数码相机的结构及工作原理

数码相机的结构及工作原理
数码相机的结构及工作原理

一、数码相机的组成:镜头、图像传感器、AD转换

器、CPU、存储芯片、LCD:

作用:

1、镜头:数码相机镜头作用与普通相机镜头作用相同。取景。分类:变焦镜头、定焦镜头。

2、图象传感器:(1)、作用:将光信号转变为电信号。图象传感器是数码相机的核心部件,其质量决定了数码相机的成像质量。图象传感器的体积通常很小,但却包含了几十万个乃至上钱万个具有感光特性的二极管――光电二极管。每个光电二极管即为一个像素。当有光线照射时,光电二极管就会产生电荷累积,光线越多,电荷累积的就越多,然后这些累积的电荷就会被转换成相应的像素数据。(2)、种类。电荷耦合器件(CCD):电路复杂,读取信息需在同步信号控制下一位一位地实地转移后读取,信息读取复杂,速度慢;要三组电源供电,耗电量大,但技术成熟,成像质量好。互补金属氧化物半导体(CMOS):电路简单,信息直接读取,速度较快,只需使用一个电源,耗电两小,为CCD的1/8到1/10;但个光电传感元件、电路之间距离近,相的光、电、磁干扰较严重,对图象质量影响很大。

3、A/D转换器(模拟数字转换器):作用,将模拟信号转换成数字信号的部件。指标:转换速度、量化精度量化精度对应于A /D转换器将每一个像素的亮度或色彩值量化为若干个等级,这个等

级就是数码相机的色彩深度。对于具有数字化接口的图象传感器(如CMOS),则不需A/D转换器。

4、MPU(微处理器)作用:通过对图象传感器的感光强弱程度进行分析,调节光圈和快门。系统结构:一般数码相机采用的微处理器模块的结构如图2所示,包括图象传感器数据处理DSP、SRAM控制器,显示控制器、JPEG编码器、UBS等接口、运算处理单音频接口(非通用模块)和图象传感器时钟生成器等功能模块。

5、存储设备作用:用于保存数字图象数据。种类:内置

存储器:为芯片,用于临时存储图象。移动存储器:SD卡、MD卡、软盘、CD、记忆棒等。

6、LCD(液晶显示屏)作用:电子取景器、图片显示。分类: DSTN LCD(双扫扭曲向列液晶显示器) TFT LCD(薄膜晶体管液晶

显示器),数码相机多采用.

7、输入输出接口作用:数据交互。常用接口:图象数据存储扩展设备接口、计算机通信接口、连接电视机的视频接口。

二、数码相机工作原理

数码相机中的镜头将光线会聚到感光器件CCD上,CCD代替的传统相机中胶卷的位置,它的功能是将光信号转变为电信号。这样我们就得到了对应于拍摄景物的电子图象,但它还不能马上被送去计算机处理,还需要进行模数处理;接下来MPU对数字信号进行压缩

并转化为特定的图象格式,例如JPEG格式。最后图象文件被存储在内置存储器中。这时,数码相机的主要工作已经完成,剩下要做的是通过LCD查看拍摄到的照片

三、相机的光电成像原理

1、核心:光电转换器(图象传感器)

2、种类:CCD,CMOS。CCD l 分线型的面型两大类

线型CCD芯片的最大特点是分辨率高,可拍摄1000万以上像素水平影象的数

码相机。都采用线型CCD。l CCD的基本组成单元:金属-氧化物-半导体电容(MOS l CCD)功能:光电转换,电荷存储,电荷转移

3、数码相机的数据处理

数据处理以微处理器为中心。根据数码相机采用的图象传感器的不同,数据流的处理有些差异。在采用CCD的数码相机中,CCD 数据以模拟数据输出,需要经过模数转换和光学黑电平钳位等处理过程;在采用CMOS的数码相机系统中,由于CMOS器件采用数字接口,模拟接口的电路省略,直接进行数据读取。.

图象传感器的数据被读出后,系统将其进行针对镜头的边缘畸变的运算修正,

然后经过坏像素处理后,被系统送去进行白平衡处理。由于图象传感器在制造和使用老化过程中回出现一些个别的像素点

性能偏离或不能正常感光的现象,这些像素点被称为坏像素。微处理器通常会做相应的计算进行修正,但这一修正过程是有限的。

伽马校正和色彩合成处理是使数码相机获得良好的彩色图象的必要的图象处

理过程。在没有进行色彩合成以前,数码相机获得的图象数据有红色、绿色和蓝色三通道的图象数据构成,经过色彩合成处理后,将获得彩色的混合图象。

为了能够进行针对镜头的自动对焦控制,在色彩合成处理后,需要针对图象进

行边缘检测(锐度检测)和伪色彩检测(伪色彩抑制)。之后,用于浏览的图象数据流被送至LCD控制器,需要存储的图象数据被进行JPEG压缩后存入存储器中。至此,整个数码相机的图象数据处理完成。

为了让数码相机系统稳定的工作,在整个系统中还需要具备一个系统状态的检测控制电路,其主要用于检测供电系统的运行状况和各部分用户接口的运行状态。

数码相机使用(入门)技巧

数码相机使用技巧(入门级) 一、拍摄图像不清晰 1.虽然使用了最高分辨率,光线好,但拍摄出来の照片模糊不清。这种情况通常是由于在按快门释放键时照相机抖动造成の。由于数码相机の感光度低,所以,使用数码相机拍照时,需要握住相机の时间更长。要拍摄最清晰の照片,拍照时必须握稳相机,即便最轻微の抖动都会造成模糊不清の图像。处理方法:拿稳相机,拍照时最好使用三角架,或者将相机放到桌子、柜台或其安固定の物体上。再有就是一个“练”字,平时多练习持机の基本功。 2.取景器の自动聚焦标志未置于拍照物上。将自动聚焦框定位于拍照物上或使用聚焦锁定机能。 3.镜头脏污。镜头脏污会造成相机取景困难而使拍出の图像模糊。用专用の清洁镜头用纸清洁镜头。 4.模式选择不当。选择标准模式时,拍照物短于距离镜头の最小有效距离(0.6m)。或者在选择近拍模式时,拍照物远于最小有效距离。当被摄物于0.3--0.6M 范围之内时,用近拍模式拍照。在此范围以外时,用标准模式拍照。 5.在自拍模式下,站在照相机の正面按快门释放键。应看着取景器按快门释放键,不要站在照相机前按快门释放键。 6.在不正确の聚焦范围内使用快速聚焦机能。视距离使用正确の快速聚焦键。 二、图像太暗 1.闪光灯被手指挡住。正确握住照相机,不要让手指挡住闪光灯。 2.在闪光灯充电之前按了快门释放键。等到橙色指示灯停止闪烁。 3.未使用闪光灯。按闪光辅助杆设定闪光灯。 4.被摄物置于闪光灯の有效范围之外,将被摄物置于闪光灯有效范围之内。 5.拍照物太小而且逆光。将闪光灯设定于辅助闪光模式或使用定点测光模式。 三、图像太亮 1.闪光灯设定于辅助闪光模式。将闪光模式设定为辅助闪光以外の模式。 2.拍照物极亮。调整曝光。 四、室内拍照の图像色彩不自然 原因是灯光装置影响图像。此时将闪光模式设定为辅助闪光模式。 五、图像轮廓模糊 因是镜头被手指或背带挡掉一部分。应正确拿住照相机,不要让手指或背带挡住镜头。 六、闪光灯不发光 1.未设定闪光灯。按闪光灯弹起杆,设定闪光灯。 2.闪光灯正在充电。等到橙色指示灯停止闪烁 3.拍照物明亮。使用辅助闪光模式。 4.在已设定闪光灯の情况下,指示灯在控制面板上点亮时,闪光灯工作异常。请予以修理。 七、相机不动作

照相机成像原理和构造

照相机成像原理和构造 光博会后看到照相机后的观后感,了解照相机原理及构造,以下资料来自专业人士介绍以及所学工程光学教材知识。 照相机的镜头是一个凸透镜,来自物体的光经过凸透镜后,在胶卷上形成一个缩小、倒立的实像。 胶卷上涂着一层感光物质,它能把这个像记录下来,经过显影、定影后成为 底片,用底片洗印就得到相片。 照相时,物体离照相机镜头比较远,像是倒立、缩小的。 照相机是用于摄影的光学器械。被摄景物反射出的光线通过照相镜头(摄景物镜)和控制曝光量的快门聚焦后,被摄景物在暗箱内的感光材料上形成潜像,经冲洗处理(即显影、定影)构成永久性的影像,这种技术称为摄影术。

最早的照相机结构十分简单,仅包括暗箱、镜头和感光材料。现代照相机比较复杂,具有镜头、光圈、快门、测距、取景、测光、输片、计数、自拍等系统,是一种结合光学、精密机械、电子技术和化学等技术的复杂产品。 1550年,意大利的卡尔达诺将双凸透镜置于原来的针孔位置上,映像的效果比暗箱更为明亮清晰;1558年,意大利的巴尔巴罗又在卡尔达诺的装置上加上光圈,使成像清晰度大为提高;1665年,德国僧侣约翰章设计制作了一种小型的可携带的单镜头反光映像暗箱,因为当时没有感光材料,这种暗箱只能用于绘画。 1822年,法国的涅普斯在感光材料上制出了世界上第一张照片,但成像不太清晰,而且需要八个小时的曝光。1826年,他又在涂有感光性沥青的锡基底版上,通过暗箱拍摄了一张照片。 1839年,法国的达盖尔制成了第一台实用的银版照相机,它是由两个木箱组成,把一个木箱插入另一个木箱中进行调焦,用镜头盖作为快门,来控制长达三十分钟的曝光时间,能拍摄出清晰的图像。 1860年,英国的萨顿设计出带有可转动的反光镜取景器的原始的单镜头反光照相机;1862年,法国的德特里把两只照相机叠在一起,一只取景,一只照相,构成了双镜头照相机的原始形式;1880年,英国的贝克制成了双镜头的反光照相机。 随着感光材料的发展,1871年,出现了用溴化银感光材料涂制的干版,1884年,又出现了用硝酸纤维(赛璐珞)做基片的胶卷。 随着放大技术和微粒胶卷的出现,镜头的质量也相应地提高了。1902年,德国的鲁道夫利用赛得尔于1855年建立的三级像差理论,和1881年阿贝研究成功的高折射率低色散光学玻璃,制成了著名的“天塞”镜头,由于各种像差的降低,使得成像质量大为提高。在此基础上,1913年德国的巴纳克设计制作了使用底片上打有小孔的、35毫米胶卷的小型莱卡照相机。 不过这一时期的35毫米照相机均采用不带测距器的透视式取景器。1930年制成彩色胶卷;1931年,德国的康泰克斯照相机已装有运用三角测距原理的双像重合测距器,提高了调焦准确度,并首先采用了铝合金压铸的机身帘快门。

照相机的组成及工作原理

本文摘自再生资源回收-变宝网(https://www.360docs.net/doc/2f6729517.html,)照相机的组成及工作原理 照相机简称相机,是一种利用光学成像原理形成影像并使用底片记录影像的设备。很多可以记录影像设备都具备照相机的特征。 一、照相机的组成 镜头 取景器 快门和光圈 输片计数机构 机身 二、照相机的工作原理 照相机品种繁多,按用途可分为风光摄影照相机、印刷制版照相机、文献缩微照相机、显微照相机、水下照相机、航空照相机、高速照相机等;按照相胶片尺寸,可分为110照相机(画面13×17毫米)、126照相机(画面28×28毫米)、135照相机(画面24×18,24×36毫米)、127照相机(画面45x45毫米)、120照相机(包括220照相机,画面60×45,60×60,60×90毫米)、圆盘照相机(画面8.2x10.6毫米);按取景方式分为透视取景照相机、双镜头反光照相机、单镜头反光照相机。 三、照相机的分类划分 1、照相机根据其成像介质的不同

可以分为胶片相机与数码照相机以及宝丽来相机。胶片相机主要是指通过镜头成像并应用胶片记录影像的设备。而数码照相机则是应用半导体光电耦合器件和数字存储方法记录影像的摄影设备,有使用方便,照片传输方便,保存方便等特点。宝丽来相机又称一次成像相机,是将影象直接感光在特种像纸上,可在一分钟内看到照片,合适留念照等。 2.按照相机使用的胶片和画幅尺寸 可分为35mm照相机(常称135照相机)、120照相机、110照相机、126照相机、中幅照相机、大幅照相机、APS相机、微型相机等。135照相机使用35mm胶片,其所拍摄的标准画幅为24mm X 36mm,一般每个胶卷可拍照36张或24张。 3.按照相机的外型和结构 可分为平视取景照相机(VIEWFINDER)和单镜头反光照相机(单反相机)。此外还有折叠式照相机、双镜头反光相机、平视测距器相机(RANGFINDER)、转机、座机等等。 4.按照相机的快门形式 可分为镜头快门照相机(又称中心快门照相机)、焦平面快门照相机、程序快门照相机等。 5.按照相机具有的功能和技术特性

相机工作原理

工作原理 在单反数码相机的工作系统中,光线透过镜头到达反光镜后,折射到上面的对焦屏并结成影像,透过接目镜和五棱镜,可以在观景窗中看到外面的景物。与此相对的,一般数码相机只能通过LCD屏或者电子取景器(EVF)看到所拍摄的影像。显然直接看到的影像比通过处理看到的影像更利于拍摄。从取景器中看到的影响是通过:一次反射(面镜)、二次全反射(五菱镜)CCD获取图像信息是当拍摄的瞬间面镜弹起来,然后打开快门暴光的。 在DSLR拍摄时,当按下快门钮,反光镜便会往上弹起,感光元件(CCD或CMOS)前面的快门幕帘便同时打开,通过镜头的光线便投影到感光原件上感光,然后后反光镜便立即恢复原状,观景窗中再次可以看到影像。单镜头反光相机的这种构造,确定了它是完全透过镜头对焦拍摄的,它能使观景窗中所看到的影像和胶片上永远一样,它的取景范围和实际拍摄范围基本上一致,十分有利于直观地取景构图。 单反相机取景器 单反相机的取景器称为TTL(Through The Lens)单反取景器。这是专业相机上必备的取景方式,也是真正没有误差、通过镜头的光学取景器。这种取景器的取景范围可达实拍画面的95%。惟一缺点就是如果镜头过小,取景器会很暗淡,影响手动对焦。不过现在都具备自动对焦,这一点已无大碍。当然,如用了TTL单反取景器,为了不使取景器过暗,厂家自会用大口径高级镜头,所以目前单反相机的镜头普遍较大,就是这个因素造成的。从取景器中看到的影响是通过:一次反射(面镜)、二次全反射(五菱镜)CCD获取图象信息是当拍摄的瞬间面镜弹起来,然后打开快门暴光的。 反光镜的翻起动作带来了一些问题: 拍摄照片的瞬间,取景器会被挡住。由于被遮挡的时间只是刹那间的事情,因此这对于立即复位的反光镜来说并不是什么主要问题。但是,又引出了一些偶然性问题。例如,在使用频闪光拍摄时,将不能通过取景器看到频闪装置是否闪光正常。 反光镜运动的噪声。这在需要安静的场所这可能会成为重要问题。由于测距取景式照相机中没有突然阻挡光路的移动反光镜,所以不会产生这种噪声。 相机的震动,即由反光镜的翻起动作所造成的照相机整体的运动。假设用1/500秒的快门速度进行拍摄,那么不必担心。这种震动不至被察觉。但是,如果以较低的快门速度拍摄一幅精确照片的话,比如在微弱的光线下使用远摄镜头进行拍摄时,这种震动对成像就可能很成问题。 使用SLR取景还存在另一个问题。比如我们想使用f/32这样的小光圈进行拍摄,而光圈f/32允许进入镜头的光线是非常微弱的,这会导致取景器中看到的影像也很暗淡,可能会难以聚焦。 单反相机主要特点 单反数码相机的一个很大的特点就是可以交换不同规格的镜头,这是单反相机天生的优点,是普通数码相机不能比拟的。 单反就是指光线直接照到取景器上,而不用通过棱镜的反射! 光线损失的少!

数码相机使用的注意事项

数码相机使用的注意事项: 1.勿摄强光 数码相机采用CCD或CMOs固体成像器件,具有重量轻、耗电省、寿命长等优点,而且数码相机对强光和高温的耐力也较强,即便如此.数码相机能接受强光的能力还是有限的。为了在保证拍摄质量的同时不让成像器件受灼伤,在使用数码相机时不宜用它直接拍摄太阳或非常强烈的灯光,特殊需要无法避开时也要尽量缩短拍照时间。 此外,数码相机长时间受强光照射或受高热都将导致机身轻微变形,以至影响到高精密度设备的使用。因此,使用或保存数码相机时,要注意不要放在强光下长时间暴晒,也不要将相机放到暖气或电热设备附近。 2.防烟避尘 数码相机应在清洁的环境中使用和保存,这样可以减少因外界的灰尘、污物和油烟等污染而导致相机产生故障。因为污染物落到相机的镜头上会弄脏镜头,影响拍摄的清晰度,甚至还会增加相机的调整开关与旋钮的惰性。在户外空旷地区,拍摄时风沙会比较多,甚至可能忽然来狂风,由于风沙容易刮伤相机的镜头或渗入对焦环等机械装置中造成损伤,因此除了正在拍摄外应随时用护盖将镜头盖住,风沙大的地区最好记得将相机的护套带上。 3.忌很防溯 数码相机怕水吗?除了水中相机以外回答是肯定的,所以数码相翻U立该离水远一点。数码相机保持干燥并远离高温,一般不会有问题。如果使用或存放的环境湿度很大,很容易导致相机电路故障,也容易使镜头发霉,特别是我国南方地区的高温高湿环境危害更大,尤其要引起注意。如果是在池塘、水槽附近拍摄时,务必要小心握稳相机。但是,在阴雨天拍摄可能免不了沾到一些水滴,拍完立即擦拭表面的水滴也不会有太大影响。 4.远离高强磁场与电场 数码相机是光电一体的精密设备,光电转换是它成像的主要工作原理。关键部件如CCD 芯片、DSP芯片等对强磁场和电场都很敏感,强磁场和电场会影响这些部件正常性能的发挥,直接影响到拍摄质量,严重时还会导致相机出现故障。因此,数码相机在使用和保存时都应远离强磁场和电场。不要把相机放在强磁性物体或强电磁感应的设备附近,如音响、电视机、大功率变压器、电磁灶等。 5.进免剧烈展动 震动,特别是剧烈震动和碰撞,都会导致机械结构性能受到损害,对于精密设备来说都是必须避免的。数码相机当然也不例外,因为剧烈震动和碰撞会影响数码相机中复杂的成像系统的精密性能,相机内的精密电子器件和光学镜头也容易受到伤害。实际拍摄过程中应始终将相机套在手腕或脖子上,要避免摔落或随处乱扔。相机不用时要及时放在保护套里,特别是在携带过程中。 6,镜头的使用 镜头除要防尘、防污染、防雨淋、防外伤外,在实际使用过程中要养成及时盖好镜头盖的习惯。镜头盖是保护镜头的最实用的工具,而及时盖好镜头盖则是保护相机镜头的最有效的方法。还有一点应特别指出,镜头表面稍有些灰尘只对进光量略有影响,而对成像的清晰度并无大的妨碍,因此不必轻易擦拭,特别是当手头没有镜头清洁布或清洁纸时就更不要多此一举,否则因一时不慎把镜头搞坏了就后悔莫及。 另外在操作相机时,别让手指触摸到镜头表面。万一镜头脏了,切忌随手拿条布巾或卫生纸就擦,要使用专门的清洁工具,采取正确的清洁方式来操作。 7 .LCD液晶显示屏的使用 彩色液晶显示屏是数码相机的重要的特色部件,不但价格很贵,而且容易受到损伤,因此在使用过程中需要特别注意保护。在使用、存放中,要注意不让彩色液晶显示屏表面受重物

数码相机的成像原理

1.1 数码相机的成像原理 在对数码相机的特点和基本组件了解之前,下面来了解一下数码相机是如何工作的,这有利于更好地理解和掌握相机的各项关键参数,深入了解相机的性能。 当打开相机的电源开关后,主控程序芯片开始检查整个相机,确定各个部件是否处于可工作状态。如果一切正常,相机将处于待命状态;若某一部分出现故障,LCD屏上会显示一个错误信息,并使相机完全停止工作。 当用户对准拍摄目标,并将快门按下一半时,相机内的微处理器开始工作,以确定对焦距离、快门的速度和光圈的大小。当按下快门后,光学镜头可将光线聚焦到影像传感器上,这种CCD/CMOS半导体器件代替了传统相机中胶卷的位置,它可将捕捉到的景物光信号转换为电信号。 此时就得到了对应于拍摄景物的电子图像,由于这时图像文件还是模拟信号,还不能被计算机识别,所以需要通过A/D(模/数转换器)转换成数字信号,然后才能以数据方式进行储存。接下来微处理器对数字信号进行压缩,并转换为特定的图像格式,常用的用于描述二维图像的文件格式包括Tag TIFF(Image File Format)、RAW(Raw data Format)、FPX(Flash Pix)、JFIF(JPEG File Interchange Format)等,最后以数字信号存在的图像文件会以指定的格式存储到内置存储器中,那么一张数码相片就完成拍摄了,此时通过LCD(液晶显示器)可以查看所拍摄到的照片。 前面只是简单介绍了其大致的过程,下面结合图1-1来详细地介绍相片成像的整个过程。 图1-1 成像原理示意图 (1)当使用数码相机拍摄景物时,景物反射的光线通过数码相机的镜头透射到CD上。 (2)当CCD曝光后,光电二极管受到光线的激发而释放出电荷,生成感光元件的电信号。 (3)CCD控制芯片利用感光元件中的控制信号线路对发光二极管产生的电流进行控制,由电流传输电路输出,CCD会将一次成像产生的电信号收集起来,统一输出到放大器。 (4)经过放大和滤波后的电信号被传送到ADC,由ADC将电信号(模拟信号)转换为数字信号,数值的大小和电信号的强度与电压的高低成正比,这些数值其实也就是图像的数据。 (5)此时这些图像数据还不能直接生成图像,还要输出到DSP(数字信号处理器)中,在DSP中,将会对这些图像数据进行色彩校正、白平衡处理,并编码为数码相机所支持的图像格式、分辨率,然后才会被存储为图像文件。 (6)当完成上述步骤后,图像文件就会被保存到存储器上,我们就可以欣赏了。 1.2 数码相机的基本部件 无论是哪种款式的数码相机,大都包括图1-2、图1-3出示的基本组件。

机器视觉基础知识详解模板

机器视觉基础知识详解 随着工业4.0时代的到来,机器视觉在智能制造业领域的作用越来越重要,为了能让更多用户获取机器视觉的相关基础知识,包括机器视觉技术是如何工作的、它为什么是实现流程自动化和质量改进的正确选择等。小编为你准备了这篇机器视觉入门学习资料。 机器视觉是一门学科技术,广泛应用于生产制造检测等工业领域,用来保证产品质量,控制生产流程,感知环境等。机器视觉系统是将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。 机器视觉优势:机器视觉系统具有高效率、高度自动化的特点,可以实现很高的分辨率精度与速度。机器视觉系统与被检测对象无接触,安全可靠。人工检测与机器视觉自动检测的主要区别有:

为了更好地理解机器视觉,下面,我们来介绍在具体应用中的几种案例。 案例一:机器人+视觉自动上下料定位的应用: 现场有两个振动盘,振动盘1作用是把玩偶振动到振动盘2中,振动盘2作用是把玩偶从反面振动为正面。该应用采用了深圳视觉龙公司VD200视觉定位系统,该系统通过判断玩偶正反面,把玩偶处于正面的坐标值通过串口发送给机器人,机器人收到坐标后运动抓取产品,当振动盘中有很多玩偶处于反面时,VD200视觉定位系统需判断反面玩偶数量,当反面玩偶数量过多时,VD200视觉系统发送指令给振动盘2把反面玩偶振成正面。 该定位系统通过玩偶表面的小孔来判断玩偶是否处于正面,计算出玩偶中心点坐标,发送给机器人。通过VD200视觉定位系统实现自动上料,大大减少人工成本,大幅提高生产效率。 案例二:视觉检测在电子元件的应用: 此产品为电子产品的按钮部件,产品来料为料带模式,料带上面为双排产品。通过对每个元器件定位后,使用斑点工具检测产品固定区域的灰度值,来判断此区域有无缺胶情况。 该应用采用了深圳视觉龙公司的DragonVision视觉系统方案,使用两个相机及光源配合机械设备,达到每次检测双面8个产品,每分钟检测大约1500个。当出现产品不良时,立刻报警停机,保证了产品的合格率和设备的正常运行,提高生产效率。

多光谱相机原理及组成

多光谱相机原理及组成 多光谱成像技术自从面世以来,便被应用于空间遥感领域。而随着搭载平台的小型化和野外应用的需求,光谱成像仪在农业、林业、军事、医药、科研等领域的需求也越来越大。而在此之前成像技术并没有那么高,只能对特定的单一的谱段进行成像。虽然分辨率高但是数据量大难以进行分析、存储、检索,而多光谱成像是将所有的信息结合在一起,这不仅仅是二维空间信息,同时也把光谱的辐射信息也包含在内,从而在更宽的谱段范围内成像。 多光谱相机的基本构成 1.光学系统 可以在各个谱段内范围内成像,可以很好的的控制杂散光,是多光谱相机最重要的部分,对工作谱段范围和分辨能力起了决定性的作用,还可以设定工作焦距视场角大小等 2.控制和信息处理器 控制监督多光谱相机的整个工作过程,并收集图像数据,并进行储存。 3.热控装置 由温度控制器、隔热材料、散热器、热控涂层等组成 4.其他结构 物镜、电路系统、探测器及其他零配件 多光谱相机的工作谱段范围 人眼所能能识别的光谱区间为可见光区间,波长从400nm到700nm;普通数码相机的光谱响应区间与人眼识别的光谱区间相同,包含蓝、绿、红、三个波段;而多光谱相机的工作谱段范围在其基础上,可以分可见光、近红外光、紫外光等每台多光谱相机的分辨率不同,所应用的领域也不同 就比如说我们在做植被调查的时候,植被的可见光波段对绿色比较敏感对红色和蓝色反射较弱。相对于可见光波段,植被在近红外波段具有很强的反射特性,多数植被在可见光波段的光谱差异很小。而在近红外波段的光谱差异更大,光谱差异越明显越有利于分类。 光谱特性 我们知道像素运用复杂的大气准则来,复原反射光谱和辐射光谱所的到的数据分析,得到不同物质的反射率不同,称之为光谱特征。如果有足够的光谱特证,可用于识别场景中的专用材质,其中包括光谱范围、宽度、分辨率。范围是指相机获取图像来自的光谱段,谱段的宽度反映了谱段设置的要求、通过努力衡量大气中物质的光谱特性还有传感器的光谱响应,就要考虑大气中的吸收和散射。多光谱相机的光学系统 光学系统是指由透镜、反射镜、棱镜和光阑等多种光学元件按一定次序组合成的系统。通常用来成像或做光学信息处理。曲率中心在同一直线上的两个或两个以上折射(或反射)球面组成的光学系统称为共轴球面系统,曲率中心所在的那条直线称为光轴。其中参数包括焦距、视场角、相对孔径等。 多光谱相机的反射光学系统 如果光学系统中的光学镜片为反射镜,则此系统称之为反射系统,反射式光学系统最大的优势就在于其光谱范围很大,对各个谱段都适用,并且不需要矫正二级光谱,但是因选用的是非球面镜片,会使系统的加工和装配变得十分困难,增加制作工艺难度

照相机原理和构造56701

一、人眼成像的原理 摄影又称摄影术,就是人们通使用照相机把反射在景物上的光线,通过镜头在感光材料上感光而形成影像的过程。所以有些国家把照相机称为“照光机”,这是比较准确的,也就是说,摄影的过程并不是把景物摄录下来,而是把景物反射出的光线记录在感光材料上,形成的影像本不是景物的影像,而是光线在感光材料上形成了潜影。 照相机最早是谁发明的已无从查考,但第一个在底片的银盐上成像的是法国人达盖尔,就是今天的数码成像也是在达盖尔的银盐成像的基础上发展起来的,成像的原理一直不变。 归根结底,照相机是对人眼的仿生,照相机成像的原理与人眼看到景物在视网膜上成像的原理也是一样的——当然人眼比世界上最先进的照相机都更为先进,结构也更为复杂。下图就是人眼接受外界光线而成像的结构图。(这可是UU比照着生物老师的教科书画的,差点累死) 图(1)简约眼视网膜像的形成图

从上图我们可以看出,人眼中的晶状体就如同一个凸透镜,物体AB经过晶体透过节点后,会在视网膜上形成像ab,当然进入眼中的光线还必须通过瞳孔而到达后主焦点,而瞳孔则会根据光线的强弱自动调节其开孔大小。 眼睛之所以能看见周围的各种物体,一是必须有光,二是眼球内可以成像的构造。当我们睁开眼睛,从周围物体发射或反射而来的光,穿过瞳孔和晶状体,聚集在眼睛后面的视网膜上,形成这些物体的图像。连接视网膜的视神经立即把这些信息传送到大脑,所以我们就能看到这些物体。人以左右眼看同样的对象,两眼所见角度不同,在视网膜上形成的像并不完全相同,这两个像经过大脑综合以后就能区分物体的前后、远近,从而产生立体视觉。当然就这一点而言,照相机只相当于人的一只眼,不可能产生立体的感觉了。 二、照相机的工作原理 明白了以上的道理,我们就很容易理解照相机的成像原理了。下图是简易照相机的成像光路图。

数码相机的基本操作

(三)数码相机的基本操作 1.安装存储卡 使用数码相机拍照之前,首先要把存储卡插入相机内(存储卡内置型除外)。 2. 安装电池 打开相机的电池盖,确定电池方向,将电池推入,注意极性相对。 3. 打开电源 转动电源开关,打开相机。 4. 拍摄模式的选择 数码照相机一般分有自动、运动、夜景、风景、特写、录像等几档的模式转换开关,拍摄前必须根据拍摄主题的需要选择相应的模式。 5.拍摄状态设定 数码相机在拍摄之前,可根据需要通过功能菜单进行各种工作状态设置,这些设置将直接影响所拍照片的质量。 (1)设置分辨率 分辨率指影像所含像素的多少。像素越多,分辨率越高,影像效果越清晰,但文件的容量也会越大。大多数数码相机都提供多种分辨率可选择,拍摄时究竟该用什么分辨率,取决于对画面的质量要求以及拍摄的目的,一般有以下几种情况: 如拍摄的数码影像文件最终要通过打印或其他方法得到高质量照片、精美印刷品,则应以最高分辨率拍摄。 如拍摄的画面通过计算机显示器观看,或通过投影机投影,则拍摄分辨率可根据计算机显示器的分辨率或投影机的分辨率而定,应力求使拍摄画面的分辨率与这些设备的分辨率相吻合。 如拍摄的画面主要是供上网传输,考虑到显示器的分辨率和目前上网传输的速率都不是很高,大的影像文件上网传输需要很多的时间,因此拍摄分辨率不宜太高。 (2)设置感光度 感光度是表示图像传感器对光的灵敏度。感光度越高,对光线就越敏感,但是其影像颗粒越粗,分辨景物的细微部分的能力越差。 选择感光度,应根据用途和拍摄环境来选:室外光线强,可选用中速感光度(ISO100);室内光线较暗或高速运动的物体,宜选用高速感光度(ISO400);需放大型照片的,宜选用低速感光度(ISO50)。 (3)设置闪光灯 数码相机常见的闪光灯模式有四种状态:自动、强制、关闭和防红眼。 ①“自动”闪光状态:无论在任何时候,当光线不足时数码相机将会自动测试拍摄环境的光线强弱,并且将根据当时选定光圈的大小、快门速度的快慢和测得的环境光线数值,决定是否使用闪光灯和闪光灯输出多少光量。

数码相机的结构及工作原理

一、数码相机的组成:镜头、图像传感器、AD转换 器、CPU、存储芯片、LCD: 作用: 1、镜头:数码相机镜头作用与普通相机镜头作用相同。取景。分类:变焦镜头、定焦镜头。 2、图象传感器:(1)、作用:将光信号转变为电信号。图象传感器是数码相机的核心部件,其质量决定了数码相机的成像质量。图象传感器的体积通常很小,但却包含了几十万个乃至上钱万个具有感光特性的二极管――光电二极管。每个光电二极管即为一个像素。当有光线照射时,光电二极管就会产生电荷累积,光线越多,电荷累积的就越多,然后这些累积的电荷就会被转换成相应的像素数据。(2)、种类。电荷耦合器件(CCD):电路复杂,读取信息需在同步信号控制下一位一位地实地转移后读取,信息读取复杂,速度慢;要三组电源供电,耗电量大,但技术成熟,成像质量好。互补金属氧化物半导体(CMOS):电路简单,信息直接读取,速度较快,只需使用一个电源,耗电两小,为CCD的1/8到1/10;但个光电传感元件、电路之间距离近,相的光、电、磁干扰较严重,对图象质量影响很大。 3、A/D转换器(模拟数字转换器):作用,将模拟信号转换成数字信号的部件。指标:转换速度、量化精度量化精度对应于A /D转换器将每一个像素的亮度或色彩值量化为若干个等级,这个等 级就是数码相机的色彩深度。对于具有数字化接口的图象传感器(如CMOS),则不需A/D转换器。 4、MPU(微处理器)作用:通过对图象传感器的感光强弱程度进行分析,调节光圈和快门。系统结构:一般数码相机采用的微处理器模块的结构如图2所示,包括图象传感器数据处理DSP、SRAM控制器,显示控制器、JPEG编码器、UBS等接口、运算处理单音频接口(非通用模块)和图象传感器时钟生成器等功能模块。

数码相机的原理与结构

数码相机的原理与结构 数码相机是由镜头、CCD、A/D(模/数转换器)、MPU(微处理器)、内置存储器、LCD (液晶显示器)、PC卡(可移动存储器)和接口(计算机接口、电视机接口)等部分组成,通常它们都安装在数码相机的内部,当然也有一些数码相机的液晶显示器与相机机身分离.数码相机中只有镜头的作用与普通相机相同,它将光线会聚到感光器件CCD(电荷耦合器件)上, CCD是半导体器件,它代替了普通相机中胶卷的位置,它的功能是把光信号转变为电信号.这样,我们就得到了对应于拍摄景物的电子图像,但是它还不能马上被送去计算机处理,还需要按照计算机的要求进行从模拟信号到数字信号的转换,ADC(模数转换器)器件用来执行这项工作.接下来MPU(微处理器)对数字信号进行压缩并转化为特定的图像格式,例如JPEG格式.最后,图像文件被存储在内置存储器中.至此,数码相机的主要工作已经完成,剩下要做的是通过LCD(液晶显示器)查看拍摄到的照片.有一些数码相机为扩大存储容量而使用可移动存储器,如PC卡或者软盘.此外,还提供了连接到计算机和电视机的接口. 几乎所有的数码相机镜头的焦距都比较短,当你观察数码相机镜头上的标识时也许会发现类似"f=6mm"的字样,它的焦距仅为6毫米,这不是鱼眼镜头吗?答案是否定的.说明书中明确地指出f=6mm相当于普通相机的50mm镜头(因相机不同而不同).这是怎么回事呢?原来我们印象中的标准镜头、广角镜头、长焦镜头以及鱼眼镜头都是针对35mm普通相机而言的.它们分别用于一般摄影、风景摄影、人物摄影和特殊摄影.各种镜头的焦距不同使得拍摄的视角不同,而视角不同产生的拍摄效果也不相同.但是焦距决定视角的一个条件是成像的尺寸,35mm普通相机成像尺寸是24mm×36mm(胶卷),而数码相机中CCD的成像尺寸小于这个值两倍甚至十倍,在成像尺寸变小焦距也变小的情况下,就有可能得到相同的视角.所以说上面提及的6mm镜头相当普通相机50mm焦距镜头.因此在选购数码相机时,我们不用关心数码相机的实际焦距是多少,而只要参考换算到35毫数码相机使用CCD 代替传统相机的胶卷,因此CCD技术成为数码相机的关键技术,CCD的分辨率被作为评价数码相机档次的重要依据.CCD是Charge Couple Device的缩写,被称为光电荷耦合器件,它是利用微电子技术制成的表面光电器件,可以实现光电转换功能.在摄像机、数码相机和扫描仪中被广泛使用.摄像机中使用的是点阵CCD,扫描仪中使用的是线阵CCD,而数码相机中既有使用点阵CCD的又有使用线阵CCD的,而一般数码相机都使用点阵CCD,专门拍摄静态物体的扫描式数码相机使用线阵CCD,它牺牲了时间换取可与传统胶卷相媲美的极高分辨率(可高达8400×6000).CCD器件上有许多光敏单元,它们可以将光线转换成电荷,从而形成对应于景物的电子图像,每一个光敏单元对应图像中的一个像素,像素越多图像越清晰,如果我们想增加图像的清晰度,就必须增加CCD的光敏单元的数量.数码相机的指标中常常同时给出多个分辨率,例如640×480和1024×768.其中,最高分辨率的乘积为786432(1024×768),它是CCD光敏单元85万像素的近似数.因此当我们看到"85万像素CCD"的字样,就可以估算该数码相机的最大分辨率. 许多早期的数码相机都采用上述的分辨率,它们可为计算机显示的图片提供足够多的像素,因为大多数计算机显卡的分辨率是640×480、800×600、1024×768、1152×864等.CCD 本身不能分辨色彩,它仅仅是光电转换器.实现彩色摄影的方法有多种,包括给CCD器件表面加以CFA(Color Filter Array,彩色滤镜阵列),或者使用分光系统将光线分为红、绿、蓝三色,分别用3片CCD接收,例如美能达RD-175单反数码相机就采用3CCD方式. A/D转换器又叫做ADC(Analog Digital Converter),即模拟数字转换器.它是将模拟电信号转换为数字电信号的器件.A/D转换器的主要指标是转换速度和量化精度.转换速度是指将模拟信号转换为数字信号所用的时间,由于高分辨率图像的像素数量庞大,因此对转换速度要求很高,当然高速芯片的价格也相应较高.量化精度是指可以将模拟信号分成多少个等级.如果说CCD是将实际景物在X和Y的方向上量化为若干像素,那么A/D转换器则是将每一个像素的亮度或色彩值量化为若干个等级.这个等级在数码相机中叫做色彩深度.数码相机的技术指标中无一例外地给出了色彩深度值,那么色彩深度对拍摄的效果有多大的影响呢?其实色彩深度就是色彩位数,它以二进制的位(bit)为单位,用位的多少表示色彩数的多少.常见的有24位、30位和36位.具体来说,一般中低档数码相机中每种基色采用8位或10位表示,高档相机采用12位.三种基色红、绿、蓝总的色彩深度为基色位数乘

最新科技领域的创新发明汇总

2011年科技领域的创 新发明

虽然有关最新款iPhone或Facebook改版的消息占据了2011年大多数新闻头条,但还有很多其它公司在这一年默默地(有些则不那么安静)展示了自己的奇思妙想。这些发明从高科技产品(智能计算机和自动驾驶飞机)到令人惊艳的小东西(可以诊断世界上最令人头痛的部分疑难杂症的小纸片)不一而足。 虽然今年有很多人痛悼苹果主帅乔布斯(Steve Jobs)的离世,但创造力和发明并没有因此远去。乔布斯被认为是他所在的时代里伟大的创新者之一。 以下是几个今年最令人叹为观止的一些发明: IBM的“沃森”计算机(Watson Computer) David Plunkert 虽然有关最新款iPhone或Facebook改版的消息占据了2011年大多数新闻头条,但还有很多其它公司在这一年默默地(有些则不那么安静)展示了自己的奇思妙想。 当国际商业机器公司(International Business Machines Corp.)的“沃森”在今年2月全美电视直播的智力竞赛中击败两名真人冠军时,科幻小说中的一幕成为了现实。这一胜利可谓人工智能领域的里程碑事件,会让人联想到经典科幻电影《2001太空漫游》(2001: A Space Odyssey)中的超智能电脑HAL 9000。

“沃森” 是多种技术的合成体,设计初衷是让它理解文字、语言和人类知识的复杂领域,它不只是一个很酷的研发项目。医疗保险公司WellPoint Inc.计划使用“沃森”来对治疗方案给出建议,帮助医生诊断病情。IBM高管认为,随着“沃森”在呼叫中心或工程学领域的应用,它有望在三到五年时间里增长为一个价值10亿美元的业务。 今年与“沃森”共享聚光灯的还有一位无形的助手:苹果公司为智能手机iPhone推出的声音识别软件Siri。虽然产品不完美,但Siri是一系列声音驱动消费类新产品的先导,随之而来的可能会有各种衍生品,如以用户过去的行为和偏好为依据来为他们做决定。 Spencer E. Ante 诺斯罗普(Northrop)的X-47B无人驾驶战斗机机 2 月份,一台无人驾驶的蝙蝠翼战斗机在洛杉矶北部的沙漠上空进行了29分钟的试飞,标志着海军航空进入了一个新时代。这不是我们平常看到的由拥有丰富飞行经验的人员利用远程操纵杆驾驶无人驾驶飞机。X-47B的飞行任务由一台电脑控制,而操作者只需点几下鼠标就能发动引擎让飞机上天。 Associated Press X-47B无人机(上图)能完全靠电脑操控。 诺思罗普公司的X-47B能够在其两个载物仓内装载多达4500磅的武器,也会成为第 一个能够在移动的航母舱面上起降的无人驾驶战斗机。 无人驾驶机技术在过去十年里取得了跨越式的进展,但是其局限性仍然在2011年年末显露了出来,当时伊朗声称击落了一架RQ-170,这是一架由美国军方操纵的无人驾驶隐形战斗机。由航母发射的无人驾驶机在敌人的雷达下将几乎会无迹可寻。

数码相机电源电路工作原理

数码相机电源电路工作原理 从目前公司使用的电源部分主要可以分为以4.5V供电、3V供电和锂电池供电几种形式。下面将不同的供电形式之电路作说明: 一:DC4.5V供电: 1.电子线路图: D6 IN5819/NC 图一 U10 GND 图二

0.1uF C0402 GND 图三 图四 GND L9U7 EUP3406C560.1u C0402 图五

GND GND 图六 System Power 3.3V U6 VCC3 3.1V LDO for A/D PD 图七 工作原理: 当VBAT 接通DC4.5V 或VUSB 接通USB 5V 时,产生一个VIN-A 电压(如图一),一路经过电源稳压IC U10输出复位电压RTC-VDD (图二),此电压经过电阻R79,R83分压后加到DSP 复位脚123脚(如图三).另一路经过电源管理IC U5(AIC1555)工作,通过R33与R35取样电路从第8脚通过L3后输出基准电压VCC3(如图六).此电压直接加到场效应管Q6第2脚.当按下S1POWER 键时相机分为两路工作,一路使Q6第1脚通过网络PWRON 接地,此时Q6导通,电压通过Q6后产生电压V33V 。(如图四、图七) 当松开POWER 键时Q6第1脚高电平Q6截止.另一路到经过网络PWR_KEY 加到DSP ,DSP 检查所有电路,如果电路都正常,则DSP 输出高电平PD 信号通过R42使Q7导通将Q6第1脚持续低电平,V33V 电压始终保持。(如图四、图七) V33V 电压给整个系统各个部份(DSP ,SDRAM ,F/W ,KEY 电路,SENSOR 电路,TFT 电路,DSP 复位电路,SD 卡座电路等)供电. 一路经过电源IC U7降压后输出V18V ,为DSP 供电,另V18V 经过U4转换为SV1.2V 给SENSOR 供电。(如图五) V33V 经过电源稳压IC U6稳压后输出V31V 通过R39 10UH 电感输出V31A 电压持续给整个系统的数据处理提供电压.当DSP 检测各路电压都正常后,12M 晶振起振,然后复位电路动作,IC U12给DSP 一个RESET 信号。相机开始工作,各部份电路工作正常。

数码相机的各组成部分及基本功能

数码相机的各组成部分及差不多功能 图1是一个典型的数码相机,前面是它的镜头盖,镜头盖是用来爱护镜头的。同时,它和电源开关连动,在使用时将它打开,如此便会自动加上电源。 图1 典型的数码相机

打开镜头盖之后,如图2所示,前面是镜头部分,那个镜头是变焦镜头。在拍摄时将镜头对准景物,景物的图像就会射入数码相机的内部。在镜头的后面设有CCD图像传感器,它会将光图像变成电信号进行处理,然后记录到存储卡上。数码相机的闪光灯部分,是用来在被拍摄景物比较暗的情况下,将景物照亮的。 图2 数码相机的镜头、闪光灯等部分

在数码相机的背面是它的取景器、液晶显示屏以及操作面板(操纵键钮),如图3所示。 图3 数码相机的背面

在拍摄时,通过取景器来观看和取景,以便得到比较好的画面,同时,在液晶显示屏上能够显示出要拍摄的画面。通过对液晶显示屏的观看,能够了解所要拍摄的景物目标,由于液晶显示屏耗电量比较大,因此为了省电能够关闭液晶显示屏,直接用取景器来观看所要拍摄的目标。 选定目标之后,就能够通过位于相机上方的变焦钮,来对所拍摄的景物进行放大和缩小,以便取得合适的镜头。在变焦钮旁边的是拍摄钮,拍摄钮是在选取好景物以及调整好镜头之后,按一下就能够拍摄出一幅照片。 在数码相机的侧面,如图4所示,上面是数据接口,它能够直接将数码信号送到计算机里面进行处理。在数据接口的下方是存储卡装入插口,装入存储卡之后,就能够将数码照片存储到存储卡上,取出存储卡,就能够进行交换或者是输出数据。

图4 数码相机的数据接口、存储卡插口以及电池仓 位于存储卡装入插口旁边的是电池仓,假如外出使用时,直接将电池装入那个仓中,然后将电池仓锁紧即可。注意,要使用性能良好的电池,因为数码相机的耗电比较大。

数码相机使用管理制度

相机使用管理制度 相机是公司固定资产的一部分,是为需要拍照的相关业务而服务的。为加强公司数码设备的管理和利用,妥善管理和使用好公司资产,确保资产不损坏、不流失,特制定如下管理办法: 数码相机及配件 索尼数码相机1台:读卡器1个,充电器1个,可充电电池3个。 尼康单反相机1台:内存卡1个,充电器1个,可充电电池3个,两个镜头,外置闪光灯1个。 反光板1个,三脚架2个。 一、日常保管 1、相机由摄影师负责日常保管,需严格按照使用范围和程序借用,并建立借用登记、归还销号制度。 2、所领用的相机实行“谁使用,谁保管;谁损坏,谁负责”的办法。管理者、使用者要对公司负责,平时加强对相机及其配件的保管、保养工作,做好保管与保养相结合。使数码相机保持良好的使用状态,以延长使用寿命。 3、相机损坏,应及时报修。 二、使用范围 1、相机限于编辑外出采访、业务员外出拍照相关业务使用。 2、所领用相机,限于借用者本人使用。用于收集日常工作图片。如:设计用稿、编辑采访拍照、企业文化建设、公司网站建设、简报等,充分将数码相机利用起来,发挥其实质作用。 三、借用手续 1、各部门借用公司的照相机,需向部门主管口头提出申请,经同意后到管理人员处办理借用手续。经负责人签字后方可借出。 2、领用人领用相机时必须进行必要的检查,发现问题应及时提出。登记人应及时登记,避免责任不清。 3、借用结束后,借用人应及时将照相机交回保管人处,经管理人员检查确认设备完好无损后,由管理人员做借物注销。 4、除因特殊情况外,相机均应由借用者本人来履行领用、交回手续。任何人不得以任何理由长期占用。 5、如照相机有损坏或丢失,借用人应及时向管理人员报告,并说明情况,公司将视具体情况酌情进行处理。 四、有关要求 1、数码相机借用于市内相关拍照业务,必须当天归还;市外公务活动使用归来后须立即归还,不得擅自外借他人。确有特殊原因需外借,则须经分管副总签字同意后方可借出。 2、使用人员要增强责任感,严格按照设备使用、保管有关技术规范加强使用管理,保证设备和影像资料的安全。如果发生设备损坏,由相关责任人负责赔偿维修费用;发生设备遗失,由相关责任人按折旧价赔偿。 3、使用相机时做到人不离机,不让他人代操作,注意防震、防水、防腐、防尘、防盗。严格按规定操作,不用时要及时入箱入柜,搞好平时保养,确保随时可用。如出现故障,应及时报告。 4、数码相机使用完毕在归还前要先将所拍摄数据导出, 5、管理人员及各部门借用人,在离开本公司时交回所领用相机。 五、使用注意事项 凡使用照相机的人员,都应爱护设备,严格遵守操作规程,具体注意事项见附件。 附件:数码相机使用注意事项 数码相机使用注意事项 外出使用前的各项准备工作:

工业相机原理

工作原理: 在单反数码相机的工作系统中,光线透过镜头到达反光镜后,折射到上面的对焦屏并结成影像,透过接目镜和五棱镜,我们可以在观景窗中看到外面的景物。与此相对的,一般数码相机只能通过LCD屏或者电子取景器(EVF)看到所拍摄的影像。显然直接看到的影像比通过处理看到的影像更利于拍摄。 在DSLR拍摄时,当按下快门钮,反光镜便会往上弹起,感光元件(CCD或CMOS)前面的快门幕帘便同时打开,通过镜头的光线便投影到感光原件上感光,然后后反光镜便立即恢复原状,观景窗中再次可以看到影像。单镜头反光相机的这种构造,确定了它是完全透过镜头对焦拍摄的,它能使观景窗中所看到的影像和胶片上永远一样,它的取景范围和实际拍摄范围基本上一致,十分有利于直观地取景构图。 主要特点: 单反数码相机的一个很大的特点就是可以交换不同规格的镜头,这是单反相机天生的优点,是普通数码相机不能比拟的。 另外,现在单反数码相机都定位于数码相机中的高端产品,因此在关系数码相机摄影质量的感光元件(CCD或CMOS)的面积上,单反数码的面积远远大于普通数码相机,这使得单反数码相机的每个像素点的感光面积也远远大于普通数码相机,因此每个像素点也就能表现出更加细致的亮度和色彩范围,使单反数码相机的摄影质量明显高于普通数码相机。 感光器件 提到数码相机,不得不说到就是数码相机的心脏——感光器件。与传统相机相比,传统相机使用“胶卷”作为其记录信息的载体,而数码相机的“胶卷”就是其成像感光器件,而且是与相机一体的,是数码相机的心脏。感光器是数码相机的核心,也是最关键的技术。数码相机的发展道路,可以说就是感光器的发展道路。目前数码相机的核心成像部件有两种:一种是广泛使用的CCD(电荷藕合)元件;另一种是CMOS(互补金属氧化物导体)器件。 电荷藕合器件图像传感器CCD(Charge Coupled Device),它使用一种高感光度的半导体材料制成,能把光线转变成电荷,通过模数转换器芯片转换成数字信号,数字信号经过压缩以后由相机内部的闪速存储器或内置硬盘卡保存,因而可以轻而易举地把数据传输给计算机,并借助于计算机的处理手段,根据需要和想像来修改图像。CCD由许多感光单位组成,通常以百万像素为单位。当CCD表面受到光线照射时,每个感光单位会将电荷反映在组件上,所有的感光单位所产生的信号加在一起,就构成了一幅完整的画面。

相关文档
最新文档