实性比较高,制造工艺也有保证。如果是批量采购完全可以到专业天线制造厂家按使用频段定制,以取得最佳的使用效果。 汽车天线(8张) 频率分类: GSM天线 1. 工作频率:900MHZ/1800MHZ 900MHZ增益:3dBi 1800MHZ 增益:3dBi 2. VSWR:GSM〈1.8 DCS 〈1.8 3.线长:RG174线,3米/5米 4.安装方式:磁铁吸附 5.适用接头:SMA/SMB/GT5/BNC/MCX/MMCX 6.工作温度:-20℃~+85℃ 7.贮藏温度:-40℃~+90℃ TV天线 1.电源电压DC 10.5∽16.5V 2.电源60∽100MA 3.工作频率48∽860MHZ 4.增益15±3DB 5.噪声系数≤7DB 6.输出阻抗 75Ω 7.输出驻波≤3 8.环境温度 -20℃∽+70℃

智能天线综述

文章编号:1006-7043(2000)06-0051-06 智能天线综述 肖炜丹,楼 吉吉,张 曙 (哈尔滨工程大学电子工程系,黑龙江哈尔滨150001) 摘 要:智能天线技术作为ITM -2000(International Mobile Telephone -2000,2000年全球移动电话)的核心技术之一,受到国内外移动通信业的高度重视.本文对智能天线的基本概念、基本原理和国内外研究现状等进行了综合论述,并讨论了其相关技术及应用和发展前景,最后对智能天线技术研究中的难点和应注意的问题发表了看法.① 关 键 词:智能天线;软件无线电;移动通信;ITM -2000;第二代移动通信系统;第三代移动通信系统中图分类号:TN911.25 文献标识码:A Summ arization of Sm art Antennas XIAO Wei-dan ,LOU Zhe ,ZAN G Shu (Dept.of Electronic Eng.,Harbin Engineering University ,Harbin 150001,China ) Abstract :Great attention is paid to the application of smart antennas by mobile communication trade both here and abroad as one of the key techniques for ITM -2000(International Mobile Telephone -2000).The paper presented basic concepts and principles of the smart antennas ,including its research situation at home and abroad ,and then discussed correlated technologies and potential applications.Finally ,the authors ’opinions were presented about the difficulties and the problems that should be considered in the research of smart antennas. K ey w ords :smart antenna ;software radio ;mobile communication ;ITM -2000;2G;3G 近年来全球通信事业飞速发展,通信业务的需求量越来越大,特别是第三代移动通信等新概念的出现,对通信技术提出了更高的要求.第三代移动通信系统的理想目标是有极大的通信容量,有极好的通信质量,有极高的频带利用率.在复杂的移动通信环境和频带资源受限的条件下达到这一目标,主要受3个因素的限制:1)多径衰落;2)时延扩展;3)多址干扰.为克服这些限制,仅仅采用目前的数字通信技术是远远不够的.近几年开始研究的移动通信的智能技术,即智能移动通信技术,包括智能天线、智能传输、智能接收和智能 化通信协议等,为克服和减轻这些限制,达到或接近第三代移动通信系统的理想目的,提供了最有力的技术支持,已成为第三代移动通信系统最重要的技术保证.而其中的智能天线技术以其独特的抗多址干扰和扩容能力,不仅是目前解决个人通信多址干扰、容量限制等问题的最有效的手段,也被公认为是未来移动通信的一种发展趋势,成为第三代移动通信系统的核心技术.为便于广大通信爱好者能够对智能天线技术有所了解,本文将从智能天线的概念、原理、相关技术及其应用做一简要介绍. ①收稿日期:2000-06-01;修订日期:2000-11-15 作者简介:肖炜丹(1975-),男,黑龙江哈尔滨人,哈尔滨工程大学电子工程系硕士研究生,主要研究方向:通信与信息系统. 第21卷第6期 哈 尔 滨 工 程 大 学 学 报 Vol.21,№.62000年12月 Journal of Harbin Engineering University Dec.,2000

相关文档
最新文档