【高考精品复习】第九篇 解析几何 专题五 高考解析几何命题动向

【高考精品复习】第九篇 解析几何 专题五 高考解析几何命题动向
【高考精品复习】第九篇 解析几何 专题五 高考解析几何命题动向

专题五高考解析几何命题动向

高考命题分析

解析几何是高中数学的又一重要内容,其核心内容是直线和圆以及圆锥曲线.由于平面向量可以用坐标表示,因此可以以坐标为桥梁,使向量的有关运算与解析几何中的坐标运算产生联系.用向量方法研究解析几何问题,主要是利用向量的平行(共线)、垂直关系及所成角研究解析几何中直线的平行、垂直关系及所成角.平面向量的引入为高考中解析几何试题的命制开拓了新的思路,为实现在知识网络交汇处设计试题提供了良好的素材,这类问题涉及面广、综合性强、背景新颖、灵活多样,求解此类问题对能力要求较高.在考基础、考能力、考素质、考潜能的考试目标指导下,每年的高考对解析几何的考查都占有较大的比例,且常考常新.

高考命题特点

(1)直线与圆的方程,圆锥曲线的定义、标准方程、几何性质等是支撑解析几何的基石,也是高考命题的基本元素.高考十分注重对这些基础知识的考查,有的是求圆锥曲线的标准方程;有的是直接考查圆锥曲线的离心率,有的是对直线与圆锥曲线的位置关系进行考查等.

(2)试题在考查相应基础知识的同时,着重考查基本数学思想和方法,如分类讨论思想、数形结合思想.除此之外,许多试卷都非常重视对考生思维能力和思维品质的考查.

(3)解析几何是高中数学的重点内容,它的特点是用代数的方法研究解决几何问题,重点是用“数形结合”的思想把几何问题转化为代数问题,这类试题涉及面广、综合性强、题目新颖、灵活多样,解题对能力要求较高.

高考动向透视

直线与圆的方程

对于直线方程,要理解直线的倾斜角和斜率的概念,掌握点到直线的距离公式等,特别是求直线方程的三种形式.而对于圆的方程,要熟练运用与圆相关的基本问题的求解方法.如求解圆的方程的待定系数法、求圆的圆心与半径的配方法、求圆的弦心距的构造直角三角形法、判断直线与圆、圆与圆的位置关系的代数法与几何法、求圆的切线的基本方法等.这些方法是解决与圆有关问题的常用方法,

必须认真领会,熟练运用.

【示例1】?(2011·杭州模拟)设O 为坐标原点,曲线x 2+y 2+2x -6y +1=0上有

两点P ,Q 满足关于直线x +my +4=0对称,又满足OP →·OQ

→=0. (1)求m 的值;

(2)求直线PQ 的方程.

解 (1)曲线方程为(x +1)2+(y -3)2=9,

表示圆心为(-1,3),半径为3的圆.

∵点P ,Q 在圆上且关于直线x +my +4=0对称,

∴圆心(-1,3)在直线x +my +4=0上,代入得m =-1.

(2)∵直线PQ 与直线y =x +4垂直.

∴可设直线PQ 的方程为y =-x +b .

将直线y =-x +b 代入圆的方程,得

2x 2+2(4-b )x +b 2-6b +1=0.

由Δ=4(4-b )2-4×2×(b 2-6b +1)>0,

得2-32<b <2+3 2.

设P (x 1,y 1),Q (x 2,y 2),

由根与系数的关系得x 1+x 2=-(4-b ),

x 1x 2=b 2-6b +12

. ∴y 1y 2=b 2

-b (x 1+x 2)+x 1x 2=b 2-6b +12+4b . ∵OP →·OQ

→=0, ∴x 1x 2+y 1y 2=0,即b 2-2b +1=0,

解得b =1∈(2-32,2+32).

∴所求的直线方程为x +y -1=0.

本题考查了圆的方程和直线与圆的位置关系,对于直线与圆的位置关系,可联立方程,转化为交点坐标,结合条件,求出参数值.

【训练】 (2011·福建)如图,

直线l :y =x +b 与抛物线C :x 2=4y 相切于点A .

(1)求实数b 的值;

(2)求以点A 为圆心,且与抛物线C 的准线相切的圆的方程.

解 (1)由??? y =x +b ,x 2=4y ,

得 x 2-4x -4b =0,(*)

因为直线l 与抛物线C 相切,

所以Δ=(-4)2-4×(-4b )=0,解得b =-1.

(2)由(1)可知b =-1,故方程(*)为x 2-4x +4=0.

解得x =2,代入x 2=4y ,得y =1,故点A (2,1).

因为圆A 与抛物线C 的准线相切,

所以圆A 的半径r 就等于圆心A 到抛物线的准线y =-1的距离,即r =|1-(-

1)|=2,

所以圆A 的方程为(x -2)2+(y -1)2=4.

圆锥曲线的定义、标准方程

(1)圆锥曲线的定义是高考考查的重点之一.对于圆锥曲线定义的考查,一般涉及焦点、长轴、短轴、焦距之间的关系,属于基础知识、基本运算的考查,解题时要注意恒等变形,进行合理转化与化归.

(2)圆锥曲线的标准方程在新课标高考中占有十分重要的地位.一般地,求圆锥曲线的标准方程是作为解答题中考查“直线与圆锥曲线”的第一小问的,这一问至关重要,因为只有求出了曲线方程,才能进行下一步的运算.求曲线方程的方法很多,其中“待定系数法”最为常见.

【示例2】?(2011·山东)已知双曲线x 2a 2-y 2

b 2=1(a >0,b >0)的两条渐近线均和圆C :x 2+y 2-6x +5=0相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为

( ).

高三数学解析几何专题

专题四 解析几何专题 【命题趋向】解析几何是高中数学的一个重要内容,其核心内容是直线和圆以及圆锥曲线.由于平面向量可以用坐标表示,因此以坐标为桥梁,可以使向量的有关运算与解析几何中的坐标运算产生联系,平面向量的引入为高考中解析几何试题的命制开拓了新的思路,为实现在知识网络交汇处设计试题提供了良好的素材.解析几何问题着重考查解析几何的基本思想,利用代数的方法研究几何问题的基本特点和性质.解析几何试题对运算求解能力有较高的要求.解析几何试题的基本特点是淡化对图形性质的技巧性处理,关注解题方向的选择及计算方法的合理性,适当关注与向量、解三角形、函数等知识的交汇,关注对数形结合、函数与方程、化归与转化、特殊与一般思想的考查,关注对整体处理问题的策略以及待定系数法、换元法等的考查.在高考试卷中该部分一般有1至2道小题有针对性地考查直线与圆、圆锥曲线中的重要知识和方法;一道综合解答题,以圆或圆锥曲线为依托,综合平面向量、解三角形、函数等综合考查解析几何的基础知识、基本方法和基本的数学思想方法在解题中的应用,这道解答题往往是试卷的把关题之一. 【考点透析】解析几何的主要考点是:(1)直线与方程,重点是直线的斜率、直线方程的各种形式、两直线的交点坐标、两点间的距离公式、点到直线的距离公式等;(2)圆与方程,重点是确定圆的几何要素、圆的标准方程与一般方程、直线与圆和圆与圆的位置关系,以及坐标法思想的初步应用;(3)圆锥曲线与方程,重点是椭圆、双曲线、抛物线的定义、标准方程和简单几何性质,圆锥曲线的简单应用,曲线与方程的关系,以及数形结合的思想方法等. 【例题解析】 题型1 直线与方程 例1 (2008高考安徽理8)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( ) A .[ B .( C .[33 D .(33 - 分析:利用圆心到直线的距离不大于其半径布列关于直线的斜率k 的不等式,通过解不等式解决. 解析:C 设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1 x y -+= 有公共点,圆心到直线的距离小于等于半径 1d =≤,得222141,3 k k k ≤+≤,选择C 点评:本题利用直线和圆的位置关系考查运算能力和数形结合的思想意识.高考试卷中一般不单独考查直线与方程,而是把直线与方程与圆、圆锥曲线或其他知识交汇考查. 例2.(2009江苏泰州期末第10题)已知04,k <<直线1:2280l kx y k --+=和直线

2020高考数学专题复习-解析几何专题

《曲线的方程和性质》专题 一、《考试大纲》要求 ⒈直线和圆的方程 (1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式.掌握直线方 程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程. (2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式.能够根据直线的方程判断两条直线的位置关系. (3)了解二元一次不等式表示平面区域. (4)了解线性规划的意义,并会简单的应用. (5)了解解析几何的基本思想,了解坐标法. (6)掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程. ⒉圆锥曲线方程 (1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程. (2)掌握双曲线的定义、标准方程和双曲线的简单几何性质. (3)掌握抛物线的定义、标准方程和抛物线的简单几何性质. (4)了解圆锥曲线的初步应用. 二、高考试题回放 1.(福建)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直 的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是 ( ) A . 33 B .32 C .2 2 D .23

2.(福建)直线x +2y=0被曲线x 2+y 2-6x -2y -15=0所截得的弦长等于 . 3.(福建)如图,P 是抛物线C :y=2 1x 2上一点,直线l 过点P 且与抛物线C 交于另一点Q.(Ⅰ)若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程; (Ⅱ)若直线l 不过原点且与x 轴交于点S ,与y 轴交于点T ,试求 | || |||||SQ ST SP ST +的取值范围. 4.(湖北)已知点M (6,2)和M 2(1,7).直线y=mx —7与线段M 1M 2的交点M 分有向线段M 1M 2的比为3:2,则m 的值为 ( ) A .2 3 - B .3 2- C .4 1 D .4 5.(湖北)两个圆0124:0222:222221=+--+=-+++y x y x C y x y x C 与的 公切线有且仅有 ( ) A .1条 B .2条 C .3条 D .4条 6.(湖北)直线12:1:22=-+=y x C kx y l 与双曲线的右支交于不同的两 点A 、B. (Ⅰ)求实数k 的取值范围; (Ⅱ)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由. 7.(湖南)如果双曲线112 132 2 =-y x 上一点P 到右焦点的距离为13, 那么 点 P 到右准线 的 距 离 是 ( )

高考专题复习—解析几何的题型与方法(精髓版)

20XX 届高三数学题型与方法专题七:解析几何1【基础知识梳理】 班级: 姓名: [例1]已知直线1l 的斜率是3 3 ,直线2l 过坐标原点且倾斜角是1l 倾斜角的两倍,则直线2l 的方程为___x y 3= . [例2]已知直线l 的方程为)0(,0≠=++ab c by ax 且l 不经过第二象限,则直线l 的倾斜角大小为( B ) A 、arctan a b ; B 、arctan(-a b ); C 、p +arctan a b ; D 、p -arctan a b . [例3]与圆1)2()1(2 2=-+-y x 相切,且在两坐标轴上截距相等的直线有――( B ) A 、2条; B 、3条; C 、4条; D 、5条. [例4]过点)3,2(P 与坐标原点距离为2的直线方程是___026125=+-y x 与2=x . [例5]直线21,l l 斜率相等是21//l l 的――――――――――――――――――( D ) A 、充分不必要条件;B 、必要不充分条件;C 、充要条件;D 、既不充分又不必要条件. [例6]直线l 过点)3,2(P 与以)3,1(),2,3(--B A 为端点的线段AB 有公共点,则直线l 倾斜角的取值范围是______.]4 3, 2[π arctg . [例7]将一张画有直角坐标系的图纸折叠使点)0,2(A 与点(0,6)B 重合,若点)0,3(C 与点D 重合,则点D 的坐标为 _;)5 28,51( D . [例8]抛物线C 1:x y 22 =关于直线02=+-y x 对称的抛物线为C 2,则C 2的焦点坐标为____.)2 5, 2(-. [例9]已知点),(b a 是圆22 2 r y x =+外的一点,则直线2r by ax =+与圆的位置关系 是( C ) A 、相离; B 、相切; C 、相交且不过圆心; D 、相交且过圆心. [例10]若圆O :22 2r y x =+上有且只有两点到直线01543:=-+y x l 的距离为2,则 圆的半径r 的取值范围是____.51<-+=≠=AF E D B C A . [例12]已知圆C 被y 轴截得的弦长是2,被x 轴分成的两段弧长之比为3:1,求圆心C 的轨迹方程.122 2 =-x y . [例13]直线l 过定点)0,4(M 与圆42 2=+y x 交于A 、B 两点,则弦AB 中点N 的轨迹方程为_____;4)2(2 2 =+-y x ()10<≤x . [例14]直线l 过定点)0,4(M 与圆42 2 =+y x 交于A 、B 两点,O 是坐标原点,则△AOB 面 积的最大值为_______;2. [例15]已知A 是圆06422 2 =-+-+y ax y x 上任意一点,点A 关于直线012=++y x 的对称点也在圆上,那么实数a 的值为___3__.

高中数学椭圆常考题目解题方法及练习2018高三专题复习-解析几何专题

高中数学椭圆常考题目解题方法及练习 2018高三专题复习-解析几何专题(2) 第一部分:复习运用的知识 (一)椭圆几何性质 椭圆第一定义:平面内与两定点21F F 、距离和等于常数()a 2(大于21F F )的点的轨迹叫做椭圆. 两个定点叫做椭圆的焦点;两焦点间的距离叫做椭圆的焦距()c 2. 椭圆的几何性质:以()0122 22>>=+b a b y a x 为例 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式1,122 22≤≤b y a x ,即 b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用于求最值、轨迹检验等问题. 2. 对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。 3. 顶点(椭圆和它的对称轴的交点) 有四个: ()()()().,0B ,0B 0,0,2121b b a A a A 、、、-- 4. 长轴、短轴: 21A A 叫椭圆的长轴,a a A A ,221=是长半轴长; 21B B 叫椭圆的短轴,b b B B ,221=是短半轴长. 5. 离心率 (1)椭圆焦距与长轴的比a c e = ,()10,0<<∴>>e c a (2)22F OB Rt ?,2 22 22 22OF OB F B +=,即222c b a +=.这是椭圆的特征三角形,并且22cos B OF ∠的值是椭圆的离心率. (3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e 接近于1时,c 越接近于a ,从而22c a b -=越小,椭圆越扁;当e 接近于0时,c 越

高考数学解析几何专题练习及答案解析版

高考数学解析几何专题练习解析版82页 1.一个顶点的坐标()2,0 ,焦距的一半为3的椭圆的标准方程是( ) A. 19422=+y x B. 14922=+y x C. 113422=+y x D. 14132 2=+y x 2.已知双曲线的方程为22 221(0,0)x y a b a b -=>>,过左焦点F 1的直线交 双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( ) A . 3 B .32+ C . 31+ D . 32 3.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点, 且△OAB (O 为坐标原点)的面积为,则m 6+ m 4的值为( ) A .1 B . 2 C .3 D .4 4.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o 5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0,π/2),Q (-2,π),则有 ( ) (A)P 在曲线C 上,Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上,Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65, 2(π B .)6 ,2(π C .)611,2(π D .)67,2(π 7.曲线的参数方程为???-=+=1 232 2t y t x (t 是参数),则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( ) A . 54 B .4 5 C . 254 D .4 25 9. 圆0642 2 =+-+y x y x 的圆心坐标和半径分别为( ) A.)3,2(-、13 B.)3,2(-、13 C.)3,2(--、13 D.)3,2(-、13 10.椭圆 122 2 2=+b y x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 ( )

高三数学解析几何专题复习讲义(含答案解析)

二轮复习——解析几何 一.专题内容分析 解析几何:解析几何综合问题(椭圆或抛物线)及基本解答策略+圆锥曲线的定义和几何性质+直线与圆+极坐标、参数方程+线性规划 二.解答策略与核心方法、核心思想 圆锥曲线综合问题的解答策略: 核心量的选择: 常见的几何关系与几何特征的代数化: ①线段的中点:坐标公式 ②线段的长:弦长公式;解三角形 ③三角形面积: 2 1底×高,正弦定理面积公式 ④夹角:向量夹角;两角差正切;余弦定理;正弦定理面积公式 ⑤面积之比,线段之比:面积比转化为线段比,线段比转化为坐标差之比 ⑥三点共线:利用向量或相似转化为坐标差之比 ⑦垂直平分:两直线垂直的条件及中点坐标公式 ⑧点关于直线的对称,点关于点,直线关于直线对称 ⑨直线与圆的位置关系 ⑩等腰三角形,平行四边形,菱形,矩形,正方形,圆等图形的特征 代数运算:设参、消参 重视基本解题思路的归纳与整理但不要模式化,学会把不同类型的几何问题转化成代数形式.

三.典型例题分析 1.(海淀区2017.4)已知椭圆C :22 221(0)x y a b a b +=>>的左、右顶点分别为A ,B ,且||4AB =,离心率为12 . (Ⅰ)求椭圆C 的方程; (Ⅱ)设点(4,0)Q , 若点P 在直线4x =上,直线BP 形APQM 为梯形?若存在,求出点P 解法1:(Ⅰ)椭圆C 的方程为22 143 x y +=. (Ⅱ)假设存在点,P 使得四边形APQM 为梯形. 由题可知,显然,AM PQ 不平行,所以AP 与MQ AP MQ k k =. 设点0(4,)P y ,11(,)M x y ,06 AP y k =,114MQ y k x = -, ∴ 01164y y x =-① ∴直线PB 方程为0(2)2 y y x =-, 由点M 在直线PB 上,则0 11(2)2 y y x = -② ①②联立,0 101(2) 264y x y x -=-,显然00y ≠,可解得11x =. 又由点M 在椭圆上,211143y + =,所以132y =±,即3 (1,)2 M ±, 将其代入①,解得03y =±,∴(4,3)P ±. 解法2:(Ⅰ)椭圆C 的方程为22 143 x y +=. (Ⅱ)假设存在点,P 使得四边形APQM 为梯形. 由题可知,显然,AM PQ 不平行,所以AP 与MQ 平行, AP MQ k k =, 显然直线AP 斜率存在,设直线AP 方程为(2)y k x =+. 由(2)4y k x x =+??=? ,所以6y k =,所以(4,6)P k ,又(2,0)B ,所以632PB k k k ==. ∴直线PB 方程为3(2)y k x =-,由22 3(2) 34120 y k x x y =-?? +-=?,消y , 得2222(121)484840k x k x k +-+-=.

高三总复习解析几何专题(师

解析几何专题二 1、已知点P (3,-4)是双曲线x 2a 2-y 2b 2=1(a >0,b >0)渐近线上的一点,E ,F 是左、右两个焦点,若EP →·FP → =0, 则双曲线方程为( ) A.x 23-y 24=1 B.x 24-y 23=1 C.x 29-y 216=1 D.x 216-y 2 9 =1 2、已知焦点在x 轴上的双曲线的渐近线方程是x y 4±=,则该双曲线的离心率为( 17 ). 【解析】因为焦点在x 轴上的双曲线的渐近线方程是x y 4±=,所以17,17,42 2===e a c a b 3、设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲 线的离心率为 2 5 1+ . 【解析】因为直线FB 与该双曲线的一条渐近线垂直,所以 2 1 5,1)(+=-=-?e c b a b 4、若双曲线)0(12222>>=-b a b y a x 的左右焦点分别为1F 、2F ,线段21F F 被抛物线2 2y bx = 的焦点分成5 :7的两段,则此双曲线的离心率为( C ) A . 9 8 B . 637 C . 32 4 D . 31010 【解析】因为线段21F F 被抛物线2 2y bx = 的焦点分成5:7的两段,所以 4 23,4036,436,622222====e c a c b c b 5、 已知F 是椭圆2222:1x y C a b += (0)a b >>的右焦点,点P 在椭圆C 上,线段PF 与圆22 214 x y b +=相切 于点Q ,且→ → =QF PQ ,则椭圆C 的离心率为 3 5 . 提示:设左焦点E ,连接PE ,由圆的切线可得OQ ⊥PF ,而OQ ∥PF ,故PF PE ⊥,2 2 2 4)2(c b a b =-+∴,

2020高考专题复习解析几何的万能套路

高考解析几何的万能解题套路 一个套路,几乎解决所有高考解析几何问题! 在教学中,一直有一个难以解决的悖论:“题海战术”广遭诟病,但似乎要取得好成绩,除了“题海战术”又别无良策。这是因为,我们每次考试面对的题目都不可能一样,大家心照不宣的想法是——通过平时的“题海战术”,也许可以穷尽问题的各种可能。 显然如果我们要穷尽问题的各种可能,是不现实的。为了让学生能真正从题海战术中走出来,事实上,我们可以将以往大量的、零碎的、彼此之间也看似没有多少联系性的某些数学问题,却能通过高度一致的方法获得解决,本文以解析几何为例的一套与高考解析几何演绎体系相对应的“万能解题套路”,几乎把近几年贵州省高考解析几何问题基本上统一了起来!希望对同学有所启发。 一、解析几何万能解题套路 解析几何是法国数学家笛卡儿(1596年~1650年)创立的。笛卡儿在总结前人经验的基础上,创造性地提出了一个划时代的设想——把代数的演绎方法引入几何学,用代数方法来解决几何问题。正是在这一设想的指引下,笛卡儿创建了解析几何的演绎体系。 以高考解析几何为例: 1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题; 2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。 有了以上两点认识,我们可以毫不犹豫地下这么一个结论,那就是解决高考解析几何问题无外乎做两项工作: 1、几何问题代数化。 2、用代数规则对代数化后的问题进行处理。 至此,整理了近几年来贵州省高考解析几何试题后总结出一套统一的解题套路: 二、高考解析几何解题套路及各步骤操作规则 步骤一:(一化)把题目中的点、直线、曲线这三大类基础几何元素用代数形式表示出来; 口诀:见点化点、见直线化直线、见曲线化曲线。 1、见点化点:“点”用平面坐标系上的坐标表示,只要是题目中提到的点都要加以坐标化; 2、见直线化直线:“直线”用二元一次方程表示,只要是题目中提到的直线都要加以方程化; 3、见曲线化曲线:“曲线(圆、椭圆、抛物线、双曲线)”用二元二次方程表示,只要是题目中提到的曲线都要加以方程化; 步骤二:(二代)把题目中的点与直线、曲线从属关系用代数形式表示出来;如果某个点在某条直线或曲线上,那么这个点的坐标就可代入这条直线或曲线的方程。 口诀:点代入直线、点代入曲线。 1、点代入直线:如果某个点在某条直线上,将点的坐标代入这条直线的方程;

高三数学第二轮复习专题之《解析几何》

高三数学专题复习 《解析几何》 解题思路与方法: 高考试题中的解析几何的分布特点是除在客观题中有1~2个题目外,就是在解答题中有一个压轴题.也就是解析几何没有中档题.且解析几何压轴题所考查的内容是求轨迹问题、直线和圆锥曲线的位置关系、关于圆锥曲线的最值问题等.其中最重要的是直线与圆锥曲线的位置关系.在复习过程中要注意下述几个问题: (1)在解答有关圆锥曲线问题时,首先要考虑圆锥曲线焦点的位置,对于抛物线还应同时注意开口方向,这是减少或避免错误的一个关键。 (2)在考查直线和圆锥曲线的位置关系或两圆锥曲线的位置关系时,可以利用方程组消元后得到二次方程,用判别式进行判断.但对直线与抛物线的对称轴平行时,直线与双曲线的渐近线平行时,不能使用判别式,为避免繁琐运算并准确判断特殊情况,此时要注意用好分类讨论和数形结合的思想方法.画出方程所表示的曲线,通过图形求解. 当直线与圆锥曲线相交时:涉及弦长问题,常用“韦达定理法”设而不求计算弦长(即应用弦长公式);涉及弦长的中点问题,常用“差分法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍。 (3)求圆锥曲线方程通常使用待定系数法,若能据条件发现符合圆锥曲线定义时,则用定义求圆锥曲线方程非常简捷.在处理与圆锥曲线的焦点、准线有关问题,也可反用圆锥曲线定义简化运算或证明过程。 一般求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定量”的步骤。 定形——指的是二次曲线的焦点位置与对称轴的位置。 定式——根据“形”设方程的形式,注意曲线系方程的应用,如当椭圆的焦点不确定在哪个坐标轴上时,可设方程为mx2+ny2=1(m>0,n>0)。 定量——由题设中的条件找到“式”中特定系数的等量关系,通过解方程得到量的大小。 (4)在解与焦点三角形(椭圆、双曲线上任一点与两焦点构成的三角形称为焦点三角形)有关的命题时,一般需使用正余弦定理、和分比定理及圆锥曲线定义。 (5)要熟练掌握一元二次方程根的判别式和韦达定理在求弦长、中点弦、定比分点弦、弦对定点张直角等方面的应用。 (6)求动点轨迹方程是解析几何的重点内容之一,它是各种知识的综合运用,具有较大的灵活性,求动点轨迹方程的实质是将“曲线”化成“方程”,将“形”化成“数”,使我们通过对方程的研究来认识曲线的性质. 求动点轨迹方程的常用方法有:直接法、定义法、几何法、代入转移法、参数法、交轨法等,解题时,注意求轨迹的步骤:建系、设点、列式、化简、确定点的范围。 解析几何问题处理时易错易忽视点归纳: 1.用直线的点斜式、斜截式设直线的方程时, 易忽略斜率不存在的情况;题目告诉截距相等时,易忽略截距为0的情况。 2.求含系数的直线方程平行或者垂直的条件时,易忽略直线与x轴或者y轴平行的情况。

人教版高考数学专题复习:解析几何专题

高考数学专题复习:解析几何专题 【命题趋向】 1.注意考查直线的基本概念,求在不同条件下的直线方程,直线的位置关系,此类题大多都属中、低档题,以选择、填空题的形式出现,每年必考 2.考查直线与二次曲线的普通方程,属低档题,对称问题常以选择题、填空题出现 3.考查圆锥曲线的基础知识和基本方法的题多以选择题和填空题的形式出现,与求轨迹有关、与向量结合、与求最值结合的往往是一个灵活性、综合性较强的大题,属中、高档题, 4.解析几何的才查,分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题. 【考题解析与考点分析】 考点1.求参数的值 求参数的值是高考题中的常见题型之一,其解法为从曲线的性质入手,构造方程解之. 例1.若抛物线22y px =的焦点与椭圆22162 x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 考查意图: 本题主要考查抛物线、椭圆的标准方程和抛物线、椭圆的基本几何性质. 解答过程:椭圆22162 x y +=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =,故选D. 考点2. 求线段的长 求线段的长也是高考题中的常见题型之一,其解法为从曲线的性质入手,找出点的坐标,利用距离公式解之. 例2.已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于 A.3 B.4 C.32 D.42 考查意图: 本题主要考查直线与圆锥曲线的位置关系和距离公式的应用. 解:设直线AB 的方程为y x b =+,由22123301y x x x b x x y x b ?=-+?++-=?+=-?=+?,进而可求出AB 的中点1 1(,)22M b --+,又由11(,)22 M b --+在直线0x y +=上可求出1b =, ∴220x x +-=,由弦长公式可求出AB ==. 故选C 例3.如图,把椭圆2212516x y +=的长轴 AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部 分于1234567 ,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点, 则1234567PF P F P F P F P F P F P F ++++++= ____________. 考查意图: 本题主要考查椭圆的性质和距离公式的灵活应用.

平面解析几何高考复习知识点

平面解析几何 高考复习知识点 一、直线的倾斜角、斜率 1、直线的倾斜角: (1)定义:在平面直角坐标系中,对于一条及x 轴相交的直线l ,如果把x 轴绕着交点按逆时针方向转到和直线l 重合时所转的最小正角记为α,那么α就叫做直线的倾斜角。当直线l 及x 轴重合或平行时,规定倾斜角为0; (2)倾斜角的范围[)π,0。 2、直线的斜率 (1)定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k ,即k =tan α(α≠90°);倾斜角为90°的直线没有斜率; (2)斜率公式:经过两点111(,)P x y 、222(,)P x y 的直线的斜率为 ()212 12 1x x x x y y k ≠--= ; (3)直线的方向向量(1,)a k =,直线的方向向量及直线的斜率有何关系? (4)应用:证明三点共线: AB BC k k =。 例题: 例1.已知直线的倾斜角的变化范围为,求该直线斜率的变 化范围; 思路点拨:已知角的范围,通过正切函数的图像,可以求得斜率的范围,反之,已知斜率的范围,通过正切函数的图像,可以求得角的范围 解析: ∵, ∴. 总结升华: 在知道斜率的取值范围求倾斜角的取值范围,或知道倾斜角的取值范围求斜率的取值范围时,可利用 在和上是增函

数分别求解.当时,;当时,;当时,;当不存在时,.反之,亦成立. 类型二:斜率定义 例2.已知△ABC为正三角形,顶点A在x轴上,A在 边BC的右侧,∠BAC的平分线在x轴上,求边AB及AC所 在直线的斜率. 思路点拨: 本题关键点是求出边AB及AC所在直线的倾斜角,利用斜率的定义求出斜率. 解析: 如右图,由题意知∠BAO=∠OAC=30° ∴直线AB的倾斜角为180°-30°=150°,直线AC的倾斜角为30°, ∴k AB=tan150°= k AC=tan30°= 总结升华: 在做题的过程中,要清楚倾斜角的定义中含有的三个条件①直线向上方向②轴正向③小于的角,只有这样才能正确的求出倾斜角. 类型三:斜率公式的应用 例3.求经过点,直线的斜率并判断倾斜角为锐角还是钝角.

高三高考文科数学复习专题五解析几何

平面解析几何 用代数方法研究几何图形的几何性质,体现着数形结合的重要数学思想.直线与圆的方程、圆锥曲线与方程是历年高考的必考内容,题量一般为一道解答题和两道填空题.江苏高考对双曲线的定义、几何图形、标准方程及简单几何性质由原来的理解降为了解,圆锥曲线突出了直线与椭圆(理科有与抛物线)的位置关系,淡化了直线与双曲线的位置关系.直线与圆锥曲线的有关问题始终是命题的热点内容之一,必考一道解答题.直线与圆锥曲线所涉及的知识点较多,对解题能力的考查层次要求较高,所研究的问题是直线与圆锥曲线的位置关系、定点(定值)、最值以及参数的取值范围等. 第一课时 直线与圆 教学目标:在2013年的备考中,需要关注: (1)直线的基本概念,直线的方程,两直线的位置关系及点到直线的距离等基础知识; (2)活用圆的两类方程、直线与圆的位置关系及圆与圆的位置关系; (3)对数形结合的思想、转化与化归的思想熟练掌握。 一、基础回顾: 1、若直线(a 2+2a )x -y +1=0的倾斜角为钝角,则实数a 的取值范围是________. 2、经过2 2 2410x y x y +--+=的圆心,且倾斜角为 6 π 的直线方程为. 3、直线ax +2y +6=0与直线x +(a -1)y +(a 2-1)=0平行,则a =________. 4、直线20x -=与圆2 2 4x y +=相交于,A B 两点,则弦AB 的长度等于. 5、已知圆:C ()()22 212x y -++=,过原点的直线l 与圆C 相切,则所有切线的斜率之和为. 6、过点()0,6A 且与圆2 2:10100C x y x y +++=切于原点的圆的方程为. 二、典型问题 基本题型一:直线的概念、方程及位置问题 例1 过点P (3,2)作直线l ,交直线y =2x 于点Q ,交x 轴正半轴于点R ,当△QOR 面积最小时,求直线l 的方程. 解析: 方法一:设点Q 的坐标为(a,2a ),点R 的坐标为(x,0),其中x >0. 当a =3时,△QOR 的面积S =9;

高考数学专题训练解析几何

解析几何(4) 23.(本大题满分18分,第1小题满分4分,第二小题满分6分,第3小题满分8分) 已知平面上的线段l 及点P ,任取l 上一点Q ,线段PQ 长度的最小值称为点P 到线段 l 的距离,记作(,)d P l (1)求点(1,1)P 到线段:30(35)l x y x --=≤≤的距离(,)d P l ; (2)设l 是长为2的线段,求点的集合{(,)1}D P d P l =≤所表示的图形面积; (3)写出到两条线段12,l l 距离相等的点的集合12{(,)(,)}P d P l d P l Ω==,其中 12,l AB l CD ==,,,,A B C D 是下列三组点中的一组. 对于下列三种情形,只需选做一种,满分分别是①2分,②6分,③8分;若选择了多于一种情形,则按照序号较小的解答计分. ①(1,3),(1,0),(1,3),(1,0)A B C D --. ②(1,3),(1,0),(1,3),(1,2)A B C D ---. ③(0,1),(0,0),(0,0),(2,0)A B C D . 23、解:⑴ 设(,3)Q x x -是线段:30(35)l x y x --=≤≤上一点,则 ||5) PQ x ==≤≤,当 3 x =时 , min (,)||d P l PQ == ⑵ 设线段l 的端点分别为,A B ,以直线AB 为x 轴,AB 的中点为原点建立直角坐标系, 则(1,0),(1,0)A B -,点集D 由如下曲线围成 12:1(||1),:1(||1) l y x l y x =≤=-≤, 222212:(1)1(1),:(1)1(1)C x y x C x y x ++=≤--+=≥ 其面积为4S π=+。 ⑶① 选择(1,3),(1,0),(1,3),(1,0)A B C D --,{(,)|0}x y x Ω== ② 选择(1,3),(1,0),(1,3),(1,2)A B C D ---。 2{(,)|0,0}{(,)|4,20}{(,)|10,1}x y x y x y y x y x y x y x Ω==≥=-≤<++=> ③ 选择(0,1),(0,0),(0,0),(2,0)A B C D 。

高考数学总复习专题七解析几何7.3解析几何压轴题精选刷题练理

7.3 解析几何(压轴题) 命题角度1曲线与轨迹问题  高考真题体验·对方向 1.(2017全国Ⅱ·20)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足. (1)求点P的轨迹方程; (2)设点Q在直线x=-3上,且=1.证明:过点P且垂直于OQ的直线l过C的左焦点F. P(x,y),M(x0,y0),则N(x0,0),=(x-x0,y),=(0,y0). 由得x0=x,y0=y. 因为M(x0,y0)在C上,所以=1. 因此点P的轨迹方程为x2+y2=2. F(-1,0).设Q(-3,t),P(m,n), 则=(-3,t),=(-1-m,-n),=3+3m-tn,=(m,n), =(-3-m,t-n).

由=1得-3m-m2+tn-n2=1. 又由(1)知m2+n2=2,故3+3m-tn=0. 所以=0,即. 又过点P存在唯一直线垂直于OQ, 所以过点P且垂直于OQ的直线l过C的左焦点F. 2.(2016全国Ⅲ·20)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C 于A,B两点,交C的准线于P,Q两点. (1)若F在线段AB上,R是PQ的中点,证明:AR∥FQ; (2)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程. F. 设l1:y=a,l2:y=b,则ab≠0, 且A,B,P,Q,R. 记过A,B两点的直线为l, 则l的方程为2x-(a+b)y+ab=0. 由于F在线段AB上,故1+ab=0. 记AR的斜率为k1,FQ的斜率为k2, 则k1==-b=k2. 所以AR∥FQ. l与x轴的交点为D(x1,0), 则S△ABF=|b-a||FD|=|b-a|,S△PQF=.

2019-2020年高考备考:2018年高考数学试题分类汇编----解析几何

见微知著,闻弦歌而知雅意 2019-2020届备考 青霄有路终须到,金榜无名誓不还! 2019-2020年备考 2018试题分类汇编---------解析几何 一、填空题 (1)直线与圆 1.(天津文12)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________. 1.2220x y x +-= 2.(全国卷I 文15)直线1y x =+与圆22230x y y ++-=交于A B ,两点,则 AB =________. 2.22 3.(全国卷III 理6改).直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上, 则ABP △面积的取值范围是__________. 3.[]26, 4.(天津理12)已知圆2220x y x +-=的圆心为 C ,直线2 1, 2232 x t y t ? =-+ ??? ?=-?? (t 为参数)与该圆相交于A ,B 两点,则ABC △的面积为 . 4.1 2 5.(北京理7改)在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线20x my --=的距离,当θ,m 变 化时,d 的最大值为__________. 5.3 6.(北京文7改)在平面坐标系中,,,,AB CD EF GH 是圆221x y +=上的四段弧(如 图),点P 在其中一 段上,角α以OA 为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是__________.

6.EF 7.(江苏12)在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点, (5,0)B ,以AB 为直径的 圆C 与直线l 交于另一点D .若0AB CD ?=,则点A 的横坐标为__________. 7.3 8.(上海12)已知实数1x 、2x 、1y 、2y 满足:22111x y +=,22221x y +=,121212 x x y y +=,则 11221 1 2 2 x y x y +-+-+ 的最大值为_________. 8.32+ (2)椭圆抛物线双曲线基本量 9.(浙江2 改)双曲线2 21 3 =x y -的焦点坐标是__________. 9.(?2,0),(2,0) 10.(上海2)双曲线2 214 x y -=的渐近线方程为_________. 10.12 y x =± 11.(上海13)设P 是椭圆22 153 x y +=上的动点,则P 到该椭圆的两个焦点的距离 之和为__________. 11.25 12.(北京文12)若双曲线2221(0)4x y a a -=>的离心率为5 2 ,则a =_________. 12.4 13.(北京文10)已知直线l 过点(1,0)且垂直于ε,若l 被抛物线24y ax =截 得的线段长为4,则抛物线 的焦点坐标为_________. 13.(1,0) 14.(全国卷II 理5 改)双曲线22 221(0,0)x y a b a b -=>>的离心率为3,则其渐近线方程 为_________. 14.2y x =± (3)圆锥曲线离心率

2020年高考数学(理)大题分解专题05--解析几何(含答案)

(2019年全国卷I )已知抛物线C :x y 32=的焦点为F ,斜率为 32 的直线l 与 C 的交点为A ,B ,与x 轴的交点为P . (1)若4||||=+BF AF ,求l 的方程; (2)若3AP PB =,求||AB . 【肢解1】若4||||=+BF AF ,求l 的方程; 【肢解2】若3AP PB =,求||AB . 【肢解1】若4||||=+BF AF ,求l 的方程; 【解析】设直线l 方程为 m x y += 23 ,()11,A x y ,()22,B x y , 由抛物线焦半径公式可知 12342AF BF x x +=++ =,所以125 2 x x +=, 大题肢解一 直线与抛物线

联立2323y x m y x ? =+???=?得0 4)12(12922=+-+m x m x , 由0144)1212(22>--=?m m 得1 2 m <, 所以12121259 2 m x x -+=-=,解得78 m =-, 所以直线l 的方程为372 8 y x =-,即12870x y --=. 【肢解2】若3AP PB =,求||AB . 【解析】设直线l 方程为23 x y t =+, 联立2233x y t y x ? =+???=? 得0322=--t y y ,由4120t ?=+>得31->t , 由韦达定理知221=+y y , 因为PB AP 3=,所以213y y -=,所以12-=y ,31=y ,所以1=t ,321-=y y . 则=-+?+=212214)(9 4 1||y y y y AB = -?-?+)3(429 4123 13 4. 设抛物线)0(22>=p px y 的焦点为F ,过点F 的而直线交抛物线于A (x 1,y 1), B (x 2,y 2),则|AB |=x 1+x 2+p.

高考数学专题复习解析几何

高考数学专题复习解析 几何 Document number【980KGB-6898YT-769T8CB-246UT-18GG08】

专题复习讲座(四)--------解析几何 俗话说:“知己知彼,才能百战百胜”,这一策略,同样可以用于高考复习之中。我们不仅要不断研究教学大纲、考试说明和教材,而且还必须研究历年高考试题,从中寻找规律,这样才有可能以不变应万变,才有可能在高考中取得优异成绩。纵观近几年的高考解析几何试题,可以发现有这样的规律:小题灵活,大题稳定。 一、解决解析几何问题的几条原则 1.重视“数形结合”的数学思想 2.注重平面几何的知识的应用 3.突出圆锥曲线定义的作用 二、解析几何中的一类重要问题 直线有圆锥曲线的位置关系问题是解析几何中的一类重要问题,它是我 们解决解析几何其他问题的基础。我们必须熟悉直线与三种圆锥曲线的位置关系,熟练掌握直线和圆锥曲线相交所所产生的有关弦长、弦的中点以及垂直等基本问题的基本解法。特别要重视判别式的作用,力争准确地解决问题。 弦长问题:|AB|=]4))[(k 1(212212x x x x -++。 弦的中点问题:中点坐标公式-----注意应用判别式。 三、高考解析几何解答题的类型与解决策略 Ⅰ.求曲线的方程 1.曲线的形状已知 这类问题一般可用待定系数法解决。 例1 :已知直线L 过原点,抛物线C 的顶点在原点,焦点在x 轴正半轴 上。若点A (-1,0)和点B (0,8)关于L 的对称点都在C 上,求直线L 和抛物线C 的方程。 分析:曲线的形状已知,可以用待定系数法。 设出它们的方程,L :y=kx(k ≠0),C:y 2=2px(p>0). 设A 、B 关于L 的对称点分别为A /、B /,则利用对称性可求得它们的坐标分别为:

高三文科数学解析几何专题(附答案)

2008届高三文科数学第二轮复习资料 ——《解析几何》专题 1.已知动圆过定点()1,0,且与直线1x =-相切. (1) 求动圆的圆心轨迹C 的方程; (2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ?=?若存在,求出直线l 的方程;若不存在,说明理由. 2.如图,设1F 、2F 分别为椭圆C :22 221x y a b += (0a b >>)的左、右焦点. (Ⅰ)设椭圆C 上的点3(1,)2 A 到F 1、F 2两点距离之和等于4,写出椭圆C 的方程和离心率; (Ⅱ)设点K 是(Ⅰ)中所得椭圆上的动点,求线段1F K 的中点的轨迹方程. 3.已知圆C: x 2+y 2-2x+4y-4=0,是否存在斜率为1的 直线L,使以L 被圆C 截得弦AB 为直径的圆 经过原点?若存在,写出直线的方程;若不存在,说 明理由 4.已知圆C :224x y +=. (1)直线l 过点()1,2P ,且与圆C 交于A 、B 两点,若||AB =l 的方程; (2)过圆C 上一动点M 作平行于x 轴的直线m ,设m 与y 轴的交点为N ,若向量OQ OM ON =+, 求动点Q 的轨迹方程,并说明此轨迹是什么曲线.

5.如图,已知圆A的半径是2,圆外一定点N与圆A上的点的最短距离为6,过动点P作A的切线PM (M为切点),连结PN使得PM: ,试建立适当 的坐标系,求动点P的轨迹 6.已知三点P(5,2)、 1 F(-6,0)、2F(6,0). (Ⅰ)求以 1 F、2F为焦点且过点P的椭圆的标准方程; (Ⅱ)设点P、 1 F、2F关于直线y=x的对称点分别为P'、'1F、'2F,求以'1F、'2F为焦点且过点P'的 双曲线的标准方程. 7.某运输公司接受了向抗洪抢险地区每天至少运送180吨支援物资的任务,该公司有8辆载重为6吨的A 型卡车与4辆载重为10吨的B型卡车,有10名驾驶员,每辆卡车每天往返次数为A型卡车4次,B型卡车3次,每辆卡车每天往返的成本费用为A型卡车320元,B型卡车504元,请你给该公司调配车辆,使公司所花的成本费用最低.

春高三第二轮复习专题三解析几何A(教师)

2015春高三第二轮复习专题三 解析几何A (教) 一、选择题 1.过双曲线的一个焦点作实轴的垂线,交双曲线于两点,若线 段 的长度恰等于焦距,则双曲线的离心率为( ) A . B . C . D . 【答案】A . 【解析】 又. 考点:双曲线的标准方程及其几何性质(离心率的求法). 2、设F 1,F 2是椭圆E :+=1(a >b >0)的左,右焦点,P 为直线x =上一点,△F 2PF 1是底角 为30°的等腰三角形,则E 的离心率为 () A. B. C. D. 解析 由题意,知∠F 2F 1P =∠F 2PF 1=30°,∴∠PF 2x =60°.∴|PF 2|=2×=3a -2c . ∵|F 1F 2|=2c ,|F 1F 2|=|PF 2|,∴3a -2c =2c ,∴e ==.答案 C 3.设双曲线22 221(00)x y a b a b -=>>,的右焦点为F ,过点,λμ作与x 轴垂直的直线l 交 两渐近线于,A B 两点,且与双曲线在第一象限的交点为P ,设O 为坐标原点,若 (,)OP OA OB R λμλμ=+∈,316 λμ?= ,则双曲线的离心率为() A . 33 B . 355 C . 322 D . 98 【解析】【答案】A 试题分析:直线l 的方程为x c =,与双曲线渐近线b y x a =± 的交点为(,),(,)bc bc A c B c a a -,与双曲线在第一象限的交点为2(,)b P c a ,所以2(,)b OP c a =,(,),(,)bc bc OA c OB c a a ==-,

由(,)OP OA OB R λμλμ=+∈得2 316c c c b bc bc a a a λμλμλμ? =+???=?-????=?? ,解之得2,c b = ,所以a = ,e = ,故选A. 考点:双曲线几何性质、向量运算. 4.如图,正方体1111ABCD A B C D -的棱长为1,点M 在棱AB 上,且1 3 AM = ,点P 是平面ABCD 上的动点,且动点P 到直线11A D 的距离与点P 到点M 的距离的平方差为1,则动点 P 的轨迹是( ) C B A .圆 B .抛物线 C .双曲线 D .椭圆 【解析】【答案】B 试题分析:根据题意,过点P 作11A D 的垂线,垂足为N ,在平面1A D 内,过N 过AD 的垂线,垂足为P ',所以在Rt PNP '中,222PN NP PP ''=+,且1NP '=所以,由题意知 221PN PM -=,即22221NP PP PM PP '''+-=+21PM -=,即22PP PM '=,且点P 为 底面AC 的动点,M 为AB 上的定点,根据抛物线的定义知:动点P 到定点M 的距离和到定直线AD 的距离相等,所以,动点P 的轨迹为抛物线,答案为B. 考点:1.勾股定理;2.抛物线的定义. 5.已知P 是以F 1,F 2 PF 1F 2=α,∠ PF 2F 1=β,且cos αsin( α+β D ) A 43 B 33 C 4 2 6.(2013·高考重庆卷)已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM|+|PN|的最小值为( ) A .52-4 B.17-1C .6-2 2 D.17

相关文档
最新文档