冷轧无取向硅钢性能指标检测方法汇编(第一版)汇总

冷轧无取向硅钢性能指标检测方法汇编(第一版)汇总
冷轧无取向硅钢性能指标检测方法汇编(第一版)汇总

冷轧无取向硅钢性能指标检测方法及性能指标控制管理制度汇编

目录

第一部分冷轧无取向硅钢性能指标控制管理制度

1、冷轧无取向硅钢磁性能指标控制管理制度-----------------------------2

2、冷轧无取向硅钢叠装系数指标控制管理制度--------------------------10

3、冷轧无取向硅钢反复弯曲指标控制管理制度--------------------------12

4、冷轧无取向硅钢力学性能指标控制管理制度--------------------------15

5、冷轧无取向硅钢硬度指标控制管理制度------------------------------21

第二部分附录

1、GB/T 228.1-2010 金属材料拉伸试验第1部分:室温试验方法

2、GB/T 235-1999 金属材料厚度等于或小于3mm薄板或薄带反复弯曲试验方法

3、GB/T 3655-2008 用爱泼斯坦方圈测量电工钢片(带)磁性能的方法

4、GB/T 13789-2008 用单片测试仪测量电工钢片(带)磁性能的方法

5、GB/T 19289-2003 电工钢片(带)的密度、电阻率和叠装系数的测量方法

6、GB/T 230.1-2009 金属材料洛氏硬度试验第1部分:试验方法

7、GB/T 231.1-2009 金属材料布氏硬度试验第1部分:试验方法

8、GB/T 4340-2009 金属材料维氏硬度试验第1部分:试验方法

冷轧无取向硅钢磁性能指标控制管理制度

一、目的

磁性是判定所有硅钢产品牌号以及订货和交货的依据。产品磁性应满足国家标准中规定的相应牌号及订货合同中规定的磁性水平。为了对硅钢片的磁性进行有效监控,现制定本管理制度。

二、用爱泼斯坦方圈测量磁性能的标准方法(用于实验料)

依据GB/T 3655-2008提供的用爱泼斯坦方圈测量电工钢片(带)磁性能的方法如下: 1、装置

25cm 爱泼斯坦方圈由四个线圈组成,它形成一个空载的变压器。爱泼斯坦方圈应包含一个用于空气磁通补偿的互感线圈。支撑线圈的绕组骨架由硬的绝缘材料制成,如酚醛树脂纸板。绕组骨架具有矩形横截面,其内部宽度为32mm ,推荐高度约为10mm 。

线圈安放在一个绝缘的无磁性的底板上,形成一个方框(见图1)。由样片的内缘形成的正方形边长为

图1 标准25cm 爱泼斯坦方圈

四个线圈中的每一个都应有2个绕组:初级绕组(外层,磁化绕组)、次级绕组(内层,感应电压绕组)。

mm 2201

0-

此外,还需要整流后平均值测量准确度为±0.2%或更好的平均值电压表、有效值准确度为±0.2%或更好的电压表、峰值测量准确度为±0.2%或更好的电压表、准确度为±0.1%或更好的频率计及在实际功率因数和波形因数下准确度为±0.5%或更好的功率表。

2、试样

试样的样片用双搭接接头装成一个方框(如图2),并形成长度和横截面积都相等的四束。试样宽度为30mm±0.2mm,长度在280mm~320mm之间,长度公差为±0.5mm。

图2 双搭接方式

3、测试

①比总损耗(铁损)的测试

爱泼斯坦方圈和测量设备应按图1连接。

说明:M—空气磁通补偿的互感线圈

图3 功率表法的电路原理图

当爱泼斯坦方圈中无试样时,在初级绕组中通一交流电流,使在次级绕组非公共端间测量的电压不大于爱泼斯坦方圈次级绕组本身电压的0.1%。这样,在串联次级绕组中感应电压整流后的平均值正比于试样中磁极化强度的峰值。

记录初级、次级线圈匝数,使用功率表测定功率,测量次级整流电压的平均值及次级回路仪表的总电阻,称量试样的总质量,根据下式就可计算出试样的比总损耗(铁损):

(

)m i m s ml R U P N N l P ???

?

?

????

?-=2

221

111.14

式中:N 1—初级线圈的匝数;

N 2—次级线圈的匝数;

P m —功率表测量的功率(W ); 2U —次级整流电压的平均值(V ); R i —次级回路仪表的总电阻(Ω); l —试样的样片长度(m ); m —试样的总质量(kg ); l m —约定的有效磁路长度(m )。 ②磁极化强度的测定

爱泼斯坦方圈和测量设备应按图

4连接。

说明:M —空气磁通补偿的互感线圈;

W b —磁通积分器。

图4 不连续记录法的直流测试电路原理图

试样应进行退磁,即在不断降低的交流磁场下退磁,或在爱泼斯坦方圈的初级线圈中通一逐渐减小并换向的直流电流进行退磁,换向的频率约为每秒钟两次.退磁电流产生的磁场强度的初始值应比先前测量所用的磁场强度高。

按图4所示,非连续的磁极化强度值可以在相应的磁场强度下测得,或通过一系列非连续值得到磁化曲线。也可以采用连续测量的方法,如图5所示,将一个校准的四端电阻与爱泼斯坦方圈的磁化线圈串联,电压的接线端与X-Y 记录仪的X 输入端相连,磁通积分器的输出端与X-Y 记录仪的Y 输入端相连,也可

以用绘图仪或计算机接口替代X-Y 记录仪。

磁场强度应通过测量爱泼斯坦方圈初级线圈的磁化电流,并用下式计算得到:

m

l I

N H 1=

式中:H —磁场强度(A/m );

N 1—爱泼斯坦方圈初级绕组的匝数; I —磁化电流(A )

l m —规定的有效磁路长度(m )

说明:M —空气磁通补偿的互感线圈;

W b —磁通积分器。

图5 连续记录法的直流测试电路原理图

为了得到非连续的磁极化强度值,磁通积分器应先归零,再增加初级绕组中的电流值,直至磁场强度值达到设定值。

应记录磁化电流和磁通测量值的变化,磁极化强度值应由磁通测量值的变化和磁通积分器的矫正系数用下式计算:

A

N a K J j j 2=

?

式中:△J —测量得到的磁极化强度变化值(T );

A —试样的横截面积(m 2); N 2—爱泼斯坦方圈次级绕组的匝数; K j —磁通积分器的校正系数(Vs ); a j —磁通积分器的示值。

三、用单片测试仪测量电工钢片(带)磁性能的标准方法(用于日常生产时的连续测量)

依据GB/T 13789-2008提供的用单片测试仪测量电工钢片(带)磁性能的方法如下:

1、装置

将一块电工钢片试样放入两个线圈内:

—外部的初级绕组(磁化绕组)

—内部的次级绕组(感应电压绕组)

两个相同磁轭是闭合磁路的组成部分,磁轭的横截面积比试样的横截面积大的多。

图6 试验装置示意图

2、试样

试样的长度不宜小于500mm。虽然位于磁极面外的试样部分对测量的影响可以忽略,但此部分的长度取决于试样放入和取出是否方便,试样的长度不宜过长。

试样的宽度应尽可能宽,最宽可以等于磁轭的宽度。

为尽量保证测量的准确,试样的最小宽度不应小于磁轭宽度的60%。

剪切好的试样不能有明显的毛刺或机械变形。试样应平直,在剪切时,以剪切好的试样边缘作为基准方向,基准方向与轧制方向之间的夹角对于无取向硅钢片允许公差为±5°。无取向硅钢片,应取两个试样,一个平行于轧制方向,而另一个垂直于轧制方向。若试样是正方形的,则仅需要取一个试样。

3、测试

①比总损耗(铁损)的测定

带有试样的单片测试仪相当于一个空载变压器,其总损耗用图7所示的电路测量。

说明:V 1—测量平均整流电压;

V 2—测量有效值电压; M —互感线圈; T —试样框架。

图7 测定比总损耗的电路原理图

比总功率损耗按下式计算:

(

)m i s ml l R U N N P P ???

?

?

????

?

?-=2

221111.1 式中:P s —试样的比总功率损耗(W/kg );

P —功率表测量的功率(W ) N 1—初级绕组的匝数; N 2—次级绕组的匝数;

R i —次级回路中仪表的总电阻(Ω); 2U —次级整流电压的平均值(V ); m —试样的质量(Kg ); l —试样的长度(m );

l m —约定的磁路长度(m ),(l m =0.45m )。

②磁极化强度的测量

磁极化强度的值由下式计算:

2241

U A

fN J =

式中:2U —次级整流电压的平均值(V );

A —试样的横截面积(m 2); N 2—次级线圈的匝数; J —磁极化强度的峰值; f —频率(Hz )。

四、班中测量要求

按班取样测量,由质检工取样送检,把测量结果进行记录,班中测量不得小于2次。

五、控制要求

六、原始记录

在收到磁性能测量结果后,在质检台账上做好记录。

七、指标控制

要求严格按照工艺标准来控制冷轧无取向硅钢的比总损耗和磁极化强度指标。若出现产品比总损耗过高或磁极化强度过低,需及时做出相应的调整并连续测量。若经过调整,硅钢片的磁性能扔不达要求,要及时反馈给技术员进行处理。

八、考核标准

不按以上制度执行的,每次考核200元。

冷轧无取向硅钢叠装系数指标控制管理制度

一、目的

为了对冷轧无取向硅钢的叠装性能进行有效监控,现制定本管理制度。

二、反复弯曲性能的标准测量方法

依照GB/T 19289-2003提供的叠装系数测量方法如下(仅需了解): 1、装置

一对平整光滑的硬金属夹板、测量装置、施压装置。 2、试样

试样的剪切要求剪切整齐、平坦、直角性好,边沿无明显毛刺。宽度b=30±0.2mm ,长度280mm ≤l ≤320mm ,剪切试样的长轴方向应和轧制方向平行。 3、测试

测量需同样尺寸的足够叠装至少6mm 高的试样。以测量误差不大于0.1%称量试样质量,并以±0.33%或更小的误差测量试样平均长度和宽度,然后叠装试样,长边对齐并放置一对直、光滑的硬金属夹板之间。夹板尺寸长约215mm ,宽约50mm ,上下夹板的材质和厚度应不至于产生明显变形,其接触试样的平面的表面形状不平度和表面粗糙度不应影响夹板间距的测量准确度;施加(1.00±0.05)Mpa 的压强在叠装的试样上。在此压强下,以±0.3%或更好的准确度测量夹板之间靠近夹板四角处叠装试样长边附近4个点的高度,取算数平均值为试样叠装高度h 。

叠装系数按下式计算:

l

b h m

f m ???=

ρ

式中:f —叠装系数;

l —试样的平均长度(m ); b —试样的平均宽度(m ); ρm —试样密度(kg/m 3); h —试样叠装高度(m ); m —试样质量(Kg )

三、班中测量要求

按班取样测量,由质检工取样送检,把测量结果进行记录,班中测量不得小于2次。

四、控制要求

在收到叠装系数测量结果后,在质检台账上做好记录。

六、指标控制

要求严格按照工艺要求来控制冷轧无取向硅钢片的叠片性能。

七、考核标准

不按以上制度执行的,每次考核100元。

冷轧无取向硅钢反复弯曲指标控制管理制度

一、目的

弯曲次数是用肉眼观察到基体金属上第一次出现裂纹前反复弯曲的次数,它代表了材料的延展性。为了对冷轧无取向硅钢的反复弯曲性能进行有效监控,现制定本管理制度。

二、反复弯曲性能的标准测量方法

依照GB/T 235—1999提供的反复弯曲试验方法如下(仅需了解):

1、装置

反复弯曲试验使用的弯折试验机应符合图1所示,并应配备弯曲次数计数器。

图1 弯折试验机

2、试样

试样的厚度应为钢带的厚度,并保留两个原表面。机加工的试样宽度应为20~25mm;试样长度约150mm。试样表面应无裂纹和伤痕,棱边应无毛刺。3、测试

弯曲臂处于垂直状态,夹紧试样下端,试样上端穿过拨杆狭缝,如图1所示。

然后将试样从起始位置向右(左)弯曲90°,再返回至起始位置,作为第一次弯曲。再由起始位置向左(右)弯曲90°,再返回至起始位置,作为第二次弯曲,如图2所示。如此依次连续进行反复弯曲。

图2 反复弯曲

三、班中测量要求

按班取样测量,由质检工取样送检,把测量结果进行记录,班中测量不得小于2次。

四、控制要求

在收到反复弯曲测量结果后,在质检台账上做好记录。

六、指标控制

要求严格按照工艺标准来控制冷轧无取向硅钢的反复弯曲次数指标。若出现产品反复弯曲次数小于最低控制标准,需及时做出相应的调整并连续测量。若经过调整,硅钢片的反复弯曲次数扔不达要求,需及时反馈给技术员进行处理。

七、考核标准

不按以上制度执行的,每次考核100元。

冷轧无取向硅钢力学性能指标控制管理制度

一、目的

为了对冷轧无取向硅钢的力学性能进行有效监控,特制定本管理制度。

二、力学性能的标准测量方法

依照GB/T 228.1—2010提供的力学试验方法如下(仅需了解): 1、装置

电子疲劳力学拉伸机。 2、试样

如下图所示,在钢板宽度1/4处切取横向样坯。

图1 在钢板上切取拉伸样坯的位置

图2 在钢板上切取冲击样坯的位置

3、应变速率控制的试验速率(方法A )

方法A 是为了减小测定应变速率敏感参数(性能)时的试验速率变化和试

验结果的测量不确定度。第一种应变速率e L e

是基于引伸计的反馈而得到,第二种根据平行长度估计的应变速率c L e

,即通过控制平行长度与需要的应变速率想成得到的横梁位移速率来实现。

如果材料显示出均匀变形能力,力值能保持名义的恒定,应变速率e L e 和根据平行长度估计的应变速率c L e

大致相等。如果材料展示出不练需屈服或锯齿状屈服或发生缩颈时,两种速率之间会存在不同。随着力值的增加,试验机的柔度

可能会导致实际的应变速率明显低于应变速率的设定值。

①上屈服强度R eH 或规定眼神强度R p 、R t 和R r 的测定

在测定R eH 、R p 、R t 和R r 时,应变速率e L e 应尽可能保持恒定。在测定这些性能时,e L e

应选用下面两个范围之一: 范围1:e L e

=0.00007s -1,相对误差±20%; 范围2:e L e

=0.00025s -1,相对误差±20% ②下屈服强度R eL 和屈服点延伸率A e 的测定

上屈服强度之后,在测定下屈服强度和屈服点延伸率时,应当保持下列两种

范围之一的平行长度估计的应变速率e L e

直到不连续屈服结束: 范围2:c L e

=0.00025s -1,相对误差±20%(测定ReL 时推荐该速率) 范围3:c L e

=0.002s -1,相对误差±20% ③抗拉强度R m ,断后伸长率A ,最大力下的总延伸率A gt ,最大力下的塑性延伸率A g 和断面收缩率Z 的测定

在屈服强度或塑性延伸强度测定后,根据试样平行长度估计的应变速率c L e

应转换成下述规定范围之一的应变速率:

范围2:c L e

=0.00025s -1,相对误差±20%; 范围3:c L e

=0.002s -1,相对误差±20%; 范围4:c L e =0.0067s -1,相对误差±20%(0.4min -1,相对误差±20%)。

如果拉伸试验仅仅是为了测定抗拉强度,根据范围3或范围4得到的平行长度估计的应变速率适用于整个试验。 4、应力速率控制的试验速率(方法B )

试验速率取决于材料特性并应符合下列要求。在应力达到规定屈服强度的一半之前,可以采用任意的试验速率。

①上屈服强度R eH

在弹性范围和直至上屈服强度,试验机夹头的分离速率应尽可能保持恒定,应力速度范围为6~60R/(Mpa ·s -1)

②下屈服强度R eL

如仅测定下屈服强度,在试样平行长度的屈服期间应变速率应在

0.00025s-1~0.0025s-1之间。平行长度内的应变速率应尽可能保持恒定。如不能直接调节这一应变速率,应通过调节屈服即将开始前的应力速率来调整,在屈服完成之前不再调节试验机的控制。

任何情况下,弹性范围内的应力速率不得超过规定速率。

③抗拉强度R m、断后伸长率A、最大力总延伸率A gt、最大力塑性延伸率

A g和断面收缩率Z

测定屈服强度或塑性眼神强度后,试验速率可以增加到不大于0.008s-1的应变速率,如果仅仅需要测定材料的抗拉强度,在整个过程中可以选取不超过0.008s-1的单一实验速率。

5、测试

①上屈服强度的测定

上屈服强度R eH可以从力-延伸曲线图或峰值力显示器上测得,定义为力首次下降钱的最大力值对应的应力(见图3)。

说明:e—延伸率;

R—应力;

R eH—上屈服强度;

R eL—下屈服强度;

a—初始瞬时效应。

图3 不同类型曲线的上屈服强度和下屈服强度

②下屈服强度的测定

下屈服强度R eL可以从力-延伸曲线图或峰值力显示器上测得,定义为不计初始瞬时效应时屈服阶段中的最小力所对应的应力(见图3)。

对于上、下屈服强度位置判定的基本原则如下:

a、屈服前的第一个峰值应力(第一个极大值应力)判为上屈服强度,不管其后的峰值应力比它大或比它小;

b、屈服阶段中如呈现两个货两个以上的谷值应力,社区第一个谷值应力(第一个极小值应力)不计,取其余谷值应力中之最小者为下屈服强度。如只呈现一个下降谷,此谷值应力判为下屈服强度;

c、屈服阶段中呈现屈服平台,平台应力判为下屈服强度;如呈现多个割切后者高于前者的屈服平台,判第一个平台应力为下屈服强度;

d、正确的判定结果应是下屈服强度一定低于上屈服强度。

③规定塑性延伸强度的测定

根据力-延伸曲线图测定规定塑性延伸强度R p。在曲线图上,作一条与曲线的弹性直线段部分平行,且在延伸轴上与此直线段的距离等效于规定塑性延伸率。此平行线与曲线的交截点给出相应于所求规定塑性延伸强度的力,此力除以试样原始横截面积S0得到规定塑性延伸强度(见图4)。

说明:e—延伸率;

e p—规定的塑性延伸率;

R—应力;

R p —规定塑性延伸强度。

图4 规定塑性延伸强度R p

④规定总延伸强度的测定

在力-延伸曲线图上,作一条平行于力轴并与该轴的距离等效于规定总延伸率的平行线,此平行线与曲线的交截点给出相应于规定总延伸强度的力,此力除以试样原始横街面积S 0得到规定总延伸强度R t (见图5)。

说明:e —延伸率;

e t —规定总延伸率; R —应力;

R t —规定总延伸强度。

图5 规定总延伸强度R t

⑤断后伸长率的测定

为了测定断后伸长率,应将试样断裂的部分仔细地配接在一起,使其轴线处于同一直线上,并采取特别措施确保试样断裂部分适当接触后测量试样断后标距。

按下式计算断后伸长率A :

1000

?-=

L L L A u 式中:L 0—原始标距; L u —断后标距。

使用分辨力足够的量具或测量装置测定断后伸长量(L u -L 0),并准确到±0.25mm 。

三、班中测量要求

宝钢无取向硅钢片钢带化学成分分析

宝山钢铁股份有限公司企业标准 全工艺冷轧无取向电工钢带 (Q/BQB 480-2009 代替Q/BQB480-2007) 1 范围 本标准规定了公称厚度为0.35mm,0.50mm和0.65mm全工艺冷轧无取向电工钢带的定义、分类和代号、尺寸、外形、重量、磁特性等技术要求、检验和试验、包装、标志及检验文件等。 本标准适用于宝山钢铁股份公司生产的、用于磁路结构的、以最终退火状态交货的全工艺冷轧无取向电工钢带(以下简称钢带)。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 2791-1995 胶粘剂T剥离强度试验方法挠性材料对挠性材料 GB/T 3102.5-1993 电学和磁学的量和单位 GB/T 3655-2008 用爱泼斯坦方圈测量电工钢片(带)磁性能的方法 GB/T 8170-2008 数值修约规则与极限数值的表示和判定 GB/T 9637-2001 电工术语磁性材料与元件 GB/T 13789-2008 用单片测试仪测量电工钢片(带)磁性能的方法 GB/T 19289-2003 电工钢片(带)的密度、电阻率和叠装系数的测量方法 Q/BQB 400 冷轧产品的包装、标志及检验文件 Q/BQB 401 冷连轧钢板及钢带的尺寸、外形、重量及允许偏差 3 术语和定义 3.1 铁损(比总损耗)iron loss ( specific total loss) 铁损是指在交变磁场下磁化试样时,消耗在试样上的无效电能。在给定频率和最大磁感应强度进行磁化的情况下,铁损用符号P(10Bm/f)表示,单位为W/kg。 例:P15/50表示在最大磁感应强度为1.5T、频率为50Hz时,单位kg试样的铁损。 3.2 磁化特性(磁感应强度)magnetic polarization(magnetic flux density) 磁化特性通常用正常磁化曲线上,对应于给定磁场强度的磁感应强度(磁极化强度)来表示。磁感应强度的符号为B(0.01H),单位为T(特

包钢无取向硅钢生产线生产工艺解析

包钢无取向硅钢生产线生产工艺解析 硅钢是指含硅量在0. 5% ~ 4. 5% 左右的硅铁合金,是电力、电子和军事行业不可缺少的重要软磁合金,被称为钢铁产品中的“艺术品”。 经过对包钢薄板厂20万t硅钢生产工艺的探索与总结,钢板清洗质量、退火炉退火温度、涂覆膜厚度等因素,是影响硅钢成品性能的关键因素.优化前清洗段的清洗质量是降低炉辊结瘤概率的有效手段.保证退火炉的退火温度在750~950℃是细化钢板晶粒,调整组织,消除组织缺陷的核心工艺.涂覆膜均匀、厚度合理,保证在3.2~3.5 g/m2,是确保硅钢片免受各种腐蚀介质的侵蚀的重要措施。 1、硅钢生产工序 铁水预脱硫处理→转炉冶炼→RH 处理→薄板坯连铸连轧→酸洗→冷轧→连续退火→涂层→卷取( 取样检验) →包装出厂 在硅钢生产末段,即退火、涂层段,是直接决定硅钢成品的性能好坏及成品等级的阶段,如何管控好相应的工艺变得尤为重要。 2、退火涂层工艺解析 2.1 前清洗段 硅钢生产线主要控制的是退火与涂层两部分。然而,在冷轧原料进入退火炉退火前,由于生产环境的不同,硅钢原料表面不可避免的包含一些污染物,这些污物主要包括:轧制过程中残留的乳化液、润滑油和铁粉,以及在冷硬卷存放过程中产生的锈和落上的尘土。因此,必须对板带进行清洗,否则将严重影响最终成品表面质量,从而影响成品等级。 硅钢生产线在退火炉前专门设置了前清洗段,并且针对不同性质的杂质,设计不同种类的清洗介质,做到对症下药,有的放矢。 硅钢线前清洗段的清洗结构与清洗原因如下所述:前清洗段的布置结构依次为:碱浸洗段、碱刷洗段、电解清洗段、水刷洗段、水浸洗段、水漂洗段。各段针对不同性质的杂质,分类清洗,主要清洗原理是: (1) 乳化液、润滑油:利用清洗液中NaOH的皂化反应初步去除板面上植物性油脂,在利用活性剂成分初步去除板面上的矿物性油脂。结合刷洗和电解清洗深层次去除钢带表面的油脂。 (2) 铁粉:利用刷洗初步去除钢带外层的铁粉,利用电解清洗深层次去除钢带表面的铁粉。 (3) 锈:钢带表面的粘附的铁锈颗粒可以经刷洗去除。 (4) 尘土:可经脱脂清洗去除。 (5) 经过前清洗段对板带各种类型的冲洗,原板污物绝大多数已经清洗干净,能够满足后续生产工艺的要求。 2.2 连续退火 退火是一种金属热处理工艺,指的是将金属缓慢加热到一定温度,保持足够时间,然后以适宜速度冷却。目的是降低硬度,改善切削加工性;消除残余应力,稳定尺寸,减少变形与裂

冷轧无取向硅钢性能指标检测方法汇编(第一版)汇总

冷轧无取向硅钢性能指标检测方法及性能指标控制管理制度汇编

目录 第一部分冷轧无取向硅钢性能指标控制管理制度 1、冷轧无取向硅钢磁性能指标控制管理制度-----------------------------2 2、冷轧无取向硅钢叠装系数指标控制管理制度--------------------------10 3、冷轧无取向硅钢反复弯曲指标控制管理制度--------------------------12 4、冷轧无取向硅钢力学性能指标控制管理制度--------------------------15 5、冷轧无取向硅钢硬度指标控制管理制度------------------------------21 第二部分附录 1、GB/T 228.1-2010 金属材料拉伸试验第1部分:室温试验方法 2、GB/T 235-1999 金属材料厚度等于或小于3mm薄板或薄带反复弯曲试验方法 3、GB/T 3655-2008 用爱泼斯坦方圈测量电工钢片(带)磁性能的方法 4、GB/T 13789-2008 用单片测试仪测量电工钢片(带)磁性能的方法 5、GB/T 19289-2003 电工钢片(带)的密度、电阻率和叠装系数的测量方法 6、GB/T 230.1-2009 金属材料洛氏硬度试验第1部分:试验方法 7、GB/T 231.1-2009 金属材料布氏硬度试验第1部分:试验方法 8、GB/T 4340-2009 金属材料维氏硬度试验第1部分:试验方法

冷轧无取向硅钢磁性能指标控制管理制度 一、目的 磁性是判定所有硅钢产品牌号以及订货和交货的依据。产品磁性应满足国家标准中规定的相应牌号及订货合同中规定的磁性水平。为了对硅钢片的磁性进行有效监控,现制定本管理制度。 二、用爱泼斯坦方圈测量磁性能的标准方法(用于实验料) 依据GB/T 3655-2008提供的用爱泼斯坦方圈测量电工钢片(带)磁性能的方法如下: 1、装置 25cm 爱泼斯坦方圈由四个线圈组成,它形成一个空载的变压器。爱泼斯坦方圈应包含一个用于空气磁通补偿的互感线圈。支撑线圈的绕组骨架由硬的绝缘材料制成,如酚醛树脂纸板。绕组骨架具有矩形横截面,其内部宽度为32mm ,推荐高度约为10mm 。 线圈安放在一个绝缘的无磁性的底板上,形成一个方框(见图1)。由样片的内缘形成的正方形边长为 图1 标准25cm 爱泼斯坦方圈 四个线圈中的每一个都应有2个绕组:初级绕组(外层,磁化绕组)、次级绕组(内层,感应电压绕组)。 。 mm 2201 0-

国内外冷轧无取向硅钢牌号对照表

国内外冷轧无取向硅钢牌号对照表 ID thickne ss,mm Russia(俄罗斯)Germany(德国)China(中国)Japan(日本)USA(美国)U.K.(英国)South Korea(南韩)Japan(日本)Japan(日本)Europe(欧洲)GOST 21427.2DIN 46400 .1GB/T 2521JIS C-2552AISI,ASTM A -667BS601.P.1KS C -2510NSC KSC EN 10106 grade P1,5B2500 grade P1,5B2500 grade P1,5B5000 grade P1,5B5000 grade P1,5 grade P1,5KS POSKO P1,5 grade P1,5 grade P1,5 grade P1,5B5000 W/kg,not more Tl, not less W/kg,not more Tl, not less W/kg,not more  W/kg,not more Tl, not less W/kg,not more W/kg,not more grade W/kg,not more W/kg,not more W/kg,not more W/kg,not more  1 0.35 35H210 2.1 2 235 -35A 2.35 1.4935W230 2.3 1.635A230 2.3 1.6 35H230 2.335RM230 2.3M235-35A 2.35 1.6 32413 2.5 1.5V250 -35A 2.5 1.4935W250 2.5 1.635A250 2.5 1.6M15 36F145 2.53GRADE250 2.5 PN-09 2.5335H250 2.535RM250 2.5M250-35A 2.5 1.6 4 GRADE265 2.65SE13C PN-10 2.65 52412 2.7 1.5V270 -35A 2.7 1.4935W270 2.7 1.635A270 2.7 1.6M19 36F158 2.75 35H270 2.735RM270 2.7M270-35A 2.7 1.6 6 GRADE280 2.8 7 M22 36F168 2.93 PN-11 2.93 824113 1.5V300 -35A3 1.49 35A3003 1.6 GRADE3003 35H300335RM3003 9 35W3003 1.6 M27 36F180 3.13GRADE315 3.15SE15C PN-12 3.1 M300-35A3 1.6 10 V330 -35A 3.3 1.49 M36 36F190 3.31GRADE335 3.35 M330-35A 3.3 1.6 11 35W360 3.6 1.6135A360 3.6 1.61 SE18C PN-14 3.636H360 3.635RM360 3.6 12 35W440 4.4 1.6435A440 4.4 1.64 SE23C PN-18 4.435H440 4.435RM440 4.4 13 35W4004 1.62 SE26C PN-205 14 SE29C PN-23 5.5 1 0.5 50W230 2.3 1.6 50H230 2.3 2 V250 -50A 2.5 1.4950W250 2.5 1.6 50H250 2.550RM250 2.5M250-50A 2.5 1.6 32414 2.7 1.49V270 -50A 2.7 1.4950W270 2.7 1.650A270 2.7 1.6 50H270 2.750RM270 2.7M270-50A 2.7 1.6 42413 2.9 1.5V290 -50A 2.9 1.4950W290 2.9 1.650A290 2.9 1.6M15 47F168 2.93 PN-09 2.950H290 2.950RM290 2.9M290-50A 2.9 1.6 52412 3.1 1.5V310 -50A 3.1 1.4950W310 3.1 1.650A310 3.1 1.6M19 47F174 3.03 SE13C PN-10 3.150H310 3.150RM310 3.1M310-50A 3.1 1.6 6 M22 47F185 3.22 PN-11 3.22 7 V330 -50A 3.3 1.4950W330 3.3 1.6 M27 47F190 3.31 M330-50A 3.3 1.6 8 V350 -50A 3.5 1.550W350 3.5 1.650A350 3.5 1.6 GRADE355 3.55 50H350 3.550RM350 3.5M350-50A 3.5 1.6 92411 2.6 1.49 M36 47F205 3.57 SE15C PN-12 3.6 102312 3.8 1.58 1122164 1.6V400 -50A4 1.5150W4004 1.6150A4004 1.61M43 47F230 4.01GRADE4004SE18C PN-14450H400450RM4004M400-50A4 1.63 122215 4.5 1.64 GRADE450 4.5 13 V470 -50A 4.7 1.5250W470 4.7 1.6250A470 4.7 1.62 SE23C PN-18 4.750H470 4.750RM470 4.7M470-50A 4.7 1.64 142214 4.8 1.62 1522135 1.65 GRADE5005 1622125 1.6 17 V530 -50A 5.3 1.5450W540 5.4 1.65 M45 47F305 5.31 SE26C PN-20 5.4 M530-50A 5.3 1.65 182211 5.5 1.56 1921126 1.62V600 -50A6 1.55 50A6006 1.65M47 47F400 6.96 SE29C PN-23 6.2 2021117 1.6V700 -50A7 1.5850W6006 1.6550A7007 1.68 50H600650RM6006M600-50A6 1.66 212013 6.5 1.65 50W7007 1.68 50H700750RM7007M700-50A7 1.69 2220127 1.62 2320118 1.6V800 -50A8 1.58 50A8008 1.6847F4758.27 S-30PN-308 24 940-50SG9.4 1.5850W8008 1.68 50H800850RM8008M800-50A8 1.7 25 100-50SG11 1.58 50A100010 1.69 S-40PN-4010.5 M940-50A9.4 1.62 26 50W100010 1.6950A130013 1.69 S-50PN-501350H10001050RM100010 27 50W130013 1.69

无取向硅钢片生产技术要点

无取向硅钢片生产技术要点 一、无取向硅钢片生产技术要点 首先要求钢水纯净,经真空处理后碳含量降至0.01~0.005%,氧<0.005%,保护浇铸成厚板坯,低温热送,加热到1100~1200℃,保温3~4h,使AlN粗化,若轧机能力强,最好是1050~1100℃加热,防止铸坯中较粗的AlN、MnS析出物再固溶,使热轧及退火后晶粒细化,组分增多,磁性变坏。终轧温度要高些,以防止晶粒变粗,铁损降低。 对无取向的Si>1.7%的硅钢,由于变形抗力显著提高,导热性降低,并且连铸后柱状晶粗大,产品表面易产生瓦垅状缺陷,铸坯易产生内、外裂纹,故需慢热慢冷,加热温度也可略高一些,达1 200℃。这更便于热轧而且使终轧温度提高,热轧板晶粒粗化,可改善磁性。加热到1200℃,Mn S不会固溶,而AlN可能部分固溶,但由于钢中碳含量降低(如<0.01%,至0.004%),可使AlN固溶度明显减小,亦即使固溶温度提高。则≤1200℃加热仍可使AlN粗化,P15降低。通常开轧温度1180±20℃,终轧温度850±20℃。应注意含Si<1.7%或Si<2.5%而C>0.01%的硅钢在约1 000℃时存在明显的α+γ两相区,热轧塑性显著降低,γ相与α相变形抗力之差易引起不均匀变形,使板形不好,易出现裂边,成材率下降。故应尽量降低碳含量,使热轧精轧基本处于α相区或避开α+γ两相区,C≤0.003%的1.5%Si钢,热轧时由于γ相数量减少,也不裂边。碳量低,以后退火也不需要脱碳。 二、无取向硅钢片和取向硅钢片的关系: 1、二者都是冷轧硅钢片,但含硅量不同。冷轧无取向硅钢片含硅量0.5%-3.0%,冷轧取向硅钢片含硅量在3.0%以上。 2、生产工艺及性能的不同:无取向硅钢片较取向硅钢片工艺要求相对较低。 无取向硅钢片是将钢坯或连铸坯热轧成厚度约2.3mm带卷。制造低硅产品时,热轧带卷酸洗后一次冷轧到0.5mm厚。制造高硅产品时,热轧带酸洗后(或先经800~850℃常化后再酸洗),冷轧到0.55或0.37mm厚,在氢氮混合气氛连续炉中850℃退火,再经6~10%小压下率冷轧到0.50或0.35mm厚。这个小压下率的冷轧可使退火时晶粒长大,铁损降低。这两种冷轧板都在20%氢氮混合气氛下连续炉中850℃最终退火,然后涂磷酸盐加铬酸盐的绝缘膜。经冷轧至成品厚度,供应态多为0.35mm和0.5mm厚的钢带。冷轧无取向硅钢的Bs高于取向硅钢。 取向硅钢片要求钢中氧化物夹杂含量低,并必须含有C0.03~0.05%和抑制剂(第二相弥散质点或晶界偏析元素)。抑制剂的作用是阻止初次再结晶晶粒长大和促进二次再结晶的发展,从而获得高的(110)[001]取向。抑制剂本身对磁性有害,所以在完成抑制作用后,须经高温净化退火。采用第二相抑制剂时,板坯加热温度必须提高到使原来粗大第二相质点固溶,随后热轧或常化时再以细小质点析出,以便增强抑制作用。冷轧成品厚度为0.28、0.30或0.35mm。冷轧取向薄硅钢带是将0.30或0.35mm厚的取向硅钢带,再经酸洗、冷轧和退火制成。与冷轧无取向硅钢相比,取向硅钢要比无取向硅钢铁损低很多,磁性具有强烈的

硅钢生产流程

鞍钢冷轧硅钢厂简介 发布时间:2010-03-12 关键词:鞍钢,冷轧,硅钢,厂简,介 鞍钢冷轧硅钢工程是经国家批准的鞍钢“十五”规划的重点技改项目,该工程于2003年6月18日正式开工,2004年7月19日第一条连退机组热负荷试车并生产出第一卷合格冷硅钢卷。2005年3月30日4条硅钢连退生产线、1条酸轧联合机组已全部建成。该工程的建成添补了鞍钢此类生产的空白,为鞍钢“建精品基地,创世界品牌”奠定了总要基础。 鞍钢冷轧硅钢厂正式成立于2004年7月,该厂主要设备有1条酸洗轧机组联合机组,4条电工钢连续退火涂层机组,4条切边重卷机组,2条包装机组等,厂房占地面积173240m3,设计年生产量为100万吨,其中80万吨为中、底牌号无取向硅钢,20万吨冷硬卷。 酸轧联合机组可生产后、700-1380mm宽的电工钢板和冷轧板,连续退火涂层机组可生产厚、700-1280mm宽的电工钢产品,产品质量、成材率、能耗、劳动生产率、环保等各项技术指标达到国内先进水平,有些指标达到了国际先进水平。产品能够满足中小型电机、家用电器等需要,具有尺寸精度高、磁特性好、性能稳定、绝缘性强等特点,是钢铁行业深加工的优质板材。 鞍钢冷轧硅钢厂整体装备水平达到国际先进水平,是我国自主集成和建设的具有一流水平的冷轧硅钢生产线。 鞍钢冷轧无取向硅钢生产流程图

酸洗-轧机联合机组硅钢连退涂层机组 硅钢连退涂层机组包装机组

包装机组磨辊间可供产品牌号、规格及主要用途 产品特性: 1.产品性能稳定:制造工艺先进、钢质纯净、磁性稳定。 2.尺寸精度高:表面光滑、厚度均匀,同板差小,使用于连续高速冲床使用。 3.加工性能优良:冲片性和焊接性能良好便于剪切和冲压。 4.产品规格齐全,满足不同生产要求。 5.产品图层性能稳定,符合环保要求。 牌号及性能

硅钢片取向和无取向

电工用硅钢薄板俗称矽钢片或硅钢片。顾名思义,它是含硅高达0.8%-4.8%的电工硅钢,经热、冷轧制成。一般厚度在1mm以下,故称薄板。硅钢片广义讲属板材类,由于它的特殊用途而独立一分支。 电工用硅钢薄板具有优良的电磁性能,是电力、电讯和仪表工业中不可缺少的重要磁性材料。 (1)硅钢片的分类 A、硅钢片按其含硅量不同可分为低硅和高硅两种。低硅片含硅2.8%以下,它具有一定机械强度,主要用于制造电机,俗称电机硅钢片;高硅片含硅量为2.8%-4.8%,它具有磁性好,但较脆,主要用于制造变压器铁芯,俗称变压器硅钢片。两者在实际使用中并无严格界限,常用高硅片制造大型电机。 B、按生产加工工艺可分热轧和冷轧两种,冷轧又可分晶粒无取向和晶粒取向两种。冷轧片厚度均匀、表面质量好、磁性较高,因此,随着工业发展,热轧片有被冷轧片取代之趋势(我国已经明确要求停止使用热轧硅钢片,也就是前期所说的"以冷代热")。 (2)硅钢片性能指标 A、铁损低。质量的最重要指标,世界各国都以铁损值划分牌号,铁损越低,牌号越高,质量也高。 B、磁感应强度高。在相同磁场下能获得较高磁感的硅钢片,用它制造的电机或变压器铁芯的体积和重量较小,相对而言可节省硅钢片、铜线和绝缘材料等。 C、叠装系数高。硅钢片表面光滑,平整和厚度均匀,制造铁芯的叠装系数提高。 D、冲片性好。对制造小型、微型电机铁芯,这点更重要。 E、表面对绝缘膜的附着性和焊接性良好。 F、磁时效现象小 G、硅钢片须经退火和酸洗后交货。 (一)电工用热轧硅钢薄板(GB5212-85) 电工用热轧硅钢薄板以含碳损低的硅铁软磁合金作材质,经热轧成厚度小于1mm的薄板。电工用热轧硅钢薄板也称热轧硅钢片。 热轧硅钢片按其合硅量可分为低硅(Si≤2.8%)和高硅(Si≤4.8%)两种钢片。 (二)电工用冷轧硅钢薄板(GB2521-88) 用含硅0.8%-4.8%的电工硅钢为材质,经冷轧而成。 冷轧硅钢片分晶粒无取向和晶粒取向两种钢带。冷轧电工钢带具有表面平整、厚度均匀、叠装系数高、冲片性好等特点,且比热轧电工钢带磁感高、铁损低。用冷带代替热轧带制造电机或变压器,其重量和体积可减少0%-25%。若用冷轧取向带,性能更佳,用它代替热轧带或低档次冷轧带,可减少变压器电能消耗量45%-50%,且变压器工作性能更可靠。 用于制造电机和变压器。通常,晶粒无取向冷轧带用作电机或焊接变压器等的状态;晶粒取向冷轧带用作电源变压器、脉冲变压器和磁放大器等的铁芯。 钢板规格尺寸:厚度为0.35、0.50、0.65mm,宽度为800-1000mm,长度为≤2.0m。(三)家电用热轧硅钢薄板(GBH46002-90) 家电用热轧硅钢薄板的牌号以J(家)D(电)R(热轧)表示,即JDR。JDR后数字为铁损值*100,横线后数字为钢板厚度(mm)*100。家电用热轧硅钢片对电磁性能要求可稍低一点,铁损值(P15/50)最低值为5.40W/kg。一般不经配洗交货。 用于各种电风扇、洗衣机、吸尘器、抽油烟机等家用电器的微分电机等。 顾名思义取向硅钢对取向有要求它铁损低用于制造大型变压器,无取向硅钢对取向有没要求它铁损较高用于制造中小电机铁芯定转子,两者区别在硅的含量取向硅钢要比无取向硅钢高很多.

无取向硅钢简介

龙源期刊网 https://www.360docs.net/doc/2f7755412.html, 无取向硅钢简介 作者:苏晓瞳 来源:《科学与财富》2018年第03期 摘要:无取向硅钢是电力、电器工业上重要的软磁材料,主要用于制造各类电动机、发动机等设备的铁芯。 关键词:电工钢;磁极化;多功能材料 1.电工钢简介 硅钢也称电磁钢或电工钢,是指含硅为0.5~4.5%,成品含碳量低于0.03%的硅合金钢。因其具有特殊的性能,即导磁率高、矫顽力低、电阻系数大、磁滞损失小,主要用于制作各种发电机、电动机的铁芯、变压器、继电器以及各种电工仪表等,是国家电力、电子和军事工业不可缺少的重要软磁合金,也是产量最大的金属功能材料,对电力工业发展、电器产品制造、科研、国防建设、能源节约等有着重要意义。 硅钢的生产集冶金工艺、金属物理、磁学、化学、检测等多项技术于一体,特别是取向硅钢的制造工艺和设备复杂,成分控制严格,制造工序长,影响性能的因素多,而且生产工艺保密性强,因此常把取向硅钢的产品质量看作是衡量一个国家特殊钢制造技术水平的重要标志,并称取向硅钢为特殊钢中“艺术品”。 电工钢板按硅含量不同可分为低硅和高硅两种。低硅片含硅2.8%以下,具有一定机械强度,主要用于制造电机,俗称电机硅钢片;高硅片含硅量为2.8%~4.8%,它磁性好,但较脆,主要用于制造变压器铁芯,俗称变压器硅钢片,两者在实际使用中并无严格界限,常用高硅片制造大型电机;按生产加工工艺,电工钢可分热轧和冷轧两种,热轧硅钢能耗大,产品质量差,国家己规定限时淘汰。冷轧电工钢板又可分无取向和取向两种,如表1.1所示。其中无取向硅钢主要被用作旋转电机如马达和发电机的铁芯,取向硅钢主要用于中、高频电机和变压器及脉冲变压器[1]。 太原钢铁公司于1954年正式生产硅含量为1~2%的热轧低硅钢板,同时又试制出硅含量为3~4%用于变压器铁芯的高硅钢板。随后在鞍钢第二薄板厂也生产出用于电机、变压器铁芯的热轧硅钢片。 此外还有一些特殊用途的电工钢板,如0.15mm和0.20mm厚3%Si冷轧无取向硅钢薄带和0.025、0.05及0.1mm厚3%Si冷轧取向硅钢薄带,用作中、高频电机和变压器以及脉冲变压器等;继电器和电力开关用的0.7mm厚3%Si高强度冷轧无取向硅钢板;新型高转速电机转子用高强度冷轧电工钢板;医用核磁共振断层扫捞仪等磁屏蔽和高能加速器电磁铁用的低碳电工钢热轧厚板和冷轧板;高频电机和变压器以及磁屏蔽用的4.5%~6.5%Si高硅钢板等。

硅钢基础知识

硅钢带的生产 1903年美国和德国首先生产了热轧硅钢。美国阿姆柯钢公司于1935年开始生产冷轧 取向硅钢,20世纪40年代初生产无取向硅钢。50年代主要工业发达国家陆续引进阿姆柯技术专利。70年代前,世界约80%取向硅钢都按此专利生产。1968年日本新日铁正式生 产高磁感取向硅钢(Hi-B钢)。从1971年开始,美国等6个国家引进了日本Hi—B钢专利。从1968年开始,日本在冷轧电工钢产品质量、制造技术和装备、开发新产品和新技术、科研和测试技术各方面都远超过美国,处于领先地位。 我国太原钢铁(集团)公司于1954年首先生产热轧硅钢。1957年钢铁研究总院研制成功 冷轧取向硅钢,到1973年已掌握阿姆柯技术专利要点。1974年武汉钢铁(集团)公司从日本新日铁引进冷轧硅钢制造装备和专利,1979年正式生产11个牌号的冷轧取向及无取向硅钢。 4.1电工钢的分类及性能 4.1.1电工钢的分类 电工钢按其成分分为低碳低硅(碳含量很低,硅的质量分数小于0.5%)电工钢和硅钢 两类;按最终加工成形的方法分为热轧硅钢和冷轧硅钢两大类;按其磁各向异性分为取向电工钢和无取向电工钢。 热轧硅钢板均系无取向硅钢,硅钢的磁各向异性是在冷轧后通过二次再结晶过程发展 而成的,因此只有冷轧电工钢才有取向与无取向之分。由于产品的用途不同对磁各向异性的要求不同。在旋转状态下工作的电机要求电工钢磁各向同性,用无取向电工钢制造;变压器在静止状态下工作,要求沿一个方向磁化(轧制方向),用冷轧取向硅钢制造,因此取向硅钢又称变压器钢。 我国电工用热轧硅钢薄板的国家标准号为GB5212—85;从20世纪60年代开始,主要 工业发达国家陆续停止了热轧硅钢板的生产。 我国冷轧晶粒取向、无取向磁性钢带(片)的国家标准号为GB2521—1996。 标准中的牌号表示方法为:以字母W表示无取向钢带(片);以字母Q表示取向钢带(片);以字母G表示取向钢中的高磁感材料。 在一些资料、书籍中,称普通取向硅钢为GO钢,高磁感取向硅钢为Hi-B钢, 电工钢分类见表3—1。 4.1.2电工钢的性能要求 4.1.2.1磁性能 电工钢是以其铁损和磁感应强度作为产品磁性保证值的。用户对电工钢的磁性能要求 如下: (1) 低的铁损。铁损(尸t)是由磁滞损耗(Ph)、涡流损耗(Pe)和反常损耗(Pa)三部分组成的。铁损低可节省大量电力、延长电机和变压器工作时间并简化冷却装置。因电工钢的铁损造成的电量损失占一个国家年发电量的2.5%一4.5%,其中变压器约占50%,小电机占30%,镇流器占15%。因此,各国生产电工钢板总是千方百计地降低铁损,并以铁损作为考核产品磁性能的最重要的指标,按铁损值作为划分牌号的依据。 (2) 高的磁感应强度。磁感应强度高,铁芯激磁电流(空载电流)降低,导线电阻引起的 铜损和铁芯铁损降低,可节省电能。当电机或变压器容量不变时,磁感应强度高可使铁芯体积缩小和质量减轻,节省电工钢板、导线等的用量,并使铁芯铁损和制造成本降低,有利于

硅钢工艺流程及流程说明

硅钢工艺流程 开卷机 双层剪 焊机 碱喷洗槽 入口活套 碱刷洗槽 1#热风干燥 热水喷洗槽 水刷洗槽 电解清洗槽 水喷淋冷却器 退火炉段 涂层干燥炉 涂层机 2#热风干燥 空气喷射冷却炉 出口活涂层烧结炉 在线检查镜 出口剪 卷取机

硅钢工艺说明 钢卷从钢卷库通过吊车吊运到入口钢卷存放鞍座,钢卷小车将钢卷送到1号或2号开卷机上。入口侧钢卷输送系统设有钢卷高度对中及宽度对中系统,使钢卷能自动并顺利地插入开卷机芯轴,并保证钢卷中心线始终处于机组中心线位置。 开卷机头部设有转向夹送辊,通过开卷器将钢带引入转向夹送装置中,对带钢头部进行夹送及转向。带钢进入双层剪切机由人工设定剪切长度和剪切次数后自动剪切。切下的钢板通过入口切头输出装置送往废料箱。剪切后的钢带经过3号转向夹送辊到达焊机,由焊机把两卷带钢头尾焊接起来。为提高机组生产效率和缩短入口活套长度,焊机采用有限搭接焊机。 经过焊接后的带钢通过1号张力辊和1号纠偏辊送至入口活套。入口活套用于贮存带钢,以保证当入口段上卷及焊接停机时工艺段连续运行。在正常生产时入口活套通常处于满套状态,活套贮量为420米,确保机组能稳定高速地运行。 带钢从入口活套出来后,经过2号张力辊后,进入碱喷淋装置、碱刷洗装置、电解清洗装置、水刷洗装置、热水喷淋装置,将带钢表面的轧制油及杂物清洗干净。经1号热风干燥器烘干后,通过5#纠偏辊纠偏,运行到钢结构平台上部,穿过 3号和4号张力辊及1号张力计辊,便进入退火炉内进行退火。 退火炉主要由下列部分的炉段组成:入口密封室、预热炉、无氧化加热炉、1号炉喉、辐射管加热炉、2号炉喉、均热炉、3号炉喉、循环气体喷射控冷段、4号炉喉、循环气体喷射快冷段、出口密封室。在上述炉段预热、加热、均热、冷却,完成对带钢脱碳退火、晶粒长大、提高磁性及清除应力的工艺处理。经过热处理之后的带钢经水喷淋冷却器调整板温,并经挤干辊挤压表面残余水份,经2号热风干燥器烘干后带钢进入6号纠偏夹送辊并输入到钢结构平台下部运行。 平台下部设6号转向辊及5号张力辊。为了给带钢表面涂覆绝缘涂层,机组上设置了二台涂层机,并配置了绝缘涂层液供给系统及涂层液配制系统。与此相配套设置了涂层烘干炉、涂层烧结炉及空气喷射冷却器,用以生产出合格的绝缘涂层产品。经过涂层后的带钢通过7号纠偏辊(3号张力计辊)及6号张力辊进入出口活套,在活套的出口处设有2号焊缝检测仪、测厚仪及连续铁损测量仪,用以测定钢板的铁损值(并将测量值送到剪切机组)。带钢再经过10、11号转向辊到

《冶金标准》冷轧晶粒取向、无取向硅钢钢带标准

冷轧晶粒取向、无取向磁性钢带 1、范围 本标准规定了晶粒取向、无取向磁性钢带(片)的牌号、磁特性、尺寸、外形、力学性能、工艺特性和检验方法等。 本标准适用于磁路结构中使用的、带有绝缘涂层的全工艺冷轧取向和无取向磁性钢带(片)。 2、引用标准 下列标准包含的条文,通过在本标准中引用而构成为本标准的条文。在标准出版时,所示版本均为有效。所有标准都会修订,使用本标准 和各方应探讨使用下列标准最新版本的可能性。 GB/T228-87 金属拉伸试验方法 GB/T235-88 金属反复弯曲试验方法(厚度等于或小于3mm薄板及带材) GB/T247-87 钢板和钢带验收、包装、标志及质量证明书的一般规定 GB/T2522-88 电工钢片(带)层间电阻、涂层附着性、迭装系数测试方法 GB/T3076-82 金属薄板(带)拉伸试验方法 GB/T3655-92 电工钢片(带)磁、电和物理性能测量方法 GB/T6397-86 金属拉伸试验试样 GB/T13789-92 单片电工钢片(带)磁性能测量方法 3、定义和牌号表示方法 3.1定义 3.1.1标准比总铁损 当磁感应强度随时间按正弦规律变化,其峰值为某一标定值,变化频率为某一标定频率时,单位质量的铁芯在温度20℃时所有消耗的功率定为标准比总铁损(简称标准铁损或铁损),单位为W/kg 3.1.2标准磁感应强度 温度为20℃,铁芯试样从退磁状态,在标定频率下磁感应强度按正弦规律变化,当交流磁场的峰值达到某一标定值时,铁芯试样磁感的峰值为标准磁感强度(简称磁感应强度或磁感),单位为T 3.1.3弯曲次数 弯曲次数是用肉眼观察到基体金属上第一次出现裂纹前反复弯曲的次数,它代表了材料的延展性。 3.2牌号表示方法 4、分类 本标准中的磁性钢带(片)分为取向和无取向两大类,每类按最大铁损和材料的公称厚度分成不同牌号。

无取向半工艺电工钢50W300牌号的研发

涟钢科技与管理 2019年第1期 ·1· 无取向半工艺电工钢50W300牌号的研发 王仕华 田 飞 吴泽交 谢 凯 (涟钢技术中心) 摘 要 通过铁水脱硫→转炉→RH 真空精炼→连铸→热轧→酸洗→冷轧→罩退→平整→重卷→消除应力退火等生产工艺,采用C ≤0.003%,Si+Als ≤1.80%成分体系,成功开发出无取向半工艺电工钢50W300牌号。消除应力退火后产品铁损值P 15/50达到2.75w/kg ,磁感应强度B 5000达到1.68T ,达到国标50W300牌号磁性要求。对比实验炉820℃和850℃消除应力退火后磁性能值,850℃消除应力退火后铁损值优于820℃消除应力退火后的铁损值,磁感强度变化不大。工业炉内800℃消除应力退火磁性能值优于实验炉820℃和850℃消除应力退火磁性能值。 关键词 无取向;半工艺;50W300;磁性能 近年来,由于节能环保的迫切需要,电工钢产品向绿色、环保、节能方面发展迅速,低铁损、高磁感是电工钢发展方向,绿色制造是电工钢发展主流,研究证明,含涂层电工钢在冲片时,绝缘涂层的破损不仅会影响电工钢性能、叠装系数和防蚀能力,而且破损的碎屑会漂浮于空气中,形成粉尘,对生产加工环境和生产人员的身体健康造成危害[1]。无取向半工艺电工钢是没有涂层硅钢产品,具有环保、制造成本低、价格便宜、磁性能好、加工性能优等特性,适应国家政策方向,满足电机行业高效及超高效发展方向。 无取向半工艺电工钢是区别于全工艺无取向电工钢制造工艺的电工钢产品,冷轧完后需经不完全退火、3%~10%临界变形,冲片后再进行消除应力退火和发蓝处理。为满足市场对提高电工钢磁性能要求,结合我司多年来对无取向半工艺电工钢研究经验,经过对化学成分、消除应力退火温度的研究,开发出低铁损、高磁感的半工艺无取向电工钢50W300。 1 试制开发 根据全工艺无取向电工钢50W300牌号标准对磁性能的要求,通过对化学设计、工艺路线及工艺参数确定,采用C ≤0.003%,Si+Als ≤1.80% 及加微量元素X 的成分体系,按全工艺无取向电工钢生产工艺要求生产至冷轧硬卷,然后经罩式退火炉进行不完全退火和3%~5%平整变形,然后取30×300mm 横纵各8片的试样在箱式炉和工业炉中消除应力退火,用爱泼斯坦方圈磁性能检测仪器检测磁性能。 工艺路线:铁水脱硫→转炉→RH 真空精炼→连铸→热轧→酸洗→冷轧→罩退→平整→重卷→消除应力退火。 2 试制结果及讨论 2.1 化学成分设计 冶炼50W300化学成分控制见表1所示。 碳、硫等夹杂元素对电工钢来说是有害元素,不仅使铁损增高,磁感降低,碳高也会引起磁时效,故本试验采取低碳和低夹杂元素控制;硅和铝成分对铁损降低有利,但高硅和高铝使制造成本增加,本试验采用低硅低铝设计是在保证磁性能的条件下降低制造成本。 2.2 试样加工及力学性能结果 在钢卷上取力学性能检测样和磁性能检测样板,力学能检测结果如表2所示;磁性能检测样 表1 50W300化学成分控制表(质量分数%) 项目 C Si Mn Als P S X 设计值 ≤0.003 1.20~1.40 0.30~0.50 0.20~0.40 ≤0.020 ≤0.0050.040~0.060 实际值 0.0026 1.33 0.39 0.29 0.018 0.0035 0.049

国内硅钢行业市场发展概况

国内硅钢行业市场发展概况 据中国报告大厅了解,硅钢亦称电工钢,指含硅为 1.0-4.5%,成品含碳量低于0.03%的硅合金钢。硅钢有特殊的性能,即导磁率高,矫顽力低,电阻系数大,因而磁滞损失较小。硅钢是电力、电子和军事工业不可缺少的重要软磁合金,亦是产量最大的金属功能材料,主要用作各种电机、发电机和变压器的铁芯。硅钢的生产工艺复杂,制造技术严格,其制造技术和产品质量是衡量一个国家特殊钢生产和科技发展水平的重要标志之一。我国硅钢的主要供应商有武钢、宝钢、华菱、太钢、鞍钢等。报告期内我国硅钢市场价格呈现整体下降趋势。2011 年以来,随着各大钢厂前期新扩增产能的释放,市场供给充裕,而受整体经济下行压力加大的影响,市场需求增速放缓,导致硅钢市场出现供大于求,相应的市场价格进入持续下降通道,受2012 年下半年度房地产行业回暖的带动,硅钢价格在2012 年下半年至2013 年初出现短暂上涨,但之后则再次下降。 据宇博智业市场研究中心了解,取向硅钢,产能还没有达到过剩,因为工艺复杂,小企业没有生产能力,目前国内只有宝钢武钢大批量生产,其他钢厂处于试产阶段,还有一些私企,可以做140左右的牌号并且性能不太稳定,国内仍有很多变压器企业使用,国外变压器拆解后的旧料作为原料,因为价格低‘国内还在大批量进口日本韩国等地的高端取向硅钢,因为中国造不出来。还有一些比较高级的硅钢,

想进口拿钱买不来,因为要提供非军方使用的证明建议这些吃国家饭的人不要老是整天想着如何敛财,好好研究下技术,一些高端的取向硅钢一直都做不太稳定,还要依赖进口,这些低端的无取向硅钢就拼命生产,不管市场是不是饱和了,钢铁作为工业的血液,自己技术不精,就要永远受别人压迫。 国内硅钢行业现状 据中国报告大厅发布的《2013-2018年中国硅钢市场深度分析报告》了解到,我国目前生产冷轧硅钢片的企业主要有武钢、宝钢、太钢、鞍钢4家。冷轧电工钢板分为冷轧取向硅钢片和冷轧无取向硅钢片。⑴冷轧取向硅钢片冷轧取向硅钢片主要用做各种变压器的铁芯,目前,世界上约有16个企业生产取向硅钢片,武钢是我国目前唯一一家能够生产冷轧取向钢片的企业。生产设备和技术74年由新日铁引进,设计产量2.8万t,生产的牌号如表3所示。经过20多年的发展和90年代的改扩建,至今已经具备了10万t/a(实际可达到12.5万t)取向钢片的生产能力。在产品质量方面,武钢一直瞄准和赶超当今冷轧硅钢世界顶级水平的日本新日铁。特别90年代以来,为了顺应市场变化,更是加大了新品开发和技术进步投入的力度(引进了高温轧制技术、含Cu取向钢、新成分Hi-B钢),在产量、品种、质量等方面都取得了长足的进步。然而,同市场需求与国外先进水平相比,武钢冷轧取向钢片还有较大差距。

无取向硅钢的生产工艺及性能

无取向硅钢的生产工艺及性能 摘要:无取向硅钢俗是电力、电子和军事工业不可或缺的含碳极低的硅铁软磁 合金,它属于铁磁性物质。本文介绍了无取向硅钢在我国近些年的发展现状并对 未来的发展趋势做了展望。介绍了无取向硅钢的生产工艺流程以及无取向硅钢的 性能要求,同时分析了影响无取向硅钢的主要因素。 关键词:无取向硅钢;生产工艺;性能 1无取向硅钢简介 硅钢俗称矽钢片或硅钢片,是电力、电子和军事工业不可或缺的含碳极低的 硅铁软磁合金,主要用作各种电机、发电机和变压器的铁芯。无取向硅钢是含碳 很低的硅铁合金。在形变和退火后的钢板中其晶粒呈无规则取向分布。 2 生产工艺 冷轧无取向硅钢制造工艺流程[1]为:冶炼→真空处理→连铸→热轧→常化→ 冷轧→退火→绝缘涂层 2.1 冶炼 在冶炼过程中,随着硅含量提高,钢水温度升高,出钢温度约降低10℃,因 为真空处理后加入硅铁量多,钢水温度升高。连铸法浇筑时间长,出钢温度比铸 模法约高20℃。 2.2 真空处理 沸腾钢水经真空处理,通过碳和氧的化学反应同时进行脱碳和脱氧,使碳降 到0.005%以下,氧降到0.005%以下。 2.3 连铸 硅钢的连铸采用连铸+电磁搅拌技术,经电磁搅拌后等轴晶占55%~70%,这 样能有效的减轻了表面缺陷。 2.4 热轧 铸坯装炉前在大于150℃进行表面清理,然后放在保温坑中保温和缓冷。铸 坯在加热炉中要缓慢加热,特别是在700~800℃以下更是如此。 2.5 常化 大于2%Si钢采用一次冷轧工艺时,热轧板必须常化,主要目的是使热轧板组 织更均匀,使再结晶晶粒增多,防止瓦状缺陷。同时使晶粒和析出物粗化,磁性 明显提高。 2.6 退火 退火是把钢加热到一定温度后保温一段时间再缓慢冷却的工艺操作。冷轧中 间退火的目的主要是使受到高度冷加工硬化的金属重新软化。二次冷轧法的中间 退火温度一般为830~870℃。随Si+Al量增高,温度增高。最终退火制度为 850~860℃。最好采用干燥气氛退火,以防形成内氧化层和内氮化层。 2.8 绝缘涂层 绝缘涂层主要采用半有机涂层。无机涂层的层间电阻高,叠片系数也较高, 耐热性和焊接性好,而冲片性较差。半有机涂层冲片性好,绝缘性、耐热性和焊 接性则较低。 3.性能要求 3.1铁芯损耗低 电工钢铁损低,既可以节省大量电能,又可以延长电机寿命,简化冷却装置。 3.1.2磁感应强度高

有取向、无取向硅钢片

无取向硅钢片 硅钢俗称矽钢片或硅钢片,是电力、电子和军事工业不可缺少的含碳极低的硅铁软磁合金,亦是产量最大的金属功能材料,其产量约占世界钢材产量的1%,它是含硅0.8%-4.8%的硅铁合金,经热、冷轧成厚度在1mm以下的硅钢薄板。加入硅可提高铁的电阻率和最大磁导率,降低矫顽力、铁芯损耗(铁损)和磁时效,主要用作各种电机、发电机和变压器的铁芯。 一、硅钢片分类: A、硅钢片按其含硅量不同可分为低硅和高硅两种。低硅片含硅2.8%以下,它具有一定机械强度,主要用于制造电机,俗称电机硅钢片;高硅片含硅量为2.8%-4.8%,它具有磁性好,但较脆,主要用于制造变压器铁芯,俗称变压器硅钢片。两者在实际使用中并无严格界限,常用高硅片制造大型电机。 B、按生产加工工艺可分热轧和冷轧两种,冷轧又可分晶粒无取向和晶粒取向两种。冷轧片厚度均匀、表面质量好、磁性较高,因此,随着工业发展,热轧片有被冷轧片取代之趋势(我国已经明确要求停止使用热轧硅钢片,也就是前期所说的"以冷代热")。 二、无取向硅钢片的定义: 无取向硅钢片是按照一定生产工艺,形成无取向性变形织构结晶结构的硅钢片。 三、无取向硅钢片和取向硅钢片的关系: 1、二者都是冷轧硅钢片,但含硅量不同。冷轧无取向硅钢片含硅量0.5%-3.0%,冷轧取向硅钢片含硅量在3.0%以上。 2、生产工艺及性能的不同:无取向硅钢片较取向硅钢片工艺要求相对较低。 无取向硅钢片是将钢坯或连铸坯热轧成厚度约2.3mm带卷。制造低硅产品时,热轧带卷酸洗后一次冷轧到 0.5mm厚。制造高硅产品时,热轧带酸洗后(或先经800~850℃常化后再酸洗),冷轧到0.55或0.37mm厚,在氢氮混合气氛连续炉中850℃退火,再经6~10%小压下率冷轧到0.50或0.35mm厚。这个小压下率的冷轧可使退火时晶粒长大,铁损降低。这两种冷轧板都在20%氢氮混合气氛下连续炉中850℃最终退火,然后涂磷酸盐加铬酸盐的绝缘膜。经冷轧至成品厚度,供应态多为0.35mm和0.5mm厚的钢带。冷轧无取向硅钢的Bs高于取向硅钢。 取向硅钢片要求钢中氧化物夹杂含量低,并必须含有C0.03~0.05%和抑制剂(第二相弥散质点或晶界偏析元素)。抑制剂的作用是阻止初次再结晶晶粒长大和促进二次再结晶的发展,从而获得高的(110)[001]取向。抑制剂本身对磁性有害,所以在完成抑制作用后,须经高温净化退火。采用第二相抑制剂时,板坯加热温度必须提高到使原来粗大第二相质点固溶,随后热轧或常化时再以细小质点析出,以便增强抑制作用。冷轧成品厚度为0.28、0.30或0.35mm。冷轧取向薄硅钢带是将0.30或0.35mm厚的取向硅钢带,再经酸洗、冷轧和退火制成。与冷轧无取向硅钢相比,取向硅钢要比无取向硅钢铁损低很多,磁性具有强烈的方向性;在易磁化的轧制方向上具有优越的高磁导率与低损

相关文档
最新文档