国内外纤维含量检测方法的比较_邬文文

国内外纤维含量检测方法的比较_邬文文
国内外纤维含量检测方法的比较_邬文文

65

2013年 5月(上) 中国纤检

检验?科技

Inspection & Sicence

长期以来,纺织品标签上标注的纤维名称及含量一直是消费者关注的主要内容之一,也是相关部门保障监督纺织品质量的重要工具。这是因为纺织品中使用的原材料成分及含量不仅会影响消费者的健康,也对产品自身的洗涤和保养方式起着重要的指导作用,是消费者进行产品选择的重要依据。各国都十分重视纤维成分标签,中国、美国、欧盟、日本和国际标准组织(ISO)都制定了纺织品纤维含量检测方法的相关标准。

1 纤维含量检测现状分析

纤维含量的检测方法各国不尽相同。美国纺织品的试验方法标准主要有AATCC (美国纺织染色家与化学家学会)标准、ASTM(美国材料试验协会)标准、CPSC(美国联邦消费品安全委员会)标准;欧盟没有专门的标准制定机构,

CEN(欧盟标准化委员会)主要是采用国际标准,协调各成员国标准并制定必要的CEN 标准,CEN 标准大多数与ISO 标准相同;日本对纺织品服装的品质非常“挑剔”,进入日本的纺织品服装其贸易商一般要求按照JIS(日本工业标准)进行检测;我国采用GB/T 和FZ/T 标准,由于多年来我国制定方法标准遵循“能采用国际标准要尽量采用”的原则要求,多数试验方法国标等同或修改采用ISO 标准,因此技术内容与ISO 标准基本一致。[1]

ISO 标准中的一些方法具有试验温度偏高、试剂量偏大和时间偏长的特点,目的是为了提供能满足各国要求的误差较小的试验方法。日本、美国以及我国行业或企业标准等根据自身情况存在一些改进的试验方法,以达到降低试验温度、减少试验试剂使用量、缩短试验时间等的目的。

比如JIS L1030:2中针对腈纶或改性腈纶与某些其他纤维混纺的检测时可采用二甲基甲酰胺法(40℃~45℃),此方法较ISO 二甲基甲酰胺法(90℃~95℃)有更低的试验温度。

又比如ISO 1833中检测纤维素纤维与聚酯纤维的混合物含量采用75%硫酸在50%水浴环境中进行,持续1h ,日本和美国采用室温条件下的70%硫酸法,日本标准中只需10min 。

另如氢氧化钠法检测蛋白质纤维与非蛋白质纤维的含量,在还没有采用国

国内外纤维含量检测方法的比较

Comparison of the Detection Method of the Fiber Content at Home and Abroad

文/邬文文 王竟成

摘要:

介绍了一些国外纤维含量检测方法,并针对几种国内外不同的纤维含量检测方法,诸如羊绒制品的检测方法、再生纤维素纤维与棉纤维混合物的检测方法、某些纤维素纤维与某些蛋白质纤维混合物的检测方法,进行了比较。

关键词:纤维含量;检测方法;比较

检验?科技Inspection & Sicence

际标准之前,国内大多数毛纺厂也都采用2.5%氢氧化钠溶解羊毛。采用此方法对棉或粘胶纤维损伤小,过程易于控制,结果准确,数据重现性好,并且氢氧化钠在常温下是一种白色晶体,易于储存,价格便宜,水溶液也易于配制,操作过程简便,在日本标准中也包含此方法。

各国所采用的标准中,还有一些该国所特有的化学检测方法,如日本的硫氰酸法、混酸法、四氢呋喃法和间甲苯酚法,美国的γ-丁内酯法。[2]

2 国外纤维含量检测方法与我国方法的比较2.1 羊绒制品[3]

羊绒制品按照其纤维成分可分为纯羊绒和羊绒混纺两大类,其中混纺产品一般包括羊绒和羊毛等其他动物毛纤维混纺;羊绒和除动物毛之外的天然纤维(如棉、蚕丝)混纺;羊绒和粘纤等化纤混纺。羊绒与非动物毛纤维混纺可用化学溶解法测试其纤维含量。但由于羊绒和其他动物毛纤维的化学性质相同,不能用化学溶解法分离不同的动物毛纤维,因此纯羊绒的确认和羊绒与其他动物毛纤维混纺纺织品纤维含量的检测是用显微放大的方法观察纤维表面的鳞片结构特征,通过检测人员主管判定进行的。无论扫描电子显微镜(SEM)还是光学显微镜(LM)都是显微放大的手段。由于显微镜的方法是主观而非客观的测试方法,检测人员,特别是经验不足的检测人员之间对纤维的主观判定不同导致检测结果差异较大,这也是迄今为止的国际性难题。

2.1.1 羊绒与其他动物纤维混纺

羊绒与其他动物纤维混纺时纤维含量测试方法标准见表1。

表1 各国羊绒与其他动物纤维混纺产品含量测试方法标准

各国所用的羊绒与其他动物纤维混纺产品含量的测试方法无本质差异,尽管AATCC标准的计算方法忽略了各类纤维直径的标准差S、不同国家规定的动物纤维的密度不尽相同,但S的最大差异不会超过5μm,密度的最大差异远小于1g/cm3,因此纤维直径的标准差和纤维的密度对纤维含量计算结果影响甚小。事实上,试样中各类纤维的计数n值差异才是影响计算结果的主要参数。当检测人员对纤维的类别发生误判时,不同纤维的n值产生较大差异,从而使测得的纤维含量有较大差异。因此,羊绒纤维含量检测结果的差异不是由不同的测试方法引起的,而是检测人员的经验。

2.1.2 羊绒与其他非动物毛纤维混纺

羊绒与其他非动物毛纤维混纺时纤维含量测试方法标准见表2。

表2 各国羊绒与其他非动物毛纤维混纺产品含量测试方法标

当羊绒与动物毛以外的其他纤维混纺时,各国的检测方法无本质上的差异。但在结果计算时要结合公定回潮率,各国使用的公定回潮率有差异;另外,各国标准对含量计算时的修正值(d值)的规定不同。如果产品检测值按允差判定临界合格,那么回潮率和计算修正值不同所引起的差异可能会导致合格与否结论的改变。

d值取决于混合纤维的种类和溶解所用的溶剂,是根据某种溶剂溶解混纺纤维中的一种成分溶解不充分或引起不溶成分微溶所确定。d值比较复杂,这里不一一举例;各国使用的不同纤维回潮率见表3。

2.2 再生纤维素纤维与棉纤维的混合物

目前检测中主要使用的化学方法是GB/T 2910.6—2009中的甲酸/氯化锌法。但检测人员发现在用甲酸氯化锌法进行定量分析时,常会出现再生纤维素纤维不能彻底溶解的情况,深色产品更加明显。GB/T 2910.6—2009《纺织品定量化学分析第6部分:粘胶或铜氨纤维或莫代尔纤维或莱赛尔纤维与棉纤维混合物(甲酸/氯化锌法)》中明确规定:当混合物中的粘胶纤维、铜氨纤维、莱赛尔纤维或莫代尔纤维中存在活性染料,致使这些纤维不能完全溶解时,不适用本标准。故一直以来,棉与再生纤维素纤维混纺产品的定量方法和试验条件都备受关注。

近年来SGS等外资检测机构尝试采用了AATCC 20A-2011中的方法,据称取得了良好的效果。国标和美标再生纤维素纤维与棉纤维的混纺产品测试方法比较见表4。

2.3 某些纤维素纤维与某些蛋白质纤维的混合物

对于诸如纤维素纤维与羊毛的混合物,若采用GB/T 2910.4—2009中的方法,当混合物中的纤维中存在活性染料或经过特定染整处理时,会使得纤维素纤维在次氯酸钠

66中国纤检 2013年 5月(上)

67

2013年 5月(上) 中国纤检

检验?科技

Inspection & Sicence

溶液中或多或少地被溶解掉,造成部分情况下测试结果失真的情况。

而若采用AS (澳大利亚标准)2001.7.15—1983的常温硫酸法,溶解掉的是纤维素纤维,试剂对羊毛的损耗d 值为零,在绝大多数情况下收效甚好。国标和澳标纤维素纤维与某些蛋白质纤维混纺产品测试方法比较见表5。

表5 国标和澳标纤维素纤维与某些蛋白质纤维混纺产品测试方法比较

表3 各国使用的羊绒及羊绒混纺常用纺织纤维的回潮率比较

3 比较国内外纤维含量检测方法的意义

在当今经济、信息全球化的大背景下,对国内外纤维含量检测方法进行横向、纵向的深入比较研究,并加以应用,具有十分重要的意义。

标准中的技术方法既是先进技术的集成,也是新技术、新工艺和新产品开发的导向和核心资料,对于我国的纤维含量检测人员来说,通过研究标准,对比各国检测方法,博采众长,找出最快速、最有效、最能反映纺织品真实含量组成的试验方法加以使用,无疑是一条快速提升自身实力的捷径。

在国际贸易中,技术标准也是一种游戏规则,标准的竞争先于产品竞争,采用国际标准和国外先进标准是产品进入国际市场的通行证。发展中国家的出口商品受阻,

主要是由于信息系统不发达,对进口国的各种技术限制知之不多,贸易中有关的标准、法规,难以收集,或缺乏最新版本,贻误成交机会。因此建立一套反技术标准壁垒的预警机制,收集、跟踪和翻译国外标准信息,加强对发达国家及我国主要贸易伙伴国家的技术标准、政策、法规等有关内容的研究,做到“知己知彼”,才能“百战不殆”。

参考文献:

[1] 晓伟. 国际纺织品标准发展动态[J] 中国纤检,2007(8):15.

[2] 徐小方. 国内外纺织品纤维定性定量主要检测方法比较[J]. 轻纺工业与技术,2012,41(5):68.

[3] 陈继红,彭燕丽,杨桂芬,等. 出口商品技术指南(羊绒制品)[M].第1 版.北京:中华人民共和国商务部,2007:50-52.

(作者单位:浙江省纺织测试研究院)

表4 国标和美标再生纤维素纤维与棉纤维的混纺产品测试方法比较

土壤纤维素酶测定方法

纤维素酶 一、试剂: 1)醋酸缓冲液(pH 5.5):164.08 g无水醋酸钠(C2H3O2Na)溶于700 ml去离子水,用醋酸(C2H4O2)调节pH至5.5,用去离子水稀释至1 L。 2)CMC溶液(0.7%,w:v):7 g羧甲基纤维素钠盐溶于1 L醋酸缓冲液,45℃下搅拌2 h,此溶液在4℃下可存放7天。 3)还原糖试剂: 试剂A:16 g无水碳酸钠(Na2CO3)和0.9 g氰化钾(KCN)溶于去离子水并稀释至1 L。试剂B:0.5 g六氰铁钾(K4Fe(CN)6)溶于去离子水并稀释至1 L,贮于棕色瓶中。 试剂C:1.5 g 硫酸铁铵(NH4SO4Fe2(SO4)2·H2O)、1 g十二烷基硫酸钠(C12H25O4SNa)和4.2 ml浓硫酸溶于50℃去离子水,冷却后稀释至1 L。 4)水合葡萄糖溶液:28 mg水合葡萄糖溶于少量去离子水中,并定容至1 L。 二、仪器设备 恒温培养箱,水浴锅,分光光度计,搅拌器,三角瓶 三、操作步骤 取10.00 g(耕地)或5.00 g(林地)新鲜土壤(<2 mm)于100 ml三角瓶中,加15 ml 醋酸缓冲液和15 ml CMC溶液,盖上塞子,于50℃下培养24 h,过滤。同时做空白对照,但在培养结束时才加入15 ml CMC溶液,并迅速过滤。 取2.00 ml滤液于50 ml容量瓶中,并用去离子水定容至刻度。吸取2.00 ml稀释液于20 ml试管中,加2.00 ml还原糖试剂A和2.00 ml还原糖试剂B,盖紧混匀,在100℃水浴中加热15 min 后,立即至于20℃水中冷却5 min。加10.00 ml还原糖试剂C,混匀,20℃下静置显色60 min,于690 nm波长处比色测定(要求在30 min内完成)。 标准曲线:吸取0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0 ml水合葡萄糖溶液,用去离子水稀释至2 ml,同上加入还原糖试剂A、B、C后,比色测定还原糖含量。c) 空白: 无土空白:不加土样,其余操作与样品试验相同,整个试验设置一个,重复一次。 无基质空白:以等体积水代替基质,每个土样设置一个。 四、结果计算 土壤纤维素酶活性(μg·g-1·(24 h)-1)=(C*V*f)/ dwt 式中C为样品的葡萄糖含量(μg·ml-1);V为土壤溶液体积(30 ml);f为稀释倍数(25);

测定纤维素酶活实验方法总结及优化方案

DNS法测定酶活实验方法总结及优化方案 目前纤维素酶没有统一的测定方法,诸多因素影响纤维素酶酶活测定大小的比较。选择适宜的酶活测定条件,提高测定结果的准确性,可根据有关资料中采用的测定条件,以及通过控制变量法对酶活力测定中的主要影响因素进行研究。 目前实验室采用测酶活方法: 1、葡萄糖标准曲线制作: 530nm比色。 2、酶活测定方法:

考虑到酶液中培养基成分会对吸光值造成一定的影响,所以空白管0还是采用先将酶高温灭活的方法,后面保持实验条件一致,显色时间与标准曲线的显色时间保持一致。 单位酶活的计算:T n k OD ml U 1000 1 )/(???=酶活力 n :稀释倍数; K :曲线斜率; T :反应时间,min ; 1000:mg 换算成ug. 以下是近期所做的实验结果: 葡萄糖标准曲线 两种产纤维素酶细菌不同测试结果

测定结果 实验结论:从以上几种对酶液的处理方法来看,183的酶活要比R2高,两种菌都是以胞外酶为主。目前尚没找到有关于加缓冲溶液并且超声破碎的文献,所得测量结果与前面三种方法均不符,这一步需另外探索。 根据《纤维素酶活力测定条件研究》(夏服宝等,《饲料工业》2005年第26卷第16期)和《影响纤维素酶活力测定的几个因素》(刘妙莲等,中国食品发酵工业研究所)这两篇文献,实验室可先从底物浓度、温度、DNS用量、显色时间以及对菌体的超声破碎时间这几方面进行探索,进而优化实验方法。 刚果红染色法:常用的刚果红染色法有两种, 一种是先培养微生物,再加入刚果红进行颜色反应,另一种是在倒平板 时就加入刚果红。方法一在长出茵落的培养基上,覆盖质量浓度为1 mg /mI。的CR溶液,10~15 min后,倒去CR溶液,加入物质的量浓度为l mol/I。的NaCI溶液,15 min后倒掉NaCl溶液,此时,产生纤维素酶的 茵落周围将会出现透明圈。 方法二配制质量浓度为10 mg/mI。的CR溶液,灭菌后,按照每200 mI。培养基加入1 mI。的比例加入CR溶液,混匀后倒平板。等培养基上长 出茵落后,产生纤维素酶的菌落周围将会出现明显的透明圈。 两种刚果红染色法的比较刚果红在筛选纤维素分解菌上的应用已经 有超过20年的历史,课本中给出了两种方法。 方法一是传统的方法,缺点是操作繁琐,加入刚果红溶液会使菌落之间 发生混杂;其优点是这样显示出的颜色反应基本上是纤维素分解菌的作用。 方法二的优点是操作简便,不存在菌落混杂问题,缺点是由于在纤维素 粉和琼脂、土豆汁中都含有淀粉类物质,可以使能够产生淀粉酶的微生物出

范式法测定纤维素

原理 采用范氏(Van Soest)的洗涤纤维分析法测定中性洗涤纤维(NDF)和酸性洗涤纤维(ADF)原理: 植物性饲料经中性洗涤剂煮沸处理,不溶解的残渣为中性洗涤纤维,主要为细胞壁成分,其中包括半纤维素、纤维素、木质素和硅酸盐。植物性饲料经酸性洗涤剂处理,剩余的残渣为酸性洗涤纤维,其中包括纤维素、木质素和硅酸盐。酸性洗涤纤维经72%硫酸处理后的残渣为木质素和硅酸盐,从酸性洗涤纤维值中减去72%硫酸处理后的残渣为饲料的纤维素含量。将72%硫酸处理后的残渣灰化,在 灰化过程中逸出的部分为酸性洗涤木质素(ADL)的含量。 试剂的配制 中性洗涤剂(3%十二烷基硫酸钠):准确称取18.6g乙二胺四乙酸二钠(EDTA,C10H14O8Na2?2H2O,分析纯)和6.8g硼酸钠(Na2B4O7?10H2O,分析纯)放入烧杯中,加入少量蒸馏水,加热溶解后, 再加入30g十二烷基硫酸钠(C12H25NaO4S,分析纯)和 10ml乙二醇乙醚(C4H10O2,分析纯);再称取4.56 g无水磷酸氢二钠(Na2HPO4,分析纯)置于另一烧杯中,加入少量蒸馏水微微加热溶解后,倒入前一个烧杯中,在容量瓶中稀释至1000ml,其中pH 值约为6.9~7.1(pH值一般勿需调整); 1N 硫酸:量取约27.87 ml浓硫酸(分析纯,比重1.84,98%),徐徐加入已装有500ml蒸馏水的烧杯中,冷却后注入1000ml容量瓶定容,标定;酸性洗涤剂(2%十六烷三甲基溴化铵):称取20g十六烷三甲基溴化铵(CTAB,分析纯)溶于1000ml1N硫酸,必要时过滤; 中性洗涤纤维测定 准确称取1.0000g样品(通过40目筛)置于直筒烧杯中,加入100ml中性洗涤剂和数滴十氢化萘及0.5g无水亚硫酸钠。将烧杯套上冷凝装置于电炉上,在5~10min内煮沸,并持续保持微沸60min。煮沸完毕后,取下直筒烧杯,将烧杯中溶液倒入安装在抽滤瓶上的已知重量的玻璃坩埚中进行过滤,将烧杯中的残渣全部移入,并用沸水冲洗玻璃坩埚与残渣,直洗至滤液呈中性为止。用20ml丙酮冲洗二次,抽滤。将玻璃坩埚置于105℃烘箱中烘2h后,在干燥器中冷却30 min称重,直称至恒重。 酸性洗涤纤维测定 准确称取1.0000g样品(通过40目筛)置于直筒烧杯中,加入100 ml酸性洗涤剂和数滴十氢化萘及0.5g无水亚硫酸钠。将烧杯套上冷凝装置于电炉上,在5~10min内煮沸,并持续保持微沸60min。趁热用已知重量的玻璃坩埚抽滤,并用沸水反复冲洗玻璃坩埚及残渣至滤液呈中性为止。用少量丙酮冲洗残渣至抽下的丙酮液呈无色为止,并抽净丙酮。将玻璃坩埚置于105℃烘箱中烘2h后,在干燥器中冷却30 min称重,直称至恒重。 酸性洗涤木质素和酸不溶灰分(AIA)测定将酸性洗涤纤维加入72%硫酸,在20℃消化 3h后过滤,并冲洗至中性。消化过程中溶解部分为纤维素,不溶解的残渣为酸性洗涤木质素和酸不溶灰分,将残渣烘干并灼烧灰化后即可得出酸性洗涤木质素和酸不溶灰分的含量。 结果计算 中性洗涤纤维含量的计算:NDF(%)=(W1-W2)/ W×100 式中: W1—玻璃坩埚和NDF重(gW2—玻璃坩埚重(g) W—试样重(g) 酸性洗涤纤维含量的计算:ADF(%)=(G1-G2)/G×100 式中: G1—玻璃坩埚和ADF重(g) G2—玻璃坩埚重(g) W—试样重(g) 半纤维素含量的计算:半纤维素(%)=NDF(%)-ADF(%) 纤维素含量的计算:纤维素=ADF(%)-经72%硫酸处理后的残渣(%)

化学纤维质量指标及其检测方法

化学纤维质量指标及其检测方法 一:纤维长度 1.名义长度:切断长度:棉型纤维(30—40mm);毛型纤维(70—150mm);中长纤维(51—65mm)。 超长纤维:长度超过一定界限的短纤维 倍长纤维:长度超过名义长度2倍及以上 2.长度偏差率:长度偏差率=,反映短纤维长度均匀性 二:细度(线密度、纤度) 1.定义:纤维粗细程度 2.表示法: (1)公制支数Nm:1克重的纤维所具有的长度米数;Nm↑→纤维越细 (2)旦Dn:9000米长的纤维所具有的重量克数;Dn↑→纤维越粗 (3)特Tex:1000米长的纤维所具有的重量克数;Dn↑→纤维越粗 三:吸湿性: 1.定义:标准温湿度(20℃、65%相对湿度)下,纤维吸收或放出气态水的能力; 2.表示法:回潮率、含湿率 3.纤维吸湿原因: (1)纤维大分子结构(亲水基团) (2)纤维结晶度 (3)纤维表面吸湿 4.大小:羊毛>粘胶>麻、蚕丝>棉>醋酯>维纶、锦纶>腈纶>涤纶>氯纶、丙纶5.增加吸湿方法: (1)化学改性:大分子上引入亲水基 (2)物理改性:纤维中造成有规律的毛细孔 (3)表面处理: 四:密度: 1.大小:氨纶>粘胶>麻>涤纶、蚕丝>棉、羊毛>维纶>腈纶>锦纶>丙纶 五:热收缩: 1.定义:受热条件下,纤维形态尺寸的收缩,温度降低后不可逆 2.表示法:沸水收缩率、热空气收缩率、过热蒸汽收缩率 六:拉伸性能: 1.断裂强度cN/tex: (1)绝对强度:N或cN;纤维断裂时承受的最大负荷

(2)强度极限:cN/cm2 (3)相对强度:cN/tex; 麻、锦纶、丙纶>涤纶>维纶>腈纶、棉、蚕丝>粘胶>羊毛、氨纶 (4)湿强度:润湿下的强度;回潮率↑→湿强<干强(合成纤维与再生纤维的区别) (5)影响:断裂强度↑→断头↓→绕辊↓ 2.断裂伸长%:应力 (1)定义:拉伸至断裂时试样产生的伸长P (2)表示法:绝对伸长、相对伸长(绝对伸长/试样长度) (3)影响:断裂伸长↑→手感柔软↑、毛丝↓、断头↓→应变% →织物变形↑→→→→→→→→→→10—30%为佳 3.初始模量cN/tex: (1)定义:试样在小负荷(1%伸长)下变形的难易(材料刚性)——应力应变曲线初始一段直线的斜率 (2)影响:纤维柔性↓、结晶度↑、取向度↑→初始模量↑→刚性↑→织物变形↓、织物挺括、不易起皱 (3)大小:涤纶>腈纶、维纶、粘胶>丙纶>锦纶 4.断裂功、断裂比功、功系数: (1)定义:材料拉伸至断裂时外力所做的功(负荷伸长曲线下的面积) (2)断裂比功:单位长度或单位线密度的试样断裂时外力所做的功(应力应变曲线下的面积) (3)功系数:负荷伸长曲线下的面积与断裂伸长和断裂强度乘积之比 (4)表征:三者↑→纤维耐冲击↑、耐磨↑、韧性↑ 5.屈服点、屈服应力、屈服应变: (1)屈服点:拉伸曲线中起始一段直线向延伸区过渡的转折点P (2)影响:屈服点以前:纤维形变(弹性形变——可恢复); 屈服点以后:纤维形变(塑性形变——永久性变); 屈服点高→难产生塑性形变→织物尺寸稳定性 6.回弹性: (1)定义:材料在外力作用(拉伸或压缩)产生形变;外力去除后,恢复原状的能力 (2)表示法:一次负荷回弹性质(回弹率、弹性功);多次负荷回弹性质 (3)影响:回弹性↑→织物抗皱、挺括 氨纶>锦纶>涤纶>腈纶>粘胶 七:耐疲劳性: 1.定义:纤维耐多次变形性(应力循环次数) 2.影响:纤维弹性↑→应力循环次数↑→耐疲劳性↑(锦纶)

羧甲基纤维素酶测定原理

纤维素酶活力的测定 一、目的 学习和掌握3,5-二硝基水杨酸(DNS)法测定纤维素酶活力的原理和方法,了解纤维素酶的作用特性。 二、原理 纤维素酶是一种多组分酶,包括C1 酶、CX 酶和β-葡萄糖苷酶三种主要组分。其中C1酶的作用是将天然纤维素水解成无定形纤维素,CX 酶的作用是将无定形纤维素继续水解成纤维寡糖,β-葡萄糖苷酶的作用是将纤维寡糖水解成葡萄糖。纤维素酶水解纤维素产生的纤维二糖、葡萄糖等还原糖能将碱性条件下的3,5-二硝基水杨酸(DNS)还原,生成棕红色的氨基化合物,在540nm 波长处有最大光吸收,在一定范围内还原糖的量与反应液的颜色强度呈比例关系,利用比色法测定其还原糖生成的量就可测定纤维素酶的活力。 三、实验材料、主要仪器和试剂 1.实验材料 (1)纤维素酶制剂 500mg (2)新华定量滤纸 50mg / 份× 4 (3)脱脂棉花 50mg / 份× 4 (4)羧甲基纤维素钠(CMC) 510mg (5)水杨酸苷 500mg 2.主要仪器 (1)722 型或其他型号的可见分光光度计 (2)恒温水浴2 台 (3)沸水浴锅 (4)电炉子 (5)剪刀 (6)万分之一分析天平 (7)恒温干燥箱 (8)冰箱 (9)试管架 (10)胶头滴管 (11)具塞刻度试管20mL×24 (12)移液管或加液器0.5 mL×3;2mL×7 (13)容量瓶100 mL×6;1000 mL×3 (14)量筒50 mL×2;100 mL×1;500 mL×1 (15)烧杯100 mL×6;500mL×3;1 000 mL×1 3.试剂(均为分析纯)

(1)浓度为1mg/mL 的葡萄糖标准液 将葡萄糖在恒温干燥箱中105℃下干燥至恒重,准确称取100mg 于100mL 小烧杯中,用少量蒸馏水溶解后,移入100mL 容量瓶中用蒸馏水定容至100mL,充分混匀。4℃冰箱中保存(可用12~15 天)。(2)3,5-二硝基水杨酸(DNS)溶液 准确称取DNS 6.3g 于500mL 大烧杯中,用少量蒸馏水溶解后,加入2mol/L NaOH 溶液262mL,再加到500mL 含有185g 酒石酸钾钠(C4H4O6KNa · 4H2O,MW=282.22)的热水溶液中,再加5g结晶酚(C6H5OH,MW=94.11)和5g无水亚硫酸钠(Na2SO3,MW=126.04),搅拌溶解,冷却后移入1 000mL 容量瓶中用蒸馏水定容至1 000mL,充分混匀。贮于棕色瓶中,室温放置一周后使用。 (3)0.05 mol/L pH4.5 的柠檬酸缓冲液A 液(0.1 mol/L 柠檬酸溶液):准确称取C6H8O7 · H2O (MW=210.14)21.014g 于500mL大烧杯中,用少量蒸馏水溶解后,移入1 000mL 容量瓶中用蒸馏水定容至1 000mL,充分混匀。4℃冰箱中保存备用。

土壤纤维素酶活性测定(3,5- 二硝基水杨酸比色法)

土壤纤维素酶活性测定(3,5-二硝基水杨酸比色法) 一、原理 纤维素是植物残体进入土壤的碳水化合物的重要组分之一。在纤维素酶作用下,它的最初水解产物是纤维二糖,在纤二糖酶作用下,纤维二糖分解成葡萄糖。所以,纤维素酶是碳素循环中的一个重要的酶。纤维素酶解所生成的还原糖与?3,5-二硝基水杨酸反应而生成橙色的3-氨基-5-硝基水杨酸。颜色深度与还原糖量相关,因而可 用测定还原糖量来表示蔗糖酶的活性。 二、试剂 1)甲苯 2)1%羧甲基纤维素溶液:1g羧甲基纤维素钠,用50%的乙醇溶至100ml。 3)pH5.5醋酸盐缓冲液: 0.2mol/L醋酸溶液11.55ml95%冰醋酸溶至1L; 0.2mol/L醋酸钠溶液16.4gC2H3O2Na或27.22gC2H3O2Na.3H2O溶至1L; 取11ml0.2mol/L醋酸溶液和88ml0.2mol/L醋酸钠溶液混匀即成PH5.5醋酸盐缓冲液。4)3,5-二硝基水杨酸溶液:称1.25g二硝基水杨酸,溶于50ml2mol/LNaOH和125ml 水中,再加75g酒石酸钾钠,用水稀释至250ml(保存期不过7天)。 5)葡萄糖标准液(1mg/mL) 预先将分析纯葡萄糖置80℃烘箱内约12小时。准确称取50mg葡萄糖于烧杯中,用蒸馏水溶解后,移至50mL容量瓶中,定容,摇匀(冰箱中4℃保存期约一星期)。 若该溶液发生混浊和出现絮状物现象,则应弃之,重新配制。 三、操作步骤 葡萄糖标准曲线:分别吸1mg/mL的标准葡糖糖溶液0、0.1、0.2、0.4、0.6、0.8mL 于试管中,再补加蒸馏水至1mL,加DNS溶液3ml混匀,于沸腾水浴中加热5min,

纤维素的测定方法

实验原理 植物的主要化学成分是纤维素、半纤维素和木质素这三部分。它们是构成植物细胞壁的主要组分。其中,纤维素组成微细纤维,构成纤维细胞壁的网状骨架,而半纤维素和木质素是填充在纤维和微细纤维之间的“粘合剂”和“填充剂”。 1. 纤维素 生物制粉末在加热的情况下用醋酸和硝酸的混合液处理,在这种情况下,细胞间的物质被溶解,纤维素也分解成单个的纤维,木质素、半纤维素和其它的物质也被除去。淀粉、多缩戊糖和其它物质受到了水解。用水洗涤除去杂质以后,纤维素在硫酸存在下被重铬酸钾氧化成二氧化碳和水。 C6H10O5 + 4K2Cr2O7 + 16H2SO4 = 6CO2 + 4Cr2(SO4)3 + 4K2SO4 + 21H2O 过剩的重铬酸钾用硫酸亚铁铵溶液滴定,再用硫酸亚铁铵滴定同量的但是未与纤维 素反应的重铬酸钾,根据差值可以求得纤维素的含量。 2. 半纤维素 用沸腾的80%硝酸钙溶液使淀粉溶解,同时将干扰测定半纤维素的溶于水的其它碳水化合物除掉。将沉淀用蒸馏水冲洗以后,用较高浓度的盐酸,大大缩短半纤维素的水解时间,水解得到的糖溶液,稀释到一定体积,用氢氧化钠溶液中和,其中的总糖量用铜碘法测定。 铜碘法原理:半纤维素水解后生成的糖在碱性环境和加热的情况下将二价铜还原成一价铜,一价铜以Cu2O的形式沉淀出来。用碘量法测定Cu2O的量,从而计算出半纤维素的含量。 测定还原性糖的铜碱试剂中含有KIO3和KI,它们在酸性条件下会发生反应,也不会干扰糖和铜离子的反应。加入酸以后,会发生反应释放出碘: KIO3+ 5KI +3H2SO4= 3I2+ 3K2SO4+3H2O 加入草酸以后,碘与氧化亚铜发生反应: Cu2O + I2+ H2C2O4= CuC2O4+ CuI2+ H2O 过剩的碘用Na2S2O3溶液滴定:2Na2S2O3 + I2 = Na2S4O6 + 2NaI 3. 木质素 用1%的醋酸处理以分离出糖、有机酸和其它可溶性化合物。然后用丙酮处理,分离出叶绿素、拟脂、脂肪和其它脂溶性化合物。将沉淀用蒸馏水洗涤以后,在硫酸存在下,用重铬酸钾氧化水解产物中的木质素: C11H12O4 + 8K2Cr2O7 + 32H2SO4 = 11CO2 + 8K2SO4 + 8Cr2(SO4)3 + 32H2O

产纤维素酶菌株的筛选及其酶活的测定模板

本科开放项目 题目:产纤维素酶菌株的筛选及其酶活的测定 学生姓名: 指导教师: 学院: 专业班级: 2016年3月

产纤维素酶菌株的筛选及其酶活的测定 摘要 纤维素作为植物光合作用的主要多糖类产物,是高等植物细胞壁的主要成分,是公认的自然界数量最丰富、最廉价的可再生有机物质资源。据估计,纤维素生成量每年高达1000亿吨。我国每年农作物秸秆总产量为7亿吨左右,仅农业生产中形成的农作物残渣(如稻草、玉米秸、麦秸等),每年就有5亿吨之多。纤维素的降解是自然界碳素循环的中心环节。但由于纤维素的结构特点,对纤维素的利用仍然非常有限。目前仅有20%的纤维素物质被开发利用,大量的纤维素物质因无法分解利用而废弃,不仅造成资源浪费,而且污染环境。随着人口数量的不断增长和人民生活水平的不断提高,能源危机、食物短缺、环境污染等问题日益严重,寻找利用可再生资源、节省粮食、减少环境污染的有效途径显得日趋重要。采用微生物技术处理秸秆是当前研究最多的一种秸秆处理方法,纤维素酶能将天然纤维素降解,生成纤维素分子链、纤维二糖和葡萄糖,然而目前制约纤维素材料转化为乙醇并实现产业化的关键因素之一是纤维素酶效率低下,从而造成生产成本过高。因此,筛选具有高活性纤维素酶的秸秆降解微生物菌株以及相关研究是当前研究的热点和难点。 关键词:纤维素降解高活性纤维素酶微生物菌株

目录 第1章绪论 (1) 1.1 实验原理 (1) 1.2 实验仪器及试剂 (1) 1.2.1 实验材料 (1) 1.2.2 实验仪器 (1) 1.2.3 培养基 (2) 第2章实验步骤 (3) 2.1 采样培养 (3) 2.2 初筛 (3) 2.3 复筛 (3) 2.4 酶活的测定 (3) 2.4.1原理 (3) 2.4.2溶液配制 (3) 2.4.3实验步骤 (4) 第3章实验结果 (6) 3.1 标准曲线的绘制 (6) 3.2 菌株复筛结果 (6) 3.3 测定纤维素酶活力结果 (7) 结束语 (8) 参考文献 (9)

纤维素酶活力测定

山东大学实验报告2011年4月20日 姓名张行润系年级2009级生科4班学号200900140177 同组者于潜科目生物化学实验题目纤维素酶活力测定—3,5-二硝基水杨酸法仪器编号105 一、实验目的 1、学会并掌握用3、5—二硝基水杨酸法测定酶活力方法 2、巩固使用分光光度计 二、实验原理 纤维素酶是一种多组分酶,包括C1酶、CX酶和β-葡萄糖苷酶三种主要组分。其中C1酶的作用是将天然纤维素水解成无定形纤维素,CX酶的作用是将无定形纤维素继续水解成纤维寡糖,β-葡萄糖苷酶的作用是将纤维寡糖水解成葡萄糖。纤维素酶水解纤维素产生的纤维二糖、葡萄糖等还原糖能将碱性条件下的3,5-二硝基水杨酸(DNS)还原,生成棕红色的氨基化合物,在550nm波长处有最大光吸收,在一定范围内还原糖的量与反应液的颜色强度呈比例关系,利用比色法测定其还原糖生成的量就可测定纤维素酶的活力。 酶活力(enzyme activity)也称为酶活性,是指酶催化一定化学反应的能力。酶活力的大小可用在一定条件下,酶催化某一化学反应的速度来表示,酶催化反应速度愈大,酶活力愈高,反之活力愈低。测定酶活力实际就是测定酶促反应的速度。酶促反应速度可用单位时间内、单位体积中底物的减少量或产物的增加量来表示。在一般的酶促反应体系中,底物往往是过量的,测定初速度时,底物减少量占总量的极少部分,不易准确检测,而产物则是从无到有,只要测定方法灵敏,就可准确测定。因此一般以测定产物的增量来表示酶促反应速度较为合适。 本实验中酶活力定义:1mg酶每分钟水解生成1微克葡萄糖的量定义为一个活力单位。由此定义我们可以计算本实验中的纤维素酶活力。 三、实验器材 (1)722型分光光度计(2)恒温水浴 (3)沸水浴锅 (4)电炉子 (5)剪刀 (6)分析天平(7)试管架 (8)胶头滴管 (9)具塞比色管(25mL×10)(10)移液管(2mL;5mL)(11)烧杯(500mL×3)(12)洗耳球 四、实验材料 (1)纤维素酶:0.05g酶溶解定容至50ml,取1ml再定容至100ml待测(用PH4.5乙酸-乙酸钠缓冲液配制); (2)3、5—二硝基水杨酸显色液; (3)0.5%羧甲基纤维素钠水溶液(CMC):用0.1mol/LPH4.5醋酸-醋酸钠缓冲溶液配置;(4)标准葡萄糖溶液(1mg/mL); (5)蒸馏水。 五、实验操作 1.空白管的测定:

常用纤维的检验方法

常用纖維的檢驗方法1、利用手觸摸質感的辨別 2、利用燃燒來鑑別

成分布料之中英對照

基本的天然纖維: 棉---cotton 羊毛---wool 蠶絲---silk 麻--- leaf fiber 較長見的人造纖維: 聚酯纖維,學名: PET fiber (polyester fiber),俗名:特多龍(Tetoron,日本商標名) 聚醯胺纖維,學名: PA fiber(polyamide fiber),俗名:尼龍(Nylon,美國商標名) 聚丙烯腈,學名: PAN fiber(polyacrylonitrile fiber),俗名:開司米龍(Cashmilon,日本商標名) 聚乙烯醇纖維,學名: PVA fiber (polyvinyl alcohol fiber),俗名:維尼龍(Vinylon,日本商標名) 聚丙烯纖維,學名: PP fiber (polypropylene fiber)

聚氯乙烯纖維,學名: PVC fiber (polyvinyl chloride fiber) 聚乙烯纖維,學名: PE fiber (polyethylene fiber) 聚氨基甲酸酯纖維,學名: PU fiber (polyurethane fiber),俗名: 萊卡(Lycra,美國杜邦商標名); Spandex(美國商標名) 粘膠纖維---viscose fiber, viscose rayon 醋酸纖維---acetate fiber 三醋酸纖維---triacetate fiber PBT, PTT, PLA等許多的新興纖維材料: 尼龍nylon 彈性纖維lycra 聚酯纖維polyester-----以上都是人造纖維man-made fiber 鏍瑩rayon-----天然纖維加工而成

纤维素酶的检测方法

纤维素CMC酶、FPA酶和半纤维素酶测定 1.纤维素CMC酶 1.0标题 用3.5一二硝基水杨酸法测定纤维素CMC酶活性单位。 2.0范围 生产分析和质量控制部门适用。 3.0原理 纤维素CMC酶(EC3.2.1.4)水解羧基纤维素分子中β-1.4葡萄糖苷键,释放出的还原糖(以葡萄糖计)与3.5二硝基水杨酸(DNS)反应,产生颜色变化,这种颜色变化与释放还原糖(以葡萄糖计)的量成正比关系,即与酶样品中的酶活性成正比。通过在550nm的光吸收值查对标准曲线(以葡萄糖为标准物)可以确定还原糖产生的量,从而确定出酶的活力单位。 4.0试剂 4.1无水醋酸钠(分析纯) 4.2冰醋酸(分析纯) 4.3 3.5-二硝基水杨酸 4.4无水葡萄糖 4.5四水酒石酸钾钠(分析纯) 4.6氢氧化钠(分析纯) 4.7重蒸苯酚(分析纯) 4.8无水亚硫酸钠(分析纯) 4.9叠氮化钠(分析纯) 4.10羧甲基纤维素钠 5.0仪器 5.1水浴锅(恒温)50±1℃ 5.2电热干燥箱80±1℃ 5.3 722型分光光度机计 5.4分析天平感量0.1㎎ 5.5一级玻璃制品 5.6电冰箱 6.0试剂的准备 6.1乙酸-乙酸钠缓冲溶液(PH=4.8) 溶液A:量取冰醋酸6ml,定容至1000ml,制成0.1M醋酸钠溶液。 溶液B:称取8.2g醋酸钠,溶解后容至1000ml,制成0.1M醋酸钠溶液。 以A:B=4:6的比例混合,低温冷藏备用。 6.2 DNS试剂: 溶液A:称分析纯NaOH 104g溶于1300ml水中,加入30g分析纯3.5一二硝基水杨酸。 溶液B:称分析纯酒石酸钾钠910g,溶于2500ml热水中,再称取25g重蒸苯酚和25g无水亚硫酸钠加入酒石酸钾钠溶液。 将A、B溶液混合,定容至5000ml,贮存于棕色瓶中,暗处放置一星期后可使用。 6.3 CMC溶液:用羧甲基纤维素钠(CMC)以PH4.8醋酸缓冲液配成1%的溶液。 7.0标准曲线制作: 7.1无水葡萄糖80℃烘干至恒重。 7.2准确称取1.000g溶于1000ml水中,加10mg叠氮化钠防腐,4℃冷藏备用。 7.3标准葡萄糖曲线制作

纤维素酶活力测定方法_张瑞萍

测试与标准 纤维素酶活力测定方法 张瑞萍 南通工学院(226007) 摘 要 用DN S 为显色剂,分别以滤纸和CM C 为底物,以滤纸糖酶活性(FP A )和羧甲基纤维素酶活性(CM C a se )表征纤维素酶活力。确定酶活测定用波长为530nm,参比溶液应为失活酶、底物和DN S 等共热的反应物;比较了两种底物的酶活力测定方法。结果表明,CM C a se 比FP A 高,说明酶对水溶性底物有较高的活力,也表明吸附对酶的活性部位与纤维素分子链段的结合及催化均有很大影响;对于不同牌号的纤维素酶,织物的酶减量率与CM C 酶活力关系密切。 叙 词: 测试 纤维素酶 活度中图分类号: TS197 纤维素酶是多组分复合物,各组分的底物专一性不同。纤维素酶作用的底物比较复杂,反应产物不同,致使纤维素酶活力测定方法很多,各国的方法亦不统一。我们选择滤纸、CM C 为底物,原理系利用纤维素酶催化水解纤维素,产生纤维多糖、二糖及葡萄糖等还原糖,与显色剂反应,求出还原糖的浓度,间接求出酶的活力。由不同底物测得的酶活力分别称作FPA (滤纸糖酶活力)和CM C ase (羧甲基纤维素酶酶活力)。本文分析确定酶活力测定的主要条件,比较两种底物的酶活力测定方法的结果,探讨纤维素酶活力与织物减量率的关系,为酶在生产中的利用提供依据。 1 实验方法 1.1 化学药品、材料 纤维素酶(工业品),DNS 试剂(自配),冰醋酸,醋酸钠,葡萄糖(均为分析纯),滤纸(定性),羧甲基纤维素酶CM C (试剂级),纯棉针织物半制品(南通针织厂)。 1.2 FPA 滤纸酶活力和CMC 酶活力的测定 取适当稀释的酶液,分别以滤纸或1%的CM C 溶液为底物,于50℃恒温水解反应1h ;然后加入显色剂DNS,沸水浴中煮沸5min;再加入蒸馏水,于530nm 测定吸光度OD 值。 酶活可定义为:每毫升酶液1min 产生1mg 葡萄糖为一个单位( )。 1.3 针织物酶减量率的测定 将酶处理前后的试样在烘箱中105℃烘至恒重。减量率= 处理前织物干重-处理后织物干重 处理前织物干重 ×100% 2 结果与讨论 2.1 显色剂的选择 选用DNS ,在碱性条件下与还原糖反应,生成有色化合物,用分光光度计比色,确定低分子糖含量。 碱性条件下DNS 与还原糖共热反应如下: O 2N OH O 2N CO OH +还原糖  H 2N OH CO OH O 2N DN S(黄色) 3-氨基-5-硝基水杨酸(棕红色) 生成的棕红色氨基化合物系比色法测定基础。2.2 最大吸收波长的确定 选取490~580nm 波长对显色液进行比色。由图1可知,不同浓度的葡萄糖溶液在490~500nm 处有最大吸收,DNS 在此波长下也有较明显的吸收。为了排除DNS 的干扰,选择在波长 530nm 处进行测定,此波长下的葡萄糖吸收虽有所降低,然而符合“吸收最大、干扰最小”的原则。 图1 D NS 与葡萄糖的吸收曲线 2.3 底物及酶本身含糖量的影响 在实验过程中发现,底物特别是滤纸,也含有一定的还原糖,在碱性的DNS 试剂中也会发色。而且,试验所用的纤维素酶是一种工业级的复合酶,品种不同,其本身含糖量也不同。为了排除这类还原糖的干扰,参比溶液取失活后的酶、底物、DNS 等共热的反应物。2.4 葡萄糖标准曲线 用不同浓度的葡萄糖溶液作为标准溶液,与DNS 共热反应显色后,测出其吸光度OD 值(见图2)。标准曲线的线性相关系数R 2为0.9991(见图2),线性相当好,可以用于酶活力的测定。 38 印 染(2002No .8) www .cdfn .com .cn

实验四 固体纤维素酶滤纸酶活力(FPA)的测定方法

实验四固体纤维素酶滤纸酶活力(FPA)的测定方法 一目的 了解纤维素酶的种类和测定原理,掌握其活力的测定方法。 二、原理 纤维素酶在一定温度和pH条件下,将纤维素底物(滤纸)水解,释放出还原糖。在碱性、煮沸条件下,3,5一二硝基水杨酸(DNS试剂)与还原糖发生显色反应,其颜色的深浅与还原糖(以葡萄糖计)含量成正比。通过在540 run测其吸光度,可得到产生还原糖的量,计算出纤维素酶的滤纸酶活力。以此代表纤维素酶的酶活力。 酶活定义 以滤纸为底物,在一定反应条件(50℃,pH4.8,恒温1h)下,以水解反应中每小时催化底物水解形成1μmol葡萄糖的酶量为一个单位(U)。 三、试剂和溶液 (一) 除非另有说明,在分析中仅使用确认为分析纯的试剂和蒸馏水或去离子水或相当纯度的水。 1 DNS试剂 2柠檬酸缓冲液,0. 05 mol/L pH 4.8(适用于酸性纤维素酶) 称取一水柠檬酸4.83 g,溶于约750 mL水中,在搅拌情况下,加入柠檬酸三钠7.94g,用水定容至1000 mL。调节溶液的pH到(4.8士0.05)备用。 注:也可采用pH4.8乙酸缓冲溶液:称取三水乙酸钠8. 16 g,溶于约750 ml,水中,加入乙酸2.31 ml,,用水定容至1 000 ml.调节溶液的pH到(4.8士0.1)备用 3葡萄糖标准贮备溶液(4mg/ml) 称取于(103士2)℃下烘千至恒重的无水葡萄糖4.0g,精确至0. 1 mg,用水溶解并定容至1000ml。(4mg/ml) 上述系列浓度应根据需要自行调整。 5快速定性滤纸(杭州新华一号滤纸)沪15 cm(每批滤纸,使用前用标准酶加以校正)。 (二) 仪器 除普通实验室仪器外,还应有: 1分光光度计 2酸度计精度10.01 pH 3恒温水浴(50士0.l)0C 4分析天平感量0.1 mg 5磁力搅拌器 6秒表或定时钟 7沸7k洛(可用800W申炉和高脚烧杯、楠夸量杯或茸楠奔器切成) 8具塞刻度试管25 mL 四、操作步骤 4.1绘制标准曲线 按表A. l规定的量,分别吸取葡萄糖标准使用溶液(A.2.5)、缓冲溶液(A.2.2或A.2.3)和DNS试剂(A.2.1)于各管中(每管号平行作3个样),混匀。 将标准管同时置于沸水浴中,反应10 min。取出,迅速冷却至室温,用水定容至25 mL.盖塞,混匀。用10 mm比色杯,在分光光度计波长540 nm处测量吸光度。以葡萄糖量为横坐标,以吸光度为纵坐标,绘制标准曲线,获得线性回归方程。线性回归系数应在0.9990以上时方可使用(否则须重做)。

木质纤维检测方法

木质纤维质量要求及检测方法 一、木质纤维的质量要求(JTG F40-2004 ) 项目单位指标试验方法 纤维长度,不大于mm 6 水溶液用显微镜观测灰分含量% 18±5 高温590~600℃燃烧后测定残留物pH值—7.5±1.0 水溶液用pH试纸或pH计测定吸油率—纤维质量的5倍用煤油浸泡后放在筛上经振后称重 含水率(以质量 % 5 105℃烘箱烘2h后冷却称量计),不大于 二、具体检测方法 1.灰分含量 用高温燃烧后的残留灰分表示。取2~3g试样,在不少于2h的时间内加热到590~600℃,冷却后称取残留物的质量。 2.pH值 试验时取5g纤维加在100ml水中,保持30min后测定。 3.吸油试验 称量5g纤维浸入煤油中,不少于5min,取出后称量吸透油分的纤维质量,将其放入一个由筛网做成的小滤勺中,滤网的孔径为0.5mm,在摇筛机上摇振10min(每分钟摇动221次,幅度32mm,振147次/min,振幅13mm)。称量摇筛后吸油纤维的质量,计算纤维吸油量与纤维自重的比值,即为纤维的吸油率。 4.含水率 将纤维放入烘箱中干燥2h后测定水分的损失。

5.相对密度 木质纤维由于材质较轻,且纤维内部吸收一部分水,溶解某些物质,所以测定相对密度时需要通过另一种已知相对密度液体转换。具体方法是称取适量的纤维放入一个经过标定的测定相对密度的瓶中,向瓶中注入一种密度小于这种纤维且不使纤维发生溶解的液体,为防止瓶中出现气泡,可以事先用该液体浸泡纤维,必要时可采取捣实或离心的方式除去气泡,将液体注满。 相对密度=(m瓶+纤维-m瓶)/(m注满瓶的水-(m瓶+纤维+液体-m瓶+纤维)/液体相对密度)。

纤维素酶活力的测定

β-糖苷酶活力的测定(CMC) 一目的: 掌握CMC酶活力测定纤维素酶的原理及测定方法。 原理: 纤维素酶能从底物羧甲基纤维素钠(CMC-Na)中分解出还原糖,还原糖又同3,5-而硝基水杨酸发生反应,产生一种黄橙混合色,用分光光度计可测定其色度,计算酶活力。 二试剂: 1.3,5-而硝基水杨酸显色剂(又称DNS试剂):称取10g3,5-而硝基水杨酸,溶于蒸馏水中,加入20g分析纯NaOH,200g酒石酸钾钠,加税500ml,升温溶解后,加入重蒸酚2g,无水亚硫酸钠,加热搅拌,待全部溶解后,定容至1000ml。贮存于棕色瓶中,室温保存,放置一周后使用。 2.L 醋酸-醋酸钠缓冲液:称取结晶醋酸钠(H2O),醋酸(CH3COOH),用蒸馏水溶解,并定容至1000 ml,配好后用pH计矫正。 3.1mg/ml葡萄糖标准溶液:准确称取100mg分析纯葡萄糖(预先在70℃、600nm汞柱下干燥5h至恒重),用少量蒸馏水溶解并定容至100ml,冰箱中保存备用。 4.代测酶液:称取酶粉(或吸取酶液),先用少量的L 醋酸-醋酸钠缓冲液溶解,并用玻璃棒捣研,然后将上清液小心倾入适当的容量瓶中,沉渣部分再加上述缓冲液溶解,如此反复捣研3-4次,最后全部移入容量瓶中,用缓冲液定容至刻度,40℃水浴锅中浸提1h,用四层纱布或脱脂棉过滤,滤液供测定用。 5.底物:%羧甲基纤维素钠(CMC-Na)溶液,配制方法为城区羧甲基纤维素钠(Sigma公司生产),准确至,用上述缓冲液溶解定容至100ml,冰箱中保存,有效期3d。 三仪器: 分析天平、变温电炉、恒温水浴锅、分光光度计、秒表等。 四方法步骤: 1.标准曲线的绘制 分别吸取, , , , , , 的1mg/ml葡萄糖液于7支20ml的比色管中,分别用蒸 馏水补充体积至,各加3,5-而硝基水杨酸,在沸水浴中煮沸5min,冷却后 分别用蒸馏水定容至20ml,摇匀。以2ml蒸馏水加DNS溶液,按上述同样 操作为空白调零,在540nm处比色。标准曲线绘制个试管所含物质的体 积见下表。以吸光度A值为纵坐标,葡萄糖毫克数W(mg)为横坐标绘制出 标准曲线(理论上此线应过原点)。

木质纤维素检测方法

木质纤维质量要求及检测方法 一、木质纤维素的质量要求(JTG F40-2004 ) 项目单位指标试验方法 纤维长度,不大于mm 6 水溶液用显微镜观测灰分含量% 18±5 高温590~600℃燃烧后测定残留物pH值—7.5±1.0 水溶液用pH试纸或pH计测定吸油率—纤维质量的5倍用煤油浸泡后放在筛上经振后称重 含水率(以质量 % 5 105℃烘箱烘2h后冷却称量计),不大于 二、具体检测方法 1.灰分含量 用高温燃烧后的残留灰分表示。取2~3g试样,在不少于2h的时间内加热到590~600℃,冷却后称取残留物的质量。 2.pH值 试验时取5g纤维加在100ml水中,保持30min后测定。 3.吸油试验 称量5g纤维浸入煤油中,不少于5min,取出后称量吸透油分的纤维质量,将其放入一个由筛网做成的小滤勺中,滤网的孔径为0.5mm,在摇筛机上摇振10min(每分钟摇动221次,幅度32mm,振147次/min,振幅13mm)。称量摇筛后吸油纤维的质量,计算纤维吸油量与纤维自重的比值,即为纤维的吸油率。 4.含水率 将纤维放入烘箱中干燥2h后测定水分的损失。

5.相对密度 木质纤维由于材质较轻,且纤维内部吸收一部分水,溶解某些物质,所以测定相对密度时需要通过另一种已知相对密度液体转换。具体方法是称取适量的纤维放入一个经过标定的测定相对密度的瓶中,向瓶中注入一种密度小于这种纤维且不使纤维发生溶解的液体,为防止瓶中出现气泡,可以事先用该液体浸泡纤维,必要时可采取捣实或离心的方式除去气泡,将液体注满。 相对密度=(m瓶+纤维-m瓶)/(m注满瓶的水-(m瓶+纤维+液体-m瓶+纤维)/液体相对密度)。

纤维素酶活力的测定

β-糖苷酶活力的测定(CMC) 一目的: 掌握CMC酶活力测定纤维素酶的原理及测定方法。 原理: 纤维素酶能从底物羧甲基纤维素钠(CMC-Na)中分解出还原糖,还原糖又同3,5-而硝基水杨酸发生反应,产生一种黄橙混合色,用分光光度计可测定其色度,计算酶活力。 二试剂: 1.3,5-而硝基水杨酸显色剂(又称DNS试剂): 称取10g3,5-而硝基水杨酸,溶于蒸馏水中,加入20g分析纯NaOH,200g酒石酸钾钠,加税500ml,升温溶解后,加入重蒸酚2g,无水亚硫酸钠0、5g,加热搅拌,待全部溶解后,定容至1000ml。贮存于棕色瓶中,室温保存,放置一周后使用。 2.0、1mol/LpH4、5醋酸-醋酸钠缓冲液:称取结晶醋酸钠(CH3COONa、3 H2O)13.61g,醋酸(CH3COOH)6、00g,用蒸馏水溶解,并定容至1000 ml,配好后用pH计矫正。 3、1mg/ml葡萄糖标准溶液:准确称取100mg分析纯葡萄糖(预先在70℃、600nm汞柱下干燥5h至恒重),用少量蒸馏水溶解并定容至100ml,冰箱中保存备用。 4.代测酶液:称取酶粉1、0g(或吸取酶液1、00ml),先用少量的0、05mol/L pH4、5醋酸-醋酸钠缓冲液溶解,并用玻璃棒捣研,然后将上清液小心倾入适当的容量瓶中,沉渣部分再加上述缓冲液溶解,如此反复捣研3-4次,最后全部移入容量瓶中,用缓冲液定容至刻度,40℃水浴锅中浸提1h,用四层纱布或脱

脂棉过滤,滤液供测定用。 5、底物:0.5%羧甲基纤维素钠(CMC-Na)溶液,配制方法为城区0、5000g 羧甲基纤维素钠(Sigma公司生产),准确至0、001g,用上述缓冲液溶解定容至100ml,冰箱中保存,有效期3d。 三仪器: 分析天平、变温电炉、恒温水浴锅、分光光度计、秒表等。 四方法步骤: 1.标准曲线的绘制 分别吸取0.2, 0.4, 0、6, 0、8, 1.0, 1.2, 1.4ml的1mg/ml葡萄糖液于7支20ml的比色管中,分别用蒸馏水补充体积至2、oml,各加3,5-而硝基水杨酸1、5ml,在沸水浴中煮沸5min,冷却后分别用蒸馏水定容至20ml,摇匀。以2ml蒸馏水加DNS溶液1、5ml,按上述同样操作为空白调零,在540nm处比色。标准曲线绘制个试管所含物质的体积见下表。以吸光度A值为纵坐标,葡萄糖毫克数W(mg)为横坐标绘制出标准曲线(理论上此线应过原点)。 标准曲线绘制各试管所含物质的体积

粗纤维的国标检测方法

【GB/T 5009.10—1985】 食品中粗纤维的测定方法 本标准适用于植物类食品中粗纤维含量的测定。 1 原理 在硫酸作用下,样品中的糖、淀粉、果胶质和半纤维素经水解除去后,再用碱处理,除去蛋白质及脂肪酸,遗留的残渣为粗纤维。如其中含有不溶于酸碱的杂质,可灰化后除去。 2 试剂 2.1 1.25%硫酸。 2.2 1.25%氢氧化钾溶液。 2.3 石棉:加5%氢氧化钠溶液浸泡石棉,在水浴上回流8h以上,再用热水充分洗涤。然后用20%盐酸在沸水浴上回流8h以上,再用热水充分洗涤,干燥。在600~700℃中灼烧后,加水使成混悬物,贮存于玻塞瓶中。 3 操作方法 3.1 称取20~30g捣碎的样品(或5.0g干样品),移入500ml锥形瓶中,加入200ml煮沸的1.25%硫酸,加热使微沸,保持体积恒定,维持30min,每隔5min 摇动锥形瓶一次,以充分混合瓶内的物质。 3.2 取下锥形瓶,立即用亚麻布过滤后,用沸水洗涤至洗液不呈酸性。 3.3 再用200ml煮沸的1.25%氢氧化钾溶液,将亚麻布上的存留物洗入原锥形瓶内加热微沸30min后,取下锥形瓶,立即以亚麻布过滤,以沸水洗涤2~3次后,移入已干燥称量的G2垂融坩埚或同型号的垂融漏斗中,抽滤,用热水充分洗涤后,抽干。再依次用乙醇和乙醚洗涤一次。将坩埚和内容物在105℃烘箱中烘干后称量,重复操作,直至恒量。 如样品中含有较多的不溶性杂质,则可将样品移入石棉坩埚,烘干称量后,再移入550℃高温炉中灰化,使含碳的物质全部灰化,置于干燥器内,冷却至室温称量,所损失的量即为粗纤维量。 3.4 计算 式中:X——样品中含粗纤维的含量,%; G——残余物的质量(或经高温炉损失的质量),g; m——样品的质量,g。 附加说明: 本标准由全国卫生标准技术委员会食品卫生标准分委员会提出,由卫生部食品卫生监督检验所归口。 本标准由卫生部食品卫生监督检验所负责起草。

相关文档
最新文档