电子设计竞赛超级实用报告——低频功率放大器

电子设计竞赛超级实用报告——低频功率放大器
电子设计竞赛超级实用报告——低频功率放大器

低频功率放大器(G题)

摘要:本设计主要由低噪声放大电路、带阻滤波电路、信号放大电路、功率放大电路、峰值检波、单片机控制、AD转换、LCD显示、稳压电源等组成。低噪声放大电路选取甚低噪声宽带高精度运算放大器OP37,并采用并联负反馈,具有良好的抗共模干扰能力。功率放大电路采用双MOS晶体管的甲乙类推挽放大电路。带阻滤波器在50Hz频率点输出功率衰减≥6dB,阻带频率范围为43~57Hz,有效滤除了工频噪声的干扰。设计的低频功率放大器的通带为6Hz~140KHz,很好地完成了通频带的扩展。所有电路结构简单,所选器件价格便宜,并给出了测试结果。测试结果表明,该低频功率放大器可以很好地实现对低频信号的放大作用,其输出带宽、功率、效率等方面具有较好的指标、较高的实用性,为低频功率放大器的设计提供了广阔的思路。

关键词:功率放大器;OP37;MOS晶体管;输出功率

基本要求

(1)当输入正弦信号电压有效值为5mV时,在8Ω电阻负载(一端接地)上,输出功率≥5W,输出波形无明显失真。

(2)通频带为20Hz~20kHz。

(3)输入电阻为600Ω。

(4)输出噪声电压有效值V0N≤5mV。

(5)尽可能提高功率放大器的整机效率。

(6)具有测量并显示低频功率放大器输出功率(正弦信号输入时)、直流电源的供给功率和整机效率的功能,测量精度优于5%。

发挥部分

(1)低频功率放大器通频带扩展为10Hz~50kHz。

(2)在通频带内低频功率放大器失真度小于1%。

(3)在满足输出功率≥5W、通频带为20Hz~20kHz的前提下,尽可能降低输入信号幅度。

(4)设计一个带阻滤波器,阻带频率范围为40~60Hz。在50Hz频率点输出功率衰减≥6dB。

(5)其他。

一、方案论证比较

1.1 低噪声问题

设计要求输出噪声电压有效值低于5mv,因此前级放大电路要选用OP37型低噪声运放。并采用同相无对地电阻的反相放大电路,使电路中的噪声源—电阻的数量达到最少,以最大限度地获得低噪声。

1.2 灵敏度问题

由于信号至少需要被放大一千多倍。考虑到运算放大器的放大倍数和通频带的关系,所以放大电路采用两级放大。(整机增益为10020倍)

1.3 高保真问题

功率放大电路采用了具有负反馈功能的甲乙类推挽放大电路,有效克服了普通甲乙类推挽放大电路的交越失真问题。

1.4 提高效率的问题(亮点)

运算放大器的电源电压高于功率输出级的电源电压,最大限度地提高了电源电压的利用率,也就是功率放大器的效率。

1.5 电源方案(创新点)

将稳压前的电压作为运算放大器的电源,稳压后的12V提供给功率输出级,这样就在获得两套对称电源输出的同时,最大限度地简化了电源结构。

1.6 陷波器功能的革新(创新点)

对陷波电路进行了革新,使经典陷波器尖锐的幅频特性曲线变得圆滑一些,使其更加适合消除机械发电机产生的不够精确和稳定的50Hz工频干扰。

1.7 参数监控问题

低频功率放大器输出功率、直流电源的供给功率和整机效率的测量与显示电路,以单片机为控制芯片,信号经AD转换后送给LCD显示,不仅成本低,并且很好的完成了要求。

1.8 整机系统方框图

我们设计的低频功率放大器主要由前级低噪声放大电路、中级信号放大电路、功率放大电路、带阻滤波器、电源电路、峰值检波电路、AD转换电路、单片机控制电路、LCD显示电路等组成,系统框图如图1所示。

图1 系统框图

二、主要电路设计与计算

2.1 输出功率及电源电压

设计要求在8Ω电阻负载上输出功率≥5W,考虑留出一定的裕量,故设计输出功率输出级的电源电压为12V,输出功率输出级的输出电压峰值则接近12V,,最大输出功率则接近9W,满足题目要求。

P = U×U / 2R = 12×12 / (2×8) = 9W

2..2 增益分配

确定采用两级放大器,一级跟随器兼增益调节。前置放大器的增益A

v1

=167倍,功率放

大器的增益A

v2=60倍,跟随器兼增益调节的增益A

v3

=0~1倍。

整机增益为A

v =A

v1

×A

v2

×A

v3

=167×60×(0~1)=0~10020倍。

2.3 低噪声前置放大电路

低噪声前置放大电路是由运放构成的反相放大器,如图2所示。运放选取甚低噪声宽带高精度运算放大器OP37,其失调电压低于25uV,从而有效降低外界噪声干扰。采用反相放大器,使电路所用元器件的个数降到最少,电路简单可靠。

图2 前级低噪声放大电路

2.4阻带滤波器

实际电网产生的50Hz工频干扰是机械发电机产生的,其频率是不够精确和稳定的,会在49.5~50.5Hz范围内波动。

常规陷波器对陷波频率衰减的幅频特性曲线很尖锐,不利于衰减50HZ附近的频率,如图3(a)中曲线A所示。针对这种缺陷,我们调整了陷波器的参数(将R

由典型值的16.5KΩ改为

3

22KΩ),使陷波器的幅频特性曲线改变成了如图3(a)中B所示的形状,使其对50HZ附近的频率的衰减特性大大改善。

图3(a) 陷波器幅频特性曲线

针对设计要求的阻带频率范围为40~60Hz,且在50Hz频率点输出功率衰减≥6dB,我们设计了Q值可调、衰减幅度可调的功能,如图3(b)所示。经调试,电路的参数完全达到了理论设计要求。

图3(b) 阻带滤波器

2.5 中间信号跟随电路及增益调节方案

①、中间级信号跟随电路为由运放TL084组成的,用于实现陷波器与增益调节电位器之间的阻抗转换。

②、经测试,精密线绕电位器和通用碳膜电位器的幅频特性远不能满足题目要求,而微型微调电位器的幅频特性可在0Hz~240KHz范围保持平坦。所以决定采用微型微调电位器实现增益调节功能,这样可以简单地回避在电路中采用繁琐的频率补偿方案。

2.6 功率放大电路

功率放大电路采用了具有负反馈功能的甲乙类推挽放大电路,末级功放管采用分立的大功率互补对称的场效应晶体管2RF630、2RF9630,如图4所示。一般电路的反馈采样点选在运放的输出端(图4中a点),而本设计中选取在功率输出端(图4中b点),利用反向比例放大器的强负反馈功能来纠正功率输出及的交越失真。

末级功率放大电路工作在甲乙类状态,静态工作电流为25mA。

图4 功率放大电路

2.7 提高功率放大器效率的措施

=2A)时

①、大功率MOS场效应管具有很低的饱和压降,如2RF630场效应管在大电流(I

D

的饱和压降U

=0.1V。所以用MOS场效应管组成的对称互补型功率输出电路,输出电压可以很

D

接近电源电压,也就是可以很接近70%的理想输出效率,如下图c’中场效应管组成的对称互补型型功率输出级的输出电压与电源电压之间的关系。

图5提高功率放大器效率的原理

②、但作为推动级的运算放大器TL084的输出电压明显不能达到轨到轨的水平(见图中运放的最大输出电压),而且由于功率输出级存在内阻,使功率输出级的输出电压又明显小于推动级运放的输出电压(见图中a、a’和c、c’之间的关系),从而使功率输出级的输出电压明显不能接近电源电压,功率输出级的效率因此不能得到充分发挥。

若强制增大推动级运放的输出电压,将会出现失真(见图中b、b’之间的关系)。

③、我们提高功率放大器效率的措施是:

采用推动级运算放大器的电源电压高于功率输出级的电源电压的方法,创造运算放大器TL084的输出电压可以显著大于功率输出级最大输出电压的条件。如上图所示推动级运放的输出电压与电源电压之间的关系,从而最大限度地提高了功率输出级对电源电压的利用率。

2.7 减小失真的措施

推动级运算放大器因纠正功率输出电路非线性失真的需要和功率输出电路自身输出阻抗的原因,推动级比例运算放大器在正常放大时,输出电压会明显大于功率输出的电压;从而使其阻碍功率输出效率的作用更加显著,如图A所示:

图5减小失真的原理

2.8 峰值检波电路

峰值检波器为理想检波电路,该电路可以消除检波二极管的正向导通电压所引起的误差。如图5所示,测得的电压峰值送给单片机处理。

图6 峰值检波电路

2.9 稳压电源电路

本设计的供电系统采用了自行设计的直流稳压电源,该稳压电源以最简单的结构为本设计提供了3套电源。原理框图如图6所示。

图7 直流稳压电源

1Ω的整机电流取样电阻设在7812的前面,是为了不增加7812的低输出阻抗。

由于运算放大器的高共模电源电压其抑制比,所以,为运算放大器提供的电源无需稳压。

2.10 防自激的措施

由于本音频功放的电压放大倍数很大(A

v

最大超过104倍),所以电路很容易自激。我们采取两套措施来解决自激问题:

1、对前置放大器的电源进行滤波,以减小前后级放大器之间的交流耦合,如图所示R

1

R 2、C

1

、C

2

、组成的滤波电路。由于前置放大器不会有大的输出电压,所以,该滤波电路虽然

降低了前置放大器的电源电压,却不会影响整机的输出电压动态范围。

2、让负载的大电流完全不通过信号回路,见图7中虚线框内的地线结构。

图8防自激的措施

2.11 双减法器设计

由于双电源的正负电源输出的电流不一定相等,所以我们设计了双减法器(仅仅多了三个电阻),能够获得双电源的正负电源输出电流的平均值,使输出的数据更加稳定,准确。

图9双减法器

2.12 显示电路设计

显示电路是以单片机STC89C52RC为核心,由多通道AD转换芯片TLC1543采样电压信号,最后计算结果送LCD12864显示,如图7所示。其中TLC1543的通道1采集8Ω电阻负载上输

出的峰值电压om

U,通道2采集稳压电源在标准电阻Rc=1Ω上U,然后送给单片机做处理,

其中输出功率

2

2

om

o

U

P

R

=

,供给功率

i

c

U

P U

R

=?

,最后将数据送LCD

显示。

图10显示电路原理图

程序由主程序和中断程序组成,如图8所示。

在主程序中,首先对LCD、定时中断T0等

进行初始化,给任务变量赋初值,然后进行AD

转换并送LCD显示,同时等待中断。进入中断后,

任务全局变量,即 I 和J同时减1,由于变量赋了

初值,当I减至0时,执行任务1,即AD采样及

数据处理,然后再赋值给I;当J减至0时,执行

任务2,即数据更新显示,然后再赋值给J,等待

下一次的中断即变量减1,直至为0,又执行各

任务。

图11程序流程图

三、测试方案与测试结果 3.1 输出功率的测量

所用仪器:TFG1005 DDS 函数信号发生器,RIGOL DS5022M 型双通道数字存储示波器。 测量方法:用函数信号发生器提供电压有效值为5mV 的正弦输入信号,调整其频率在20Hz ~20kHz 之间变化,用示波器测量8Ω电阻负载上的电压信号,可以看到输出波形无明显

失真。记录几个随机频率点处负载两端的电压有效值U 有效

,利用公式

2

o U P R

=

有效即可求出输

出功率。

测量结果:如表1所示。

表1 输出功率的测量结果 f(Hz)

20Hz 200Hz 2K 20K

U 有效(V) 6.36 6.36 6.36 6.36 o

P (W) 5

5

5

5

3.2 通频带的测量

所用仪器: TFG1005 DDS 函数信号发生器,RIGOL DS5022M 型双通道数字存储示波器。 测量方法:方法同上,需要分别测量20Hz 和20KHz 附近处的电压有效值,如果这两点处

的电压幅值大于0.7072

U U ≈有效

有效

,而小于20Hz 和大于20KHz 的频率点的电压值小于

0.707U 有效

测量结果:如表2所示。

表2 通频带的测量结果

2

1U 有效

7.07V f(Hz)

2 6 11

20

5K

10K

15K 20K 50K 100K 140K U 有效(V)

4

5

7.07 7.07 7.07 7.07

7.07

7.07

6.8

5.8

5

3.3 输入阻抗的测量

所用仪器:万用表,TFG1005 DDS 函数信号发生器,RIGOL DS5022M 型双通道数字存储示波器。

测量方法:不接负载,断开电源,在功率放大电路输入端之前串接一个600欧的电阻R ,

在此外接电阻之前输入电压有效值为5mV 正弦信号,用示波器测量外接电阻端的信号电压有效值

U R 有效

和原输入端的信号电压有效值

i U 有效

测量结果:测得U =S 有效5mV ,i U =有效 2.5mV ,根据i i

i

U U R R R =

+S 有效有效可求得i R =600Ω

3.4 输出噪声电压的测量

所用仪器: 带宽为2MHZ 的毫伏表

测量方法:将输入端接地,用交流毫伏表测量负载上的电压有效值ON U 。 测量结果:测得ON U =5mV 。

3.5 测量、显示功能的测试

所用仪器: DH1718D_2双路跟踪稳压稳流电源,TFG1005 DDS 函数信号发生器,RIGOL DS5022M 型双通道数字存储示波器,万用表。

测量方法:把万用表串联在直流信号源与功率放大电路之间,利用其电流档测直流输入电流i I ,直流电压i U 可通过信号源直接读出;用示波器测量8Ω电阻负载上的电压有效值

U 有效

,利用公式i i P U I =?得直流电源的供给功率;利用公式

2

o U P R

=

有效可得输出功率;利用

公式

i

100%P o

P η=?可得整机效率;测量结果可从LCD 上直接读取。

测量结果:i U =12V,i I =613mA ,

U =

有效 6.36V,

i

100%P o

P η=

?=68%。

3.6 失真度测量

所用仪器: TFG1005 DDS 函数信号发生器,RIGOL DS5022M 型双通道数字存储示波器。 测量方法:测量8Ω电阻负载上的电压信号,用基波剔除法,即测量信号中的基波和各次谐波的电压,获得基波和各次谐波的电压,从而计算出失真度。 5总结

该系统采用直流供电,低频交流信号输入、由低频功率放大模块、减法器功能电路模块、峰值检测电路模块、TLC1543AD 采样转换模块,单片机控制模块、显示LCD12864模块组成、带阻滤波器来增强系统的抗干扰性能。系统具有低频功率放大功能,测量并显示直流电源功率、交流输出功率、效率功能、抗干扰能力强等特点。

参考文献

[1] 谭浩强著. C 语言程序设计(第三版). 清华大学出版社,2005. [2] 李朝青著. 单片机原理及接口技术. 北京航空航天大学出版社,2005.

[3] 康华光. 电子基础(模拟部分). 高等教育出版社. 2001-4

[4] 康华光. 电子基础(数字部分). 高等教育出版社. 2001-4

低频功率放大器电路设计

参加全国大学生电子设计大赛的同学们加 油了! 低频功率放大器设计与总结报告 作者:王汉光 一、任务 设计并制作一个低频功率放大器,要求末级功放管采用分立的大功率MOS 晶体管。 二、要求 1.基本要求 (1)当输入正弦信号电压有效值为5mV时,在8Ω电阻负载(一端接地)上,输出功率≥5W,输出波形无明显失真。 (2)通频带为20Hz~20kHz。 (3)输入电阻为600Ω。 (4)输出噪声电压有效值V0N≤5mV。 (5)尽可能提高功率放大器的整机效率。 (6)具有测量并显示低频功率放大器输出功率(正弦信号输入时)、直流电源的供给功率和整机效率的功能,测量精度优于5%。

2. 发挥部分 (1)低频功率放大器通频带扩展为10Hz~50kHz。 (2)在通频带内低频功率放大器失真度小于1%。 (3)在满足输出功率≥5W、通频带为20Hz~20kHz的前提下,尽可能降低输入信号幅度。 (4)设计一个带阻滤波器,阻带频率范围为40~60Hz。在50Hz频率点输出功率衰减≥6dB。 (5)其他。 摘要: 本系统采用了NE5534p作为前级的电压放大电路来给低通功率放大电路提供输入电压,通过低通功率放大电路将功率放大,由双踪示波器对整个系统的输入输出端进行监测,调节可变电阻,使输出波形无明显失真,从而使输出功率达到指定的输出功率要求。输入的频率范围为20Hz~20kHz。 一.概述: 本系统通过信号发生器输入电压为5mV,频率在20Hz~20kHz范围内的信号,对信号进行功率放大,低通功率放大器模块由+/-15V的直流电源提供,通过前级放大电路将输入电压放大,再由低通功率放大电路进行功率放大。在此期间,用示波器监测低通功率放大模块的输入输出端,观察波形是否失真,以及测量最大最小不失真频率。 二.系统工作原理及分析: 此系统由三部分组成,分别为电源模块、前级放大模块、低频功率放大模块。 如图所示:

6低频功率放大器实验报告1

实验报告 姓名: 学号: 日期: 成绩 : 课程名称 模拟电子实验 实验室名称 模电实验室 实验 名称 低频功率放大器 同组 同学 指导 老师 一、实验目的 1、进一步理解OTL 功率放大器的工作原理 2、学会OTL 电路的调试及主要性能指标的测试方法 二、实验原理 图7-1所示为OTL 低频功率放大器。其中由晶体三极管T 1组成推动级(也称前置放大级),T 2、T 3是一对参数对称的NPN 和PNP 型晶体三极管,它们组成互补推挽OTL 功放电路。由于每一个管子都接成射极输出器形式,因此具 图7-1 OTL 功率放大器实验电路 有输出电阻低,负载能力强等优点,适合于作功率输出级。T 1管工作于甲类状态,它的集电极电流I C1由电位器R W1进行调节。I C1 的一部分流经电位器R W2及二极管

D , 给T 2、T 3提供偏压。调节R W2,可以使T 2、T 3得到合适的静态电流而工作于甲、 乙类状态,以克服交越失真。静态时要求输出端中点A 的电位CC A U 21 U =,可以 通过调节R W1来实现,又由于R W1的一端接在A 点,因此在电路中引入交、直流电压并联负反馈,一方面能够稳定放大器的静态工作点,同时也改善了非线性失真。 当输入正弦交流信号u i 时,经T 1放大、倒相后同时作用于T 2、T 3的基极,u i 的负半周使T 2管导通(T 3管截止),有电流通过负载R L ,同时向电容C 0充电,在u i 的正半周,T 3导通(T 2截止),则已充好电的电容器C 0起着电源的作用,通过负载R L 放电,这样在R L 上就得到完整的正弦波。 C 2和R 构成自举电路,用于提高输出电压正半周的幅度,以得到大的动态范围。 OTL 电路的主要性能指标 1、最大不失真输出功率P 0m 理想情况下,L 2CC om R U 81P =,在实验中可通过测量R L 两端的电压有效值,来 求得实际的L 2 O om R U P =。 2、 效率η 100%P P ηE om = P E —直流电源供给的平均功率 理想情况下,ηmax = 78.5% 。在实验中,可测量电源供给的平均电流I dC , 从而求得P E =U CC ·I dC ,负载上的交流功率已用上述方法求出,因而也就可以计算实际效率了。 3、 频率响应 详见实验二有关部分内容 4、 输入灵敏度 输入灵敏度是指输出最大不失真功率时,输入信号U i 之值。 三、实验设备与器件 1、 +5V 直流电源 5、 直流电压表 2、 函数信号发生器 6、 直流毫安表

电子设计实验报告

电子技术课程设计报告

目录 1. 电子琴 (2) (1.1 )设计要求 (2) (1.2 )设计的作用. 目的 (2) (1.3 )设计的具体实现 (3) (1.4)心得体会、存在问题和进一步的改进意见等 (7) (1.5)附录 (8) (1.6 )参考文献 (9) (1.7 )附图 (9) 2. 温度控制电路 (10) 2.1 )设计要求 (10) (2.2 )设计的作用. 目的 (10) (2.3 )设计的具体实现 (10) (2.4)心得体会、存在问题和进一步的改进意见等12 (2.5)附录 (12) (2.6 )参考文献 (13) 3. ...................................................... 信号发生器13 (3.1 )设计要求 (13) (3.2 )设计的作用. 目的 (13) (3.3 )设计的具体实现 (14) (3.4)心得体会、存在问题和进一步的改进意见等 (17) (3.5)附录 (17) (3.6 )参考文献 (17) 4. ...................................................... 音频放大器18 (4.1 )设计要求 (18) (4.2 )设计的作用. 目的 (18) (4.3 )设计的具体实现 (18) 4.4)心得体会、存在问题和进一步的改进意见等 (21) (4.5) .......................................... 附录21

(4.6 )参考文献 (21) 简易电子琴设计报告 一.设计要求本设计是基于学校实验室的环境,根据实验室提供的实验条件来完成设计任务,设计一个简易电子琴。 (1).按下不同琴键即改变RC 值,能发出C 调的八个基本音阶,采用运算放大器构成振荡电路,用集成功放电路输出。 (2).选择电路方案,完成对确定方案电路的设计。计算电路元件参数并记录对应不同音阶时的电路参数值、元件选择、并画出总体电路原理图,阐述基本原理。(3).连接安装调试电路。 (4).写出设计总结报告。 二. 设计的作用、目的 1. 学会用仿真软件对设计的原理图进行仿真。培养创新能力和创新思维,锻炼学生 自学软件的能力,通过查阅手册和文献资料,培养独立分析问题和解决问题的能 力。 2. 培养学生正确的设计思想,理论联系实际的工作作风,严肃认真、实事求是的科 学态度和勇于探索的创新精神。 3. 通过课程设计,使学生在理论计算、结构设计、工程绘图、查阅设计资料、标准 与规范的运用和计算机应用方面的能力得到训练和提高。

模电实验报告(低频功率放大器、直流稳压电源)

《模拟电子系统训练》 设计报告 班级: 姓名:

低频功率放大器的设计 设计任务书 设计一个集成功率放大器,在放大通道的正弦信号输入幅度为5mV~700mV 等效负载电阻为8?,满足以下指标: 1、额定输出功率P o≥10W; 2、带宽BW为50Hz~10Hz; 3、在P o下的效率≥55%; 4、在P o和BW下的非线性失真系数γ≤3%; 5、当输入端交流信号为是0时,R L上交流噪声功率≤10mV。

一、设计原理 1、低频功率放大器常见的电路形式有OCL电路和OTL电路,要求其输出功率大,非线性失真小,效率高等。 2、LA4100~LA4102集成功率放大器的介绍,下图为其内部电路: 电路增益可通过内部电阻R11与脚6所接电阻决定。 LA4100~LA4102接成的电路如下图所示,外部元件的作用如下: R F、C F——与内部电阻R11组成交流负反馈支路,控制电路的闭环电压增益Av ; Av ≈ R11/ R F

C B —— 相位补偿,一般取几十至几百pF ; C C —— OTL 电路的输出端电容,一般取耐压大于V CC /2的几百μF 电容; C D —— 反馈电容,消除自激,一般取几百P F ; C H —— 自举电容; C 3、C 4 —— 滤除纹波,一般取几十至几百μF ; C 2 —— 电源退耦电容。 二、设计步骤 1、总体方案设计 ① 放大通道的正弦信号幅度为一范围(5mV~700mV ),输出电压在等效负载电阻上获得,则放大器的增益是可以调节的。 ② P o 下的效率≥55%,则说明功率放大器的功率输出级工作在甲乙类。 ③ 放大倍数A u 的计算: L o o L o o R P U R U P = ∴= 2 V R P U L o OM 6.122== ,取U OM =14V iM oM U U U A = ∴=2800。 ④ 整个电路由前置放大电路和功率放大电路共同完成,其中前置电路的增益为280,功率放大电路的增益为10。其系统框图如下: 1、单元模块设计 ① 前置放大电路 由两个双运放集成运算放大器NE5532构成两级电压放大电路,两级的增益分别为15和20: 20 1020015 101505 62211=Ω Ω== =ΩΩ== K K R R A K K R R A U U 前置放大电路 功率放大电路 R L 交流型号输入

常用低频功率放大器

常用低频功率放大器

第4章低频功率放大器 【课题】 4.2常用低频功率放大器 【教学目的】 1.会识读OTL、OCL功放电路的电路图。 2.理解OCL和OTL功放电路的工作原理。 3.理解产生交越失真原因、掌握消除交越失真的方法。 4.会计算OCL、OTL功放电路的最大输出功率。 5.了解功放器件的选用及安全使用常识。 【教学重点】 1.OCL和OTL功放电路组成、主要元件的作用及工作原理。 2.消除交越失真的方法。 3.计算OCL、OTL功放电路的最大输出功率。 4.功放器件的选用及安全使用常识。 【教学难点】 1.产生交越失真的原因及消除方法。 2.OCL功放电路主要元件的作用及工作原理。 3.OTL功放电路主要元件的作用及工作原理。【教学参考学时】

4学时 【教学方法】 讲授法、分组讨论法。 【教学过程】 一、引入新课 复习低频功率放大器的分类。 二、讲授新课 4.2.1 OCL功率放大器 一、未设偏置电路的OCL功放电路 1.电路组成特点 (1)由一对特性参数基本相同,导电类型不同的功放管V1(NPN管)和V2(PNP管)组成的射极输出器构成,如图4.2所示。 (2)电路输出端采用直 接耦合。 (3)电路采用双电源供 电。 (4)电路未设置偏置电 V c 路,静态时两功放管均处于截止状态,即电路工作在乙类状态。

2.电路工作原理 (1)静态时,由于V 1和V 2特性相同,供电电源对称,使功放管发射极到地的电压,即中点电位V A =0,功放管V 1、V 2均截止,电路中无功率损耗。 (2)当输入交流信号v i 为正半周期时, V 1正偏导通,V 2反偏截止, 信号经V 1管放大,V 1管集电极电流i c1流经负载R L ,在R L 上形成输出电压v o 的正半周,如图4.3(教材图4.6)所示,其电流方向如图 4.2中箭头所示。 (3)当v i 为负半周时,V 1反偏截止,V 2正偏导通, 信 号经V 2管放大,V 2管集电极电流i c2流经R L ,在R L 上形成输出电压v o 的负半周,电流方向与正半周相反。 因此,在输入信号变化一个周期内,V 1、V 2交替半周导通,犹如一推一挽,在负载上合成完整的信号波形。 3.电路存在交越失真 (1)交越失真 输出波形在正、负半周的交替处产生失真称为交越失真,如图4.3所示。 (2)产生交越失真的原因 电路未设置偏置电路,功放管因静态电流为零,处于截止状态。在输入信号v i 小于死区电压时,三极管不能导通,造成两功放管在输出信号的正、负半周交接处 V c 交越 图

低频功率放大器毕业设计论文

低频功率放大器 毕业设计论文 【摘要】实用低频功率放大器主要应用是对音频信号进行功率放大,本文介绍了具有弱信号放大能力的低频功率放大器的基本原理、内容、技术路线。整个电路主要由稳压电源、前置放大器、功率放大器、波形变换电路和保护电路共五部分构成。稳压电源主要是为前置放大器、功率放大器提供稳定的直流电源。前置放大器主要是电压的放大。功率放大器实现电流、电压的放大。波形变换电路是将正弦信号电压变换成规定要求的方波信号。设计的电路结构简洁、实用,充分利用到了集成功放的优良性能。实验结果表明该功率放大器在带宽、失真度、效率等方面具有较好的指标、较高的实用性,为功率放大器的设计提供了广阔的思路 本设计的低频功率放大器同时还具有测量显示功率输出、电源供给功率和整机效率的功能。本文首先对功率放大器的课题背景作简要的说明,随后对功率放大器的一些基础知识进行介绍。最后,本文具体叙述实用低频功率放大器的安装与调试,并对电路在工作中易出现的失真情况做了细致的分析。 关键字:前置放大;功率放大;稳压电源电路;

Low frequency power amplifier design graduate paper 【 abstract 】 practical low frequency power amplifier is mainly used for audio signal power amplifier, this paper introduces the weak signal amplifier ability has the low frequency power amplifier, the basic principle of content, the technical route. The main circuit by manostat, preamplifier, power amplifiers, wave transform circuit and the protection circuit of five parts. Manostat primarily for pre-amplifier, power amplifier provide stable dc power. The preamplifier mainly is the voltage scaling. Power amplifier realize current, voltage scaling. Wave transform circuit is will sine signal voltage transform into the requirements of square wave signal. The design of the structure is simple, practical circuit, make full use of the performance of the integrated amplifier. The experimental results show that the power amplifier in bandwidth, distortion degree, efficiency has good index, higher practicability, for power amplifier design offers wide thinking The design of the low frequency power amplifier and at the same time also has measurement shows power output, power supply power and the efficiency of the function. This paper first to power amplifier background of the topic be briefly and then some basic knowledge of power amplifier is introduced. Finally, this paper describes the low frequency power amplifier specific practical installation and commissioning, and in the work of circuit to occur during the distortion of the situation did meticulous analysis. Key word: preamplifier; Power amplifier; Stabilized voltage power supply circuit;

低频功率放大器报告

2013年课程设计实验报告实用低频功率放大器 学院: 班级: 姓名: 学号: 序号: '

一、任务: 设计并制作具有弱信号放大能力的低频功率放大器。其原理示意图如下: 二、技术指标: 1.基本要求: (1)在放大通道的正弦信号输入电压幅度为(50~700)mV,等效负载电阻RL为8Ω下,放大通道应满足: a.额定输出功率POR≥10W; b.带宽BW≥(50~10000)HZ; c.在POR下和BW内的非线性失真系数≤3%; ~ d.在POR下的效率≥55%; e.在前置放大处级输入端交流短接到地时,RL=8Ω上的交流声功率≤10mV (2)自行设计满足本设计任务要求用的稳压电源,画出实际的直流稳压电源原理图即可。 2.发挥部分 (1)放大器的时间响应: a.方波产生由外供正弦信号源经变换电路产生正、负极性的对称方波;频率为 1000HZ;上升和下降时间≤1us;峰—峰值电压为200mVP-P。用上述方波激励放 大通道时,在RL=8Ω下,放大通道应满足。 b. 额定输出功率POR≥10W; c.在POR下输出波形上升和下降时间≤12us; d.在POR下输出波形顶部斜降≤2%; e.在POR下输出波形过冲量≤5%; (2)放大通道性能指标的提高和实用功能的扩展(例如:提高工作效率、减小非线性失真) 3., 4.要求: 设计与总结报告;方案设计与论证,理论分析与计算,电路图,测试方法与数据,结果分析,要有特色与创新 主要参考元件:LM1875、LF353、LM311、UA741、NE5532

三、方案设计: 1.波形转换电路 先经过前级放大后再直接采用施密特触发器进行变换与整形。而施密特电路可用高精度、高速运算电路搭接而成,利用稳压管将电压稳定在6.2 V左右,然后利用电阻分压得到要求的正负对称的峰一峰值为200 mV 的方波信号。运放选用NE5532,施密特电路采用高精度、高速运算放大器LF357。 用multisim软件画电路图如下: 仿真后波形如下: 产生方波 #

2011-年全国大学生电子设计竞赛实验报告

2011 年全国大学生电子设计竞赛实验报告 一、实验目的 1、熟练掌握各种常用实验仪器的使用方法。 2、熟悉LM324运放的典型参数及应用。 3、掌握PDF 资料的查询与阅读方法。 4、掌握电子设计与调试的基本流程及方法。 二、实验内容 设计要求: 使用一片通用四运放芯片LM324组成电路框图见图1,实现下述功能: 1. 使用低频信号源产生100.1sin 2()i U f t V =∏,f 0 =500Hz 的正弦波信号,加至 加法器输入端。 2. 自制三角波产生器产生T=0.5ms (±5%),V p-p =4V 的类似三角波信号1o u ,并加至加法器的另一输入端。 3. 自制加法器,使其输出电压U i2 = 10U i1+U o1。 4. 自制选频滤波器,滤除1o u 频率分量,得到峰峰值等于9V 的正弦信号2o u ,2o u 用示波器观察无明显失真。 5.将1o u 和2o u 送入自制比较器,其输出在1K Ω负载上得到峰峰值为2V 的输出电压3o u 。 方案论证与数值计算: 由于电源只能选用+12V 和+5V 两种单电源,由稳压电源供给,而

LM324N具有宽的单电源或双电源工作电压范围,单电源:3-30V,双电源:1.5V-15V,经过试验我们选择双电源供电,所以进行电源的搭建

三角波发生部分: 方案一: 三角波发生器电路按照由方波经过积分电路得到,需要两个放大器,不满足实验要求。 方案二: 利用RC充放电模拟三角波,通过两个电位器分别来调节周期和峰峰值至实验要求的值。达到合理利用现有资源高效达到要求的目的。因此我们采用方案二。题目要求三角波发生器产生的周期为T=0.5ms,Vpp=4V的类似三角波。我们由公式T=2*R14*C1*ln(1+2*R3/R15)另外运放1端输出电压设为U,则Uo1=(R15/(R15+R1))*U。选取电容为较常见的47nf , 计算得R1=2R14;R14=0-5K,所以取R1为0-10k;得到R15=0-10K; 加法器部分

第4章-低频功率放大器复习进程

第4章-低频功率放 大器

第4章低频功率放大器 【课题】 4.1低频功率放大器概述 【教学目的】 1.了解低频功率放大器基本要求。 2.掌握功率放大器的三种工作状态。 3.了解功率放大器的常用耦合方式。 【教学重点】 1.低频功率放大器基本要求。 2.低频功率放大器的分类。 【教学难点】 1.低频功率放大器基本要求。 2.功率放大器的三种工作状态。 【教学参考学时】 1学时 【教学方法】 讲授法 【教学过程】 一、引入新课 1.复习电压放大器主要任务。 2.列举低频功率放大器的应用:如扩音系统或收音机电路中的功放电路。 二、讲授新课 4.1.1低频功率放大电路的基本要求 功率放大器作为放大电路的输出级, 具有以下几个特点和基本要求: 1.能向负载输出足够大的不失真功率 由于功率放大器的主要任务是向负载提供不失真的信号功率,因此,功率放大器应有较高的功率增益,即应有较高的输出电压和较大的输出电流。 2.有尽可能高的能量转换效率 功率放大器实质上是一个能量转换器,它将电源供给的直流能量转换成交流信号的能量输送给负

载,因此,要求其转换效率高。 3.尽可能小的非线性失真 由于输出信号幅度要求较大,功放管(三极管)大都工作在饱和区与截止区的边沿,因此,要求功放管的极限参数I Cm、P Cm、V 等除应满足电路正常工作外还要留有一定 (BR)CEO 余量,以减小非线性失真。 4.功放管散热性能要好 直流电源供给的功率除了一部分变成有用的信号功率以外,还有一部分通过功放管以热的形式散发出去(管耗),因此,降低结温是功率放大器要解决的一个重要问题。 4.1.2低频功率放大器的分类 1.按电路工作状态分类 (1)甲类功放电路 甲类功放电路中的功放管始终工作在三极管输出特性曲线的线性部分如图 4.1(a)所示,即在输入信号的整个周期内,功放管始终导通,故电路输出波形失真小,但因静态时,功放管处于导通状态,且静态电流(I CQ)较大,电路转换效率较低,理想情况下最大 效率达50%。 (2)乙类功放电路 乙类功放电路在静态时,功放管处于截止状态, 如图4.1(b)所示,即在输入信号的整个周期内,功 放管只在输入信号的半个周期内导通的。因此,电路需 用两只参数基本一致的功放管轮流工作(推挽)才能输 出完整的波形信号。由于静态电流为零,电路转换效率 较高,理想情况下可达78.5%,但因电路输出波形存在交 越失真(注:该内容将在4.2 常用低频功率放大器中学 习),需解决失真问题。 (3)甲乙类功放电路 甲乙类功放电路在静态时,功放管处于微导通状态,如图

人竞赛抢答器实验报告

数电实验报告 姓名:侯婉思 专业:通信工程 班级:1111 学号: 指导老师:田丽娜 四人竞赛抢答器实验报告 一.前言 现今,形式多样、功能完备的抢答器已广泛应用于电视台、商业机构、学校、企事业单位及社会团体组织中,它为各种知识竞赛增添了刺激性、娱乐性,在一定程度上丰富了人们的业余生活。 对于抢答器我们大家都知道那是用于选手做抢答题时用的,选手进行抢答,抢到题的选手来回答问题。抢答器不仅考验选手的反应速度同时也要求选手具备足够的知识面和一定的勇气。选手们都站在同一个起跑线上,体现了公平公正的原则。 本文介绍了一种用74系列常用集成电路设计的高分辨率的4路抢答器。该抢答器为全数字集成电路设计,具有分组数多、分辨率高等优点。该抢答器除具有基本的抢答功能外,还具有优先能力,定时及复位功能。主持人通过控制开关使抢答器达到复位的功能。 二.实验目的 1. 学习并掌握抢答器的工作原理及其设计方法 2. 熟悉各个芯片的功能及其各个管脚的接法。 3. 灵活运用学过的知识并将其加以巩固,发散思维,提高学生的动手能力和思维的缜密。 三.设计任务与要求 1、设计任务 设计一台可供4名选手参加比赛的竞赛抢答器。选手抢答时,数码显示选手组号。 2.设计要求: 抢答器的基本功能: 1.设计一个智力抢答器,可同时供四名选手或四个代表队参加比赛,编号为一,二,三,四,各用一个抢答按钮,分别用四个按钮S0——S3表示。 2.给节目主持人设置一个控制开关,用来控制系统的清零(编号显示数码管清零)。 3.抢答器具有数据锁存和显示的功能,抢答开始后,若有选手按动抢答按钮,编号立即锁存,并在LED数码管上显示出选手的编号,此外,要封锁输入电路,实现优先锁存,禁止其他选手抢答,优先抢答选手的编号一直保持到主持人将系统清零为止。

功率放大器报告

电子产品的检测与检验

目录 摘要 (1) Abstract (2) 第1章绪论 (3) 1.1 课题研究目的及意义 (3) 1.2 国内研究现状 (3) 1.3章节安排 (4) 第3章总体方案设计 (9) 3.1 总体设计思路 (9) 3.2 总体设计方案图 (9) 3.3方案图解析 (10) 3.4硬件电路设计 (10) 3.4.1前置放大电路设计 (10) 3.4.2 功率放大电路设计 (11) 第4章检测与检验方式介绍 (12) 4.1产品检验步骤 (12) 4.2产品检验方式 (12) 4.3 万用表检测 (12) 4.4 示波器检测 (12) 4.5 本章小结 (13) 第5章总结与展望 (13) 第6章谢辞 (14) 附录 (15)

摘要 随着影音娱乐设备的普及,功率放大器在家电、数码产品中的应用越来越广泛,与我们日常生活有着密切关系。随着生活水平的提高,人们越来越注重视觉,音质的享受。在大多数情况下,增强系统性能,如更好的声音效果,是促使消费者购买产品的一个重要因素。低频功率放大器作为音响等电子设备的后即放大电路,它的主要作用是将前级的音频信号进行功率放大以推动负载工作,获得良好的声音效果。同时低频功率放大器又是音响等电声设备消耗电源能量的主要部分。 目前,音频功率放大器仍以模拟功放为主流产品,模拟功放经历了数十年的不断改进和完善,其技术已发展到了顶峰。模拟类功放是以线性放大为基础,功率放大器件有电子管和晶体管两类。按功放静态工作点的设置可分为A类放大,A/B类放大和C类放大三种。晶管功放的最大优点是电源转换效率高(C类功放最大可达55%)、体积小、重量轻、发热量不大、生产成本低。缺点是转换速率低、偶次谐波失真较大。音质和可靠性指标都略逊于电子管功放。随着晶体管制造技术的不断提高和新技术的应用,各项实用性指标和可靠性指标都有很大改善,并不断在向更大的输出功率、更小的体积、更轻的重量、更多的功能和智能化方向发展。 本学期我们学习了模拟电子电路的课程,对放大器这一模块有了相对集中地了解,所本次实习设计的是一款音频功率放大器,后期使用自己制作的PCB板,致力于把我们所学到的知识应用于实际中去。 关键词:功率放大器,三极管,模拟电子电路

常用低频功率放大器

第4章低频功率放大器 【课题】 4.2常用低频功率放大器 【教学目的】 1.会识读OTL、OCL功放电路的电路图。 2.理解OCL和OTL功放电路的工作原理。 3.理解产生交越失真原因、掌握消除交越失真的方法。 4.会计算OCL、OTL功放电路的最大输出功率。 5.了解功放器件的选用及安全使用常识。 【教学重点】 1.OCL和OTL功放电路组成、主要元件的作用及工作原理。 2.消除交越失真的方法。 3.计算OCL、OTL功放电路的最大输出功率。 4.功放器件的选用及安全使用常识。 【教学难点】 1.产生交越失真的原因及消除方法。 2.OCL功放电路主要元件的作用及工作原理。 3.OTL功放电路主要元件的作用及工作原理。 【教学参考学时】 4学时 【教学方法】 讲授法、分组讨论法。 【教学过程】 一、引入新课 复习低频功率放大器的分类。 二、讲授新课 4.2.1 OCL功率放大器 一、未设偏置电路的OCL功放电路 1.电路组成特点 (1)由一对特性参数基本相同,导电类型不同的功放管V1(NPN管)和V2(PNP管)组成的射极输出器构成,如图4.2所示。

(2)电路输出端采用直接耦合。 (3)电路采用双电源供电。 (4)电路未设置偏置电路,静态时两功放管均处 于截止状态,即电路工作在乙类状态。 2.电路工作原理 (1)静态时,由于V 1和V 2特性相同,供电电源 对称,使功放管发射极到地的电压,即中点电位V A =0, 功放管V 1、V 2均截止,电路中无功率损耗。 (2)当输入交流信号v i 为正半周期时, V 1正偏导通,V 2反偏截止, 信号经V 1管放大,V 1管集电极电流i c1流经负载R L ,在R L 上形成输出电压v o 的正半周,如图4.3(教材图4.6)所示,其电流方向如图4.2中箭头所示。 (3)当v i 为负半周时,V 1反偏截止,V 2正偏导通, 信号经V 2 管放大,V 2管集电极电流i c2流经R L ,在R L 上形成输出电压v o 的负半周,电流方向与正半周相反。 因此,在输入信号变化一个周期内,V 1、V 2交替半周导通, 犹如一推一挽,在负载上合成完整的信号波形。 3.电路存在交越失真 (1)交越失真 输出波形在正、负半周的交替处产生失真称为交越失真,如图4.3所示。 (2)产生交越失真的原因 电路未设置偏置电路,功放管因静态电流为零,处于截止状态。在输入信号v i 小于死区电压时,三极管不能导通,造成两功放管在输出信号的正、负半周交接处(零点附近)电压为零,产生波形失真。 (3)克服交越失真的方法:给功放管设置适当的直流偏置,使其静态时处于微导通状态,即工作于甲乙类状态,如图4.4(教材图4.7)所示。电路中接入二极管V 3和V 4的目的就是给功放管V 1和V 2加入直流偏置,消除电路的交越失真。 二、加有偏置电路的OCL 功放电路 1.电路组成特点 在图4.3所示电路的基础上增加了: (1)激励管(推动管)V 5——起电压放大作 用,推动功放管工作。 (2)R 1——V 5管的集电极电阻,可将V 5放 V cc V cc 图4.3

微弱信号检测装置(实验报告)剖析

2012年TI杯四川省大学生电子设计竞赛 微弱信号检测装置(A题) 【本科组】

微弱信号检测装置(A题) 【本科组】 摘要:本设计是在强噪声背景下已知频率的微弱正弦波信号的幅度值,采用TI公司提供的LaunchPad MSP430G2553作为系统的数据采集芯片,实现微弱信号的检测并显示正弦信号的幅度值的功能。电路分为加法器、纯电阻分压网络、微弱信号检测电路、以及数码管显示电路组成。当所要检测到的微弱信号在强噪音环境下,系统同时接收到函数信号发生器产生的正弦信号模拟微弱信号和PC机音频播放器模拟的强噪声,送到音频放大器INA2134,让两个信号相加。再通过由电位器与固定电阻构成的纯电阻分压网络使其衰减系数可调(100倍以上),将衰减后的微弱信号通过微弱信号检测电路,检测电路能实现高输入阻抗、放大、带通滤波以及小信号峰值检测,检测到的电压峰值模拟信号送到MSP430G2553内部的10位AD 转换处理后在数码管上显示出来。本设计的优点在于超低功耗 关键词:微弱信号MSP430G2553 INA2134 一系统方案设计、比较与论证 根据本设计的要求,要完成微弱正弦信号的检测并显示幅度值,输入阻抗达到1MΩ以上,通频带在500Hz~2KHz。为实现此功能,本设计提出的方案如下图所示。其中图1是系统设计总流程图,图2是微弱信号检测电路子流程图。 图1系统设计总流程图 图2微弱信号检测电路子流程图

1 加法器设计的选择 方案一:采用通用的同相/反相加法器。通用的加法器外接较多的电阻,运算繁琐复杂,并且不一定能达到带宽大于1MHz,所以放弃此种方案。 方案二:采用TI公司的提供的INA2134音频放大器。音频放大器内部集成有电阻,可以直接利用,非常方便,并且带宽能够达到本设计要求,因此采用此方案。 2 纯电阻分压网络的方案论证 方案一:由两个固定阻值的电阻按100:1的比例实现分压,通过仿真效果非常好,理论上可以实现,但是用于实际电路中不能达到预想的衰减系数。分析:电阻的标称值与实际值有一定的误差,因此考虑其他的方案。 方案二:由一个电位器和一个固定的电阻组成的分压网络,通过改变电位器的阻值就可以改变其衰减系数。这样就可以避免衰减系数达不到或者更换元器件的情况,因此采用此方案。 3 微弱信号检测电路的方案论证 方案一:将纯电阻分压网络输出的电压通过反相比例放大电路。放大后的信号通过中心频率为1kHz的带通滤波器滤除噪声。再经过小信号峰值电路,检测出正弦信号的峰值。将输出的电压信号送给单片机进行A/D转换。此方案的电路结构相对简单。但是,输入阻抗不能满足大于等于1MΩ的条件,并且被测信号的频率只能限定在1kHz,不能实现500Hz~2KHz 可变的被测信号的检测。故根据题目的要求不采用此方案。 方案二:检测电路可以由电压跟随器、同相比例放大器、带通滤波电路以及小信号峰值检测电路组成。电压跟随器可以提高输入阻抗,输入电阻可以达到1MΩ以上,满足设计所需;采用同相比例放大器是为了放大在分压网络所衰减的放大倍数;带通滤波器为了选择500Hz~2KHz的微弱信号;最后通过小信号峰值检测电路把正弦信号的幅度值检测出来。这种方案满足本设计的要求切实可行,故采用此方案。 4 峰值数据采集芯片的方案论证 方案一:选用宏晶公司的STC89C52单片机作为。优点在于价格便宜,但是对于本设计而言,必须外接AD才能实现,电路复杂。

低频功率放大器

学科分类号 本科学生电子课程设计论文 题目:低频功率放大器 姓名罗清 学号2006180824 院(系)工学院 专业、年级 0 6 电子技术教育 指导教师兰浩老师 2008年9月5日

指导教师评定成绩 评审基元评审要素评审内涵满分 指导教师 实评分 选题质量15% 目的明确 符合要求 选题符合专业培养目标,体现学科、专业特点和教学 计划的基本要求,达到课程设计论文综合训练的目的。 5 理论意义或 实际价值 符合本学科的理论发展,有一定的学术意义;对经济建 设和社会发展的应用性研究中的某个理论或方法问题进 行研究,具有一定的实际价值。 5 选题恰当题目规模适当,难易度适中;有一定的科学性。 5 能力水平50% 查阅文献 资料能力 能独立查阅相关文献资料,归纳总结本论文所涉及的 有关研究状况及成果。 10 综合运用 知识能力 能运用所学专业知识阐述问题;能对查阅的资料进行整 理和运用;能对其科学论点进行论证。 10 研究方案的 设计能力 整体思路清晰;研究方案合理可行。 5 研究方法和手 段的运用能力 能运用本学科常规研究方法及相关研究手段(如计算机、 实验仪器设备等)进行实验、实践并加工处理、总结信 息。 20 外文应用 能力 能阅读、翻译一定量的本专业外文资料、外文摘要和外 文参考书目(特殊专业除外)体现一定的外语水平。 5 设计论文35% 写作水平论点鲜明;论据充分;条理清晰;语言流畅。15 写作规范 符合学术论文的基本要求。用语、格式、图表、数据、量 和单位、各种资料引用规范化、符合标准。 10 论文篇幅5000字左右。10 实评总分成绩等级 指导教师评审意见: 指导教师签名:说明:评定成绩分为优秀、良好、中等、及格、不及格五个等级,实评总分90—100分记为优秀,80—89分记为良好,70—79分记为中等,60—69分记为及格,60分以下记为不及格。

电子设计竞赛超级实用报告——低频功率放大器

低频功率放大器(G题) 摘要:本设计主要由低噪声放大电路、带阻滤波电路、信号放大电路、功率放大电路、峰值检波、单片机控制、AD转换、LCD显示、稳压电源等组成。低噪声放大电路选取甚低噪声宽带高精度运算放大器OP37,并采用并联负反馈,具有良好的抗共模干扰能力。功率放大电路采用双MOS晶体管的甲乙类推挽放大电路。带阻滤波器在50Hz频率点输出功率衰减≥6dB,阻带频率范围为43~57Hz,有效滤除了工频噪声的干扰。设计的低频功率放大器的通带为6Hz~140KHz,很好地完成了通频带的扩展。所有电路结构简单,所选器件价格便宜,并给出了测试结果。测试结果表明,该低频功率放大器可以很好地实现对低频信号的放大作用,其输出带宽、功率、效率等方面具有较好的指标、较高的实用性,为低频功率放大器的设计提供了广阔的思路。 关键词:功率放大器;OP37;MOS晶体管;输出功率 基本要求 (1)当输入正弦信号电压有效值为5mV时,在8Ω电阻负载(一端接地)上,输出功率≥5W,输出波形无明显失真。 (2)通频带为20Hz~20kHz。 (3)输入电阻为600Ω。 (4)输出噪声电压有效值V0N≤5mV。 (5)尽可能提高功率放大器的整机效率。 (6)具有测量并显示低频功率放大器输出功率(正弦信号输入时)、直流电源的供给功率和整机效率的功能,测量精度优于5%。 发挥部分 (1)低频功率放大器通频带扩展为10Hz~50kHz。 (2)在通频带内低频功率放大器失真度小于1%。 (3)在满足输出功率≥5W、通频带为20Hz~20kHz的前提下,尽可能降低输入信号幅度。 (4)设计一个带阻滤波器,阻带频率范围为40~60Hz。在50Hz频率点输出功率衰减≥6dB。 (5)其他。 一、方案论证比较 1.1 低噪声问题

电子设计大赛实验报告

2014年江苏省大学生电子设计竞赛实验报告 无线电能传输装置(F题) 2014年8月15日 摘要:本设计基于磁耦合式谐振荡电路来进行无线电能传输,点亮LED灯。由于输入和输出都是直流电 的形式,因此本系统将分为以下四个部分:第一部分为驱动电路(DC-AC),为使直流分量转化成交流电并通过耦合线圈将电能传输给负载,采用LC谐振的方式让回路中电容和电感构成一个二阶LC谐振电路,驱动MOS管形成交流电。第二部分为发射电路(AC-AC),应用电磁感应原理,在二次线圈中产生感应电流并输给接受电路。第三部分为电能转换电路(AC-DC),输出的感应交流电经整流桥桥式整流后流入升压电路。第四部分为升压电路(DC-DC),对整流之后的直流进行升压,防止整流后的电压无法驱动LED。本设计分模块搭建并对各个部分电路进行原理分析。在调试时,采用分模块调试,根据调试结果修改参数,最终形成一个完整的稳定系统。 关键词: 磁耦合式谐振荡电路LC振荡电路桥式整流DC-DC升压 [Abstract] The design is based on magnetic resonance oscillation circuit coupled to the wireless power transmission, lit LED lights. Since the input and output are in the form of direct current, so the system will be divided into the following four parts: The first part of the drive circuit (DC-AC), is converted into alternating current so that the DC component and the power transmission through the coupling coil to the load, using LC resonant circuit in a manner so that the capacitance and inductance form a second order LC resonant circuit, the AC drive MOS tube formation. The second part is the transmitter circuit (AC-AC), application of the principle of electromagnetic induction,

功率放大器报告书

广西交通职业技术学院信息工程系期考作品报告书题目:低频功率放大器 班级电信2011-1班 学号20110405001 姓名宾海锋 课程名称电子产品综合开发与制作实训 任课教师陈正振 二O一三年十月 摘要

本作品整个系统前置放大器、功率放大器组成,前级放大采用NE5532做放大器,后经一个NE5524接到最后的功率放大,后级放大是用2SA1941和2SC5198做成的达林顿复合功率放大器。功率器输出能够大于5W,输出噪声电压有效值V ≤5mV,通频带能达到10Hz~20kHz,输出波形无明显失真。 0N 关键字:功率放大达林顿通频带 一、系统方案论证与比较 1.前置放大器的选择 方案一:集成放大器NE5532均采用电压并联负反馈电路,因为电压并联负反馈具有很好的抗共模干扰能力,且具有改善波形失真的作用。且NE5532的高速转换性能可大大改善电路的瞬态性能较宽的带宽能保证信号在低、中、高频段均能不失真输出,使电路的整体指标大大提高。放大后的信号失真度和噪声都很小。 方案二:采用两级放大电路组成。前级放大电路放大20倍,再通过后级放大电路外接电路来实现要求的放大倍数,后级通过两个MOS管来搭建功率放大。用前级用集成电路可以提高电路的稳定性,有效的提高放大倍数。后级用MOS噪声小,稳定性好,简单成本低。易于调试。 综合比较,经比较分析,考虑到NE5532能满足题目的需要,而且价格低廉,性价比高,因此选择方案一。 2.功率放大模块的选择 方案一:利用单级MOS管来实现,MOS输出功率大,偏置简单,可使电路简单,方便,便于实现。单级造成的功耗大,不易于实现题目的要求。 方案二:功率放大输出级采用分立元件构成的OCL电路,驱动级采用集成芯片,整个功放级采用大环电压负反馈。输入级采用双管差分放大器使电路工作稳定,这种方案的优点是:由于反馈深度容易控制,故放大倍数容易控制。且失真度可以做到很小,使音质很纯净。 综合比较,方案二易控制输出放大倍数,且失真度小,因此采用方案二。二、电路模块的设计与分析 1.系统设计分析 整个系统由前级放大电路和后级放大电路组成。前置放大电路主要是对输入信号进行电压放大,再送到后级功率放大器将信号再次放大,输出信号功率能够达到题目要求,输出功率≥5W,输出波形无明显失真,通频带为10Hz~50kHz,输出噪声电压有效值V0N≤5mV。系统框图如图2-1所示。 图2-1系统框图 2.前置放大的设计 电路采用专用放大器NE5532放大输入信号,提高前置放大器电路的输入电压,减少输出噪声,采用集成运算放大器构成前置放大电路采用反相放大电路结

相关文档
最新文档