正切函数、余切函数的图象和性质·典型例题分析

正切函数、余切函数的图象和性质·典型例题分析
正切函数、余切函数的图象和性质·典型例题分析

正切函数、余切函数的图象和性质·典型例题分析

例2 比较下列各组数的大小

①tg1,tg2,tg3

解 (1)∵tg2=tg(2-π),tg3=tg(3-π)

∴tg(2-π)<tg(3-π)<tg1 即tg2<tg3<1

由于y=ctgx在(0,π)内是减函数,所以

正切函数的图像与性质教案

正切函数的定义、图像与性质 一、教学目标 1、理解并掌握正切函数图像的推导思路及画法,即“正弦函数图像类比推导法” 2、准确写出正切函数的性质,并通过练习体验正切函数基本性质的应用. 3、理解并掌握正切函数的诱导公式。 二、重点与难点 (一)教学重点:正切函数的图象和性质。 1、用类比正弦函数图像类比推导法,单位圆中的正切线作正切函数图象法,引导学生作出正切函数图像,并探索函数性质; 2、学会画正切函数的简图,体会与x轴的交点以及渐近线x=π/2 +kπ,k∈Z在确定图象形状时所起的关键作用。 (二)教学难点:体验正切函数基本性质的应用, 三、教学过程 1、复习引入 (一)复习 练习:画出下列各角的正切线 (二)引入 引出正切函数、正切曲线的概念和正切函数的诱导公式,提出对正切函数性质思考,让学生能清晰的认识本节课的内容:在内容上,是研究一个具体函数的图像和性质. 2、学习新课: 提出如何研究正切函数的性质,启发学生可以“类比”研究正余弦函数图像和性质的方法。 (一)复习:如何作出正弦函数的图像? (二)探究:用正切线作正切函数图像

问题:正切函数y=tanx是否是周期函数? 设f(x)=tanx f(x+π)=tan(x+π)=tanx=f(x) y=tanx是周期函数,π是它的一个周期。 我们先来作一个周期内的图像 根据正切函数的周期性,将上图像向左向右延伸得到正弦函数的图像 (三)研究函数性质(启发学生借助图像进行研究,培养学生数形结合的思想) (四)疑点解析

在每一个开区间 内都是增函数 (五)例题讲解及课内巩固练习 例1、比较下列每组数的大小 (1)tan167与tan173 (2)tan ( )与tan y=tanx 在(,)上是增函数, 又y=tanx 在(0,)上是增函数 说明:比较两个正切值大小,关键是相应的角化到y=tanx 的同一单调区间内,再利用y=tanx 的单调递增性解决。 例2、 观察正切曲线,写出满足下列条件的x 的值的范围 例3、求 675 tan )60tan(570tan 315tan --+的值。 四、课堂小结 通过本节课的学习,我们认识了正切函数的图象即正切曲线以及通过图象观察总结出正切函数的性质并利用性质解决了一些简单问题,要注意整体思想在其中的应用。 五、课后作业

对数函数典型例题

对数运算与对数函数复习 例1.求下列函数的定义域: (1)2log x y a =; (2))4(log x y a -=; (3))9(log 2x y a -=. 例2.比较下列各组数中两个值的大小: (1)2log 3.4,2log 8.5; (2)0.3log 1.8,0.3log 2.7; (3)log 5.1a ,log 5.9a . (4)0.91.1, 1.1log 0.9,0.7log 0.8; 例3.求下列函数的值域: (1)2log (3)y x =+;(2)22log (3)y x =-;(3)2log (47)a y x x =-+(0a >且1a ≠).

例4.(1)已知:36log ,518,9log 3018求==b a 值. 例5.判断函数22()log (1)f x x x =+的奇偶性。

对数运算与对数函数复习练习 一、选择题 1.3 log 9log 28的值是( ) A .32 B .1 C .2 3 D .2 2.函数)2(x f y =的定义域为[1,2],则函数)(log 2x f y =的定义域为( ) A .[0,1] B .[1,2] C .[2,4] D .[4,16] 3.函数2x log y 5+=(x ≥1)的值域是( ) A .R B .[2,+∞] C .[3,+∞] D .(-∞,2) 4.如果0-+ C .0)a 1(log )a 1(>+- D .0)a 1(log )a 1(<-+ 5.如果02log 2log b a >>,那么下面不等关系式中正确的是( ) A .0b>1 D .b>a>1 6 若a>0且a ≠1,且14 3log a <,则实数a 的取值范围是( ) A .0或 D .4 3a 0<<或a>1 7.设0,0,a b <<且,722ab b a =+那么1lg |()|3 a b +等于( ) A .1(lg lg )2a b + B .1lg()2ab C .1(lg ||lg ||)3a b + D .1lg()3 ab 8.如果1x >,12log a x =,那么( ) A .22a a a >> B .22a a a >> C .22a a a >> D .22a a a >> 二、填空题(共8题) 8.计算=+?+3log 22450lg 2lg 5lg . 10.若4 12x log 3=,则x =________ 11 .函数f(x)的定义域是[-1,2],则函数)x (log f 2的定义域是_____________ 12.函数x )31 (y =的图象与函数x log y 3-=的图象关于直线___________对称.

正切函数图像及性质

第14讲 正切函数的性质与图像 第一部分 知识梳理 1. 正切函数的图像 2. 正切函数 的性质 3. 函数tan()y A x ω?=+的周期为T πω = 第二部分 精讲点拨 考点1 正切函数的图像的应用 (1 ) 直线y a =(a 为常数)与正切曲线tan y x =相交的相邻两点间的距离是( ) .A π .B 2 π .C 2π D 与a 值有关 y

[].1EX 解不等式tan 1x ≥- 考点2 正切函数性质应用 (2)不通过求值,比较下列各组中两个正切函数值的大小 ①0 tan167与0 tan173; ② 11tan 4π??- ???与13tan 5 π ?? - ??? (3)求函数tan 2y x =的定义域、值域和周期,并且求出它在区间[],ππ-内的图像 考点3 利用整理的思想求函数的单调区间和定义域 【例2】 求函数tan()3 y x π =+的定义域,并讨论它的单调性 [].1EX 求函数3tan(2)4 y x π =-的单调区间

考点4 正切函数综合应用 【例3】试判断函数tan 1 ()lg tan 1 x f x x +=-的奇偶性 【例4】已知3 4 x π π -≤≤ ,2 ()tan 2tan 2f x x x =++,求()f x 的最大值与最小值,并且 求相应x 的值 第三部分 检测达标 一、选择题 1.函数)4 tan(π - =x y 的定义域是 ( ) A.{x R x x 且,|∈}Z k k ∈+ ≠,4 2π π B. {x R x x 且,|∈}Z k k ∈+≠,43ππ C. {x R x x 且,|∈}Z k k ∈≠,π D. {x R x x 且,|∈}Z k k ∈±≠,4 2ππ 2.若 ,2 4 π απ < <则( ) A .αααtan cos sin >> B .αααsin tan cos >> C .αααcos tan sin >> D .αααcos sin tan >>

对数函数知识点及典型例题讲解

对数函数知识点及典型例题讲解 1.对数: (1) 定义:如果,那么称为,记作,其中称为对数的底,N称为真数. ①以10为底的对数称为常用对数,记作___________. ②以无理数为底的对数称为自然对数,记作_________. (2) 基本性质: ①真数N为 (负数和零无对数);②;③; ④对数恒等式:. (3) 运算性质: ① log a(MN)=___________________________; ② log a=____________________________; ③ log a M n= (n∈R). ④换底公式:log a N= (a>0,a≠1,m>0,m≠1,N>0) ⑤ . 2.对数函数: ①定义:函数称为对数函数,1) 函数的定义域为( ;2) 函数的值域为; 3) 当______时,函数为减函数,当______时为增函数; 4) 函数与函数互为反函数. ② 1) 图象经过点( ),图象在;2) 对数函数以为渐近线(当时,图象向上无限接近y轴;当时,图象向下无限接近y轴); 4) 函数y=log a x与的图象关于x轴对称. ③函数值的变化特征: ①②③①②③ 例1 计算:(1) (2)2(lg)2+lg·lg5+; (3)lg-lg+lg. 解:(1)方法一利用对数定义求值设=x,则(2+)x=2-==(2+)-1,∴x=-1.方法二利用对数的运算性质求解 = =(2+)-1=-1.

(2)原式=lg(2lg+lg5)+=lg(lg2+lg5)+|lg-1| =lg+(1-lg)=1. (3)原式=(lg32-lg49)-lg8+lg245 = (5lg2-2lg7)-×+ (2lg7+lg5) =lg2-lg7-2lg2+lg7+lg5=lg2+lg5 =lg(2×5)= lg10=. 变式训练1:化简求值. (1)log2+log212-log242-1; (2)(lg2)2+lg2·lg50+lg25; (3)(log32+log92)·(log43+log83). 解:(1)原式=log2+log212-log2-log22=log2 (2)原式=lg2(lg2+lg50)+lg25=2lg2+lg25=lg100=2. (3)原式=( 例2 比较下列各组数的大小. (1)log3与log5;(2)log1.10.7与(3)已知logb<loga<logc,比较2b,2a,2c的大小关系.解:(1)∵log3<log31=0,而log5>log51=0,∴log3<log5. (2)方法一∵0<<1,<,∴0>, ∴, 即由换底公式可得log1.10.7<方法二作出y=与y=的图象. 如图所示两图象与x=相交可知log1.10.7<为减函数,且, ∴b>a>c,而y=2x是增函数,∴2b>2a>2c. 变式训练2:已知0<a<1,b>1,ab>1,则log a的大小关系是() B. C. D. 解: C 例3已知函数f(x)=log a x(a>0,a≠1),如果对于任意x∈[3,+∞)都有|f(x)|≥1成立,试求a的取值范围. 解:当a>1时,对于任意x∈[3,+∞),都有f(x)>0. 所以,|f(x)|=f(x),而f(x)=log a x在[3,+∞)上为增函数, ∴对于任意x∈[3,+∞),有f(x)≥log a3. 因此,要使|f(x)|≥1对于任意x∈[3,+∞)都成立. 只要log a3≥1=log a a即可,∴1<a≤3. 当0<a<1时,对于x∈[3,+∞),有f(x)<0, ∴|f(x)|=-f(x). ∵f(x)=log a x在[3,+∞)上为减函数, ∴-f(x)在[3,+∞)上为增函数. ∴对于任意x∈[3,+∞)都有

一次函数经典例题大全

一.定义型 例1. 已知函数是一次函数,求其解析式。 解:由一次函数定义知 , ,故一次函数的解析式为y=-6x+3。 注意:利用定义求一次函数y=kx+b解析式时,要保证k≠0。如本例中应保证m-3≠0。 二. 点斜型 例2. 已知一次函数y=kx-3的图像过点(2, -1),求这个函数的解析式。 解:一次函数的图像过点(2, -1), ,即k=1。故这个一次函数的解析式为y=x-3。 变式问法:已知一次函数y=kx-3 ,当x=2时,y=-1,求这个函数的解析式。 三. 两点型 例3.已知某个一次函数的图像与x轴、y轴的交点坐标分别是(-2, 0)、(0, 4),则这个函数的解析式为_____。 解:设一次函数解析式为y=kx+b,由题意得 ,故这个一次函数的解析式为y=2x+4 四. 图像型 例4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。 解:设一次函数解析式为y=kx+b由图可知一次函数的图像过点(1, 0)、(0, 2) 有故这个一次函数的解析式为y=-2x+2 五. 斜截型 例5. 已知直线y=kx+b与直线y=-2x平行,且在y轴上的截距为2,则直线的解析式为___________。 解析:两条直线;。当k1=k2,b1≠b2时,

直线y=kx+b与直线y=-2x平行,。 又直线y=kx+b在y轴上的截距为2,故直线的解析式为y=-2x+2 六. 平移型 例6. 把直线y=2x+1向下平移2个单位得到的图像解析式为___________。 解析:设函数解析式为 y=kx+b, 直线y=2x+1向下平移2个单位得到的直线y=kx+b与直线y=2x+1平行 直线y=kx+b在y轴上的截距为 b=1-2=-1,故图像解析式为 七. 实际应用型 例7. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q(升)与流出时间t(分钟)的函数关系式为___________。 解:由题意得Q=20-0.2t ,即Q=-0.2t+20 故所求函数的解析式为 Q=-0.2t+20()注意:求实际应用型问题的函数关系式要写出自变量的取值范围。 八. 面积型 例8. 已知直线y=kx-4与两坐标轴所围成的三角形面积等于4,则直线解析式为__________。 解:易求得直线与x轴交点为,所以,所以|k|=2 ,即 故直线解析式为y=2x-4或y=-2x-4 九. 对称型 若直线与直线y=kx+b关于 (1)x轴对称,则直线的解析式为y=-kx-b (2)y轴对称,则直线的解析式为y=-kx+b (3)直线y=x对称,则直线的解析式为 (4)直线y=-x对称,则直线的解析式为 (5)原点对称,则直线的解析式为y=kx-b 例9. 若直线l与直线y=2x-1关于y轴对称,则直线l的解析式为____________。 解:由(2)得直线l的解析式为y=-2x-1 十. 开放型 例10. 已知函数的图像过点A(1, 4),B(2, 2)两点,请写出满足上述条件的两个不同的函数解析式,并简要说明解答过程。 解:(1)若经过A、B两点的函数图像是直线,由两点式易得y=-2x+6 (2)由于A、B两点的横、纵坐标的积都等于4,所以经过A、B两点的函数图像还可以 是双曲线,解析式为 (3)其它(略)

正切函数图象

正切函数 1.正切函数的图像 (1)根据tan(x+π)=)cos()sin(ππ++x x =x x cos sin --=tanx (其中x ≠k π+2π ,k ∈Z)推出正切函数的周期为π. (2)根据tanx=x x cos sin ,要使tanx 有意义,必须cosx ≠0, 从而正切函数的定义域为{x |x ≠k π+2π ,k ∈Z} (3)根据正切函数的定义域和周期,我们取x ∈(-2π,2π ).利用单位圆中的正切线,通 过平移,作出y=tanx,x ∈(-2π,2π)的图像,而后向左、向右扩展,得y=tanx,x ≠k π+2π (k ∈Z)的图像,我们称之为正切曲线,如图所示. y=tanx 2.余切函数的图像如下: y=cotx 3.正切函数、余切函数的性质: 正切函数y=tanx 余切函数y=cotx

注:正切函数在每一个开区间(k π-2,k π+2)(k ∈Z)是增函数,但不能说成在整个定 义域是增函数,类似地,余切函数也是如此. 【重点难点解析】 本节重点是正切函数图像的画法及性质的运用.正切函数的图像一般用单位圆中的正切 线作.因y=tanx 定义域是{x |x ∈R,x ≠k π+2π,k ∈Z},所以它的图像被平行线x=k π+2π (k ∈Z)隔开而在相邻两平行线之间的图像是连续变化的. 1.正切函数应注意以下几点: (1)正切函数y=tanx 的定义域是{x |x ≠k π+2π ,k ∈Z},而不是R ,这点要特别注意:(2) 正切函数的图像是间断的,不是连续的,但在区间(k π-2π,k π+2π )(k ∈Z)上是连续的;(3) 在每一个区间(k π-2π,k π+2π )(k ∈Z)上都是增函数,但不能说正切函数是增函数. 2.解正切不等式一般有以下两种方法: 图像法和三角函数线法.图像法即先画出正切函数的图像,找到符合条件的边界角,再写出所有符合条件的角的集合.三角函数线法则先在单位圆中作出角的边界值时的正切线,得到边界角的终边,在单位圆中划出符合条件的区域(这里特别要注意函数的定义域),再用不等式正确表示区域. 例1 作出函数y=|tanx |的图像,并根据图像求其单调区间. 分析:要作出函数y=|tanx |的图像,可先作出y=tanx 的图像,然后将它在x 轴上方的图像保留,而将其在x 轴下方的图像向上翻(即作出关于x 轴对称图像),就可得到y=|tanx |的图像. 解:由于y=|tanx |= tanx,x ∈Z [k π,k π+2π ] -tanx,x ∈(k π-2π ,k π)(k ∈Z) 所以其图像如图所示,单调增区间为[k π,k π+2π)(k ∈Z);单调减区间为(k π-2π ,k π](k ∈Z).

函数概念典型例题

函数概念及其表示---典例分析 例1.下列各组函数中,表示同一函数的是( C ). 选题理由:函数三要素。 A. 1,x y y x == B. 11,y x y = += C. ,y x y == D. 2||,y x y == 点评:有利于理解函数概念,强化函数的三要素。 变式: 1.函数f (x )= 2(1)x x x ??+? ,0,0x x ≥< ,则(2)f -=( ). A. 1 B .2 C. 3 D. 4 例2.集合{}22M x x =-≤≤,{}02N y y =≤≤,给出下列四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是( B ). 选题理由:更好的帮助学生理解函数概念,同时也体现函数的重要表示法图像法,图形法是数形结合思想应用的前提。 变式: 1.下列四个图象中,不是函数图象的是(B ). 2.设集合A ={x |0≤x ≤6},B ={y |0≤y ≤2},从A 到B 的对应法则f 不是映射的是( ). A. f :x →y = 1 2x B. f :x →y = 1 3x C. f :x →y =1 4x D. f :x →y =1 6 x A. B. C. D.

函数的表达式及定义域—典例分析 【例1】 求下列函数的定义域: (1)1 21 y x = +-;(2 )y = . 选题理由:考查函数三要素,定义域是函数的灵魂。 解:(1)由210x +-≠,解得1x ≠-且3x ≠-, 所以原函数定义域为(,3)(3,1)(1,)-∞----+∞. (2 )由30 20 x -≥??≠,解得3x ≥且9x ≠, 所以原函数定义域为[3,9)(9,)+∞. 选题理由:函数的重要表示法,解析式法。 变式: 1 .函数y =的定义域为( ). A. (,1]-∞ B. (,2]-∞ C. 11(,)(,1]22-∞-- D. 1 1(,) (,1]2 2 -∞-- 2.已知函数()f x 的定义域为[1,2)-,则(1)f x -的定义域为( ). A .[1,2)- B .[0,2)- C .[0,3)- D .[2,1)- 【例2】已知函数1( )1x f x x -=+. 求: (1)(2)f 的值; (2)()f x 的表达式 解:(1)由121x x -=+,解得13x =-,所以1 (2)3f =-. (2)设11x t x -=+,解得11t x t -= +,所以1()1t f t t -=+,即1()1x f x x -=+. 点评:此题解法中突出了换元法的思想. 这类问题的函数式没有直接给出,称为抽象函数的研究,常常需要结合换元法、特值代入、方程思想等. 变式: 1.已知()f x =2x +x +1,则f =______;f [(2)f ]=______. 2.已知2(21)2f x x x +=-,则(3)f = . 【例 2】 已知f (x )=33x x -+?? (,1) (1,)x x ∈-∞∈+∞,求f [f (0)]的值. 选题理由:分段函数生活重要函数,是考察重点。 解:∵ 0(,1)∈-∞ , ∴ f 又 ∵ >1, ∴ f )3)-3=2+ 12=52,即f [f (0)]=5 2 . 点评:体现了分类讨论思想。 2.某同学从家里到学校,为了不迟到,先跑,跑累了再走余下的路,设在途中花的时间为 t ,离开家里的路程为d ,下面图形中,能反映该同学的行程的是( ).

正切函数的图象与性质(习题)

1 正切函数的图象与性质(习题) ? 例题示范 例1:已知sin33cos55tan35a b c =?=?=?, ,,则( ) A .a b c >> B .b c a >> C .c b a >> D .c a b >> 思路分析: 观察33°,55°,35°之间的关系,利用三角函数在区间[090]??, 上的单调性,选择合适的公式化简,转化为可比较的函数值. 由诱导公式可得, cos55cos(9035)sin35b =?=?-?=?, ∵sin y x =在区间[090]??,上单调递增,且sin 33a =?, ∴b a >, ∵sin 35tan 35cos35c ?=?= ? ,且0cos351?=, ∴c b a >>,故选C . 例2:函数23()sin cos 4f x x x =++,2π[0]3 x ∈,的值域是( ) A .[12], B .[]44-, C .[1]4 -, D .[2]4-, 思路分析: 2223()sin cos 4 31cos cos 4 7cos cos 4 f x x x x x x x =++=-++=-++由题意, 设cos t x =,2π[0]3x ∈,,由余弦函数的单调性得,12 1t -≤≤, 则原函数可化为27()4f x t t =-++,12 1t -≤≤, 由二次函数性质得,()[12]f x ∈,,故选A . ? 巩固练习

A .2 π B .π C .2π D .4π C .(1)(0)(1)f f f >>- D .(0)(1)(1)f f f >-> 4. 下列函数属于奇函数的是( ) A .()tan(π)f x x =+ B .π()sin()2f x x =- C .()cos(3π)f x x =- D .π()sin()2f x x =+ 5. 已知函数()tan f x x x =+,2()=cos g x x x +,则( ) A .()f x 与()g x 都是奇函数 B .()f x 与()g x 都是偶函数 C .()f x 是奇函数,()g x 是偶函数 D .()f x 是偶函数,()g x 是奇函数 6. 函数sin()2 y x π=+在( ) A .[]22 ππ-,上是增函数 B .[0]π,上是减函数 C .[0]-π,上是减函数 D .[]-ππ,上是减函数 7. 函数()cos f x x =的一个单调递减区间是( ) A .[]44 ππ-, B .[]44π3π,

高一指数函数与对数函数经典基础练习题,

指数函数与对数函数 一. 【复习目标】 1. 掌握指数函数与对数函数的函数性质及图象特征. 2. 加深对图象法,比较法等一些常规方法的理解. 3. 体会分类讨论,数形结合等数学思想. 二、【课前热身】 1.设5 .1348.029.0121,8,4-? ? ? ??===y y y ,则 ( ) A. 213y y y >> B 312y y y >> C 321y y y >> D 231y y y >> 2.函数)10(|log |)(≠>=a a x x f a 且的单调递增区间为 ( ) A (]a ,0 B ()+∞,0 C (]1,0 D [)+∞,1 3.若函数)(x f 的图象可由函数()1lg +=x y 的图象绕坐标原点O 逆时针旋转 2 π 得到,=)(x f ( ) A 110 --x B 110-x C x --101 D x 101- 4.若直线y=2a 与函数)且1,0(|1|≠>-=a a a y x 的图象有两个公共点,则a 的取值范围是 . 5..函数)3(log 32x x y -=的递增区间是 . 三. 【例题探究】 例1.设a>0,x x e a a e x f += )(是R 上的偶函数. (1) 求a 的值; (2) 证明:)(x f 在()+∞,0上是增函数 例2.已知()())2(log 2log )(,2 2 log )(222 >-+-=-+=p x p x x g x x x f (1) 求使)(),(x g x f 同时有意义的实数x 的取值范围 (2) 求)()()(x g x f x F +=的值域. 例3.已知函数)1(1 2 )(>+-+ =a x x a x f x (1) 证明:函数)(x f 在()+∞-,1上是增函数;

正弦、余弦、正切函数的图像与性质

正弦、余弦、正切函数的图像与性质 一、选择题: 1.函数y =sin x 2+cos x 是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .既不是奇函数也不是偶函数 2.下列关系式中正确的是( ) A .sin11°<cos10°<sin168° B .sin168°<sin11°<cos10° C .sin11°<sin168°<cos10° D .sin168°<cos10°<sin11° 3.已知函数f (x )=sin ????x -π 2(x ∈R ),下面结论错误的是( ) A .函数f (x )的最小正周期为2π B .函数f (x )在区间????0,π 2上是增函数 C .函数f (x )的图像关于直线x =0对称 D .函数f (x )的奇函数 4.设a =12log sin81o ,b =12log sin 25o ,c =12 log cos25°,则它们的大小关系为( ) A .a <c <b B .b <c <a C .a <b <c D .b <a <c 5.函数y = lncos x ????-π2<x <π 2的图像是( ) A . B C . D. 6.当-π2<x <π 2时,函数y =tan|x |的图像( ) A .关于原点对称 B .关于x 轴对称 C .关于y 轴对称 D .不是对称图形 7.函数y =tan(sin x )的值域为( ) D .以上均不对

8.若直线y =3与函数y =tan ωx (ω>0)的图像相交,则相邻两交点的距离是( ) A .π 二、填空题 9.函数y =cos x 在区间[-π,a ]上为增函数,则a 的范围是__________. 10.函数y =1+2sin x 的最大值是__________,此时自变量x 的取值集合是__________. 11.函数y =sin 2x -cos x 的值域是__________. 12.函数y =3sin ????2x +π6的单调递减区间是__________. 13.已知f (n )=sin n π4(n ∈Z ),则f (1)+f (2)+…+f (100)=__________. 14.若关于x 的方程cos 2x -sin x +a =0有解,则a 的取值范围是__________. 15.如果函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图像与直线y =k 有且仅有三个不同的交点,那么k 的取值范围是__________. 16.关于三角函数的图像,有下列命题: ①y =sin|x |与y =sin x 的图像关于y 轴对称; ②y =cos(-x )与y =cos|x |的图像相同; ③y =|sin x |与y =sin(-x )的图像关于x 轴对称; ④y =cos x 与y =cos(-x )的图像关于y 轴对称. 其中正确命题的序号是__________. 三、解答题: 17.判断下列函数的奇偶性: (1)f (x )=sin ????2x +3π2; (2)f (x )=sin x 1-sin x 1-sin x 18.作出下列函数的图像: (1)y =tan|x |; (2)y =|tan x |. 19、求函数f (x )=13log tan ??? ?2x +π3的单调递减区间.

高一数学对数函数经典题及详细答案

高一数学对数函数经典练习题 一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、已知32a =,那么33log 82log 6-用a 表示是( ) A 、2a - B 、52a - C 、2 3(1)a a -+ D 、 2 3a a - 答案A 。 ∵3a =2→∴a=log 32 则: log 38-2log 36=log 323 -2log 3(2*3) =3log 32-2[log 32+log 33] =3a-2(a+1) =a-2 2、2log (2)log log a a a M N M N -=+,则 N M 的值为( ) A 、41 B 、4 C 、1 D 、4或1 答案B 。 ∵2log a (M-2N )=log a M+log a N , ∴log a (M-2N)2=log a (MN ),∴(M-2N)2 =MN , ∴M 2-4MN+4N 2=MN ,→m 2-5mn+4n 2=0(两边同除n 2)→(n m )2 -5n m +4=0,设x=n m →x 2-5x+4=0→(x 2 ???==1x x 又∵2log (2)log log a a a M N M N -=+,看出M-2N>0 M>0 N>0 ∴n m =1答案为:4 3、已知2 2 1,0,0x y x y +=>>,且1 log (1),log ,log 1y a a a x m n x +==-则等于( ) A 、m n + B 、m n - C 、()12m n + D 、()1 2 m n - 答案D 。 ∵loga(1+x)=m loga [1/(1-x)]=n ,loga(1-x)=-n 两式相加得:→ loga [(1+x)(1-x)]=m-n →loga(1-x 2)=m-n →∵ x 2+y 2=1,x>0,y>0, → y 2=1- x 2→loga(y 2)=m-n

函数·典型例题精析

2.2 函数2例题解析 【例1】判断下列各式,哪个能确定y 是x 的函数?为什么? (1)x 2+y =1 (2)x +y 2=1 (3)y =11 --x x 解 (1)由x 2+y =1得y =1-x 2,它能确定y 是x 的函数. (2)x y 1y y x 2由+=得=±.它不能确定是的函数,因为对1-x 于任意的x ∈{x|x ≤1},其函数值不是唯一的. (3)y y x =的定义域是,所以它不能确定是的函数.11 --?x x 【例2】下列各组式是否表示同一个函数,为什么? (1)f(x)|x|(t)(2)f(x)g(x)(x)2=,==,=?t x 2 2 (3)f(x)g(x)(4)f(x)g(x)=2,==2,=x x x x x x +--+--111 11122 解 (1)中两式的定义域部是R ,对应法则相同,故两式为相同函数. (2)、(3)中两式子的定义域不同,故两式表示的是不同函数. (4)中两式的定义域都是-1≤x ≤1,对应法则也相同,故两式子是相同函数. 【例3】求下列函数的定义域: (1)f(x)2 (2)f(x)(3)f(x)=++==x x x x x x x --+----145 3210215 2||

(4)f(x)(4x 5)(1)x 10 4x 0 1x 4{x|1x 4}(2)3x 20x {x|x }=+-由-≥-≥得≤≤.∴定义域是≤≤由->,得>,∴定义域是>812323|| x -???解 (3)10x x 210 |x|503x 7x 5{x|3x 7x 5} 2由--≥-≠得≤≤且≠,∴定义域是≤≤,且≠??? (4)10 |x|0 4x 508x 00x x 8[80)(0)()由-≥≠-≠解得-≤<或<<或<≤∴定义域是-,∪,∪,854545454 8||x ?????? ??? 【例4】已知函数f(x)的定义域是[0,1],求下列函数的定义域: (1)y f (2)y f(2x)f (3)y f ==+=()()()123 2x x x a + 解(1)01x 1x 1f(){x|x 1x 1}由<≤,得≤-或≥,∴的定义域是≤-或≥1 122x x

三角函数 正切、余切图象及其性质

正切、余切函数图象和性质反三角函数[知识要点] 1.正切函数、余切函数的图象与性质 2.反三角函数的图象与性质 3.已知三角函数值求角 [目的要求] 1.类比正、余弦函数的研究,讨论正切函数与余切函数的图象和性质,关注其不同点. 2.从反函数概念入手,引入反三角函数定义,并定性讨论其图象和性质. 3.能熟练运用正、余弦函数性质解决问题. 4.能用反三角函数值表示不同范围内的角. [重点难点] 1.正切函数图象与性质2.已知三角函数值求角 [内容回顾] 一、正切函数与余切函数图象 由前面我们正、余弦函数图象和性质的过程知,在中学阶段,对一个函数的认识,多是“由图识性”.因此,可以先作出正、余切函数的图象. 作三角函数图象的一般方法,有描点法和平移三角函数线法. 与正、余弦函数的五点法作图相类似,我们可以选择正切函数在一个周期内的图象上三点及两条重要的辅导线——渐近线,来作正切函数在区间上的简图,不妨称之为“三点两线法”. 若想迅速作出余切函数y=cotx的图象,如何选择“三点”及“两线”呢?请大家看余切函数的图象,不难得到答案. 二、正、余切函数的性质 由图象可得: y=tanx y=cotx 定义域值域R R 单调性在上单增(k∈Z) 在上单减(k∈Z) 周期性T=π T=π 对称性10 对称中心,奇函数(k∈Z) 20 对称轴;无10 对称中心,奇函数(k∈Z) 20 对称轴;无 注: 1、由定义域知,y=tanx与y=cotx图象都存在无数多个间断点(不连续点). 2、每个单调区间一定是连续的.

3、由单调性可解决比较大小问题,但要务必使两个自变量在同一单调区间内. 三、反三角函数的概念和图象 四种三角函数都是由x到y的多值对应,要使其有反函数,必须缩小自变量x的范围,使之成为由x到y的对应.从方便的角度而言,这个x的范围应该(1)离原点较近;(2)包含所有的锐角;(3)能取到所有的函数值;(4)最好是连续区间.从这个原则出发,我们给出如下定义: 1.y=sinx, x∈的反函数记作y=arcsinx, x∈[-1,1],称为反正弦函数. y=cosx, x∈[0, π]的反函数记作y=arccosx, x∈[-1,1],称为反余弦函数. y=tanx,x∈的反函数记作y=arctanx, x∈R,称为反正切函数. y=cotx,x∈(0, π)的反函数记作y=arccotx, x∈R,称为反余切函数. 2.反三角函数的图象 由互为反函数的两个函数图象间的关系,可作出其图象. 注:(1)y=arcsinx, x∈[-1,1]图象的两个端点是 (2)y=arccosx, x∈[-1,1]图象的两个端点是(1,0)和(-1,π). (3)y=arctanx, x∈R图象的两条渐近线是和. (4)y=arccotx, x∈R图象的两条渐近线是y=0和y=π. 四、反三角函数的性质由图象,有 y=arcsinx y=arccosx y=arctanx y=arccotx 定义域[-1,1] [-1,1] R R 值域[0, π] (0, π) 单调性在[-1,1]上单增在[-1,1]上单减在R上单增在R上单减对称性10对称中心(0,0)奇函数 20对称轴;无10对称中心非奇非偶 20对称轴;无10对称中心 (0,0)奇函数 20对称轴;无10对称中心非奇非偶 20对称轴;无周期性无无无无 另外: 1.三角的反三角运算 arcsin(sinx)=x(x∈)arccos(cosx)=x (x∈[0, π]) arctan(tanx)=x(x∈)arccot(cotx)=x(x∈(0, π)) 2.反三角的三角运算 sin(arcsinx)=x (x∈[-1,1])cos(arccosx)=x (x∈[-1,1])

对数函数-典型例题

对数函数 例1求下列函数的定义域 (1)y=log2(x2-4x-5); (2)y=log x+1(16-4x) (3)y= . 解:(1)令x2-4x-5>0,得(x-5)(x+1)>0, 故定义域为{x|x<-1,或x>5}. (2)令得 故所求定义域为{x|-1<x<0,或0<x<2}. (3)令,得 故所求定义域为 {x|x<-1- ,或-1- <x<-3,或x≥2}. 说明求与对数函数有关的定义域问题,首先要考虑,真数大于零.底数大于零不等于1,若处在分母的位置,还要考虑不能使分母为零. 例2求下列函数的单调区间. (1)y=log2(x-4);(2)y=log0.5x2. 解:(1)定义域是(4,+∞),设t=x-4,当x>4时,t随x的增大而增大,而y=log2t,y又随t的增大而增大, ∴(4,+∞)是y=log2(x-4)的递增区间. (2)定义域{x|x∈R,且x≠0},设t=x2,则y=log0.5t 当x>0时,t随x的增大而增大,y随t的增大而减小, ∴(0,+∞)是y=log0.5x2的递减区间. 当x<0时,t随x的增大而减小,y随t的增大而减小, ∴(-∞,0)是y=log0.5x2的递增区间.

例3比较大小: (1)log0.71.3和log0.71.8. (2)(lg n)1.7和(lgn)2(n>1). (3)log23和log53. (4)log35和log64. 解:(1)对数函数y=log0.7x在(0,+∞)是减函数.因为1.3<1.8,所以 log0.71.3>log0.71.8. (2)把lgn看作指数函数的底,本题归为比较两个指数函数的函数值的大小,故需对底数lgn讨论. 若1>lgn>0,即1<n<10时,y=(lgn)x在R上是减函数,所以(lgn)1.2>(lgn)2; 若lgn>1,即n>10时,y=(lgn)2在R上是增函数,所以(lgn)1.7>(lgn)2.(3)函数y=log2x和y=log5x当x>1时,y=log2x的图像在y=log5x图像上方.这里x=3,所以log23>log53. (4)log35和log64的底数和真数都不相同,须找出中间量“搭桥”,再利用对数函数的单调性即可求解. 因为log35>log33=1=log66>log64,所以log35>log64. 评析要注意正确利用对数函数的性质,尤其是第(3)小题,可直接利用例2中的说明得到结论. 例4已知函数f(x)=log a(a-a x)(a>1), (1)求f(x)的定义域、值域. (2)判断并证明其单调性. (3)解不等式f-1(x2-2)>f(x). 解:(1)要使函数有意义,必须满足a-a x>0,即a x

高中数学 函数知识点总结与经典例题与解析

函数知识点总结 知识点一、平面直角坐标系 1、平面直角坐标系 在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。 其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。 为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。 注意:x 轴和y 轴上的点,不属于任何象限。 2、点的坐标的概念 点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。 知识点二、不同位置的点的坐标的特征 1、各象限内点的坐标的特征 点P(x,y)在第一象限0,0>>?y x 点P(x,y)在第二象限0,0>?y x 2、坐标轴上的点的特征 点P(x,y)在x 轴上0=?y ,x 为任意实数 点P(x,y)在y 轴上0=?x ,y 为任意实数 点P(x,y)既在x 轴上,又在y 轴上?x ,y 同时为零,即点P 坐标为(0,0) 3、两条坐标轴夹角平分线上点的坐标的特征 点P(x,y)在第一、三象限夹角平分线上?x 与y 相等 点P(x,y)在第二、四象限夹角平分线上?x 与y 互为相反数 4、和坐标轴平行的直线上点的坐标的特征 位于平行于x 轴的直线上的各点的纵坐标相同。 位于平行于y 轴的直线上的各点的横坐标相同。5、关于x 轴、y 轴或远点对称的点的坐标的特征 点P 与点p ’关于x 轴对称?横坐标相等,纵坐标互为相反数 点P 与点p ’关于y 轴对称?纵坐标相等,横坐标互为相反数

正切函数和余切函数的图像和性质

正切函数和余切函数的 图像和性质 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

正切函数和余切函数的图像和性质知识点: 1.正切函数和余切函数的概念; 2.正切函数与余切函数的图像和性质; 3.正切函数与余切函数性质的应用; 教学过程: 1.正切函数和余切函数的概念: (1)正切函数---形如tan =的函数称为正切函数; y x 余切函数--形如cot =的函数称为余切函数; y x 2.函数的图像和性质: (1)正切函数的图像: 见正切函数图像课件。 (2)正切函数图像: (3)与切函数的图像: 归纳填表格:

例1.求下列函数的周期: (1)tan(3)3 y x π =-+; (2)221tgx y tg x =+ ; (3)cot tan y x x =-; (4)2 2tan 21tan 2 x y x =-; (5)sin 1tan tan 2x y x x ??=+ ?? ? 例2.求下列函数的单调区间: (1)tan(2)24 y x π =++; (2)tan()123 x y π=-+-; (3)12log cot y x ?= ?? 例3.求下列函数的定义域: (1)tan 4y x π??=- ??? ; (2)y = (3)y =

例4.(1)求函数21)tan tan ]y x x =-的定义域; (2)解不等式:23tan (2)(3tan(2)044 x x ππ+-+≤ 例5.已知2tan tan y x a x =-,当1[0,],[0,]34 x a π∈∈时,函数max y =a 的值; 例6.已知函数tan ,(0,)2y x x π=∈,若1212,(0,),2 x x x x π∈≠。 求证:1212()()()22f x f x x x f ++>。

相关文档
最新文档