铅酸蓄电池极板两种化成工艺的讨论

铅酸蓄电池极板两种化成工艺的讨论
铅酸蓄电池极板两种化成工艺的讨论

铅酸蓄电池制造工艺

铅酸蓄电池制造工艺流程 1、极板的制造 包括:铅粉制造、板栅铸造、极板制造、极板化成、装配电池。 ⑴铅粉制造设备铸粒机或切段机、铅粉机及运输储存系统; ⑵板栅铸造设备熔铅炉、铸板机及各种模具; ⑶极板制造设备与膏机、涂片机、表面干燥、固化干燥系统等; ⑷极板化成设备充放电机; ⑸水冷化成及环保设备。 2、装配电池设备 汽车蓄电池、摩托车蓄电池、电动车蓄电池、大中小型阀控密封式蓄电池装配线、电池检测设备(各种电池性能检测)。 ⑴典型铅酸蓄电池工艺过程概述 铅酸蓄电池主要由电池槽、电池盖、正负极板、稀硫酸电解液、隔板及附件构成。 ⑵工艺制造简述如下 铅粉制造:将1#电解铅用专用设备铅粉机通过氧化筛选制成符合要求的铅粉。 板栅铸造:将铅锑合金、铅钙合金或其她合金铅通常用重力铸造的方式铸造成符合要求的不同类型各种板板栅。 极板制造:用铅粉与稀硫酸及添加剂混合后涂抹于板栅表面再进行干燥固化即就是生极板。 极板化成:正、负极板在直流电的作用下与稀硫酸的通过氧化还原反

应生产氧化铅,再通过清洗、干燥即就是可用于电池装配所用正负极板。 装配电池:将不同型号不同片数极板根据不同的需要组装成各种不同类型的蓄电池。 3、板栅铸造简介 板栅就是活性物质的载体,也就是导电的集流体。普通开口蓄电池板栅一般用铅锑合金铸造,免维护蓄电池板栅一般用低锑合金或铅钙合金铸造,而密封阀控铅酸蓄电池板栅一般用铅钙合金铸造。 第一步:根据电池类型确定合金铅型号放入铅炉内加热熔化,达到工艺要求后将铅液铸入金属模具内,冷却后出模经过修整码放。 第二步:修整后的板栅经过一定的时效后即可转入下道工序。板栅主要控制参数:板栅质量;板栅厚度;板栅完整程度;板栅几何尺寸等; 4、铅粉制造简介 铅粉制造有岛津法与巴顿法,其结果均就是将1#电解铅加工成符合蓄电池生产工艺要求的铅粉。铅粉的主要成份就是氧化铅与金属铅,铅粉的质量与所制造的质量有非常密切的关系。在我国多用岛津法生产铅粉, 而在欧美多用巴顿法生产铅粉。 岛津法生产铅粉过程简述如下: 第一步:将化验合格的电解铅经过铸造或其她方法加工成一定尺寸的铅球或铅段; 第二步:将铅球或铅段放入铅粉机内,铅球或铅段经过氧化生成氧化铅; 第三步:将铅粉放入指定的容器或储粉仓,经过2-3天时效,化验合格后

铅酸蓄电池用极板检验技术条件

铅酸蓄电池用极板检验技术条件

目次 1.范围 2.引用标准 3.术语、定义 4.产品分类 5.技术要求 6.试验条件 7.试验方法 8.判定标准 9.标志、包装和贮存

铅酸蓄电池用极板 1范围 本附件规定铅酸蓄电池用极板的产品分类、技术要求、试验方法、检验规则、标志、包装、运输和贮存。 本附件适用于涂膏式负极板、涂膏式正极板、管式正极板。 2引用标准 下列文件中的条款通过本附件的引用而成为本附件的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本附件,然而,鼓励根据本附件达成协议的各方研究是否使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本附件。 GB/T 626 化学试剂硝酸 GB/T 631 化学试剂氨水 GB/T 643 化学试剂高锰酸钾 GB/T 676 化学试剂乙酸(冰醋酸) GB/T 694 化学试剂无水乙酸钠 GB 1245 化学基准试剂(容量)草酸钠 GB/T 1266 化学试剂氯化钠 GB/T 1294 化学试剂酒石酸 GB/T 1400 化学试剂六次甲基四胺 GB/T 计数抽样检验程序第1部分:按接收质量限(AQL)检索的逐批检验抽样计划(GB/T ,ISO2859_1:1999,IDT) GB/T 蓄电池名词术语(GB/T , eqvIEC60486:1986) GB/T 6684 化学试剂过氧化氢 GB/T 6685 化学试剂氯化羟胺(盐酸羟胺) GB 6782 食品添加剂柠檬酸钠 GB/T 10111 利用随机数骰子进行随机抽样的方法

GB/T 15347 化学试剂抗坏血酸3术语、定义 下列术语和定义适用于本附件 干式荷电极板 极板为干态且处于高层建筑荷电状态的极板.普通型极板 极板为干态且处于低荷电状态的极板. 涂膏式极板外观术语和定义 3.3.1极板弯曲 极板弧状变形 3.3.2极板活性物质掉块 极板上活性物质脱高板栅,且形成穿透性缺陷. 3.3.3极板表面脱皮有气泡 活性物质之间层状剥离,但未形成穿透性缺陷. 3.3.4极板活性物质凹陷 极板上活性物质局部明显低于极板表面 3.3.5极板四框歪 极板对角线不相等. 3.3.6极板活性物质酥松 活性物质之间或与板栅之间结合力变差 管式极板外观术语和定义 3.4.1丝管破裂 丝管表面一处或多处相互脱离 3.4.2丝管散头 丝管顶端发散. 3.4.3铅膏粘附。 丝管外表面粘附活性物质。

铅酸蓄电池电池失效的主要原因和分析

铅酸蓄电池电池失效的主要原因和分 析 铅酸蓄电池失效可能有多种原因造成的,例如硫化、失水、热失控、活性物质脱落、极板软化等等,接下来将一一为大家介绍和分析。 1.硫化 铅酸蓄电池充放电的过程是电化学反应的过程,放电时,生成硫酸铅,充电时硫酸铅还原为氧化铅。这个电化学反应过程正常情况下是循环可逆的,但硫酸铅是一种容易结晶的盐化物,当电池中电解溶液的硫酸铅浓度过高或静态闲置时间过长时,就会"抱成"团,结成小晶体,这些小晶体再吸引周围的硫酸铅,就象滚雪球一样形成大的惰性结晶,这就破坏了原本可逆的循环,导致硫酸铅部分不可逆。结晶后的硫酸铅充电时不但不能再还原成氧化铅,还会吸附在栅板上,造成了栅板工作面积下降,铅酸蓄电池发热失水,铅酸蓄电池容量下降,这一现象叫硫化,也就是常说的老化。硫化还会导致短路、活性物质松弛脱落、栅板变形断裂等"并发症"。 只要是铅酸蓄电池,在使用的过程中都会硫化,但其它领域的铅酸电蓄池却比电动自行车上使用的铅酸蓄电池有着更长的寿命,这是因为电动车的铅酸蓄电池有着一个更容易硫化的工作环境。与汽车用启动电池不同,汽车电池点火放电后,电池始终处于浮充状态,放电形成的硫酸铅很快又被转化为氧化铅,而电动车放电时,不可能同时进行充电,这就造成硫酸铅大量堆集,如果深放电,这时硫酸铅浓度更高,而且电动车骑行后很难有条件及时充电,放电形成的硫酸铅不能及时充电转化为氧化铅,就会形成结晶。所以,循环寿命,根据放电深度不同而差别很大,放电深度越深,循环次数越少,放电深度越浅,循环次数越多,根据试验结果放电深渡与循环次数联系如下表:放电深度70%50%20%10% 循环寿命500次1000次2800次7000次 一些铅酸蓄电池在做70%的1C充电和60%的2C放电中,由于采用连续大电流循环,破坏了电池生成大硫酸铅结晶的条件,所以可能看不到铅酸蓄电池硫化对电池的破坏。如果试验中途停顿,铅酸蓄电池硫化的问题就会显现。由于电池重量大,一些用户经常采取电池经过多次使用放完电才再次充电,这样电池放电以后没有及时充电,铅酸蓄电池硫化就比较严重。另外,铅酸蓄电池的硫酸比重比较高,也是铅酸蓄电池硫化的重要因素。而铅酸蓄电池硫化,破

铅酸蓄电池结构详解

铅酸蓄电池结构详解 一、蓄电池的功用 蓄电池种类较多,根据电解液不同,有酸性和碱性之分。由于铅酸蓄电池内阻小,电压稳定,在短时间内能供给较大的起动电流,而且结构简单,价格较低,所以在汽车拖拉机上被广泛采用。 蓄电池为一可逆直流电源,在汽车拖拉机上及发电机并联,它的主要作用是: (1)发动机起动时,蓄电池向起动机和点火装置供电。起动发动机时,蓄电池必须在短时间内(5~10s)给起动机提供强大的起动电流(汽油机为200~600A。柴油机有的高达1000A)。 (2)在发电机不发电或电压较低发动机处于低速时,蓄电池向点火系及其它用电设备供电,同时向交流发电机供给他激励磁电流。(3)当用电设备同时接入较多,发电机超载时,蓄电池协助发电机共同向用电设备供电。 (4)当蓄电池存电不足,而发电机负载又较少时,可将发电机的电能转变为化学能储存起来,即充电。 (5)蓄电池还有稳定电网电压的作用。当发动机运转时,交流发电机向整个系统提供电流。蓄电池起稳定电器系统电压的作用。蓄电池相当于一个较大的电容器,可吸收发电机的瞬时过电压,保护电子元件不被损坏。延长其使用寿命。 二、蓄电池的构造

车用12V蓄电池均由6个单格电池串联而成,每个单格的标称电压为2V,串联成12V的电源,向汽车拖拉机用电设备供电。 蓄电池主要由极板、电解液、格板、电极、壳体等部分组成。 1.极板 极板分为正极板和负极板两种。蓄电池的充电过程是依靠极板上的活性物质和电解液中硫酸的化学反应来实现的。正极板上的活性物质是深棕色的二氧化铅(PbO2),负极板上的活性物质是海绵状、青灰色的纯铅(Pb)。 正、负极板的活性物质分别填充在铅锑合金铸成的栅架上,加入锑的目的是提高栅架的机械强度和浇铸性能。但锑有一定的副作用,锑易从正极板栅架中解析出来而引起蓄电池的自行放电和栅架的膨胀、溃烂,从而影响蓄电池的使用寿命。 负极板的厚度为1.8mm,正极板为2.2mm,为了提高蓄电池的容量,国外大多采用厚度为1.1~1.5mm的薄型极板。另外,为了提高蓄电池的容量,将多片正、负极板并联,组成正、负极板组。在每单格电池中,负极板的数量总比正极板多一片,正极板都处于负极板之间,使其两侧放电均匀,否则因正极板机械强度差,单面工作会使两侧活性物质体积变化不一致,造成极板弯曲。 2.隔板 为了减少蓄电池的内阻和体积,正、负极板应尽量靠近但彼此又不能接触而短路,所以在相邻正负极板间加有绝缘隔板。隔板应具有多孔性,以便电解液渗透,而且应具有良好的耐酸性和抗碱性。

铅酸蓄电池的结构和工作原理

铅酸蓄电池的结构和工作原理 (一)铅酸蓄电池的结构 铅酸蓄电池主要由正极板组?负极板组?隔板?容器和电解液等构成,其结构如下图所示: 1.极板 铅酸蓄电池的正?负极极板由纯铅制成,上面直接形成有效物质,有些极板用铅镍合金制成栅架,上面涂以有效物质?正极(阳极)的有效物质为褐色的二氧化铅,这层二氧化铅由结合氧化的铅细粒构成,在这些细粒之间能够自由地通过电解液,将正极材料磨成细粒的原因是可以增大其与电解液的接触面积,这样可以增加反应面积,从而减小蓄电池的内阻?负极(阴极)的有效物质为深灰色的海绵状铅?在同一个电池内,同极性的极板片数超过两片者,用金属条连接起来,称为极板组

或极板群?至于极板组内的极板数的多少,随其容量(蓄电能力)的大小而异?为了获得较大的蓄电池容量,常将多片正?负极板分别并联,组成正?负极板组,如下图所示: 安装时,将正?负极板组相互嵌合,中间插入隔板,就形成了单格电池?在每个单格电池中,负极板的片数总要比正极板的片数多一片,从而使每片正极板都处于两片负极板之间,使正极板两侧放电均匀,避免因放电不均匀造成极板拱曲? 2.隔板 在各种类型的铅酸蓄电池中,除少数特殊组合的极板间留有宽大的空隙外,在两极板间均需插入隔板,以防止正?负极板相互接触而发生短路?这种隔板上密布着细小的孔,既可以保证电解液的通过,又可

以阻隔正?负极板之间的接触,控制反应速度,保护电池?隔板有木质?橡胶?微孔橡胶?微孔塑料?玻璃等数种,可根据蓄电池的类型适当选定?吸附式密封蓄电池的隔板是由超细玻璃丝绵制作的,这种隔板可以把电解液吸附在隔板内,吸附式密封蓄电池的名称也是由此而来的? 3.容器 容器是用来盛装电解液和支撑极板的,通常有玻璃容器?衬铅木质容器?硬橡胶容器和塑料容器四种?容器用于盛放电解液和极板组,应该耐酸?耐热?耐震?容器多采用硬橡胶或聚丙烯塑料制成,为整体式结构,底部有凸起的肋条以搁置极板组?壳内由间壁分成3个或6个互不相通的单格,各单格之间用铅质联条串联起来?容器上部使用相同材料的电池盖密封,电池盖上设有对应于每个单格电池的加液孔,用于添加电解液和蒸馏水以及测量电解液密度?温度和液面高度? 4.电解液 铅酸蓄电池的电解液是用蒸馏水稀释高纯浓硫酸而成的?它的密度高低视铅蓄电池类型和所用极板而定,一般在15℃时为1.200~1.300g/cm3?蓄电池用的电解液(稀硫酸)必须保持纯净,不能含有危害铅酸蓄电池的任何杂质?电解液的作用是给正?负电极之间流动的离子创造一个液体环境,或者说充当离子流动的介质?电解液的相对密度对蓄电池的工作有重要影响,相对密度大,可减少结冰的危险并提

免维护铅酸蓄电池参数

免维护铅酸蓄电池的的基本知识 人们常说的免维护蓄电池正规名称叫做阀控式密封铅酸蓄电池。阀控式密封铅酸蓄电池从外表看,有外壳、阀盖、接线端子。接线端子周边的密封材料分别用红色和黑色(或者蓝色)来表明正极和负极。 12V的电池内部分为6个独立的相互隔绝的单格,每个单格内有用各自的汇流导体连接的正极板群和负极板群。铅酸蓄电池的极板犹如钢筋水泥的结构,是在合金丝的筛网状的骨架上涂敷(或者轧制)活性物质形成的:正极板上的物质是二氧化铅(PbO2),负极板上的物质是绒状铅(Pb)。每一个正、负极板之间都隔着多孔的超细纤维物质(也有使用二氧化硅胶物质填充的),其中吸附着硫酸(H2SO4)电解液,这个纤维物质(或硅胶物质)是电化学反应过程中液相传输和气相传输的通道,它和正、负极板群被紧密地装配在一起,形成一个2V的电池单体。由于铅酸蓄电池在充电时极板不可避免的会产生氢气和氧气,当它们产生的过多并且来不及化和成水的时候就会在单格内形成压力。为了保证蓄电池正常安全的工作,每个单格都设有自己的溢气阀,当压力过量时让气体自动逸出。相对于电池槽里装满电解液体的富液电池而言,阀控式密封铅酸蓄电池内部只蕴含着很少的电解液,属于贫液电池。尽管如此,由于设计时电解液有一定的冗余,并且在溢气阀压力的保护下只要使用合理,由气体逸出造成的水损失极小,以至阀控蓄电池的电解液在寿命过程中基本不用补充,因此阀控式密封铅酸蓄电池也被称为免维护蓄电池。 蓄电池的电压多少伏算正常?

人们常说:这个蓄电池电压是12V的。这里所说的12V是指蓄电池的最基本参数——标称电势(单位V)。一个铅酸蓄电池单格标称电势为2V,由6个单格串连起来的蓄电池标称电势就是12V。电动车使用的电源一般都是用2到5个12V的蓄电池串连组成24V、36V、48V、60V电池组,这里都是指蓄电池组的标称电势,它是由蓄电池所采用活性物质的特性决定的理论值。实际上,不同的状况下蓄电池的电压和标称电势存在差异。比如:一个标称电势为12V的正常的铅酸蓄电池在充电过程的末期,充电极化达到最大值,电压可以达到14.4V或更高一点;在放电将终了时,放电极化达到最大值,电压可以低到9V左右。而充电或者放电停止并且静置数小时后,极化电压(浓度极化)完全消失,这个12V的蓄电池的电势可以在13.8V (充满后)至11V(放完后)之间,此时的差异是蓄电池内部的活性物质状态的改变造成的。 电池容量(Ah)的含义是什么? 蓄电池的额定容量C,单位安时(Ah),它是放电电流安(A)和放电时间小时(h)的乘积。由于对同一个电池采用不同的放电参数所得出的Ah 是不同的,为了便于对电池容量进行描述、测量和比较,必须事先设定统一的条件。实践中,电池容量被定义为:用设定的电流把电池放电至设定的电压所给出的电量。也可以说电池容量是:用设定的电流把电池放电至设定的电压所经历的时间和这个电流的乘积。为了设定统一的条件,首先根据电池构造特征和用途的差异,设定了若干个放电时率,最常见的有20小时、10小时时率、电动车专用电池为2小时率,写做C20、C10和C2,其中C代表电池容量,后面跟随的数字表示该类电池以某种强度的电流放

铅酸蓄电池用隔板选用及对比复习进程

铅酸蓄电池用隔板选 用及对比

铅酸蓄电池用隔板选用及对比 1.隔板综述 隔板是蓄电池的重要组成,不属于活性物质。在某些情况下甚至于起着决定性的作用。其本身材料为电子绝缘体,而其多孔性使其具有离子导电性。隔板的电阻是隔板的重要性能,它由隔板的厚度、孔率、孔的曲折程度决定,对蓄电池高倍率放电的容量和端电压水平具有重要影响;隔板在硫酸中的稳定性直接影响蓄电池的寿命;隔板的弹性可延缓正极活性物质的脱落;隔板孔径大小影响着铅枝晶短路程度。 由于隔板对铅蓄电池性能多方面的作用,隔板发展的每次质量的提高,无不伴随着铅蓄电池性能的提高。隔板的主要作用是防止正、负极短路,但又不能使电池内阻明显增加。因此,隔板应是多孔质的,允许电解液自由扩散和离子迁移,并具有比较小的电阻。当活性物质有些脱落时,不得通过细孔而达到对面极板,即孔径要小,孔数要多,其间隙的总面积要大;此外,还要求机械强度好,耐酸腐蚀,耐氧化,以及不析出对极板有害的物质。 20 世纪50 年代起动用蓄电池主要用木隔板,由于必须在湿润的条件下使用,造成负极板易氧化,初充电时间长,也无法用于干荷式铅蓄电池。尤其是木隔板在硫酸中不耐氧化腐蚀,致使蓄电池寿命短。为了提高铅蓄电池寿命,提出木隔板与玻璃丝棉并用隔板,使蓄电池寿命成倍地增加,但电池内阻增加,对电池容量、起动放电有不利影响,还能满足当时的标准要求。 20 世纪60 年代中期,出现了微孔橡胶隔板,由于它具有较好的耐酸性和耐氧化腐蚀性,明显地提高了蓄电池寿命。并促进蓄电池结构改进,减小了极板中心距离,使蓄电池起动放电性能和体积比能量有较大的提高。正因为微孔橡胶隔板的优良性能,从20世纪70 年代至90 年代初期,在铅蓄电池待业中占统治地位。微孔橡胶隔板的缺点是:被电解液浸渍的速度较慢,除热带地区外,缺乏资源,制造工艺较复杂,成本价格贵。另外,不易制成较薄的成品(厚度在1mm 以下就困难)在微孔橡胶隔板生产的同时,还出现了烧结式PVC 隔板以及后来相继出现的软质聚氧氯乙烯隔板,该种隔板同橡胶隔板相差不大,但在80年代很畅销。 从1993 年,由于微孔橡胶隔板成本提高,因而形成PVC隔板供不应求的局面。20世纪90年代相继出现PP(聚丙烯)隔板、PE(聚乙烯)隔板和超细玻璃纤维隔板(商品各为10-G)及其它们的复合隔板。也曾出现纤维纸隔板,其电阻、孔率方面均较好,但耐腐蚀和机械强度较差,孔径也较大,因此未能大批量使用。目前国际上,特别是美国、西欧汽车型蓄电池大量使用的是聚乙烯袋式隔板。PE隔板具有较小的孔径,极低的电阻和极薄的基底,易于做成袋式,适用于蓄电池的连续化生产。但是目前国内尚未国产化大批生产,与此隔板相适应的装配线(包括配组机)也有限,所以使用尚不普遍;PP隔板和10-G逐渐为汽车型蓄电池厂家所接受。密闭阀控式铅酸蓄电池主要是在用AGM(吸附式玻璃纤维隔板),以下我们主要介绍一下AGM隔板.

铅酸蓄电池极板常用添加剂及作用

铅酸蓄电池用极板添加剂 1 前言 添加剂是铅酸蓄电池的重要成分,对蓄电池的性能有着重要的影响,加入铅酸蓄电池中的添加剂一般分为:极板添加剂和电解液添加剂,极板添加剂在和膏时加入,对负极板来讲,主要作用是抗收缩,又称为膨胀剂;对正极板来讲,主要增加极板的强度,防止软化、脱落和增加导电性等。电解液添加剂在电解液配制时加入,主要作用是增加电池的充放电性能和减缓板栅腐蚀等。本文主要谈论极板添加剂。 2 常见添加剂 2.1 短纤维 2.1.1 种类和特性 短纤维根据使用材料不同,一般分为聚酯纤维(涤纶材料),PP纤维(丙纶材料)和聚丙烯腈纤维(腈纶材料),不同的材料具有不同的性质,对极板添加剂中使用的短纤维除纤维直径、长度外,在70℃酸中的耐酸性以及在酸中分散性(是否沉降)对极板的性能都有影响。 2.1.2 作用 正、负铅膏中都使用,其主要作用:增加活性物质的机械强度,防止脱落,从而提高循环性能,有些文献报道,少量添加时有利于H2SO4向电极内部扩散,可以提高正极板的孔率,提高初容量;但加入量多时初容量无利。 2.2 碳素材料 2.2.1 种类和特性 碳素材料有:乙炔黑(炭黑)、超导电炭黑、碳纤维、石墨。乙炔黑是一种纳米材料,具有高分散性,石墨具有层状结构,碳纤维直径为0.1—1.0μm,其电阻与PbO2基本相同。碳纤维的最大特点是纤维细长,加入铅膏不降低其表现密度,容易被氧化,化成时损失一半。 2.2.2 作用 这几种物质都能提高活性物质的利用率以及低温大电流放电性能,但各有特点:添加各向异性石墨,在正极化成时受到阳极氧化,硫酸浸入石墨的层与层之间,化成后,活性物质的毛细孔增加了,这种大孔径的微孔作用向极板内部供应电解液,从而提高活性物质的利用率。杨乘英等[2]研究发现:加入高纯石墨有以下作用:①提高电极的孔率和润湿性能,能提高正极活性物质的利用率和容量;②减少内阻,提高导电性;③加入石墨使正极的自放电增加,必须注意石墨中杂质的含量,以不同产地进行对比选择。张玉峰等[1]研究发现在正极板中加入—定量的碳纤维,活性物质利用率提高9 %,低温放电性能提高50 %,使用石墨可能导致过度膨胀,使活性物质脱落。朱松然[3]等研究发现在负极中增加碳的含量可以提高电池容量和充电接受能力,但会降低氢析出的过电位10~20mV。D.P. Poden[4]研究发现:炭黑的作用是在深放电时提高活性物质的导电性能,因深放电时,阻抗较高的硫酸铅浓度都高。但是Vind则认为,炭黑对容量几乎没有影响,只在低温时稍有作用,但是化成时,对极板有冲洗作用,也能减缓由于添加剂中的其他成分引起的最终充电电压过高现象,在化成或放电时充当导体,其使用量与木素差不多,没有人准备使用过量的炭黑。 现在铅酸蓄电池生产厂使用较多的是炭黑,有的在正、负极板中都使用。 2.3 硫酸钡 2.3.1 种类和特性 用来作添加剂的硫酸钡有两种:一种是重晶石粉,它从溶液中沉淀出来,其颗粒直径为1 μm,—种是重晶石,圆形的精矿石,其颗粒直径为3~5μm,重晶石比重晶石粉的作用差许多。吴寿松先生[5]也提出使用沉淀法生产的BaSO4,国内有的厂家中称生产超细BaSO4;能过1 250目的分子筛。

铅酸蓄电池常识解释及表示方法

1、什么是一次电池和二次电池? 一次电池是普通的干电池,只能使用一次, 二次电池又叫可充电池。二次电池中的动力型电池(或称牵引电池)是电动车目前主要电源。 2、一次电池和二次电池有什么区别? 电池内部的电化学性决定了该类型的电池是否可充,根据它们的电化学成分和电极的结构可知,真正的可充电电池的内部结构之间所发生反应是可逆的。理论上,这种可逆性是不会受循环次数的影响,既然充放电会在电极体积和结构上引起可逆的变化,那么可充电电池的内部设计必须支持这种变化,既然,一次电池仅做一次放电,它内部结构简单得多且不需要支持这种变化,因此,不可以将一次电池拿来充电,这种做法很危险也很不经济,如果需要反复使用,应选择真正的循环次数在350次左右的充电电池,这种电池也可称为二次电池或蓄电池。 另一明显的区别就是它们能量和负载能力,以及自放电率,二次电池能量远比一次电池高,然而他们的负载能力相对要小。 3、充电电池是怎样实现它的能量转换? 每种电池都具有电化学转换的能力,即将储存的化学能直接转换成电能,就二次电池(也叫蓄电池)而言(另一术语也称可充电使携式电池),在放电过程中,是将化学能转换成电能;而在充电过程中,又将电能重新转换成化学能。这样的过程根据电化学系统不同,一般可充放电500次以上。 4、电动自行车用蓄电池的特点是什么? 电动自行车用蓄电池是动力型电池,它的特点是能够在一定时间内大电流放电,供车用电机运行,并能维持一定时间运行一定里程。 车用动力电池与固定电池,如仪表电池,电力,通讯系统电池,起动电池等从结构到性能都不相同,其充电和放电方式也不相同,因此不能通用。 5、电动自行车用电池是如何分类的? 从大的方面讲,电池分一次电池(电动车用它做电源已经成为历史) 、二次电池和燃料电池。车用电池按电解液性质分为酸性和碱性,按外形分为方形和圆柱形,按使用性质分为移动式和固定式,按用途分为动力型、起动型和普通型,按结构分为开敞式和密封式。其中:铅酸电池又有不同形式,如从外形用结构又分为高型和矮型;按酸性电解液的状态分为富液型、贫液型和胶体电解液三种,按极板的结构分为板式、卷式和管式。 目前电动车常规电池主要为铅酸电池、镍氢电池、镍锌电池,其中又以铅酸电池最普及,其余两种乃是仍然较少。主要原因是市场动作没有展开,没有形成适合电动车对路产品的规模产量,价格不未能被广大用户所接受,但很快就会进入热潮。技术成功的其他三种电池——锂离子电池、锌空气电池是继镍氢、镍锌电池之后的升级产品;燃料电池价格仍高不可攀,主要原因是质子交换膜制备成本高,催化金属属于贵重物,某些技术仍然需要提高,未能大规模进入生产领域,仍需6~8年的时间才能普及。 6、什么是铅酸电池(Pb-A)? 铅酸电池,电极主要由铅制成,电解液是硫酸溶液的一种蓄电池。 铅酸电池的代表符号为Pb-A或L-A,其中:Pb是元素周期表中铅的代号,L是铅的英文名称Leed的字头,A是酸的英文名称Acid的字头,上述两种写法均代表铅酸电池。 L-A电池品种很多,如水平极板的,卷极圆柱形等。 铅酸电池在我国是技术最成熟、各领域用量最大、市场销售最多使用时间最久的一种电源。电动自行车使用的铅酸电池属于贫液式、矮型阀控密封式、方形动力酸电池, 7、何为铅晶电池? 应用专有技术和独特生产工艺研制的非液非胶电解质,特殊板栅结构及材料配方制成的

蓄电池的化成

蓄电池的化成 什么是“化成”? “化成”即“转化而成”之意,极板化成是指利用化学和电化学反应使极板转化成具有电化学特性的正、负极板的过程。化成以前的极板其铅膏物质的主体部分相同,都是由氧化铅、金属铅、硫酸铅、三碱式硫酸铅、四碱式硫酸铅等物质相组成,原则上不存在正、负极板之分。化成之前的极板不存在铅酸蓄电池电化学反应的所需的正极活性物质二氧化铅。负极活性物质为海棉状铅。虽然在极板结构、工艺添加剂方面形成了正、负极板之分,但此时却不具备铅酸蓄电池放电的正、负极板条件。而通过化成这一过程,使得准备形成正极板的极板铅膏物质转化成为以二氧化铅为主体的物相结构而形成正极板,同时使得准备形成负极板的极板铅膏转化成以海绵状铅为主体的物相结构而形成负极板。化成是蓄电池制造很关键的一道工序,其转化过程的好坏都将直接影响到蓄电池的性能。 对于同配方、同工艺、同批次的铅酸蓄电池,因为在化成过程中采用了不同的电流而会导致活性物质颗粒大小与排列形式的变化.通过研究发现,采用大电流化成有利于形成均匀致密的正极活性物质与界面结构,从而使电池在大电流放电的使用条件下,极板软化速度明显放缓,循环寿命大幅度提高,这一特性非常适合电动车电池的使用要求,因此可以成为电动车电池的主要化成形式.采用间歇脉冲充电方式可以有效控制大电流充电时的温升,为大电流化成在工业生产中的应用扫除了障碍。

一、化成电解液的控制 1、化成电解液密度的控制: 化成电解液密度对极板化成质量有所影响。如果密度较高,浸酸时,极板表面就会生成结晶较粗且较厚的硫酸铅层,使得化成所需的电能增大,时间增长;如果密度较低,浸酸后,初期电解液的导电率降低,且硫酸在极板深处的扩散速率降低,从而使得极板内部的铅膏转化困难,加剧水解析气,降低电流效率,增加耗能及化成时间。因此,在化成过程中,应对化成电解液密度进行控制。 硫酸的密度,以25℃时的密度为准,若测定的硫酸密度若不在25℃可按下式进行换算。 d25 = d t+ a( t-25) 式中: d25—换算成25℃时的硫酸密度(g/cm3); d t—温度为t℃时的硫酸密度(g/cm3); t —电解液实测温度(℃); a —硫酸密度的温度系数。 a=??? 2、化成电解液数量的控制: 极板化成时,所用的化成电解液量直接影响极板的化成质量。极板浸入电解液后,立即发生中和反应,使硫酸浓度降低,在化成开始后一段时间,化成电解液密度继续降低,到了化成中期,密度逐渐上升,后期达到基本不变。故在化成过程中,化成电解液的密度是一个变量,而其变化的幅度与化成电解液的数量有关。当液量较多时,密度变化就小,有利于极板化成和散热。当液量较少时,其密度变化就

铅酸蓄电池用隔板选用及对比

铅酸蓄电池用隔板选用及对比 1.隔板综述 隔板是蓄电池的重要组成,不属于活性物质。在某些情况下甚至于起着决定性的作用。其本身材料为电子绝缘体,而其多孔性使其具有离子导电性。隔板的电阻是隔板的重要性能,它由隔板的厚度、孔率、孔的曲折程度决定,对蓄电池高倍率放电的容量和端电压水平具有重要影响;隔板在硫酸中的稳定性直接影响蓄电池的寿命;隔板的弹性可延缓正极活性物质的脱落;隔板孔径大小影响着铅枝晶短路程度。 由于隔板对铅蓄电池性能多方面的作用,隔板发展的每次质量的提高,无不伴随着铅蓄电池性能的提高。隔板的主要作用是防止正、负极短路,但又不能使电池内阻明显增加。因此,隔板应是多孔质的,允许电解液自由扩散和离子迁移,并具有比较小的电阻。当活性物质有些脱落时,不得通过细孔而达到对面极板,即孔径要小,孔数要多,其间隙的总面积要大;此外,还要求机械强度好,耐酸腐蚀,耐氧化,以及不析出对极板有害的物质。 20 世纪50 年代起动用蓄电池主要用木隔板,由于必须在湿润的条件下使用,造成负极板易氧化,初充电时间长,也无法用于干荷式铅蓄电池。尤其是木隔板在硫酸中不耐氧化腐蚀,致使蓄电池寿命短。为了提高铅蓄电池寿命,提出木隔板与玻璃丝棉并用隔板,使蓄电池寿命成倍地增加,但电池内阻增加,对电池容量、起动放电有不利影响,还能满足当时的标准要求。 20 世纪60 年代中期,出现了微孔橡胶隔板,由于它具有较好的耐酸性和耐氧化腐蚀性,明显地提高了蓄电池寿命。并促进蓄电池结构改进,减小了极板中心距离,使蓄电池起动放电性能和体积比能量有较大的提高。正因为微孔橡胶隔板的优良性能,从20世纪70 年代至90 年代初期,在铅蓄电池待业中占统治地位。微孔橡胶隔板的缺点是:被电解液浸渍的速度较慢,除热带地区外,缺乏资源,制造工艺较复杂,成本价格贵。另外,不易制成较薄的成品(厚度在1mm 以下就困难)在微孔橡胶隔板生产的同时,还出现了烧结式PVC 隔板以及后来相继出现的软质聚氧氯乙烯隔板,该种隔板同橡胶隔板相差不大,但在80年代很畅销。 从1993 年,由于微孔橡胶隔板成本提高,因而形成PVC隔板供不应求的局面。20世纪90年代相继出现PP(聚丙烯)隔板、PE(聚乙烯)隔板和超细玻璃纤维隔板(商品各为10-G)及其它们的复合隔板。也曾出现纤维纸隔板,其电阻、孔率方面均较好,但耐腐蚀和机械强度较差,孔径也较大,因此未能大批量使用。目前国际上,特别是美国、西欧汽车型蓄电池大量使用的是聚乙烯袋式隔板。PE隔板具有较小的孔径,极低的电阻和极薄的基底,易于做成袋式,适用于蓄电池的连续化生产。但是目前国内尚未国产化大批生产,与此隔板相适应的装配线(包括配组机)也有限,所以使用尚不普遍;PP隔板和10-G逐渐为汽车型蓄电池厂家所接受。密闭阀控式铅酸蓄电池主要是在用AGM(吸附式玻璃纤维隔板),以下我们主要介绍一下AGM隔板.

电动自行车用铅酸蓄电池极板的固化(精品文档)

电动自行车用铅酸蓄电池极板的固化 铅蓄电池在制造过程中,生板固化、干燥条件是非常重要的。生板质量的优劣,对化成后极板质量及电池性能有密切关系。因此生板固化、干燥过程决不可掉以轻心。 我厂主要是生产Pb-Ca-Sn-Al四元合金免维护铅酸蓄电池极板。一般铅粉生产时氧化度控制在72%~79%之间,其余为未氧化的游离铅;经过储存一定时间后进行和膏再进行涂填、浸酸后,铅膏中的游离铅含量降到15%~18%左右;在固化室中固化干燥后,铅膏物质中的游离铅含量一般在3%~5%。 固化良好的极板,化成后的极板可获得牢固的活性物质和良好的外观质量,反之由于在不同季节受气候变化等条件的影响,往往使生板固化条件得不到良好的控制,因而造成极板批量废品时有发生。一般废品现象:负极板裂纹、起泡;正极板活物质疏松、脱粉、顺筋起皮、整格脱落等[1]。 1固化的作用机理 极板的固化是指涂好膏的极板在一定的温度和时间等条件下,在铅膏胶凝过程中完成游离铅及板栅筋条表面铅的氧化以及碱式硫酸铅的再结晶和硬化的过程。铅蓄电池用生极板的固化是一个比较复杂的过程,既有物理变化也有化学变化,要达到的效果有板栅腐蚀层的形成、游离铅的转化、碱式硫酸铅再结晶(脱水形成微孔)。 固化过程按顺序大体也可分为以下不可分割的3个阶段[2]: (1)第一阶段,主要使板栅形成腐蚀层,促使铅膏与板栅有强的附着力,以及使铅膏中3BS(3PbO·PbSO4·H2O)与4BS(4PbO·PbSO4·H2O)生成合适的比例。 板栅的腐蚀层是靠空气中的氧气不断溶进铅膏的水分中,再到达板栅表面形成微电池来完成,水作为催化剂(或介质),板栅的铅因其活性低,形成腐蚀层相对是比较缓慢的。因此,这一阶段需要的时间会比较长,固化温度越高,板栅腐蚀的速度越快,但铅膏中3BS也会向4BS转化。因此,在此阶段应保证铅膏中有较高含量的水分,高的固化湿度和适宜的固化温度是很重要的。如果板栅腐蚀不好,铅膏的附着力差,极板易掉粉,铅蓄电池内阻会加大,电池容量衰减会较快,寿命会缩短。 (2)第二阶段,主要完成铅膏中的游离铅转化为氧化铅,同时板栅也进一步氧化腐蚀。 随着铅膏中的水分以蒸汽形式缓慢析出,水分含量逐渐降低,铅膏中开始形成微孔,外界空气与其交换进入极板内部的速度加快,游离铅的氧化开始加速;当铅膏中的水分含量降到7%~8.5%时,氧化速度达到最快,此阶段需要较高的湿度来保证铅膏不要失水过快,以延长游离铅快速转化的时间,达到转化比较彻底的目的;如失水过快,游离铅快速氧化的时间过短,固化结束后游离铅可能就会很高,势必造成活性物质的利用率降低,正极板甚至出现弯曲、脱粉等严重问题。 (3)第三阶段,为极板的干燥阶段,主要完成铅膏的硬化脱水、碱式硫酸铅再结晶、多孔电极的形成,前阶段脱水形成大孔,后阶段继续脱水形成微孔。 2 极板的固化过程 2.1 固化设备 采用江苏金帆的一体化固化室,室内配有温湿度控制系统、循环风系统、加热系统、排湿系统[3]。 加热系统为电加热。湿度使用喷水雾、每个固化室内单独的电加热小锅炉制蒸汽联合控制。循环风常采取固化室左侧进风右侧出风,保持固化室内部各部位风量、湿度等尽可能地一致,以保证固化质量的均匀。 排湿风机位于固化室后方的下部。进风门在顶部,排湿时进风门自动打开。 固化室内可放置1米×0.8米×0.8米的极板架3×3×3=27个。 2.2对固化前极板的控制 2.2.1铅膏游离铅的控制 试验发现,用氧化度80%以上的铅粉加水和制出来的铅膏,铅膏中的游离铅质量含量在12%以

铅酸蓄电池硫化的原因及处理

铅酸蓄电池硫化的原因及处理 在铅蓄电池的使用中,经常提到硫化问题,其含义是指蓄电池因深度(过量)放电或长期充电不足,使极板上的活性物质逐渐转变成晶粒粗大、质地坚硬的硫酸铅,并布满极板表面、堵塞极板微孔,阻碍电解液渗透和电流传导,造成蓄电池充放性能极度恶化,实际容量严重不足,且用常规充电方法无法将它还原成二氧化铅和海绵状铅的现象。 粗大的硫酸铅晶体导电性差、体积大,会堵塞活性物质的细孔,阻碍电解液的渗透和扩散作用,增加了蓄电池的内阻。同时,充电时这种硫酸铅不易转化为二氧化铅和海绵状的铅。这种硫酸铅会失去可逆作用,使极板的有效物质减少,放电量降低,使用寿命缩短,极板上出现有色斑点。显然,硫化对蓄电池性能的影响极大,严重的甚至使蓄电池报废。 一、极板硫化的原因 1、极板露出电解液液面。蓄电池内电解液液面过低,使极板上部与空气直接接触,负极板将会剧烈氧化。汽车在行驶中,由于电解液面上下波动,与极板上部已氧化的部分接触,会形成大晶粒的硫酸铅硬层,使极板上部硫化,这时极板的剩余部分将承受较大的放电电量,结果导致整个极板硫化。 2、初充电或经常充电不足,以及没有进行定期充电。 3、蓄电池电解液的密度过高,使硫酸铅溶解困难。 4、铅蓄电池经常过量放电或小电流深放电,使硫酸铅大量的生

成,并深入到极板深处。硫酸铅在活性物质中含量的增加很容易凝结变硬,堵塞活性物质的孔隙,正常的充电反应在这种情况下难以进行,只进行水的分解。 5、蓄电池长期处于半放电或放电状态中。例如:电池漏电、内部短路且未及时消除、发电机的充电电流小等,均能引起极板硫化。 6、电解液不纯,含有较多的有机物和杂质,这些有机物和杂质不仅促进了电池自放电,而且也是造成极板硫化的主要原因。它们在蓄电池放电时吸附在负极板上,使之不可溶解。 对于铅蓄电池硫化较重者,目前常用“上电治疗法”、小电流充电法消除。在使用和维护中,重要的是应该采取相应的措施减少极板的硫化,以延长蓄电池的使用寿命。 二、防止极板硫化的措施 1、蓄电池要安装牢固,应保持外表面的清洁干燥。 2、要用高纯度的蓄电池专用硫酸和蒸馏水配置电解液,不能用普通工业硫酸,也不能用清洁的井水和雨水。配置好的电解液要储存在陶瓷或工程塑料容器内,不能储存在金属容器内,加注时也要用塑料器具,并保证清洁。 3、尽可能使蓄电池处于充足电状态。大电流放电后要及时补充充电。车用蓄电池每三个月做一次预防性去硫充电。 4、根据季节的变化正确选用电解液浓度,特别是冬季用高浓度的电解液,冬季过后应及时进行调整,不应常年使用浓度偏高的电解液。另外,只要不是因为渗漏原因而引起的电解液液面降低,只允许

铅酸蓄电池发展简史

铅酸蓄电池发展简史 铅酸蓄电池1859年由法国人普兰特创造,1881年法国人富尔发明以铅化合物涂在铅片上,可以很快形成活性物质。 ①20世纪20年代由美国EXIDE公司推出的管式极板,用多缝隙的 硬橡胶管容纳活性物质,以一支铅合金棒插在中间导电,这就大大提高了要板的耐深度充放电的能力,硬橡胶管现已由无纺布或玻璃纤维管所取代,管式极板多用于动力牵引型蓄电池。 ②50年代由美国DELCO公司首先推出用无锑合金为板栅的免维护 汽车蓄电池,免去了以往汽车蓄电池须定期补水的工作,现在免维护式已经是汽车蓄电池的主要选择。 ③70年代由美国DEVIFF氏创新的阀控式蓄电池。 ④1970年以来出现拉网式板栅(目前国内湖北骆驼及保定风帆等)微孔PE及PVC隔板 单体间的穿壁焊技术(汽车及摩托车电池) 铅钙合金的加铝及加锡 铅酸蓄电池的基本结构与分类 铅酸蓄电池由正极板、负极板、隔板、电槽及电解液组成,此外还有一些零件如气塞、连接条、极柱等等,分述如下: ⑴正极板包括涂膏式、形成式、铅布式、铅箔式等 ⑵负极板包括涂膏式、铅布式、铅箔式。 ⑶隔板包括微孔橡胶式、PVC、微孔PVC(叉车电池)、AGM (阀控铅酸蓄电池).PE代式隔板(汽车免维护电池)

⑷电池槽硬橡胶式及塑料槽(ABS及PP料等)如我们公司阀控电池用ABS;汽车及摩托车免维护电池用PP料 ⑸电解液一律为稀硫酸(1.28,1.23,1.26,1.29,1.315,1.325,1.34);有一部分做成胶体 铅酸蓄电池的主要品种 1、起动用蓄电池:这是铅酸蓄电池品种中最大的一个,专为汽车 的起动、照明、点火提供能源。因要求放电电流大,故均用薄的涂膏式极板组成,最早每只为6V,现今为12V,正在向36V转变2、固定型蓄电池,作为备用电源,广泛用于邮电、电站、医院、 会堂等处。 3、助力车蓄电池(如12V12AH及12V18AH) 4、铁路客车蓄电池 5、内燃机车用蓄电池专供内燃机车起动及照明,长期使用管式 极板,近年来已改为涂膏式阀控蓄电池,型号为NG-462等。 6、摩托车用蓄电池用于摩托车的起动点火与照明 7、牵引蓄电池用于各种蓄电池、叉车、铲车、矿车、矿用电 机车、要求深充放。多采用管式正极板。 铅酸蓄电池的分类 A、按极板型式分 1、形成式正极板为纯铅板用电化方法生成过氧化铅、负极板 曾经用箔式,后改为涂膏式。 2、涂膏式这是用得最广泛的,即以铅合金板栅涂上铅膏。

铅酸电池隔板综述

铅酸电池隔板综述 在传统的富液式铅酸蓄电池中,隔板只是作为防止正负极短路的惰性隔离物。它须要具备良好的离子导电性,制造方法与生产工艺相匹配,物理和化学性质具有长期稳定性等.而在阀控铅酸蓄电池( V R L A ) 中,隔板除了需具有上述性能外,还需具有下性质:( 1 ) 隔板作为电解液贮存物,必须能吸收足够的电解液以保证电池的放电容量, 同时还必须有恰当的孔率, 保证气体可再复合;( 2 ) 隔板必须有足够的抗拉伸和机械强度,以适应机械化生产的需要;( 3 ) 隔板必须在酸液中不溶.且杂质含量应小,防止杂质溶入电解液中影响电池性能:( 4 ) 隔板需要有高的孔率,以使酸液分布均匀,且在灌酸和化成时酸液流动顺畅;( 5 ) 隔板需具有一定的弹性,保证隔板在电池充放循环过程中始终和极板间保持紧压状态;( 6 ) 隔板须能吸收足够的电解液,同时要保证电池处于贫液状态;( 7 ) 隔板必须允许电解液在其中自由流动,尤其是在电池处于过充电状态下为氧气循环再化合提供气体通路等。 不同类型铅酸蓄电池对隔板要求: 启动点火照明电池,这类电池工作时必须产生瞬时大电流,因此对隔板的电池性能要求很高,综合各方面考虑,对蓄电池提出如下要求:小电阻,以利于大电流放电;小排酸量,以利于提高电池容量;小孔径,以防止铅枝晶穿透隔板;高强度,以利于电池装配。想 工业用铅酸蓄电池 阀控密封式铅酸蓄电池,可用于应急灯、UPS、电讯、广电、铁路和航标等,该类电池要小电流持续放电,它对隔板提出更高的要求:可快速吸收电解液, 且电解液保持能力强;小孔径高孔率;在干态和湿态条件下均可保持弹性,使极板始终保持一定的正压力;当隔板吸液饱和时仍有气体通路, 以利于氧气循环再化合,实现电池密封厚度均匀.误差小。 牵引用铅酸蓄电池,主要用于机车、高尔夫车、电动叉车和自动导航车牵引能源。对隔板要求如下:有优良的机械强度,防止搬运装配震动、摩擦、压缩时造成的损伤,并防止隔板被刺穿;具有良好的可弯曲性,适用于流水线装配;小孔径,以防止枝晶穿透;有良好的抗氧化能力.防止隔板在电池运行过程中软化、破裂;具有优秀的耐热能力(牵引用铅酸蓄电池有时工作温度为75°C)。 蓄电池隔板要素: 隔板的结构 在VRLA电池中,AGM隔板起着很多作用。其中之一是将电解液吸附在AGM中,使其固定不动。粗纤维因其有较大的孔径,因而吸液速度快,且有良好的机械性能。粗纤维孔率低,吸酸少,爬酸距离短。细纤维吸液则相对多而慢,机械性能较差,但细纤维结构具有良好的弹性,可对极板提供持久的压力。细纤维有较高的孔率,吸酸量大,爬酸距离长。通常粗细纤维分别做成单层隔板,为了更好的发挥隔板在VRLA中的功能,设计成多层AGM隔板。实验发现,多层隔板比单层隔板毛细作用强,吸液能力更好。采用高比表面积的AGM隔板,高倍率放电性能优于才用其它比表面积隔板。 隔板压缩 现有的选择AGM隔棉合适厚度的方法: 适中压力、适中装配紧度 AGM隔棉在10KPa压力下的厚度为基础,隔板的压缩率为25~30%,以此来确定电池的装配紧度,或选择AGM隔棉的合适厚度。这是在国内外文献中普遍介绍的一种确定电池的合适装配紧度,或AGM隔板合适厚度的方法。它的依据是:文献中普遍介绍的隔板在40~50KPa 压力下电池有较长的深循环寿命;根据AGM隔板厚度和压力的关系,在10KPa压力下的干态厚度基础上压缩25~30%,可在湿态下对极板产生40~50KPa的压力。

铅酸蓄电池设计计算

VRLA电池酸量确定 VRLA电池相对于以前的开口富液式电池,其最大的优势是在电池寿命期间不需要添加电解液或水维护,电池可以任意位置放置使用等等。这就要求电解液被完全固定在AGM隔板和活性物质中不能流动,并且为了实现其寿命期间不需要加酸加水维护,就必须要实现电池寿命期间内的氧循环,即不能有电解液的损失。而形成氧循环的关键一点要求就是要严格限定电池的内的酸液总量,并且必须保证AGM隔板留有10%左右的孔不被电解液所淹没,从而为氧气的循环复合提供通道。但是又必须要求电池中电解液的总量能够维持活性物质放电反应的需要。 要想使电池中电解液总量完全够用,又能够为氧气的循环复合提供通道,就需要根据电池的实际用途,正确确定和控制电池的加酸量,下面将从三个大的方面来探讨VRLA电池加酸量确定的问题。 1、最低加酸量 VRLA电池需要的酸体积,取决于电池放电态与荷电态所要求的电解液密度以及电池放电过程输出的总电量和放电率。通常在VRLA设计时,荷电态的电解液密度要求1.28-1.30g/cm3,当其放出100%额定容量时又希望电解液密度为1.07-1.09g/cm3.这就要求电池中电解液总量至少必须满足能够维持电池在一定条件下放出其额定容量所必须消耗的电解液

总量,因此VRLA电池的最低用酸量可根据电池反液压方程式推导如下: PbO2 + Pb + 2H2SO4 = 2PbSO4 + 2H2O 根据电池充放电反应的方程式,结合充放电态物质各自的电化学当量值可知,电池每放出1AH的电量,要消耗纯的H2SO4 3.66g,生成水0.67g. 设放电开始时电池中电解液密度为ρ1(15℃),对应的质量百分比浓度为m%,放电终了时电解液密度为ρ2,对应的质量百分比浓度为n%。当电解液浓度由ρ1降到ρ2时,反应开始时加入的密度为ρ1的酸的体积为V ml。则根据电池反应式中每放出1AH电量所消耗的硫酸量为3.66g,生成的水的质量为0.67g,经过方程式两边等值计算,整理得出VRLA电池中每放出1AH电量的最低用酸体积V的表达式为: V = (3.66-2.99n)/[(m-n)ρ1] 如果设定电池荷电态的电解液密度为1.28g/cm3,放电态的电解液密度为1.08 g/cm3,则将各自对应的质量百分比数值带入最低用酸体积V的表达式中可以得出放电容量为C的电池的最低用酸体积为: V = (3.66-2.99×11.5%)/[(36.8-11.5)% ×1.28] C = 10.24C

相关文档
最新文档