声波测井课后习题

声波测井课后习题
声波测井课后习题

第一章

1、写出纵波速度和横波速度的表达式(用弹性系数表示),并推到一般地层中纵波速度和横波速度的关系。 声波速度ρμλ2+=

p V ρ

μ

=s V μμλ2+=

=s p V V r σσ21)1(2--=r

σ泊松比的取植范围为0~0.5,r 显然总是大于1,可见纵波速度总是大于横波速度。对自然界中常见的岩石来说,

σ=0.25,这样可以得到: r=1.73。

理想流体中不存在切应变,即,所以理想流体中无横波存在,只有纵波。

2、推导滑行纵波作为首波接收的几何声学条件,并讨论声波测井中源距的选择原则。 直达波:1/V L t

=

滑行纵波:

P

C P

C C AC TA V V

V tg a L V a

t t tp 1

1sin 2cos 22=?-+

=

+=θθθ

滑行纵波作为首波几何声学条件:1

1

111

12sin 1cos 2cos 2112cos 2V V V V a a L V a V V L V L V tg a L V a tp t

tp P P

C C C

P P C C -+=->

>???? ??-<

?-+=

<θθθθθ

当L>0.825m 时,在整个地层剖面,接收的首波总是来自沿井壁岩层传播的滑行纵波。 声波测井中源距的选择原则:

a.首波特性:要保证首波为滑行波而不为泥浆直达波,源距不能选择太小。

b.衰减问题(周波跳跃):为保证接收器有效接收信号,必须考虑滑行波的衰减问题,源距大会使衰减增强,容易发生周波跳跃,因此源距不能选择太大。

c.波组分(纵波、横波、全反射波):根据测井解释的不同目的,需要获得更多组分的波。这是需要在发射声功率允许下适当增加源距,以保证各种波群能够在时间域内有效的分离开。

3、在硬地层(地层横波速度大于泥浆速度)中,滑行横波能否作为次首波接收?讨论并推导滑行横波作为次首波接收的条件。

能。有题意知:只需滑行横波的时间仅次于滑行纵波即可,即:tp

1

2V V V V a

L

P P -+>时滑行纵波为首

波,此时tp < t,又P V >Vs ,tp

121V Vs V Vs a

L -+>,即可满足ts

4、简单叙述声波在传播中时的衰减包括哪几个部分。 一、波前扩展造成的声能衰减—几何扩散

若声源发出的总功率为W ,则由声强的定义有2

4)

(r W

r J π=

,这种由于波阵面的几何扩展而造成的声强(能量)

随传播距离增加而减弱的现象,习惯上称为声波的几何衰减 二、声波在介质中的吸收造成的衰减

介质对声波dp 的吸收与声波在介质中的传播距离dl 成正比。

三、井下声波的衰减

在井眼中,声信号强度的衰减严重受声波在传播过程中波阵面的几何扩展的影响。在不考虑介质对声波的吸收的前提下,若从探头到井壁,声波传播的距离增加一倍时,则到达井壁时,声波信号的强度减小4倍。此时,由于波阵面扩展引起的能量分散是不能忽略的。 四、泥浆对超声的衰减

泥浆对超声的衰减包括吸收衰减和固相颗粒散射衰减两部分

1.泥浆对超声的吸收衰减 :主要有泥浆的粘滞、热传导以及泥浆的微观过程引起的弛豫效应。a .粘滞吸收(泥浆内摩擦)系数: 超声在泥浆中传播由于泥浆内摩擦作用,造成泥浆对超声的吸收 b .热传吸收衰减系数 :超声在传播过程中,引起泥浆压缩和膨胀造成温度变化,一部分声能转化为热能,导致声能的耗散。c .驰豫吸收 :泥浆压缩和膨胀过程中,伴有泥浆中分子的内外自由度能量的重新分配过程(驰豫过程),这一过程需要一定时间(驰豫时间),驰豫过程中有规则的声振动转化为无规则热运动的附加能量耗散。 2. 泥浆固相颗粒对超声的散射衰减

1)散射衰减系数:泥浆中含有固相颗粒(膨润土、漂珠、硅藻土等),会引起一部分声波散射,形成散射衰减。 2)泥浆添加剂对散射系数的影响:防止高压井喷,需要增加泥浆比重,a.增加固相含量(膨润土、重晶石等);b.采用盐水泥浆。

5、地层速度的影响因素有哪些?简述各种影响因素下,地层速度的变化规律。 1)岩性是影响声速的最主要因素。 2)孔隙和流体性质对声波速度的影响:

f

ma P V V V φ

φ+-=11

↑φ, Vp ↓

3)压力对声波速度的影响:经分析压力对声速的影响可达35%以上 。

4)温度对声波速度的影响:温度由25℃变到120℃,波速减小最大的为8.21%,最小的为1.12%,平均误差不到3.5%,因此相对压力而言,认为温度对岩心声速的影响可以忽略 5)岩石生成的地质条件对声波速度的影响。 6)埋藏深度对岩层速度的影响。

此外,岩层速度与构造上的位置、断层特性有关。岩性相同并属于同一地质年代的岩层,位于构造顶部的声速要大于构造翼部的声速。但顶部风化, Vp ↓ 。

7、用声波幅度和声波能量两种方式写出声波反射和折射系数,说明各字符代表的物理意义。

垂直入射时(PP R 为反射系数,PP T 为折射系数,1Z 为地层纵波声阻抗,2Z 泥浆纵波的声阻抗,ρ为介质密度,

λ为波长,μ

为弹性参数。)

8、叙述声波换能所利用的两种物理效应的基本原理。

1.磁致伸缩效应:当铁磁性材料的磁状态改变时,其尺寸也发生相应的改变。

逆磁致伸缩效应:将铁磁性材料棒放入交变磁场中,在周期性的磁化作用下,其长度也将周期性的发生改变。若交变电磁场的频率与棒的固有频率相等时,棒将在交变电磁场的作用下,以其固有频率振动,振幅达到极大,同时在

棒的两端将发射出与棒的固有频率相同的声波。反过来,当声波经过棒传播时,由于声波对棒的拉伸和压缩作用,使其磁化强度发生变化。套在棒上的线圈中将产生感应电动势,利用它可以接收声波。 2.压电效应:有些多原子分子晶体材料在应力作用下发生形变时,会在晶体表面产生电荷。 逆压电效应:在电场的作用下,这些晶体的几何尺寸会发生变化。

声波测井仪器的声波换能器:圆管状的压电陶瓷、压电陶瓷片。其工作原理是:经极化处理的压电陶瓷,沿一定方向对其施加电压时,在电场力的作用下,将发生形变,在外加电场变化范围不大的条件下,形变和外加电场成正比。当外加电场的频率和压电陶瓷材料的固有频率相同时,材料即产生按材料固有频率发生的变形,从而在周围介质中激发声波。

9、泥浆对超声波衰减的影响有哪些?

泥浆对超声的衰减包括吸收衰减和固相颗粒散射衰减两部分

1.泥浆对超声的吸收衰减 :主要有泥浆的粘滞、热传导以及泥浆的微观过程引起的弛豫效应。a .粘滞吸收(泥浆内摩擦)系数: 超声在泥浆中传播由于泥浆内摩擦作用,造成泥浆对超声的吸收 b .热传吸收衰减系数 :超声在传播过程中,引起泥浆压缩和膨胀造成温度变化,一部分声能转化为热能,导致声能的耗散。c .驰豫吸收 :泥浆压缩和膨胀过程中,伴有泥浆中分子的内外自由度能量的重新分配过程(驰豫过程),这一过程需要一定时间(驰豫时间),驰豫过程中有规则的声振动转化为无规则热运动的附加能量耗散。 2. 泥浆固相颗粒对超声的散射衰减

1)散射衰减系数:泥浆中含有固相颗粒(膨润土、漂珠、硅藻土等),会引起一部分声波散射,形成散射衰减。 2)泥浆添加剂对散射系数的影响:防止高压井喷,需要增加泥浆比重,a.增加固相含量(膨润土、重晶石等);b.采用盐水泥浆。第三章

1. 声速测井中为什么不采用单发单收声系?

单发单收声系:一个发射探头+一个接收探头。对于单发单收声系,波在实际地层中滑行的距离不同,不仅与地层特性有关,还与井眼条件有关,受泥浆的影响不是固定的,很难得到地层的速度。 2. 比较单发双收和双发双收声系的工作原理及优缺点。 单法双收声系测量原理

P

P P P P V m

V l V CD t t t DF CE AB V DF

V BD V AB t V CE

V BC V AB t 5.012211

111===

-=?==++=

++=

因此当井眼规则(CE=DE)时,?t 只与地层速度有关,实现了测量地层速度的目的。 通常通过仪器刻度,时差单位为: ?t=1 / V (m/s )=106/V (us/m )或用单位us/ft (1ft=0.3048m) 单发双收声系的优缺点 优点:

A 能直接测量岩层的声波速度或时差;在固定l 上仅与岩层速度有关传播时间,在整个井眼剖面上得到的岩层速度指在l 间距内平均值。

B 现用间距为0.5米,使声波测井曲线能划分厚度0.5米以上岩层。 缺点:

F

R 1V P V 1

E

A: 井眼不规则影响;当AB ≠CE ≠DF 时1

V CE DF V CD t P -+=?

记录的时差不仅与地层速度有关,还与泥浆速度(V1)、井径(CE,DF)大小有关。 B: 深度误差(仪器记录点与实际传播路径中点不在同一深度上) 双发双收声系的优缺点 测量原理

在一对接收探头的上方和下方对称的放置发射探头,发射探头轮流交替发射声波脉冲,每个T 发射信号时,每个接收探头分别记录一次到达时间,然后取一次时间差,地面仪器取两次测量结果的平均值作为记录值。 优点:1可消除井径变化对测量结果的影响2可消除深度误差 缺点:1)薄层分别率差2) 对于低速地层出现盲区

3. 试讨论声速测井中源距和间距的选择需要考虑哪些问题? 声波测井中源距的选择原则:

a.首波特性:要保证首波为滑行波而不为泥浆直达波,源距不能选择太小。

b.衰减问题(周波跳跃):为保证接收器有效接收信号,必须考虑滑行波的衰减问题,源距大会使衰减增强,容易发生周波跳跃,因此源距不能选择太大。

c.波组分(纵波、横波、全反射波):根据测井解释的不同目的,需要获得更多组分的波。这是需要在发射声功率允许下适当增加源距,以保证各种波群能够在时间域内有效的分离开。 声速测井中间距的选择原则:

1) 纵向分辨率,为提高底层分辨率,有效划分薄层,间距选择要小,不能太大. 2).相对误差,当一起测量系统误差一定,艰巨减小会使相对误差增大,因此间距不能太小

3)声功率,在声功率一定的情况下,艰巨过小,会使接收探头之间的相互干扰增大,间距过大,由于第二个接收探头接收的信号衰减帝过大导致周波跳跃的发生 4. 声速测井中井眼补偿声系有哪几种?

1双发双收声系,2单发双收声系加地面延迟电路,3双发四收声系 5. CSU 长源距双发双收声系中,如何实现10ft 源距的测量。

T1发射,R1.R2接收,相当于双发双收声系中的时差t2,送到地面仪器延迟,将声系提升到10ft ,如图2的位置,T1.T2同时发射,R2记录,相当于双发双收声系中的时差t1,将延迟的时差t2和图中2记录下来的时差t1送入计算机计算求得平均时差

6.写出威利时间平均公式并说明其物理意义;

M.R.Wyllie 时间平均公式及体积模型ma

f ma ma f ma

f t t t t t t t

V V V ?-??-?=

?-+?=?-+=φφφφφ)(111

(1物理意义:声波在单位体积岩石内传播所用的时间等于岩石骨架部分(1- φ)所经过时间与孔隙部分φ所经过时间的总和。

(2应用条件:时间平均公式不包括任何弹性波在岩石中传播的动力学描述,不反映岩层的密度、弹性参数及孔隙结构对岩层声速的影响。

7.叙述体积模型的概念,并利用体积模型推导含气砂岩的孔隙度计算公式; 体积模型—把单位体积岩石传播时间分成几部分传播时间的体积加权值。

含气砂岩的孔隙度计算:m a w g g g t t S t S t ?-+?-+?=?)1(])1([φφ,ma

w g w ma

t t S t t t t ?-?+?-??-?=

)(g φ,其中,t ?为岩

层视察,ma t ?为岩层骨架时差,w t ?孔隙中为水的时差,g t ?为孔隙中气体时差,g S 为含气饱和度。

7.周波跳跃的概念及应用

周波跳跃: 在裂缝发育地层,滑行纵波首波幅度急剧减小,以致第二道接收探头接收到的首波不能触发记录波,而往往是首波以后第二个、甚至是第三或第四个续至波触发记录波。这样记录到到时差就急剧增大,而且是按声波信号的周期成倍增加,这种现象叫周波跳跃。 应用:它是用来识别气层和裂缝储层的特征标志。

8.比较利用体积模型和Raymer 换算公式计算孔隙度的优缺点。 Raymer 换算公式:V=(1-φ)mVma+φVf

计算孔隙度缺点:(1)孔隙度25 ~ 30%内合适,5~15%内偏低,>30%时偏高;

(2)骨架时差选择择存在问题,砂岩骨架用182us/m(或18000ft/s,55.5us/ft),实际上砂岩骨架时差是在168~182us/m 变化 (或51.2~55.5us/ft),石灰岩是143~156us/m(或43.6~47.5us/ft)变化,白云岩在126~143us/m(或38.4~43.6us/ft)变化。存在选择合适骨架时差问题

(3)对欠压实地层需要压实校正及确定岩石系数

优点:(1)在低中孔隙度地层雷尹麦公式合适(平均公式改用Vma=19500ft/s); (2)25~30%,两者一致;

(3)>35%,平均公式欠压实,雷尹麦公式考虑了压实校正因素;

(4)雷尹麦公式中骨架时差采用单一值,平均公式为18000~19500ft/s 变化. 用体积公式 计算孔隙度的缺点

把地层结构简单化了,把地层的测井参数简化成各结构成分的测井参数的体积权衡值,抹杀了各岩层之间的结构差别

9.简述声速测井的应用。 1、地层对比—划分地层

根据不同岩层的声速不同进行岩层的划分。 2.判断气层 3.确定岩层孔隙度

时差曲线能有效地区分渗透性砂岩和致密砂岩。能有效地确定砂岩地层的孔隙度。但要进行油气、泥质、钙质校正及压实校正。

4.确定断层力学性质 断层按力学性质可以分为压性断层和张性断层

5.地震标定和地球化学指示

6.估算地层压力

10.叙述利用声速测井资料估算地层异常压力的原理,并画图说明。 估计地层异常压力。 估算地层压力的方法

原理:对于高压异常井段,地层孔隙内液体压力大于地层静水柱压力,他承担了一部分上部覆盖地层的压力,使岩石骨架承受的压力减小,反映在孔隙度和声波时差上出现了异常段 异常点B 垂直地应力与正常点A 地应力相同, A 点正常地应力为n w b w n gH P P T )(0ρρ-=-=

B 点的孔隙流体压力 n w b a b n p gH gH T P P )(0ρρρ--=-=

第四章

1、套管井中声波类型有哪些?简单叙述各自的特征。

1)、套管波:首波传播服从费马原理。最先到达的是套管滑行纵波。

套管波到达接收器时间只与源距,套管、仪器尺寸有关,所以其到达时间在全井段是不变的,可以采用单发单收声系。因此套管波幅度的大小可确定第一界面水泥胶结质量。

2)、水泥环波:在第一界面上不会出现滑行波,有一次或多次反射(sinθ2/sinθ3=V2/V3,V2>V3),由于水泥环中存在微裂隙水泥胶结不致密,一般水泥环的能量很弱,常被其它波列所掩盖,忽略不计.

3)、地层波:水泥—地层(第二界面)胶结好时(V4>V3), 一般出现地层波(滑行纵横波),地层波的出现说明二界面胶结良好,进而可以利用地层波信息(幅度、能量)反映二界面胶结情况。

4)、泥浆导波:接收器接收到的泥浆波时间不变,T=189*5=945us

2.套管波的影响因素有哪些?

1)套管的直径的影响

套管直径实际上对套管波的衰减无影响。它是反映泥浆对声波衰减的影响,也即对套管波原始振幅有影响。

2) 套管厚度的影响

自由套管的厚度对衰减系数影响不明显,当套管外有水泥固结时,衰减系数与套管厚度有关。在水泥抗压强度一定时,随着套管厚度增大,衰减系数减小,即声幅度增加。

3)水泥环对套管波幅度的影响

a.水泥抗压强度的影响

水泥会使套管波能量减少,实验研究表明,水泥对套管波衰减系数与水泥的抗压强度有关,抗压强度增大,衰减系数也跟着增大

b水泥环密度的影响

水泥环的密度越大,水泥环的声阻抗更接近钢质套管的声阻抗值,声波在套管—水泥界面上反射波幅度越小,也即套管中声波幅度衰减越大。

c.水泥环的厚度的影响

水泥环的厚度增加,也将使套管波的幅度减小。实验表明水泥厚度小于3/4英寸(1.905cm)时,随着水泥环厚度增大,套管波的衰减系数也增大。当水泥环厚度大于3/4英寸时,衰减系数保持不变。

d.水泥窜槽的影响

固井质量要求套管与地层之间的环行空间全部水泥占有,如有一部分没有水泥或水泥没有胶结,给油水运动形成通道,称为窜槽。水泥窜槽会给油井生产带来不良后果,水层中的水会窜到油层中,影响油层的产油量。

4)地层特性对套管波幅度的影响

地层特性对套管波没有明显的影响.

5) 测量时间对套管波幅度的影响

水泥灌入套管外的环形空间,将逐渐凝固,一般水泥侯凝时间越长,固结越好。因此测量时间对套管波幅度的影响,实际上是水泥固结侯凝时间对套管波幅度的影响。

3.对比分析水泥胶结测井(CBL)、声波变密度测井(VDL)、以及分区水泥胶结测井(SBT)的工作原理(声源频率,声系,源距,记录波形,评价对象)及其在评价固井质量方面的优缺点。

4.叙述如何利用VDL测井资料评价固井质量(工作原理、分四种情况评价)。

5. 简述声幅测井CBL的影响因素。

1、仪器偏心影响:(1)套管波幅度减小;(2)到达时间提前;(3)后续波失真;在井剖面上套管波到达时间不是固定的.采

用扶正器来实现。

2、记录套管波的局限(头半周): 仅评价一界面,不能评价二界面情况,窜槽有可能水泥—地层胶结不好引起的。利用地层波来解决。

3、水泥环间隙影响:间隙一般0.1mm,不足以引起流体窜流,但对声耦合有影响,造成套管波幅度与部分胶结相同。解决办法: (1)加压再测量依次(可能造成压裂套管、水泥环) , (2)采用反射脉冲反射法测井。 6.简述超声成像测井(USI )的工作原理及应用。

工作原理:超声脉冲反射法测井测量采用门记录方式,在门电路中用第一个门记录(旅行时间)套管-水泥界面(第二界面)的反射波,用第二个门记录水泥-地层界面(第三界面)的反射波。由于套管、水泥、地层的声阻抗不同,更主要的是水泥胶结好坏大大影响水泥声阻抗,使得超声波在第二、第三界面反射回的声能是不同的,根据接收器接收的各界面反射声能就可以判断水泥胶结的好坏。 应用:水泥胶结质量评价、360°方位的套管质量检查。

第五章

1.叙述偶极子和多极子声源测井的基本原理。 1、脉动球源

右图表示一个中心位于原点的球状稳态声源,

球表面做球对称的周期膨胀和收缩运动,表面径向速度为 ,球源的体积变化速度的幅度为 ,这里 。球源的作用相当于向空间注入介质,注入的体积速度是 , 常作为声源强度的度量。脉动球源辐射的声场是

当 ,则得到点源辐射的声场

2.叙述偶极子波、四极子波的特点。

a) 随频率降低,弯曲波和旋转波的速度都变大,并在某个特定的频率(即截至频率)上速度趋近于井壁地层的横波速度;

b)相速度都比群速度快; c)有爱瑞相

d )软地层中,频率变化都与快地层相似。但截至频率低,且在截至频率附近速度随频率变化(即频散效应)明显。 3叙述裸眼井中声波全波列及其类型(硬地层、软地层分别考虑)。 一、滑行纵波

1)滑行纵波是一种体波( θc),沿井壁附近滑行传播,速度为Vp ,轻微频散(在测井频率段可忽略),是PPP 波。 2)一种非均匀波,在地层中,离井壁距离增加按负指数规律衰减,能量集中在3λp (即Vp/f )范围内,在Z= λp 内集中了滑行波能量63%,因此探测范围在一个λp 左右。

3)在井中传播方式:滑行波在传播过程中不断向井中辐射能量,在井壁上传播其波阵面是圆锥面;若源距选择适当,滑行纵波在全波中为首波,幅度小,传播速度快。

4)对于井内接收点,滑行波的振幅随源离L 增加是衰减的.直达波A ∝1/Z 滑行纵波A ∝1/Z (lnZ)2。对于Z>e=2.72m,滑行波衰减快,对于Z

5)存在共振频率,a 为井径;βi 为贝塞尔函数J 1(βi)的零点,为3.83、7.01….;对于一般砂岩频率为10、20kHz 左右。

二、滑行横波

1)滑行横波是一种体波( θS) ,沿井壁附近滑行传播,速度为Vs ,轻微频散(在测井频率段可忽略),是PSP 波。 2)一种非均匀波,在地层中,离井壁距离增加按负指数规律衰减,能量集中在3λs (即Vs/f )范围内,在Z= λs 内

2

004r S π=00→r

集中了滑行波能量63%,因此探测范围在一个λs左右。

3)在井中传播方式:滑行波在传播过程中不断向井中辐射能量,在井壁上传播其波阵面是圆锥面;若源距选择适当,滑行横波在全波中为次首波,幅度较纵波幅度大。

原因: 横波波长较纵波短,因此靠近井壁附近滑行横波幅度较滑行纵波幅度有更多能量。 横波反射系数远小于纵波,即有更多能量进入地层,在相同的情况下有更多的能量转换为滑行横波。

4)对于井内接收点,滑行波的振幅随源离L增加是衰减的。直达波A∝1/Z滑行横波A ∝1/Z2 。不像纵波滑行横波始终比泥浆直达波衰减快。

5)存在共振频率,a为井径;αi 为贝塞尔函数J0(α i)的零点,为2.4、5.52….;对于一般砂岩频率为8、18kHz。6)当Vs

伪瑞利波是表面波。表面波是瑞利勋爵于1885年首次提出的。他研究了弹性材料接触真空后在平面的响应,发现一种波沿表面传播,并且质点运动的幅度随距表面的距离减小。瑞利的发现预测了沿地球表面传播的波的存在,这种波引起地震时毁灭性的震动。

1)是界面波,当入射角时产生,沿井壁界面传播.其相速度介于泥浆波速度和地层横波速度之间.

2)是复合模式波,存在多种模式,是无几何衰减的高频散波,存在截止频率.

3)随着频率增加,其相速度和群速度都逐渐减小.

4)当频率趋于无穷大时,相速度等于井内流体纵波速度,而此时群速度存在极小值(比泥浆速度还小),此时伪瑞利波幅度达到最大,称为艾里相,即伪瑞利波能量主要集中在艾里相处.

四、斯通利波

1924年,斯通利对波在两个固体界面的传播进行了研究,发现了表面波的类似形式。在流体-井筒表面传播的波被称为斯通利波。

1)是界面波,当波数时产生,沿井壁界面传播.其相速度小于泥浆波速度.

2)单一模式波,有轻微的频散特性.

3)在硬地层中,无截止频率,低频时相速度接近流体声速的0.9倍,随频率增高速度稍增大,高频时约为流体声速的0.96倍.

4)低频率斯通利波对地层渗透率非常敏感。当波遇到渗透性裂缝或地层时,流体相对于固体震动,在这些地层中产生粘滞扩散,使波产生衰减,而且速度变慢.开启裂缝也能导致斯通利波反射回发射器。反射波能量与入射波能量之比与裂缝开度有关。

对于快地层(地层横波速度大于泥浆声速), 全波列中出现滑行纵波、横波和斯通利波,

对于软地层(地层横波速度小于泥浆声速),不能激发出滑行横波和伪瑞利波,全波列中只出现滑行纵波和斯通利波)。但是,在更多情况下,由于噪音高、井筒条件差或其它影响因素会使这些波至不清晰或相互混淆。

4.交叉偶极阵列声波测井工作方式有哪些?试分别叙述。

正交偶极阵列声波测井仪工作方式:

1)纵、横波方式:单极子,高频声源激发,测量全波信息。计算孔隙度、识别岩性、识别气层、计算弹性力学参数

2)斯通利波方式:单极子,低频声源激发,测量斯通利波信息。识别裂缝、计算渗透率

3)偶极横波方式(上、下):偶极子声源发射,低频率激发,测量横波时差。计算孔隙度,判断岩性、识别裂缝

4)正交偶极子方式:正交偶极子声源交替发射,测量正交偶极波形。计算快、慢横波慢度,评价各向异性以及非均质性等

5)首波检测方式:单极子,高频声源激发,测量纵波首波波至时差

5.叙述波形信息提取的方法。

⑴从时域中提取:①纵横波时差比法、②相关对比法③同相轴法④波形识别法

⑵从频域中提取:①付式变换法 ⑶斯通利波法 ⑷泊松比法 ⑸相关频谱法

6、简述利用声波全波列测井资料识别岩性、裂缝、油气层的基本方法、原理以及声波全波列测井的应用。 一、确定地层岩性

1. 用时差比值DTR=DTS/DTC 来鉴定岩性

横波时差DTS 与纵波时差DTC 比值与岩性密切相关,因此可以作DTS 与DTC 的交会图,不同岩性分布范围不同,由此可以确定岩性。

砂岩、石灰岩、白云岩的DTC 、DTS 分布 2.用幅度衰减/转换系数来鉴定岩性

当声波发射器T 发射声脉冲时,将R1、R2接收器接收的波形曲线算出频谱曲线,令S1(f)、S2(f)分别为R1、R2的频谱曲线,则有

称为转换系数,变化范围0-1。

一般而言,岩性不同,其转换系数也不近相同。例如课本中图5-30所示:对于颗粒骨架支撑的岩性,横波转换系数为0.8以上,泥质骨架支撑的岩性,横波转换系数在0.5左右。

纵波与横波两者的转换系数值都可反映岩层的结构变化。它们的全波列波形图同样也可反映岩层的结构变化。由于横波幅度反映更好些,国外将横波幅度用于描述地层的岩相,称为测井相 二、确定地层孔隙度

利用地层纵波、横波时差都可以求取地层孔隙度;但用横波时差的效果要比纵波好。有两种办法确定横波时差与孔隙度的关系:一个是用实验室岩心分析资料与现场声波全波列测井资料来研究横波时差与孔隙度的关系;另一个是综合已有的纵波时差与孔隙度关系及纵波时差与横波时差关系而确定。 三、识别裂缝

1、利用纵、横波信息识别裂缝

a )速度变化:对水平或低角度裂缝,声波在岩层中传播要通过该裂缝,时差就会增加,裂缝密度越大声波时差增加越多。水平裂缝发育的井段,时差曲线上会出现明显的周波跳跃,但是对井壁残余气饱和度高的气层,即使是孔隙型储集层,也可以出现周波跳跃,要借助其它测井资料将两者区分开来。

b)幅度衰减:声波通过裂缝的幅度衰减与裂缝倾角和声波全波中各子波的波型有关。一般地说低倾角裂缝横波幅度衰减大些,高倾角裂缝纵波幅度衰减大些。 2、利用斯通利波信息识别裂缝

a)利用斯通利波时差、幅度衰减识别裂缝

低频斯通利波(管波),在井内传播像一个活塞运动,使井壁径向上产生膨胀和收缩,裂缝带处,井内和地层中的流体可以自由连通,使管波能量的消耗。所以它对与井眼相交的渗透性裂缝较为敏感,地层或裂缝带的渗透性越好,斯通利波的时差越大,斯通利波的衰减也越显著。 b)利用反射斯通利波识别裂缝

对于低频斯通利波,波列记录的时间很长,对裂缝和层界面非常敏感,往往出现反射斯通利波,因此分离出反射斯通利波有利于地层裂缝识别和评价。反射斯通利波信号越强,裂缝越发育。

利用反射斯通利波识别裂缝的关键技术是如何分离斯通利波,目前一般有两种方法:加权平滑滤波法简单、直观,但不能分离出斯通利波波形上、下行反射波,影响到反射系数的精度。t-P法能有效地得到裂缝地层的斯通利波波形上、下行反射波,从而对裂缝评价更精细。 四、评价地层渗透率

判断一个地层是否有渗透性以及渗透性高低的主要依据是:①斯通利波时差增大,在波形图上表现为传播到达时间滞后;②斯通利波幅度衰减增大,特别是高频成分能量衰减更大,低频成分能量相对突出;③斯通利波主频明显降

)

()()(12f S f T f S )(f T

低。

利用低频斯通利波求取地层渗透,有两种方法:时差反演和合成反演。

时差反演:根据频率、井径及岩石骨架等参数,求出斯通利波理论时差值,然后与实际测量时差值比较,直到两着达到最小误差,就可反求出地层渗透率。

合成反演:采用实测斯通利波与合成斯通利波的波至延迟和频率偏移,通过目标函数优化求解地层渗透率的方法。

五、识别油气层

当岩层内充满石油或天然气时,岩层纵波速度比孔隙内充满水的岩层纵波速度小,气层尤为明显。 1.速度比指示气层

1)速度比背景值:地层完全饱和水时纵横波速度比值 2.流体压缩系数指示油气层

地层孔隙中油、气、水的声学性质是不同的,密度有差异,它们的压缩系数也是不同的。 1)用体积模型确定流体压缩系数

六、评价地层各向异性

地层的各向异性指在测量方向上物理特性的差异。在声波测竟中,一般反映为矿物颗粒、层理、裂缝或应力的空间排列引起波速随方位而变化。

一般构造地球的物质有水平和垂直两种组成形式,这样出现了两种类型的各向异性,即横向各向异性和纵向各向异性。前者指以纵向方向为对称轴,弹性参数在纵向上发生变化,在水平方向上不发生变化,传统垂直声波测井测量声波速度和幅度,能进行分层识别岩性和油气层等;后者主要对应于在纵向上出现裂缝或断裂以及水平应力不对称等引起的地层各向异性,弹性参数在特征交叉的方向上发生变化,但沿着特征方向上不变化。 七、井眼岩石力学特性

由此可计算地应力、岩石破裂压力等参数,可进行井眼稳定性分析、泥浆比重选择、地层破裂压力和压裂高度预测等方面应用。

第六章

1、简述超声成像测井发展历程及其特点。

超声成像测井(或超声电视测井)是利用井壁或套管内壁对超声波的反射特性来研究井身剖面的。在裸眼井中通过测量的声学图像,可了解裂缝地层的裂缝密度、倾角、方位以及缝洞分布情况,为勘探和开发裂缝性储集层提供可靠的地质基础资料。在套管中通过声学图像,可了解射孔位置,或施工、生产而使套管损坏情况,为井修提供资料。

发展历程:1962年,MOBIL 公司第一次在井下用声学方法获得井壁的二维图象。但由于当时的声源频率很高(1MHz 以上),声波信号在井内钻井液中衰减明显,因此只能在井中充满清水或低密度钻井液中进行测井,且成像效果不好。

20世纪80年代,由于对大洋海底锰矿调查的需要,海底的超声电视测井技术得到发展和重视。后经Amoco 、Sandia 和Shell 等石油公司和研究单位的不断改进,使超声成像测井仪最终投入了商业服务。

特点:超声成像测井由声系、信号采集、信号传输和地面处理与显示四部分组成。超声成像测井以声学图像形式给出测井资料,这与以往的测井曲线资料比较,它具有信息多、分辨率高、直观、便于分析判断的优点。 2、以UBI 为例介绍超声成像测井的基本原理. 超声成像测井UBI

)3

4

(1

22

s p B V V C -=ρ

声波探头有两种工作方式,探头逆时针旋转为标准测量方式,用于测量井壁的声学特性;探头顺时针旋转(换能器面向反射板)为流体性质测量方式,测量井内泥浆的声学特性。UBI 测量精度、图像质量更高,其垂向分辨率为0.2-0.4in (0.508-1.016cm)之间,推荐的测井速度在400-600ft/h (122-183m/h )之间。

UBI 仪器结构和换能器工作模式示意图 3、测井超声换能器类型与特性有哪些?

换能器的主要类型:平面圆片状、球面状、动态聚焦换能器。其指向特性: ㈠.圆片状声源的远场衍射

㈡.发射换能器的近场特性与近场衍射

1)在中心点上,z=0,也就是说当声源半径为半波长的偶数倍时,则在中心点接收到子波的作用相互干涉抵消,声压为零。当半径为波长的奇数倍时,中心点的声压最大 2)在中心轴线上,Z>0,存在一系列位置,z=dn 声压幅值为零。

超声成像测井声源反射距离必须大于近场长度D,否则测量信号幅度受近场衍射影响太大,得不到井壁声学图像。 ㈢聚焦转换器

4、简述超声成像测井影响成像质量的主要因素。 ⑴声衰减的影响

泥浆对声波衰减主要是摩擦吸收衰减和固相颗粒散射引起的衰减。摩擦吸收衰减与频率平方成正比,而颗粒散射衰减与频率四次方成正比,因此当频率较高时,泥浆性能对超声测量影响是不能忽略的。 ⑵井眼形状和仪器偏心的影响

由于井径的不规则性或仪器的偏心使得声信号在泥浆中传播时间因方位而异,即使井壁介质均匀,也会在成像测井图上呈现差别。更有甚者,可能造成部分或全部反射声束不能被换能器所接收,回波幅度严重下降,以至于在成像测井图上形成显著的黑色垂直条带。 5、叙述超声成像测井的应用与解释。 1.判断地层的岩性、确定层面产状

超声成像测井主要是根据岩层的声阻抗差异(反射波的幅度)得到不同明暗程度(不同灰度)的声学图像。泥岩和煤层声阻抗比其它岩层小得多,发射系数小,测量的反射波(回波)幅度也小,声学图像上为“暗”显示。而声阻抗较大的石灰岩、致密砂岩、反射系数大,声学图像为“亮”显示。因此根据暗亮图像可区分岩性。 2、直观显示裂缝 ⑴水平裂缝

裂缝宽度=黑线宽度?深度比例 ⑵垂直裂缝

裂缝宽度=黑线宽度?井壁周长/图面横向长度 裂缝长度=黑线长度?深度比例 ⑶倾斜裂缝

(波浪线最高点与最低点的垂直距离)/井径

3. 井眼稳定性和地应力分析 4.确定井下套管情况

超声成像测井能直观精确地反映套管腐蚀的形状、腐蚀的程度;评价射孔质量射孔孔眼在超声成像图上显示不规则的黑点。如果射孔孔眼显示不清楚,则射孔弹没有穿透套管;如果图像上显示条状阴影,则表示射孔作业后套管发生破裂情况。

=θtg

测井曲线解释

主要测井曲线及其含义 主要测井曲线及其含义 一、自然电位测井: 测量在地层电化学作用下产生的电位。 自然电位极性的“正”、“负”以及幅度的大小与泥浆滤液电阻率Rmf和地层水电阻率Rw的关系一致。Rmf ≈Rw时,SP几乎是平直的;Rmf>Rw时SP为负异常;Rmf<Rw时,SP在渗透层表现为正异常。 自然电位测井 SP曲线的应用:①划分渗透性地层。②判断岩性,进行地层对比。③估计泥质含量。④确定地层水电阻率。 ⑤判断水淹层。⑥沉积相研究。 自然电位正异常 Rmf<Rw时,SP出现正异常。 淡水层Rw很大(浅部地层) 咸水泥浆(相对与地层水电阻率而言) 自然电位测井 自然电位曲线与自然伽马、微电极曲线具有较好的对应性。 自然电位曲线在水淹层出现基线偏移 二、普通视电阻率测井(R4、R2.5) 普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。 视电阻率曲线的应用:①划分岩性剖面。②求岩层的真电阻率。③求岩层孔隙度。④深度校正。⑤地层对比。 电极系测井 2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。 底部梯度电极系分层: 顶:低点; 底:高值。 三、微电极测井(ML) 微电极测井是一种微电阻率测井方法。其纵向分辨能力强,可直观地判断渗透层。 主要应用:①划分岩性剖面。②确定岩层界面。③确定含油砂岩的有效厚度。④确定大井径井段。⑤确定冲洗带电阻率Rxo及泥饼厚度hmc。 微电极确定油层有效厚度 微电极测井 微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小。 四、双感应测井 感应测井是利用电磁感应原理测量介质电导率的一种测井方法,感应测井得到一条介质电导率随井深变化的曲线就是感应测井曲线。 感应测井曲线的应用:①划分渗透层。②确定岩层真电阻率。③快速、直观地判断油、水层。 油层: RILD>RILM>RFOC

Geolog-全波列声波测井中文手册-

Geolog软件技术手册Full Sonic Wave Processing -SWB 帕拉代姆公司北京代表处 2006年12月

1、综述................................................................................................................................................................................ - 1 - 1.1 预备知识..................................................................................................................................................................... - 1 - 1.2数据 ............................................................................................................................................................................... - 1 - 2、阵列声波全波形........................................................................................................................................................... - 2 - 2.1数据准备 ...................................................................................................................................................................... - 3 - 2.1.1查看/创建一个声波列阵工具模版.......................................................................................................... - 3 - 2.1.2 练习指导2-创建其他波形属性.............................................................................................................. - 5 - 2.1.3波形分解.......................................................................................................................................................... - 6 - 2.1.4深度转换.......................................................................................................................................................... - 7 - 2.2 处理 .............................................................................................................................................................................. - 8 - 2.2.1数据分析......................................................................................................................................................... - 8 - 2.2.2去噪................................................................................................................................................................ - 11 - 2.2.3 设计滤波器................................................................................................................................................. - 17 - 2.2.4 振幅恢复 ..................................................................................................................................................... - 19 - 2.3阵列声波处理.......................................................................................................................................................... - 20 - 2.3.1处理模块简介 ............................................................................................................................................. - 20 - 2.3.2偶极波形处理 ............................................................................................................................................. - 21 - 2.3.3 单极波形处理 ............................................................................................................................................ - 23 - 2.3.4 拾取标志波至 ............................................................................................................................................ - 26 - 2.4后期处理 (32) 2.4.1综述 (32) 2.4.2频散校正 (33) 2.4.3 传播时间叠加 (36) 2.4.4 相关性显示 (38) 2.4.5 阵列声波重处理 (39) 3、机械性质 (44) 3.1综述 (44) 3.2 计算动力学弹性性质 (44) 附录I-快速运行 (46) 附录II-频散校正讨论 (47)

声波测井仪器的原理及应用

声波测井仪器的原理及应用 单位:胜利测井四分公司 姓名:王玉庆 日期:2011年7月

摘要 声波测井是石油勘探中专业性很强的一个领域。它是一门多学科的应用技术,已经成为油田勘探、储量评估、油气开采等方面不可缺少的工具。声波速度测井简称声速测井是利用声波在岩石中传播的速度来研究钻井剖面的一类物探方法,其方法是测量滑行波通过地层传播的时差 t(声速的倒数,单位us/ft)。目前主要用以估算孔隙度、判断气层和研究岩性等方面,是主要测井方法之一。 数字声波测井仪,其中包括66667声波数字化通用短节和6680声波探头2部分。能完成声波时差测井和水泥胶结测井,能与SL6000型地面系统和进口的5700型地面系统相配接。 正交多极子阵列声波测井(XMACII)将新一代的偶极技术与最新发展的单极技术结合在一起,提供了当今测量地层纵波、横波和斯通利波的最好方法。当偶极子声源振动时,使井壁产生扰动,形成轻微的跷曲,在地层中直接激发出横波和纵波,根据正交多极子阵列声波资料得出的纵横、波速度比可识别与含气有关的幅度异常。 关键词:数字化;声波时差;声波变密度;阵列声波;声波全波列;

目录 第1章前言 (1) 第2章岩石的声学特性 (2) 第3章数字声波测井原理及应用 (3) 3.1 数字声波测井原理 (3) 3.2仪器的工作模式 (5) 3.3时差计算 (5) 3.4 数字声波测井仪器的性能 (6) 3.5 SL6680测井仪器的不足 (7) 3.6数字声波仪器小结 (7) 第4章正交多极子阵列声波测井 (8) 4.1 XMACII多极子阵列声波测井原理 (8) 4.2 XMACII多极子阵列声波仪器组成 (9) 4.3 XMACII多极子阵列声波的使用及注意事项 (10) 4.4 应用效果及结论 (14) 第5章声波测井流程及注意事项 (15) 5.1 声波测井流程 (15) 5.2 注意事项 (16) 参考文献 (17)

测井曲线代码-整理版

原始测井曲线代码 代码名称 A1R1 T1R1声波幅度 A1R2 T1R2声波幅度 A2R1 T2R1声波幅度 A2R2 T2R2声波幅度AAC 声波附加值 AA VG 第一扇区平均值AC 声波时差 AF10 阵列感应电阻率AF20 阵列感应电阻率AF30 阵列感应电阻率AF60 阵列感应电阻率AF90 阵列感应电阻率AFRT 阵列感应电阻率AFRX 阵列感应电阻率AIMP 声阻抗 AIPD 密度孔隙度 AIPN 中子孔隙度 AMA V 声幅 AMAX 最大声幅 AMIN 最小声幅 AMP1 第一扇区的声幅值AMP2 第二扇区的声幅值AMP3 第三扇区的声幅值AMP4 第四扇区的声幅值AMP5 第五扇区的声幅值AMP6 第六扇区的声幅值AMVG 平均声幅 AO10 阵列感应电阻率AO20 阵列感应电阻率AO30 阵列感应电阻率AO60 阵列感应电阻率AO90 阵列感应电阻率AOFF 截止值 AORT 阵列感应电阻率AORX 阵列感应电阻率APLC 补偿中子 AR10 方位电阻率 AR11 方位电阻率 AR12 方位电阻率 ARO1 方位电阻率 ARO2 方位电阻率 ARO3 方位电阻率ARO4 方位电阻率 ARO5 方位电阻率 ARO6 方位电阻率 ARO7 方位电阻率 ARO8 方位电阻率 ARO9 方位电阻率 AT10 阵列感应电阻率 AT20 阵列感应电阻率 AT30 阵列感应电阻率 AT60 阵列感应电阻率 AT90 阵列感应电阻率 ATA V 平均衰减率 ATC1 声波衰减率 ATC2 声波衰减率 ATC3 声波衰减率 ATC4 声波衰减率 ATC5 声波衰减率 ATC6 声波衰减率 ATMN 最小衰减率 ATR T 阵列感应电阻率 ATRX 阵列感应电阻率 AZ 1号极板方位 AZ1 1号极板方位 AZI 1号极板方位 AZIM 井斜方位 BGF 远探头背景计数率 BGN 近探头背景计数率 BHTA 声波传播时间数据 BHTT 声波幅度数据 BLKC 块数 BS 钻头直径 BTNS 极板原始数据 C1 井径 C2 井径 C3 井径 CAL 井径 CAL1 井径 CAL2 井径 CALI 井径 CALS 井径 CASI 钙硅比 CBL 声波幅度 CCL 磁性定位 CEMC 水泥图 CGR 自然伽马 CI 总能谱比 CMFF 核磁共振自由流体体积 CMRP 核磁共振有效孔隙度 CN 补偿中子 CNL 补偿中子 CO 碳氧比 CON1 感应电导率 COND 感应电导率 CORR 密度校正值 D2EC 200兆赫兹介电常数 D4EC 47兆赫兹介电常数 DAZ 井斜方位 DCNT 数据计数 DEN 补偿密度 DEN_1 岩性密度 DEPTH 测量深度 DEV 井斜 DEVI 井斜 DFL 数字聚焦电阻率 DIA1 井径 DIA2 井径 DIA3 井径 DIFF 核磁差谱 DIP1 地层倾角微电导率曲线1 DIP1_1 极板倾角曲线 DIP2 地层倾角微电导率曲线2 DIP2_1 极板倾角曲线 DIP3 地层倾角微电导率曲线3 DIP3_1 极板倾角曲线 DIP4 地层倾角微电导率曲线4 DIP4_1 极板倾角曲线 DIP5 极板倾角曲线 DIP6 极板倾角曲线 DRH 密度校正值 DRHO 密度校正值 DT 声波时差 DT1 下偶极横波时差 DT2 上偶极横波时差 DT4P 纵横波方式单极纵波时 差 DT4S 纵横波方式单极横波时 差 DTL 声波时差

最新随钻声波测井仪器的技术性能

最新随钻声波测井仪器的技术性能 近年来,声波测井技术已成功应用于随钻测量(MWD)和随钻测井(LWD)中。随钻声波测井技术为钻井施工和储层评价提供了全面的数据支持和测井解释。目前,国外三大公司分别推出了最新的随钻声波仪器,它们分别是贝克休斯公司的APX随钻声波测井仪,哈里波顿Sperry Drilling Service公司研制的双模式随钻声波测井仪器(BAT)和斯伦贝谢公司研制的新一代随钻声波仪器sonicVISION。下面我们对三种仪器的性能分别进行介绍和对比。 1.APX随钻声波测井仪 APX随钻声波测井仪由贝克休斯公司INTEQ公司生产,其结构简图见图1。该仪器声源以最佳频率向井眼周围地层发射声波,声波在沿井壁传播的过程中被接收器检测并接收。接收器采用了先进的嵌入技术,将接收到的声波模拟信号转换为数字信号,以获取地层声波时差(△t),而后将原始声波波形数据和预处理的声波波形数据存储在高速存储器内。 仪器的主要技术性能 ●计算机模型(FEA):该模型是为声学仪器的优化配置而设计,同时具备有助于 不同窗口模式的评价和解释。 ●全向发射器:与典型的LWD仪器等单向的有线测井仪不同,APX发射器使用 一组圆柱形压电晶体,对井眼和周围地层提供3600的覆盖范围,其声源能够在10~18,000Hz频率范围内调频,并可以单极子和偶极子发射。 ●全向接收器阵列:6×4接收器 阵列,间距228.6mm。这种全 向结构类似于XMAC电缆测井 系统,接收器阵列与声源排成 一条线,以实现径向多极子声 波激发。 ●接收器。该仪器的声源具有优 化发射频率功能,其接收器有 几个比仪器本身信号低很多的 波段,可以显著减少接收器及 钻柱连接的干扰。在关掉发射

测井曲线解释

测井曲线基本原理及其应用 一.国产测井系列 1、标准测井曲线 2.5m底部梯度视电阻率曲线。地层对比,划分储集层,基本反映地层真电组率。恢复地层剖面。 自然电位(SP)曲线。地层对比,了解地层的物性,了解储集层的泥质含量。 2、组合测井曲线(横向测井) 含油气层(目的层)井段的详细测井项目。 双侧向测井(三侧向测井)曲线。深双侧向测井曲线,测量地层的真电组率(RT),试双侧向测井曲线,测量地层的侵入带电阻率(RS)。 0.5m电位曲线。测量地层的侵入带电阻率。0.45m底部梯率曲线,测量地层的侵入带电阻率,主要做为井壁取蕊的深度跟踪曲线。 补偿声波测井曲线。测量声波在地层中的传输速度。测时是声波时差曲线(AC) 井径曲线(CALP)。测量实际井眼的井径值。 微电极测井曲线。微梯度(RML),微电位(RMN),了解地层的渗透性。 感应测井曲线。由深双侧向曲线计算平滑画出。[L/RD]*1000=COND。地层对比用。 3、套管井测井曲线 自然伽玛测井曲线(GR)。划分储集层,了解泥质含量,划分岩性。 中子伽玛测井曲线(NGR)划分储集层,了解岩性粗细,确定气层。校正套管节箍的深度。套管节箍曲线。确定射孔的深度。固井质量检查(声波幅度测井曲线) 二、3700测井系列 1、组合测井 双侧向测井曲线。深双侧向测井曲线,反映地层的真电阻率(RD)。浅双侧向测井曲线,反映侵入带电阻率(RS)。微侧向测井曲线。反映冲洗带电阻率(RX0)。 补偿声波测井曲线(AC),测量地层的声波传播速度,单位长度地层价质声波传播所需的时间(MS/M)。反映地层的致密程度。 补偿密度测井曲线(DEN),测量地层的体积密度(g/cm3),反映地层的总孔隙度。 补偿中子测井曲线(CN)。测量地层的含氢量,反映地层的含氢指数(地层的孔隙度%) 自然伽玛测蟛曲线(GR),测量地层的天然放射性总量。划分岩性,反映泥质含量多少。 井径测井曲线,测量井眼直径,反映实际井径大砂眼(CM)。 2、特殊测井项目 地层倾角测井。测量九条曲线,反映地层真倾角。 自然伽玛能谱测井。共测五条曲线,反映地层的岩性和铀钍钾含量。 重复地层测试器(MFT)。一次下井可以测量多点的地层压力,并能取两个地层流体样。 三、国产测井曲线的主要图件几个基本概念: 深度比例:图的单位长度代表的同单位的实际长度,或深度轴长度与实际长度的比例系数。如,1:500;1:200等。 横向比例:每厘米(或每格)代表的测井曲线值。如,5Ω,m/cm,5mv/cm等。 基线:测井值为0的线。 基线位置:0值线的位置。 左右刻度值:某种曲线图框左右边界的最低最高值。 第二比例:一般横向比例的第二比例,是第一比例的5倍。如:一比例为5ΩM/cm;二比例则为25m/cm。 1、标准测井曲线图 2、2.5米底部梯度曲线。以其极大值和极小值划分地层界面。它的极大值或最佳值基本反映地层的真电阻率(如图) 自然电位曲线。以半幅点划分地层界面。一般砂岩层为负异常。泥岩为相对零电位值。 标准测井曲线图,主要为2.5粘梯度和自然电位两条曲线。用于划分岩层恢复地质录井剖面,进行井间的地层对比,粗略的判断油气水层。 3、回放测井曲线图(组合测井曲线) 深浅双侧向测井曲线。深双侧向曲线的极度大值反映地层的真电阻率(RT),浅双侧向的极大值反映浸入带电阻率(RS)。以深浅双侧向曲线异常的根部(异常幅度的1/3处)划分地层界面。

声波测井技术在岩土工程勘察中应用

现代物业?新建设 2012年第11卷第9期 浅谈声波测井技术在岩土工程勘察中的应用 张建宏 (新疆新地勘岩土工程勘察设计有限公司,新疆 乌鲁木齐 830002)摘 要:伴随着不断发展的数字测井技术,在测井当中,声速测井已经成为重要的方式之一。对岩体工程勘察中声波测井技术的应用进行了分析。 关键词:岩土工程;勘察;声波测井 中图分类号:[P258] 文献标识码:A 文章编号:1671-8089(2012)09-0047-02 声波测井主要分为声幅测井与声波测井两大类。一般来说,我们说的声波测井指的是对地层当中声波传播速度进行测量。 1 声波测井 在不同的介质当中,声波传播会有明显的差别,岩石当中的裂缝、风化以及溶洞对声波速度都有影响,因此对岩层物性特征的了解可以通过声波测试来进行。而声速测井测的是地层中声波传播的时间。 声波测井一般是对纵波速度进行测量,声波耦合通过仪器发射晶体声波,然后通过仪器接收晶体声波。由于接收晶体与发射晶体之间存在一定距离,所以传播速度与所测得的声波传播时差成反比。根据实际需要,也可以将传播时差换算成声波速度,然后再与其余的物理参数进行结合,也能够将横波速度计算出来,从而对弹性参数以及岩性的划分进行计算,这样更有利于岩土工程勘察工作的进一步开展。 2 岩石中声波的传播 我们所研究的是不同地质年代在地壳中的矿物成分以及结构各异的岩石,并且在岩石当中还存在裂隙与孔隙,但是它们的分布、大小、形状并非固定,而这些因素对岩石的物理性质都有不同程度的影响。岩石的声速指的是在岩石当中声波的传播速度,理论支持与实践证明:随着岩石密度的不断增大,声波速度也会随着提升。 2.1 岩性 如果岩石的岩性不同,那么声波传播速度也会有明显的区别。岩性不同,岩石密度就存在差异,一般来说,岩石密度从大到小依次为:石灰岩→砂岩→泥岩,而声波速度也会随着密度的减少而降低。 2.2 岩石结构 如果岩石的胶结性较差、较为疏松,声波速度也会降低;反之,声波速度则会升高。对于声波速度来说,岩石当中存在的溶洞与裂隙等也会产生一定程度的影响。 2.3 岩石孔隙间的储集物 岩石声波速度也会受到岩石孔隙当中不同储集物的影响。 2.4 地质时代以及地层埋藏深度 声波在地层当中的传播会受到地层时代以及地层埋藏实际深度的影响。当地质时代与岩性相同,那么埋藏的深度越大,声波传播的速度也就越大;反之,埋藏的深度越小,那么声波速度也会随着减小。在岩性相同的情况下,相比新地层,老地层的声波传播速度更快,这主要是由于在漫长的地质年代中,老地层受到了覆盖岩层长期性压实产生的结果。此外,由于长期地壳运动,岩石骨架颗粒的排列也会越来越紧,其弹性与密度都会不同程度地增加。 3 声波测井的应用范围 3.1 钻孔岩性的划分 由于不同的岩层所具有的声波传播速度是不同的。所以,地层岩性可以通过声速测井来进行判断。在钻孔岩性的划分当中,也可以结合自然伽玛、电阻率等有关的参数。 3.2 岩层风化、氧化带的确定 由于受到了氧化与风化,岩石的胶结程度会受到不同程度的影响,甚至会出现破碎,从而导致强度减弱、密度减小、波速减小,将完整的岩石声波速度与所测得的声波速度进行比较就会发现。岩石的疏松与破碎的程度能够通过波速的减少量来判断,因此对岩层的氧化带、风化都能够加以确定。 Engineering Construction 工程施工 – 47 –

随钻声波测井系统技术参数

INTEQ 先进的SoundTrak TM LWD 声波测井服务可以精确测量所有地层中纵波和横波传输时间,SoundTrak 是唯一能与电缆测井匹敌的随钻测井系统,且考虑到大多数旋转导向钻井应用的特殊环境。并行多重频率的声波可以在各种传播速度范围的地层和井眼尺寸下获得高质量的测量数据。 专利的Quadrupole(四极子)技术可以在极软地层中精确直接的测得横波速度,无须进行dipole(偶极子)LWD 工具的离散校正。地层的声学特性可直接测得。 SoundTrak 得益于它的一个高输出全方位多极声波发送器;一个能消除工具偏心影响的六级、24阵列接收器;和一个用来隔开发射极和接收极的声波绝缘体,来削弱直接耦合影响;在井眼扩径的情况下也可获得可靠声速数据。即便在很具挑战性的环境下,先进的井下处理系统和声波层叠技术也能够优化信噪比。纵波的传输速度参数和质量信息会被实时传输,原始波形数据可存储在高容高速的内存中以备后续操作。在单趟钻中就可获取所有数据。 服务应用服务应用:: 纵波和横波传输时间的应用: ■ 钻井——预测孔隙压力从而避免钻井中的不利因素 ■ 地球物理——表面地震波校正和深度基准点可确定井位 和优化油藏模型 ■ 岩石物理——孔隙度和油气确认 (AVO) 计算油藏储量 ■ 地质力学——岩石特性,出砂潜在性和井眼稳定性分析 钻井完井方案 服务优势服务优势:: ■ 在世界范围200多口井出色的成功表现 ■ 减少钻机时间,单趟钻即可获取多种模式的信息资料 ■ 运用纵波数据预测孔隙压力确保井下安全 ■ 在超慢地层中(200usec/ft) 用低频单极子可以获得纵波传 播速度 ■ 工具在泥面以下和大井眼尺寸中也能够直接获取纵波传 播时间差?t ■ 通过井下WAVEVAN 实时处理计算传播时间差?t c ■ 地层横波速度直接通过Quadrupole(四极子)模式测得 ■ 较长的接受发射极间距使得在扩径井眼和超慢地层中也可以获取到可靠的声波数据 ■ 补偿系统可以消除工具偏心影响 ■ 自带的大容量内存可以长时间的存储大量信息 ■ 现场LQ C显示和实时的工具监测 ■ 先进的多任务处理 技技 术 参 数 表 SoundTrak

随钻声波测井技术综述

随钻声波测井技术综述 随钻测井的研究从20世纪30年代开始研究,在1978年研究出第一套具有商业价值的随钻测井仪器。在那以后,随钻测井在国外取得迅速发展并获得广泛应用,我国对随钻测井的重视达到了前所未有的程度。随钻声波测井也是如此。 1发展随钻测井的意义和随钻声波测井发展现状 随钻测井(LWD)是近年来迅速崛起的先进技术。它集钻井技术,测井技术和油藏描述等技术于一体,在钻井的同时完成测井作业,减少了钻机占用井场的时间,从钻井测井一体化中节省成本[1]。跟常规电缆测井相比,除了节省成本外,随钻测井有如下优势:(1)从测量信息上讲,随钻测井是在泥浆尚未侵入或者侵入不深时测量地层信息,泥饼和冲洗带尚未形成,所测得到的曲线更加准确,更能反映原始地层的真实信息,如声波时差等。(2)从对钻井的指导作用来讲,随钻测井可以提前检测到超压地层,以指导钻井泥浆的配制,提高钻井安全系数。它也可以根据测井信息,分析出有利的含油气方向,确定钻井方向,增强地质导向功能。(3)从适应环境上讲,在大斜度井,水平井或特殊地质环境(如膨胀粘土和高压地层),电缆测井困难或者风险大以致不能进行作业时,随钻测井可以取而代之。目前在海上,几乎所有钻井活动都采用随钻技术[2]。 正因为这些优点,作为随钻测井的重要组成部分的随钻声波测井近年来也获得了巨大的发展。总体而言,国外无论在随钻声波测井的基础理论研究方面还是在仪器研发方面都比较成熟,而国内近年来也对随钻声波测井的相关难题进行了大量的工作。 具体而言,从上世纪90年代起,贝克休斯、哈里伯顿、斯伦贝谢三大公司就率先开始了随钻声波测井的研究,并逐渐占领随钻测井的国际市场份额。APX随钻声波测井仪,CLSS随钻声波测井仪,sonicVISION随钻声波测井仪的相继出现,更加巩固了他们的垄断地位。在国内,鞠晓东,闫向宏[等人在随钻测井数据降噪[3],存储[4],压缩[5],传输特性[6]和电源设计[7]等方面做出了大量的工作。车小花[7],苏远大[8]等人对隔声体设计的隔声效果和机械强度分析进行了数值模拟和实验。此外,唐小明,乔文孝,王海澜等人在随钻声波测井基础理论研究方面做了许多有益的探索。 2随钻声波测井仪工作原理和技术性能 目前国际上主要的随钻声波测井仪有贝克休斯的APX,哈里伯顿的CLSS和斯伦贝谢的sonicVISION。以贝克休斯的APX测井仪为例,介绍一下仪器工作原理和结构。 APX测井仪的结构如下图1所示。从右到左由上部短节,声源电子线路部分,全向声源,声波隔离器,接收器阵列,接收器电子线路部分,下部短节等组成,全长9.82m (32.3ft),其中声波测量点到底部短节的距离为 2.83m(9.3ft),最短源距为 3.26m (10.7ft)。 其工作原理为:位于钻铤上部的声源发射器以最佳频率向井眼周围地层发射声能脉冲,在沿井壁及周围地层向下传播的过程中被阵列接收器接收到首播信号,接收信号后,系统首先用先进的嵌入式技术,将接收到的声波模拟信号转换成数字信号,并采用有限元等方法将数字信号转换为声波时差(data)值。最后将原始声波波形数据和预处理的声波波形数据存储在精心设计的高速存储器内或者以实时方式通过钻井液脉冲遥测技术传输到地面[9]。

声波测井技术发展现状与趋势

浅谈声波测井技术发展现状与趋势 摘要:以声波测井换能器技术的变化为主线,分析了声波测井技术的进展以及我国在该技术领域内取得的进步。单极子声波测井技术已经成为我国成熟的声波测井技术,包括非对称声源技术在内的多极子声波测井技术已经进入产业化进程。 关键词:声波测井;换能器;单极子声波测井;多极子声波测井; 从声学上讲,声波测井属于充液井孔中的波导问题。由声波测井测量的井孔中各种波动模式的声速、衰减是石油勘探、开发中的极其重要参数。岩石的纵、横波波速和密度等资料可用来计算岩石的弹性参数(杨氏模量、体积弹性模量、泊松比等);计算岩石的非弹性参数(单轴抗压强度、地层张力等);估算就地最大、最小主地层应力;估算孔隙压力、破裂压力和坍塌压力;计算地层孔隙度和进行储层评价和产能评估;估算地层孔隙内流体的弹性模量,从而形成独立于电学方法的、解释结果不依赖于矿化度的孔隙流体识别方法;与stoneley波波速、衰减资料相结合用以估算地层的渗透率;为地震勘探多波多分量问题、avo问题、合成地震记录问题等提供输人参数等等。经过半个多世纪的发展,声波测井已经成为一个融现代声学理论、最新电子技术、计算机技术和信息处理技术等最新科技为一体的现代测量技术,并且这种技术仍在迅速发展之中,声波测井在地层评价、石油工程、采油工程等领域发挥着越来越重要

的作用。与电法测井和放射性测井方法并列,声波测井是最重要的测井方法之一。 一、测井技术发展现状及趋势 声波测井技术的进步是多方面的。声波测井声波探头个数在不断增加以提高声波测量信息的冗余度、改善声波测量的可靠性;声波测井中探头的振动方式经历了单极子振动方式、偶极子振动方式、四极子振动方式和声波相控阵工作方式,逐步满足在任意地层井孔中测量地层的纵横波波速、评价地层的各向异性和三维声波测井的需求。声波探头的相邻间距不断减小,而发收探头之间的距离在不断增大,这一方面提高了声波测井在井轴方向的测量分辨率;另一方面也提高了声波测井的径向探测深度。声波测井的工作频率范围在逐步向低频和宽频带范围、数据采集时间在不断增大,为扩大声波测井的探测范围提供了保障。声波测井中应用的电子技术从模拟电路、数字电路技术逐步发展为大规模可编程电路和内嵌中央处理器技术,从而实现声波测井仪器的探头激励、数据采集、内部通讯、逻辑控制、数据传输等方面的智能化和集成化。可以预期,下一代声波测井仪器研制的关键技术之一是研制能够控制声束指向性的 基阵式换能器。应用相控阵换能器的最大优势就是增大空间某个方向的声辐射强度,使声波沿着预先设定好的方向辐射,从根本上增加有用信号的能量、提高信噪比和探测能力。显然,声波探头结构和振动模态性质的变化直接导致了声波测井技术的根本进步。

测井基础知识

测井基础知识 1. 名词解释: 孔隙度:岩石孔隙体积与岩石总体积之比。反映地层储集流体的能力。 有效孔隙度:流体能够在其中自由流动的孔隙体积与岩石体积百分比。 原生孔隙度:原生孔隙体积与地层体积之比。 次生孔隙度:次生孔隙体积与地层体积之比。 热中子寿命:指热中子从产生的瞬时起到被俘获的时刻止所经过的平均时间。 放射性核素:会自发的改变结构,衰变成其他核素并放射出射线的不稳定核素。 地层密度:即岩石的体积密度,是每立方厘米体积岩石的质量。 地层压力:地层孔隙流体(油、气、水)的压力。也称为地层孔隙压力。地层压力高于正常值的地层称为异常高压地层。地层压力低于正常值的地层称为异常低压地层。 水泥胶结指数:目的井段声幅衰减率与完全胶结井段声幅衰减率之比。 周波跳跃:在声波时差曲线上出现“忽大忽小”的幅度急剧变化的现象。 一界面:套管与水泥之间的胶结面。 二界面:地层与水泥之间的胶结面。 声波时差:声速的倒数。 电阻率:描述介质导电能力强弱的物理量。 含油气饱和度(含烃饱和度Sh):孔隙中油气所占孔隙的相对体积。 含水饱和度Sw:孔隙中水所占孔隙的相对体积。含油气饱和度与含水饱和度之和为1. 测井中饱和度的概念:1.原状地层的含烃饱和度Sh=1-Sw。2.冲洗带残余烃饱和度:Shr =1-Sxo (Sxo表示冲洗带含水饱和度)。3.可动油(烃)饱和度Smo=Sxo-Sw或Smo =Sh-Shr。4.束缚水饱和度Swi与残余水饱和度Swr成正比。 泥质含量:泥质体积与地层体积的百分比。 矿化度:溶液含盐的浓度。溶质重量与溶液重量之比。 2. 各测井曲线的介绍: SP 曲线特征: 1.泥岩基线:均质、巨厚的泥岩地层对应的自然电位曲线。 2.最大静自然电位SSP:均质巨厚的完全含水的纯砂层的自然电位读数与泥岩基线读数差。 3.比例尺:SP曲线的图头上标有的线性比例,用于计算非泥岩层与泥岩基线间的自然电位差。 4.异常:指相对泥岩基线而言,渗透性地层的SP曲线位置。(1)负异常:在砂泥岩剖面井中,当井内为淡水泥浆时(Cw>Cmf),渗透性地层的SP曲线位于泥岩基线的左侧(Rmf>Rw); (2)正异常:在砂泥岩剖面井中,当井内为盐水泥浆时(Cmf>Cw),渗透性地层的SP曲线位于泥岩基线的右侧(Rmf4d)的自然电位曲线幅度值近似等于静自然电位,且曲线的半幅点深度正对地层的界面。(3)随地层变薄曲线读数受围岩影响,幅度变低,半幅点向围岩方向移动。 SP 曲线的应用: 1.划分渗透性岩层:在淡水泥浆中负异常围渗透性岩层,在盐水泥浆中正异常围渗透性岩层。

声波测井技术在岩土工程勘察中的应用

浅谈声波测井技术在岩土工程勘察中的应用摘要:本文首先论述了声速测井的测试原理,进而论述了影响岩石声波速度的主要因素,第三以工程实例,利用声波测井技术得到了评价岩土动力学特征的参数,既校正地解释岩性和岩层,还反映了岩土层的相对强度,为建筑设计提供一定的参考依据;最后,文章还阐述了当前声波测井技术在岩土工程勘察中存在的不足之处,以供参考。 关键词:声波测井技术;岩土工程勘察;应用 abstract: this paper first discusses the velocity measurement principles of well logging, and then discusses the influence of the main factors rock acoustic velocity, and the third by engineering example, the acoustic logging technology got the evaluation of the parameters of the dynamic characteristics of rock, both correction to explain the lithology and rocks, but also reflect the relative strength of geotechnical layer, for building design provides some reference basis; finally, the paper also expounds the current acoustic logging technology in geotechnical engineering investigation in existence deficiency, for reference. keywords: acoustic logging technology; geotechnical engineering; application 中图分类号:tu74文献标识码:a 文章编号:

测井曲线一览表

测井符号英文名称中文名称 Rt true formation resistivity. 地层真电阻率 Rxo flushed zone formation resistivity 冲洗带地层电阻率 Ild deep investigate induction log 深探测感应测井 Ilm medium investigate induction log 中探测感应测井 Ils shallow investigate induction log 浅探测感应测井 Rd deep investigate double lateral resistivity log 深双侧向电阻率测井 Rs shallow investigate double lateral resistivity log 浅双侧向电阻率测井RMLL micro lateral resistivity log 微侧向电阻率测井 CON induction log 感应测井 AC acoustic 声波时差 DEN density 密度 CN neutron 中子 GR natural gamma ray 自然伽马 SP spontaneous potential 自然电位 CAL borehole diameter 井径 K potassium 钾 TH thorium 钍 U uranium 铀 KTH gamma ray without uranium 无铀伽马 NGR neutron gamma ray 中子伽马 --------------------------------------------------- GRSL—能谱自然伽马 POR 孔隙度 NEWSAND PORW 含水孔隙度 NEWSAND PORF 冲洗带含水孔隙度 NEWSAND PORT 总孔隙度 NEWSAND PORX 流体孔隙度 NEWSAND PORH 油气重量 NEWSAND BULK 出砂指数 NEWSAND PERM 渗透率 NEWSAND SW 含水饱和度 NEWSAND SH 泥质含量 NEWSAND CALO 井径差值 NEWSAND CL 粘土含量 NEWSAND DHY 残余烃密度 NEWSAND SXO 冲洗带含水饱和度 NEWSAND DA 第一判别向量的判别函数 NEWSAND DB 第二判别向量的判别函数 NEWSAND DAB 综合判别函数 NEWSAND CI 煤层标志 NEWSAND

声波变密度测井技术及其应用

声波变密度测井技术及其应用 目前油田固井质量检查的主要方法是声波幅度测井和声波变密度测井。声波变密度测井是由声幅测井发展而来的,其原理是利用水泥和泥浆(或水)声阻抗的较大差异对沿套管轴向传播的声波的衰减影响,来反映水泥与套管间、套管与地层的胶结质量。井下仪器主要包括声系和电子线路两部分。声系的功能是为了进行声波测井,它包括发射探头和接收探头,仪器的源距有两种,3ft和5ft,3ft的用于声幅测量,5ft的用于变密度测量。电子线路可以挂接连续测斜仪、高分辨率声波、双侧向和双感应等探头,实现多探头组合测井。 一、声波变密度下井仪 测井仪的声系由两个压电晶体组成,一个发射,一个接收。声源的工作频率为20KHz,重复频率15-20Hz。测井时,声源发出的声脉冲在井内各个方向传播,当传播到两种介质的交界面时,会发生声波的反射和折射。 井下仪电路主要由4个单元电路组成,即逻辑单元、接收单元、低压电源及信号衰减单元、发射控制及换档脉冲检测单元。逻辑信号首先进入半峰值再生电路,检测出的逻辑信号进入逻辑形成电路,产生发射、接收直流逻辑方波,并形成同步脉冲。同步脉冲与发射逻辑共同进入逻辑控制电路,产生各种控制信号,触发脉冲送发射电路,经换能器转换成声波信号,经地层传播,被接收换能器转换成电信号而送入预放级,经隔离选择,控制晶体发射、接收,然后接收信号经增益控制、发射干扰抑制等处理,最后与发射标志脉冲经电缆传输到地面。 二、声波变密度测井能够解决的问题 1、全波列分析 全波列测井包含声波的速度、幅度、频率等信息,我们主要对前12-14个波的幅度及到达时间进行分析。一般情况下,前3个波与套管波有关,反映套管与水泥环的胶结状况;第4-6条相线与水泥环中传播的声波信号有关,它反映水泥环与地层的胶结状况。 2、声波变密度测井检查固井质量 (1)套管外无水泥。这种情况下,套管波反射能力很强,地层波较弱或没有,变密度的相线差别不大,基本均匀分布,套管接箍明显,固井声幅为高幅值。 (2)水泥与套管和地层胶结良好。这种情况下,由于套管和固结水泥的差别较小,声波大量进入地层,因而套管波很弱,地层波很强,固井声幅为低幅值。 (3)水泥仅与套管胶结良好,与地层胶结差。这种情况声波不在套管界面反射而是进入水泥环,水泥环对声波能量衰减很大,传给地层的声波能量很小,所以套管波和地层波都很弱,但固井声幅显示低幅值。 (4)水泥与套管胶结一般。这种情况下套管把大部分声波能量反射回来,只有小部分声波能量进入地层,套管波和地层波都有一定的幅度。 3、声波变密度测井的优点 (1)能够对即套管与水泥和水泥与地层两个界面进行胶结状况的评价。 (2)施工效率提高。采用组合测井方式,缩短了作业时间,降低了劳动强度,缩短了完井周期。

声波测井技术发展现状与趋势

浅谈声波测井技术发展现状与趋势

摘要:以声波测井换能器技术的变化为主线,分析了声波测井技术的进展以及我国在该技术领域内取得的进步。单极子声波测井技术已经成为我国成熟的声波测井技术,包括非对称声源技术在内的多极子声波测井技术已经进入产业化进程。 关键词:声波测井;换能器;单极子声波测井;多极子声波测井; 从声学上讲,声波测井属于充液井孔中的波导问题。由声波测井测量的井孔中各种波动模式的声速、衰减是石油勘探、开发中的极其重要参数。岩石的纵、横波波速和密度等资料可用来计算岩石的弹性参数(杨氏模量、体积弹性模量、泊松比等);计算岩石的非弹性参数(单轴抗压强度、地层张力等);估算就地最大、最小主地层应力;估算孔隙压力、破裂压力和坍塌压力;计算地层孔隙度和进行储层评价和产能评估;估算地层孔隙内流体的弹性模量,从而形成独立于电学方法的、解释结果不依赖于矿化度的孔隙流体识别方法;与stoneley波波速、衰减资料相结合用以估算地层的渗透率;为地震勘探多波多分量问题、avo问题、合成地震记录问题等提供输人参数等等。经过半个多世纪的发展,声波测井已经成为一个融现代声学理论、最新电子技术、计算机技术和信息处理技术等最新科技为一体的现代测量技术,并且这种技术仍在迅速发展之中,声波测井在地层评价、石油工程、采油工程等领域发挥着越来越重要的作用。与电法测井和放射性测井方法并列,声波测井是最重要的测井方法之一。

一、测井技术发展现状及趋势 声波测井技术的进步是多方面的。声波测井声波探头个数在不断增加以提高声波测量信息的冗余度、改善声波测量的可靠性;声波测井中探头的振动方式经历了单极子振动方式、偶极子振动方式、四极子振动方式和声波相控阵工作方式,逐步满足在任意地层井孔中测量地层的纵横波波速、评价地层的各向异性和三维声波测井的需求。声波探头的相邻间距不断减小,而发收探头之间的距离在不断增大,这一方面提高了声波测井在井轴方向的测量分辨率;另一方面也提高了声波测井的径向探测深度。声波测井的工作频率范围在逐步向低频和宽频带范围、数据采集时间在不断增大,为扩大声波测井的探测范围提供了保障。声波测井中应用的电子技术从模拟电路、数字电路技术逐步发展为大规模可编程电路和内嵌中央处理器技术,从而实现声波测井仪器的探头激励、数据采集、内部通讯、逻辑控制、数据传输等方面的智能化和集成化。可以预期,下一代声波测井仪器研制的关键技术之一是研制能够控制声束指向性的 基阵式换能器。应用相控阵换能器的最大优势就是增大空间某个方向的声辐射强度,使声波沿着预先设定好的方向辐射,从根本上增加有用信号的能量、提高信噪比和探测能力。显然,声波探头结构和振动模态性质的变化直接导致了声波测井技术的根本进步。(一)单极子声波测井技术 声波测井仪器的声系一般由声波发射探头、隔声体和声波接收探头等部件构成。在井下采用单极子声源(对称声源)及单极子接收技

相关文档
最新文档